S.P.Mandali's Ramnarain Ruia Autonomous College

Program : M.Sc.

Course: M.Sc. Physical Chemistry Course code: RPSCHEP

Syllabus for Semester III & IV

(Choice Based Credit System to be implemented from the Academic year 2019-20)

Semester III

Course Code	Unit	Торіс	Credits	Lectures
	Ι	Polymer Chemistry-I		15
DDSCHED201	II	Modern Applications of Surface Chemistry	1	15
KPSCHEP501	III	Photo Chemistry-I	4	15
	IV	Applications of Fluorescence Phenomena		15
	Ι	Advances in Nanomaterials		15
RPSCHEP302	II	Applied electrochemistry		15
KI SCHLI 502	III	Statistical Mechanics	-	15
	IV	Nuclear Chemistry		15
	Ι	Atomic structure		15
RPSCHEP303	II	Atomic spectroscopy	4	15
	III	Molecular Structure		15
	IV	Molecular spectroscopy		15
	Ι	Electron Spectroscopy and Microscopy		15
DDSCHEDEC 1204	II	Hyphenated Techniques	4	15
KrSChErec-1 304	III	Thermal and Radioanalytical Methods	4	15
	IV	Pulse Polarography		15
	Ι	Spectral Methods		15
DDSCHEDEC II 204	II	Electro-analytical Methods – I	4	15
KrSCHEFEC-II 504	III	Radio-analytical Methods 4	15	
	IV	Pulse polarography		15
RPSCHEP3P1				
RPSCHEP3P2		Practicals	8	16
RPSCHEP3P3		Practicals		10
RPSCHEP3P4				

Semester IV

Course Code	Unit	Торіс	Credits	Lectures
	Ι	Polymer Chemistry-II		15
	II	Polymer Chemistry-III		15
RPSCHEP401	III	Bio-physical Chemistry and Green Chemistry	4	15
	IV	Photochemistry-II: Kinetics and Applications		15
	Ι	Solid State Chemistry		15
RPSCHEP402	II	Instrumental Methods	1	15
KI SCHEI 402	III	Lasers and super conductors	-	15
	IV	Non-equilibrium thermodynamics		15
	Ι	Symmetry in Chemistry		15
DDSCHED402	II	N.M.R.Spectroscopy-I	1	15
KrSChEr405	III	ESR and Mossbauer Spectroscopy	4	15
	IV	¹³ C-N.M.R.Spectroscopy		15
	Ι	Introduction to Intellectual Property		15
RPSCHEPOC-I 404	II	Trade Secrets	4	15 15 15 15 15 15 15
	III	Introduction to Cheminformatics		15
	IV	Applications		15
	Ι	Review of Literature		15
	II	Data Analysis		15
RPSCHEPOC-II 404	III	Methods Of Scientific Research And Writing Scientific Papers	4	15
	IV	Chemical Safety & Ethical Handling Of Chemicals		15
RPSCHEP4P1				
RPSCHEP4P2		Dracticals	8	16
RPSCHEP4P3		Flacucais		10
RPSCHEP4P4				

Detail Syllabus

SEMESTER III Paper-I Course Code: RPSCHEP301 Credits: 4 Polymer, Surface & Photochemistry

Unit- I	Polymer Chemistry-I	(15 L)
	1.1 Introduction: Polymer Science, fundamental terms, historical outline,	(5 L)
	classification based on: the origin (natural, semi-synthetic, synthetic etc.), the	
	structure (linear, branched, network, hyper branched, dendrimer, ladder, cross	
	formation (condensation, addition), homonolymore, co. polymore (random	
	alternate block graft) the behavior on application of heat (thermonlastic and	
	thermosetting) the form and application (plastics fiber Flastomers and	
	resins).	
	1.2 Molar Mass: Molecular weight averages, fractionation, molecular weight	(5 L)
	determination by GPC/SEC, end group analysis, viscometry, vapour phase	
	osmometry gradient elution, and molecular weight distribution curve.	
	1.3 Types of polymerization : condensation, addition (cationic and anionic)	(5 L)
	and copolymerization (with kinetics), chain transfer reactions.	
UNIT-II	Modern Applications of Surface Chemistry	(15 L)
	2.1 Surface active agents and micelle:	(<u>8L</u>)
	2.1.1 Surface active agents and their classification, hydrophile-lipophile	()
	balance	
	2.1.2 Micellization: shape and structure of micelles, hydrophobic interaction,	
	critical Micelles concentration (cmc), factors affecting cmc of surfactants,	
	counter ion binding to micelles, micelle catalysis, and reverse micelles.	
	2.1.3 Emulsions: Solubilization, micro emulsions, characterization of	
	Micro-emulsions,	
	2.2 Hydrogen storage by Adsorption:	
	2.2.1 Hydrogen storage : fundamentals Physisorption, temperature and	
	pressure influence, chemisorption, adsorption energy, 'Electrochemical	(7L)
	'adsorption.	
	2.2.2. Practical adsorption : storage of hydrogen with carbon materials,	
	activated carbon, graphite graphene, carbon nano structures, fullerene.	
	Carbon nano fibers (CNF) and graphite nano fibers electrochemical storage	
	of hydrogen in carbon materials.	
UNIT-III	Photo Chemistry-I	(15L)
	3.1 Photo chemical principles: Environmental effect on absorption and	
	emission spectra, properties of excited states, excited state acidity constants,	
	dipole moments and redox properties, Importance of photochemistry, origin of	
	life,	
	3.2 Photo physical processes in electronically excited molecules: types of	
	emission fluorescence and structure Triplet state and phosphorescence	
	emission, hubblescence and structure. There state and phosphorescence emission delayed fluorescence type and n-type delayed fluorescence	
	3.3 Photo chemical reactions: ketones, olefins conjugated olefins and	

	aromatic compounds, photosynthesis	
UNIT-IV	Applications of Fluorescence Phenomena	(15L)
	4.1 Fluorescence sensing: Mechanism of sensing; sensing techniques based on Coalitional quenching, energy transfer, electron transfer; examples of pH sensors glucose sensors and protein sensors.	(05L)
	4.2 Novel fluorophores : Quantum dots, lanthanides and long-lifetime Metal- ligand complexes.	(05L)
	 4.3 Radiative decay engineering: metal enhanced fluorescence 4.4 DNA technology-sequencing. 	(03L) (02L)

Reference books:

1.	P. Bahadur and N. V. Sastry, Principles of Polymer Science, second
	edition,NarosaPublishingHouse,2005.
2.	C. E. Carraher, Jr., Carraher's Polymer Chemistry, 8 th edition, CRC Press, New York,2010.
3.	Joel R. Fried, Polymer Science and Technology, Prentice-Hall of India Pvt. Ltd., 2000.
4.	V.R.Gowarikar, H. V. Viswanathan and J. Sreedhar, Polymer Science. New Age International Pvt.
	Ltd., New Delhi, 1990.
5.	M. J. Rosen. Surfactants and Interfacial Phenomena (3rd edn.), John Wiley (2004).
6.	Y. Moroi, Micelles: Theoretical and Applied Aspects, (1992) Plenum Press, New York
7.	Tushar K. Ghosh, Energy Resources and Systems: Volume 2, Springer Link:Bücher,Springer,2011.
8.	R. Str obel a, J. Garche b, P.T. Moseley c, L. J orissen b, G. Wolfd. "Review Hydrogen storage by
	carbon materials." Journal of Power Sources (WWW.Sciencedirect.com) 159 (June 2006): 781-
	801.
9.	C. H. De Puy, O. L. Chapman, Molecular reactions and photo chemistry, Prentice hall of India
	PVT. LTD. 1988.
10.	K.K.Rohatgi-Mukherjee. Fundamentals of Photochemistry. Reprint 2002. New Age International
	Publisher,1978.
11.	B. Valeur, Molecular Fluorescence: Principles and Applications, Wiley-VCH (2001).
12	J.R.Lakowicz, Principles of Fluorescence Spectroscopy, Springer (2006). Reference Book

Semester III Paper II Course Code: RPSCHEP302 Credits: 4 Nanochemistry, Applied Electrochemistry, Statistical Mechanics & Nuclear Chemistry

UNIT-I	Advances in Nanochemistry	(15L)
	 1.1: Types of nanomaterials e.g. nanotubes, nanorods, solid spheres, core-shell nanoparticles, mesoporous materials, General preparative methods for various nanomaterials 1.2 Important properties on nanomaterials: optical properties of metal and semiconductor nanomaterials, magnetic properties 1.3 Some special nanomaterials: Carbon nanotubes- Types, synthesis using various methods, growth mechanism, electronic structure. Porous Silicon- Preparation and mechanism of porous silicon formation, factors affecting porous structure, properties of porous silicon. Aerogels- types of aerogels, properties and applications of aerogels 1.4 Application of nanomaterials in electronics, energy, automobiles, sports and toys, textile, cosmetics, medicine, space and defence. 1.5 Environmental effects of nanotechnology 	
UNIT-II	Applied Electrochemistry	(15L)
	 1.1 Electroplating: electroplating of metals, factors affecting throwing power of an electroplating bath, mechanism of electrodeposition, typical electroplating processes, applications of electroplating metal (Sn, Ni, Cr, Cu, Cd, Zn, Ag and Au) 1.2 Electrochemical corrosion of metals- Classification of corrosion processes, conditions for the occurrence of corrosion process, kinetic theory of corrosion and its application to pure metals, methods of corrosion protection, corrosion of technical metals 1.3 Batteries- Working principle, cell reactions and cell performances of Lithium batteries (primary and secondary), Lithium based conducting polymer batteries, solid state and molten solvent batteries, silver-anode primary batteries. 1.4 Fuel Cells- Classification, H2-O2 fuel cell, choice of electrolyte, advantages, disadvantages, electrodes and electrocatalysis, phosphoric acid fuel cells, methanol fuel cells, solid polymer electrolyte fuel cells, solid oxide fuel cells, diaphragm fuel cells, biochemical fuel cells 	
UNIT- III	Statistical Mechanics	(15L)
	 3.1.Thermodynamic probability: Combinatorial problems, Strilling approximation, Lagranges method, macro and microstates, ensembles, Boltzmann distribution law. 3.2 Partition functions: Translational, rotational, vibrational, electronic and nuclear partition functions, Expressions for the thermodynamic functions in terms of partition function -Internal energy, heat capacity, the Helmholtz and Gibbs functions, Enthalpy, entropy and equilibrium constants. Sackur –Tetrode equation for the entropy of a mono atomic gas. Molecular partition function. 	

	3.3 Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac statistics.3.4. Debye and Einstein theory of specific heat of solids	
UNIT—IV	Nuclear Chemistry	(15L)
	4.1 Charged particle accelerator- linear accelerator, cyclotron, Betatron, Synchrotron	
	4.2 Nuclear forces- characteristics and Meson field theory of nuclear forces	
	4.3 Nuclear Models- Liquid drop model, Fermi Gas Model, Shell Model, Collective Model, Optical Model.	
	4.4 Applications of Nuclear radiations- geological applications of radioactivity,	
	age of minerals and rocks, age of earth and solar system, medical, industrial and Agricultural applications of radiochemistry, positron emission topography, Radio- immune assay.	

Refe	rences:
1.	Sulabha K. Kulkarni, Nanotechnology: Principles and Practices, Capital publishing company
	(2007)
2.	Lesley E. Smart and Elaine A. Moore, Solid State Chemistry- An introduction, 3 rd Ed., Taylor and
	Francis, (2005), Chapter 11
3.	Atkins P. W, Physical Chemistry, Oxford University Press,6 th edition,1998
4.	Laidler K.J. and Meiser J.H., Physical Chemistry, 2 nd edition, CBS publishers & distributors,1999.
5.	John M. Seddon & Julian D. Gale, Thermodynamics and Statistical mechanics, Tutorial
	Chemistry Texts series, Vol.10, Royal Society of Chemistry, 2001.
6.	D. A. McQuarrie, Statistical Mechanics, (1976) Harper and Row Publishers, New York.
7.	Silbey RJ & Alberty RA, Physical Chemistry, 3 rd edition, John Wiley and sons, Inc. 2002.
8.	B. K. Agarwal and M. Eisner, Statistical Mechanics,(1988)Wiley Eastern, New Delhi.
9.	G. Friedlander, J. W. Kennedy, Nuclear and Radio Chemistry. Third. John Wiley and
	sons,1981.
10.	H. J. Arnikar, Essentials of Nuclear Chemistry. Wiley Eastern Ltd., 1989.

SEMESTER-III Paper-III

Course Code: RPSCHEP303

Credits: 4

Atomic and Molecular: Structure and spectroscopy

UNIT-I	Atomic structure	(15L)
	1.1: Introduction to approximate methods in Quantum Mechanics-	
	1.1.1 Variation Theorem, linear and nonlinear variation functions.	
	1.1.2 Perturbation Theory, Non degenerate Perturbation Theory, first order wave function	
	correction, first order and second order energy correction.	
	1.1.3 Application of variation and perturbation theory to ground state of Helium Atom.	
	1.2: Multi -electron atoms: Anti-symmetry and Pauli principle, Slater determinants, Hartree.	
	Fock and configuration interaction wave functions, Slater type orbitals, Gaussian orbitals, orbi	
	plot, basic sets, and density function theory.	
UNIT-II	Atomic spectroscopy	(15L)
	2.1 Angular momentum, orbital and spin, total angular momentum, total angular	(04L)
	momentum (J) of many electron atoms, Russell Saunders (L-S) coupling and J-J coupling	
	2.2 Term symbols, term symbols for multi electron atoms like He, Li, Be, B etc.	(04L)
	2.3 Exchange of interactions and multiplicity of states.	(02L)
	2.4 Anomalous Zeeman Effect and Paschen Back effect.	(02L)
	2.5 Atomic spectra and selection rules, energy level diagram of atomic sodium.	(03L)
UNIT-III	Molecular Structure	(15L)
	3.1 The Born–Oppenheimer approximation	
	3.2 LCAO method-molecular orbital formation	(01L)
	3.3 Calculation of energy of hydrogen molecule ion using	(01L)
	3.3.1 Valence bond method	(05L)
	3.3.2 Heitler-London treatment	
	3.3.3 Improvements in Heitler-London treatment	
	3.4 Electronic structure of polyatomic molecules	(08L)
	3.4.1 Valence bond method for BeH ₂ , H ₂ O, NH ₃ , BH ₃ , CH ₄ .	
	3.4.2 Huckel molecular orbital's Theory for-ethylene, Allyl system, cyclo-propenyl	
	system and cyclo-butadiene.	
		(1 = T)
	Molecular spectroscopy	(15L)
	4.1. Kotational spectroscopy: Einstein coefficients, classification of poly atomic	(USL)
	Molecules spherical top, symmetric top and asymmetric top molecules, rotational	
	Spectra of polyatomic molecules Stark modulated microwave Spectrometer.	
	4.2 Raman Spectroscopy- Classical theory of molecular polarizability, pure rotational,	
	vibrational and vibration-rotation spectra of diatomic and polyatomic molecules polarization	(051)
	and depolarization of Raman lines correlation between IR and Raman spectroscopy	(05L)
	Instrumentation.	
	4.3 Electronic Spectra of molecules: Term symbols for linear molecules, selection rules	(0/L)
	characteristics of electronic transitions-Franck-Condon principle, types of electronic	1
	transitions-d-d, vibronic, charge transfer, π - π , n - π transitions, fate of electronically excited states fluorescence phosphorescence dissociation and pre dissociation	
	 Spectra of polyatomic molecules Stark modulated microwave Spectrometer. 4.2 Raman Spectroscopy-Classical theory of molecular polarizability, pure rotational, vibrational and vibration-rotation spectra of diatomic and polyatomic molecules polarization and depolarization of Raman lines correlation between IR and Raman spectroscopy Instrumentation. 4.3 Electronic Spectra of molecules: Term symbols for linear molecules, selection rules characteristics of electronic transitions-Franck-Condon principle, types of electronic 	(05L) (07L)

Refe	References	
1.	Atkins P.W, Physical Chemistry, Oxford University Press,6 th edition,1998.	
2.	William Kemp, Organic spectroscopy,3 rd Edition,ELBS,1996.	
3.	R. K. Prasad, Quantum Chemistry, 3rd Ed., New Age International Publishers, 2006.	
4.	D.A.McQuarrie, Quantum Chemistry, Viva Books Private Limited, New Delhi, first Indian	
	ed.,2003.	
5.	A.K.Chandra,IntroductoryQuantumChemistry,4McGrawH edition(1994),Tata	
	ill,NewDelhi	
6.	I.N. Levine, Quantum Chemistry,5 Edition (2000), Pearson Educ. Inc., New Delhi.	
7.	James E. House, Fundamentals of Quantum Chemistry, Second Ed., Academic Press, 2005.	
8.	C.N.Banwell and E.M.McCash,Fundamentals of Molecular	
	Spectroscopy,4 th Ed.,Tata-McGraw-Hill,1994.	
9.	M. L. Gupta, Atomic and Molecular Spectroscopy, New Age International	
	Publishers,2001.	
10.	H.S.Randhawa, Modern Molecular Spectroscopy, McMillanIndiaLtd., 2003	
11.	G.Aruldas, Molecular Structure and Spectroscopy, Prentice-HallofIndia, 2001.	
12.	J.Michael Hollas, Modern Spectroscopy, 4thEd., John Wiley and Sons,2004.	
13.	Donald L. Pavia, Gary M. Lampman and George S. Kriz, Introduction to	
	Spectroscopy,3 rd ed., Thomson, Brooks/Cole,2001.	
14.	F.A.Cotton, Chemical Applications of Group Theory, 3rd Ed., John Wiley and	
	Sons(Asia) Pte. Ltm, 1999.	

SEMESTER-III Paper IV Course Code: RPSCHEPEC- 304 Credits: 4 Advanced Instrumental Techniques

UNIT-I	Electron Spectroscopy and Microscopy	(15L)
	1.1 Electron Spectroscopy: principles, instrumentation and applications of the following ESCA	
	(XPS), AUGER, UPS.	
	1.2 Chemiluminescence method	
	1.3 Nuclear Quadrupole Resonance (NQR), ENDOR, ELDOR, EWDOR	
UNIT-II	Hyphenated Techniques	(15L)
	2.1 Introduction, need for hyphenation, possible hyphenations.	
	2.2 Interfacing devices and applications of the following- GC-MS, GC-IR, MS-MS, HPLC-MS,	
	ICP-MS, Spectro-electrochemistry and radio chromatography	
UNIT-III	Thermal and Radioanalytical methods	(15L)
	3.1 Enthalpimetric methods	
	3.2 Thermometric titrations	
	3.3 Evolved Gas Analysis	
	3.4 Radiometric titrations and Applications	
	3.5 Auto, X-ray and Gamma Radiography	
UNIT-IV	Pulse polarography	(15L)
	4.1 Normal Pulse Polarography (NPP), Differential Pulse Polarography (DPP).	
	Double Differential Pulse Polarography (DDPP)	
	4.2 Sinusoidal AC Polarography, Square wave polarography	
	4.3 Applications of electrochemical methods in Organic synthesis	

Refe	rences
1.	Skoog DA, West DM, Fundamentals of Analytical Chemistry, Thomson Asia Pvt. Ltd., 8 th Ed,
	(2004).
2.	Skoog, Holler, Nieman, Principles of Instrumental Analysis, Thomson Asia Pvt. Ltd., 5 th Ed,
	(2004)
3.	Willard Merrit and Settle, Instrumental Methods of Analysis
4.	Robert D. Braun, Introduction to Instrumental Analysis (IndiaReprint2006)
5.	Nuclear Ch emistry by Arnikar
6.	J.W. Dood, K.Tonge, Thermal Methods, Analytical Chemistry, Open Learning
7.	A. J. Bard and Faulkner, Electrochemical Methods, 2 nd Ed, John Wileyand Sons (Asia) Pvt. Ltd.,
	2004.

Practical

SEMESTER-III

Credits: 8

Paper Code	No.	Experiment
RPSCHEP3P1	1.	To determine the formula of copper (II) ammonia complex by partition method.
	2.	To determine the transport no. of copper (II) ions by Hittorf's method.
	3.	To determine the isoelectric point of gelatin by viscosity measurement.
	4.	To determine the molar conductance of a weak electrolyte at infinite dilution
		hence to determine its dissociation constant conductometrically.
RPSCHEP3P2	1.	To construct the phase diagram for a two component system forming a simple eutectic.
	2.	To determine the partial molal volume of ethanol.
	3.	To titrate potassium ferrocyanide with zinc sulphate and hence to determine the formula of the complex conductometrically.
	4.	To determine the equilibrium constant for the reaction $CaSO_{4 (s)} + 2Ag^{+1}_{(aq)} \rightarrow Ag_2SO_{4(s)} + Ca^{2+}_{(aq)}$
RPSCHEP3P3	1.	Determination of the energy of activation and other thermodynamic parameters of activation for the acid catalyzed hydrolysis of methyl acetate.
	2.	To determine the formula of the zinc (II) ferrocyanide complex by titration of
		$\Sigma n(11)$ suppose with potassium refrocyanide potentiometrically.
	3.	To determine the E of the quinnydrone electrode potentiometricany.
	4.	To estimate the amount of hydrochloric acid and acetic acid in a mixture by titration with an alkali using a pH meter.
	5.	To determine hydrolysis constant and degree of hydrolysis of ammonium
		chloride and hence to estimate the dissociation constant of the base pH-metrically
RPSCHEP3P4	1.	To determine the molar mass of a non-volatile solute by cryoscopic method.
	2.	To study complex formation between nickel (II) with 1.10-phenanthroline.
	3.	To determine the ionization constant of bromophenol blue
	4.	To determine the dissociation constant of methyl red.

1. The candidate is expected to submit a journal certified by the Head of the Department/institution at the time of the practical examination.

2. A candidate will not be allowed to appear for the practical examination unless he / she produces a certified journal or a certificate from the Head of the institution/department stating that the journal is lost and the candidate has performed the required number of experiments satisfactorily. The list of the experiments performed by the candidate should be attached with such certificate.

3. Use of non-programmable calculator is allowed both at the theory and the practical examination.

List of reference Books for Practicals:

1. B.Vishwanathan and P. S. Raghavan, Practical Physical Chemistry, Viva

Books Private Limited, 2005.

- 2. A. M. James and F. E. Prichard, Practical Physical Chemistry, 3rd ed., Longman, 1974.
- 3. B.P.Lewitt(ed.), Findlay's Practical Physical Chemistry, 9thed., 1973.
- 4. C.D.BrennanandC.F.H.Tipper,ALaboratoryManualofExperimentsin PhysicalChemistry,McGraw-Hill,1967.
- 5. F. Daniel & Others, Experimental Physical Chemistry, 1965, Kogakasha Co Ltd.

SEMESTER –IV Paper-I RPSCHEP401 Credits: 4

Chemistry: Polymer, Green, Biophysical, Photochemistry

UNIT-I	Polymer Chemistry-II	(15L)
	1.1 Polymers in solid state – Transitions (glass transition and crystalline melting temperature), crystalline behavior, factors affecting crystallinity, polymer blends and Alloys.	
	1.2 Identification and characterization of polymers : Chemical analysis- End group analysis; Physical analysis by Spectral methods: IR, UV, Raman, NMR, X-ray diffraction analysis.	
	 Microscopic methods: SEM, TEM, Thermal analysis-TGA,DTA, DSC. 1.3 Properties of polymers: Thermal (glass transition temperature, and its determination),mechanical(deformationandfracture)effectsinpolymers,viscoelasticity surface (surface tension, hardness, friction, abrasion), physical (Impact strength, Tensile strength, solubility) of polymers, weather ability, rheology and mechanical models, mechanical behavior, Rubber elasticity, 1.4 Polymer degradation and stabilization: Oxidative thermal radiation Biodegradation 	
Unit II	Polymer Chemistry-III	(15L)
	2.1Techniquesofpolymerization :Bulk polymerization,solution polymerization,suspension Ion polymerization, emulsion polymerizations,	
	2.2Thermodynamics of polymersolutions : Solubility parameter, thermodynamics of mixing, theta temperature	
	 2.3 Polymer technology: 2.3.1 Polymer auxiliaries, plasticizers, heat Stabilizers, colorants, flame retardants. Fillers, reinforcements 	
	 2.3.2 Elastomers: Introduction, Processing, Rubber Types, Vulcanization, Properties. Reclaiming. 2.3.3 Fibers: Introduction, production, Fiber spinning, Textile fibers, Industrial fibers, recycling. 2.3.4 Films sheets: Introduction and processing techniques (injection and blow moulding extrusion) Recycling of plastics. 	
To be reduced?	2.4 Properties and applications of some commercially important polymers . Carbon chain polymers- Polyolefins, ABS group, elastomers, vinyl polymers, acrylic polymers, heterochain polymers- polyethers, polycarbonates, polysaccharides, polyamides fluoropolymers, Resins (epoxy, alkyd, phenol-formaldehyde and urea-formaldehyde), Silicones, polyphosphazenes, sulphur	
	containing polymers.	
UNIT-III	Bio-physical Chemistry and Green Chemistry	(15L)
	3.1 Biophysical Chemistry	(15L)
	3.1.1 Introduction to Complex Biomolecules: Proteins, enzymes, DNA, RNA,	
	polysaccharides and lipids.chirality and pH dependence of biomolecules.	
	3.1.2 Biosensors : Enzyme based, Electrochemical, immunosensor, fluorescence,	
	optical, Piezoelectric Biosensors	
	3.1.3 Electrophoresis (Technique for bio-molecular study) :Principle and factors affecting	
	electrophoresis, Gel electrophoresis. capillary Electrophoresis, Application of electrophoresis.	
To shift	3.2 Green Chemistry:	
Green Chem in	3.2.1 Recapitulation of principles of green chemistry, Waste minimization techniques.	(07L)
nolvmer	3.2.2 Catalysis and Green Chemistry: Phase transfer catalysts, biocatalyst, Photo	
unit	Catalysis.	
	3.2.3 Organic solvents, solvent free system, supercritical fluid, ionic liquid, their	

	characteristics, use as catalyst and solvents.	
	3.2.4 Alternative energy sources for initiation and execution of chemical reaction:	
	Microwave and sonochemistry.	
UNIT-IV	Photochemistry-II: Kinetics and Applications	(15L)
	4.1 Photophysical Kinetics of Bimolecular processes:	
	Collisions in solutions, Kinetics of Collisional Quenching and Stern-Volmer equation and	
	deviations from Stern-Volmer equation.	
	4.2 Concentration dependence on quenching and excimer formation.	
	4.3 Quenching by added substances- charge transfer mechanism and energy transfer mechanism.	
	4.4 Solar cells: Photovoltaic and photo-galvanic cells, photoelectron chemistry; Prospects of solar	
	energy conversion and storage, organic solar cell.	

Refe	Reference Books:		
1.	P. Bahadur and N. V. Sastry, Principles of Polymer Science, second		
	edition,NarosaPublishingHouse,2005.		
2.	C. E. Carraher, Jr., Carraher's Polymer Chemistry, 8 th edition, CRC Press, New York,2010.		
3.	JoelR.Fried,Polymer Science and Technology, Prentice-Hall of India Pvt. Ltd., 2000		
4.	V.R.Gowarikar, H.V.Viswanathan and J.Sreedhar, Polymer Science. New Age		
	International Pvt.Ltd., New Delhi,1990.		
5.	U.N Dash, AText Book of Biophysical Chemistry, Macmillan India Ltd		
6.	Gurtu and Gurtu, Biophysical Chemistry, Pragati Prakashan.		
7.	MikeLancaster, Green Chemistry An Introductory Text, Royal Society of		
	Chemistry.		
8.	K.K.Rohatgi-Mukherjee. Fundamentals of Photochemistry.Reprint 2002. New		
	AgeInternationalPublisher,1978.		

Semester-IV Paper-II RPSCHEP402 Credits: 4

Solid State Chemistry, network and irreversible thermodynamics

UNIT-I	Solid State Chemistry	(15L)
	1.1 Bonding and Structure: Classification of solids based on nature of forces (ionic, metallic, van	
	der Waal's, hydrogen bonded), crystal structures.	
	1.2 Symmetry and choice of unit cell, Bravais lattice, Miller indices, Point groups and space	
	groups, Close packing. Packing efficiency of a unit cell.	
	1.3 Crystalline solids, ionic radii, radius ratio rule, lattice energy, lattice energy, crystal structure	
	determination by powder diffraction, and single crystal X-ray diffraction	
	1.4 Defects in Crystal: point defects, plane defects, line defects.	
UNIT-II	Instrumental Methods	(15L)
	2.1 X-Ray Diffraction : Introduction to XRD, Diffraction of waves by crystal, particle and solid.	
	Generation of X Rays (K shell knockout), Bragg condition, Bragg method, Miller indices, Methods of diffraction Laue method. Debye-Scherrer method of X ray structural analysis of crystals	
	Advantages of these methods. Index reflections. Identification of unit cells from systematic	
	absences in diffraction pattern. Uses of powder XRD.	
	2.2 Electron and Neutron Diffraction	
	2.2.1 Electron diffraction : Diffraction patterns for single crystal, polycrystalline and	
	amorphous material. Difference between X-ray and electrons, experimental technique.	
	Applications of electron diffraction	
	2.2.2 Neutron diffraction : Properties of neutron, Principle of neutron scattering, comparison	
	with X-rays. Advantages of neutron scattering, scattering of neutrons by solids and liquids.	
Unit III	Lasers and super conductors	(15L)
	3.1 Lasers in chemistry	(10L)
	3.1.1 General principles of LASER action-Population Inversion, cavity and mode	
	Characteristics, Q-switching, Model-locking.	
	3.1.2 Practical lasers- Solid state lasers-Ruby, neodymium, gas lasers-He-	
	Ne, Ar, Kr, Carbon dioxide, Chemical and exciplex Lasers, Dye lasers LED and	
	Semiconductor Lasers.	
	3.1.3 Applications of Lasers in chemistry: Spectroscopy at high photon	
	fluxes, collimated beams, Precision specified transitions, Isotope separation, Study of	
	fast reactions using pulsed techniques.	
	3.2 Super conducting solid materials	(05L)
	Band theory of electrical conductivity, Bardeen-Cooper-Schriffer Theory of super	
	conductivity, the superconducting state, High critical temperature super conductors, magnetic	
	properties of superconductors.	
Unit IV	Non-equilibrium thermodynamics	(15L)
	Non aquilibrium tharmodynamics :	
	Non-equilibrium thermodynamics.	
	4.1 Features of non-equilibrium thermodynamics, second law of thermodynamics,	(02L)
	 4.1 Features of non-equilibrium thermodynamics, second law of thermodynamics, uncompensated heat and its relation to thermodynamics function. 4.2 Entropy production and its rate. Entropy production in heat transfer process and during minimum. 	(02L)

of gases. Entropy production and efficiency of galvanic cell.	
4.3 Onsagers theory: Reciprocal relation, principle of microscopic reversibility. Coupled and	(05L)
uncoupled reactions and their condition.	
4.4 Transport phenomena across membranes. Electro kinetic effect and thermo mechanical	(04L)
effects.	

Refe	References		
1.	Keer H.V, Principles of the Solid State, first reprint, Wiley Eastern Limited,		
	1994.		
2.	R.S. Drago, Physical Methods for Chemists, 2 nd edition, Saunders College Publishing		
	(1992)		
3.	A.R.West,Solid State Chemistry and its Applications,John Wiley and Sons (Asia) Pvt.Ltd.,		
4.	L.E.Smart and E.A.Moore, Solid State Chemistry–An Introduction,3 rd Ed., Taylor and		
	Francis, 2005.		
5.	P.W, Physical Chemistry, Oxford University Press, 6th edition, 1998.		
6.	E.D.Kaufmann, Advanced Concepts in Physical Chemistry, McGraw-Hill, 1966.		
7.	C.Kalidas and M.V.Sangaranarayan, Non-Equilibrium Thermodynamics, Principles and		
	Applications, McMillanIndia Ltd.,2002.		
8.	S. Glasstone, Theoretical Chemistry, Affiliated East–West Press Pvt. Ltd., New Delhi, 1973.		

Paper-III RPSCHEP403 Credits: 4 Symmetry & Spectroscopy

UNIT-I	Symmetry in Chemistry	(15L)
	1.1 Recapitulation: point groups, character tables	(02L)
	1.2 Reduction formula, application of reduction formula to vibrational modes of water	(02L)
	molecule	
	1.3 Application in vibrational spectroscopy, selection rules for IR spectroscopy for molecules	(03L)
	such as H ₂ O, CO ₂ , HF, H ₂	
	1.4. Application to Raman spectra, selection rules, comparison of IR and Raman selection	(02L)
	rules, general approach to vibrational spectroscopy.	
	1.5. Symmetry in chemical bonding: symmetry adapted linear combination of molecular	(06L)
	orbitals, H^{2+} , H_2 , LiH, BeH ₂ , BH ₃ , CH ₄ , molecular orbital energy, and bond order	
UNIT-II	N.M.R.Spectroscopy-I	(15L)
	2.1 A review of one dimensional NMR spectroscopy.	(01L)
	2.2 Spin-relaxation. Nuclear Overhauser Effect (NOE).polarization transfer.	(03L)
	2.3 Two-dimensional NMR. Correlated spectroscopy(COSY)	(03L)
	2.4 Nuclear Overhauser effect Spectroscopy(NOESY)	(02L)
	2.5 Hetero nuclear correlation Spectroscopy(HETCOR)	(02L)
	2.6 Solid-state NMR	(02L)
	2.7 Magnetic Resonance Imaging(MRI)	(02L)
UNIT-III	ESR and Mossbauer Spectroscopy	(15L)
	3.1Electron spin Resonance Spectroscopy-	(10L)
	3.1.1 Basic principle, hyperfine splitting(isotropic systems);	
	3.2.2 G-value and the factors affecting thereof; interactions affecting electron energies in	
	paramagnetic complexes (Zero-field splitting and Kramer's degeneracy);	
	3.3.3 An isotropic effects (the g-value and the hyperfine couplings); The EPR of triplet states;	
	Structural applications to transition metal complexes.	
	3.4.4 Fundamentals and hyper fine splitting, application to study of free radicals spin densities	
	McConnell relationship Zero field splitting.	
	3.2 Mossbauer Spectroscopy: Principles Recaille emission and absorption of v rays	(051.)
	experimental methods isomer shift hyperfine structure (quadrupole interaction) magnetic	(USL)
	hyperfine interaction applications	
UNIT_IV	¹³ C-N M R Spectroscony	(15L)
	4 1 Elementary ideas instrumental difficulties ET technique advantages and	(05L)
	disadvantages proton noise decoupling technique advantages and disadvantages	(03L)
	off-resonance technique.	(03L)
	4.2 Chemical shifts of solvents, factors affecting chemical shifts, analogy with ¹ HNMR.	(USL)
	4.3 Calculations of chemical shift of hydrocarbons. effect of substituent's on chemical shifts.	(02L)
	different types of carbons (alkene, alkyne and allene).	
	4.4 Chemical shift of aromatic carbons and effect of substituent.	
	4.5 Chemical shifts of carbonyl, nitrile, and oxime carbons.	(02L)

Refe	rences
1.	K.Veera Reddy, Symmetry and Spectroscopy of molecules,2 nd ed,new age International
	publishers.
2.	F.A.Cotton, Chemical applications of Group Theory, Wiley Student Ed., 2006,
	JohnWiley and Sons,(Asia) Pvt.Ltd
3.	S.Swarnalakshmi, T.saroja, R.M.Ezhilarisi, A simple approach to Group theory in
	chemistry, 2008, Universities Press (India) Pvt. Ltd.
4.	R.L.Carter, Molecular symmetry and Group theory, Wiley Student Ed., 1996, John
	Wiley and Sons, (Asia) Pvt.Ltd.
5.	C.N.Banwell and E.M.McCash, Fundamentals of Molecular Spectroscopy, 4 th Ed., Tata-
	McGraw-Hill,1994.
6.	M. L. Gupta, Atomic and Molecular Spectroscopy, New Age International Publishers, 2001.
7.	H.S.Randhawa, Modern Molecular Spectroscopy, McMillan India Ltd.,2003
8.	G.Aruldas, Molecular Structure and Spectroscopy, Prentice-HallofIndia,2001.
9.	J.MichaelHollas, Modern Spectroscopy ,4thEd.,John Wiley and Sons,2004.
10.	Donald L. Pavia, Gary M. Lampman and George S. Kriz, Introduction to
	Spectroscopy,3 rd ed.,Thomson,Brooks/Cole,2001.
11.	R. K. Harris, Nuclear Magnetic Resonance Spectroscopy, Pitman, London, 1983.
12.	R.Drago, Physical Methods for Chemists, Saunders , Philadelphia, 1992.

SEMESTER-IV Paper-IV Course Code: RPSCHEPOC-I 404 Credits: 4 INTELLECTUAL PROPERTY RIGHTS & CHEMINFORMATICS

UNIT-I		(15L)
	Introduction to Intellectual Property: Historical Perspective, Different types of IP,	
	Importance of protecting IP	
	Patents: Historical Perspective, Basic and associated right, WIPO, PCT system, Traditional	
	Knowledge, Patents and Health care-balancing promoting innovation with public health,	
	Software patents and their importance for India.	
	Industrial Designs: Definition, How to obtain, features, International design registration.	
	Copyrights: Introduction, How to obtain, Differences from Patents.	
	Trade Marks: Introduction, How to obtain, Different types of marks - Collective	
	marks, certification marks, service marks, trade names etc.	
	Geographical Indications: Definition, rules for registration, prevention of illegal	
	exploitation, importance to India.	
UNIT-II		(15L)
	Trade Secrets: Introduction and Historical Perspectives, Scope of Protection, Risks involved	
	and legal aspects of Trade Secret Protection.	
	IP Infringement issue and enforcement: Role of Judiciary, Role of law enforcement agencies	
	– Police, Customs etc.	
	Economic Value of Intellectual Property: Intangible assests and their valuation, Intellectual	
	Property in the Indian context – Various Laws in India Licensing and Technology transfer.	
	Different International agreements:	
	(a) World Trade Organization (WTO):	
	(1) General Agreement on Tariffs and Trade (GATT), Trade Related	
	Intellectual Property Rights (TRIPS) agreement	
	(1) General Agreement on Trade Related Services (GATS) Madrid	
	Protocol.	
	(iii) Berne Convention	
	(IV) Budapest Ifeaty (b) Davis Convention	
	(D) Paris Convention WIDO and TDIDS IDD and Diant Dreadars Dights IDD and Diadiyaraity	
LINIT III	Introduction to Cham information	(15T)
UN11-111	Introduction to Chem-informatics:	(15L)
	History and evolution of cheminformatics. Use of Cheminformatics. Prospects of	
	cheminformatics. Molecular modeling and structure elucidation.	
	Representation of molecules and chemical reactions: Nomenclature, Different types of	
	notations, SMILES coding, Matrix representations, Structure of Molfiles and Sdfiles, Libraries	
	and toolkits, Different electronic effects, Reaction classification.	
	Searching Chemical Structures: Full structure search, sub-structure search, basic ideas,	
	similarity search, three dimensional search methods, basics of computation of physical and	
	chemical data and structure descriptors, data visualization.	
UNIT-IV	Applications	(15L)
	Prediction of Properties of Compound, Linear Free Energy Relations, Quantitative	
	Structure - Property Relations, Descriptor Analysis, Model Building, Modeling	
	Toxicity, Structure - Spectra correlations, Prediction NMR, IR and Mass spectra,	
	Computer Assisted Structure elucidations, Computer assisted Synthesis Design,	
	Introduction to drug design, Target Identification and Validation, Lead Finding and	
	Optimization, analysis of HTS data, Virtual Screening, Design of Combinatorial	
	Libraries, Ligand-based and Structure based Drug design, Application of Chem-	
	informatics in Drug Design.	

Ref	References		
1.	Andrew R. Leach & Valerie J. Gillet (2007) An Introduction to Cheminformatics.		
	Springer: The Netherlands.		
2.	Gasteiger, J. & Engel, T. (2003) Cheminformatics: A textbook. Wiley-VCH		
3.	Gupta, S. P. QSAR and Molecular Modeling. Springer-Anamaya Pub.: New Delhi.		

SEMESTER-IV Course Code: RPSCHEPOC-II 404 Credits: 4

PAPER – IV: RESEARCH METHODOLOGY

UNIT-I		(15L)
	Review of Literature:	
	Primary, Secondary and Tertiary sources.	
	Journals:	
	Journal abbreviations, abstracts, current titles, reviews, monographs, dictionaries, text- books,	
	Index Author Index, Formula Index, and other Indices with examples	
	index, Author index, Portifula index, and other indices with examples.	
	Digital:	
	Web sources, E-journals, Journal access, TOC alerts, Hot articles, Citation Index, Impact factor,	
	H-index, E-consortium, UGC infonet, E-books, Internet discussion groups and communities,	
	Blogs, preprint servers, Search engines, Scirus, Google Scholar, Chem-Industry, Wiki-	
	databases, Chem-Spider, Science Direct, Sci-Finder, Scopus.	
	Information Tashnalogy and Library Desaurees	
	The Internet and World wide web Internet resources for Chemistry finding and citing	
	published information.	
Unit II	DATA ANALYSIS	(15L)
	The Investigative Approach:	
	Making and recording Measurements, SI units and their use, Scientific methods and	
	design of experiments.	
	Analysis and Presentation of Data	
	Analysis and Presentation of Data: Descriptive statistics, choosing and using statistical tests. Chemo metrics, Analysis	
	of Variance (ANOVA) Correlation and regression curve fitting fitting of linear	
	equations, simple linear cases, weighted linear case, analysis of residuals, general	
	polynomial fitting, linearizing transformations, exponential function fit, and its	
	abuse, basic aspects of multiple linear regression analysis.	
Unit III	METHODS OF SCIENTIFIC RESEARCH AND WRITING SCIENTIFIC PAPERS	(15L)
	Reporting practical and project work. Writing literature surveys and reviews.	(102)
	organizing a poster display, giving an oral presentation.	
	Writing Scientific Papers:	
	Justification for scientific contributions, bibliography, description of methods,	
	conclusions, the need for illustration, style, publications of scientific work, writing	
	ethics, avoiding plagiarism.	
IIm:4 IV	CHEMICAL CARETY & ETHICAL HANDI INC OF CHEMICALS	(151)
	Safe working procedure and protective environment protective apparel emergency	
	procedure, first aid, laboratory ventilation, safe storage and use of hazardous	
	chemicals, procedure for working with substances that pose hazards, flammable or	
	explosive hazards, procedures for working with gases at pressures above or below	
	atmospheric pressure, safe storage and disposal of waste chemicals, recovery,	
	recycling and reuse of laboratory chemicals, procedure for laboratory disposal of	
	explosives, identification, verification and segregation of laboratory waste, disposal	
	of chemicals in the sanitary sewer system, incineration and transportation of	
	nazardous chemicals.	

REFERENCES:

- Dean, J. R., Jones, A. M., Holmes, D., Reed, R., Weyers, J., & Jones, A., (2011), Practical skills in Chemistry, 2nd Ed., Prentice Hall, Harlow.
 Hibbert, D. B. & Gooding, J. J. (2006) Data Analysis for Chemistry Oxford University
- Press.
- 3. Topping, J., (1984) Errors of Observation and their Treatment 4th Ed., Chapman Hill, London.

Harris, D. C. (2007) Quantative Chemical Analysis 6th Ed., Freeman Chapters3-5

- 5. Levie, R. De. (2001) How to use Excel in Analytical Chemistryand in general scientific data analysis Cambridge Universty Press.
- 6. Chemical Safety matters IUPAC-IPCS, (1992) Cambridge University Press.
- 7. OSU Safety manual 1.01

Semester –IV

Practicals

Credits: 8

Paper Code	No.	Experiment					
RPSCHEP4P1	1.	To determine the formula of the zinc (II) ammonia complex by partition method.					
	2.	Determination of the transport no. of silver (I) ions by Hittorf's method.					
	3.	To determine the composition of a mixture of hydrochloric acid, potassium chloride and ammonium chloride by titration with sodium hydroxide and silver nitrate conductometrically.					
	4.	To determine ΔG , ΔH and ΔS of dissolution of a sparingly soluble salt by conductometry.					
	5.	To determine K1 and K2 of a dibasic acid by titration with a base.					
	6.	To determine dissociation constant of p-nitro phenol.					
RPSCHEP4P2	1.	To construct the phase diagram for a two component system forming a compound					
	2.	To determine the energy of activation and other thermodynamic parameters					
		of activation for the reaction between persuiphate and potassium iodide.					
	3.	reaction between notescium nersulabete and netescium indide					
		The star has the and an of the mass time had potassium founde.					
	4.	To study the order of the reaction between bromate and bromide.					
	5.	To determine the van't Hoff's factor by cryoscopic method.					
	6.	To determine the liquid junction potential with a concentration cell with and without transference.					
RPSCHEP4P3		Interpretation of spectra/data:					
	1. Interpretation of vibrational-rotational spectra of rigid and non-rigid diatom molecules.						
	2. Interpretation of electronic spectra of diatomic molecules.						
	3.	Interpretation of electronic spectra of simple polyatomic molecules.					
	4.	Interpretation of NMR, ESR spectra					
	5.	Interpretation of Mössbauer spectra.					
	6.	Analysis of XRD pattern of cubic system					
	7.	Interpretation of DTA, TG, and DTG curves					
RPSCHEP4P4		Project Evaluation					

List of reference Books for Practicals:

 B.Vishwanathan and P.S.Raghavan, Practical Physical Chemistry, Vi va Books Private Limited, 2005.

b.

Note:

1. The candidate is expected to submit a journal certified by the Head of the Department/institution at the time of the practical examination.

2. A candidate will not be allowed to appear for the practical examination unless he / she produces a certified journal or a certificate from the Head of the institution/department stating that the journal is lost and the candidate has performed the required number of experiments satisfactorily. The list of the experiments performed by the candidate should be attached with such certificate.

3. Use of non-programmable calculator is allowed both at the theory and the practical examination.

MODALITY OF ASSESSMENT

Theory Examination Pattern:

A) Internal Assessment - 40% :40 marks.

Sr. No	Evaluation type	Marks
1	Presentation skills (based on communication skill, A.V. presentation and	15
	Viva)	
4	Submission of Hardcopy on presented topic	15
5	Active participation	10

B) External examination - 60 %

Semester End Theory Assessment - 60 marks

- i. Duration These examinations shall be of **2.5 hours** duration.
- ii. Paper Pattern: There shall be **4** questions each of **15** marks. On each unit there will be one question. All questions shall be compulsory with internal choice within the questions.

Questions	Options	Marks	Questions on
Q.1)A)	Any 3 out of 5	12	Unit I
Q.1)B)	Any 1 out of 2	3	
Q.2)A)	Any 3 out of 5	12	Unit II
Q.2)B)	Any 1 out of 2	3	
Q.3)A)	Any 3 out of 5	12	Unit III
Q.3)B)	Any 1 out of 2	3	o int in
Q.4)A)	Any 3 out of 5	12	Unit IV
Q.4)B)	Any 1 out of 2	3	

<u>Practical Examination Pattern:</u> External (Semester end practical examination):

1. Major Experiment: 100 marks

Scheme	05	Accuracy	08	
Technique	06	Result	05	
Observation	30	Viva	05	
Calculation	16	Journal	10	
Graph	15		· · · · · · · · · · · · · · · · · · ·	

2. Minor Experiment: 50 marks

Scheme	02
Technique	02
Observation	14
Calculation	10
Graph	10
Accuracy	02
Viva	05
Journal	10

PRACTICAL BOOK/JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.

In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Coordinator / In-charge of the department; failing which the student will not be allowed to appear for the practical examination.

OVERALL EXAMINATION AND MARKS DISTRIBUTION PATTERN

Course	Seme	ster III		Semester IV			Grand
							Total
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practicals					50	50	100

Semester- III and IV