Resolution No.: AC/II(18-19).2.RUS7

S.P. Mandali's RAMNARAIN RUIA AUTONOMOUS COLLEGE

Syllabus for: T.Y. B.Sc

Program: B.Sc. Life Science

Course Code: LIFE SCIENCE (RUSLSc)

(Semester based credit and grading system with effect from academic year 2017-18)

RAMNARAIN RUIA AUTONOMOUS COLLEGE T.Y.B.Sc. LIFE SCIENCES SYLLABUS

ACADEMIC YEAR 2019-2020

SEMESTER V

PAPER - I Title: Genetics and The Immunology - I

Course code	Unit	Topic Heading	Credits	L/week
RUSLSc501	I	The Genetic material	2.5	1
	II	Mechanisms of Inheritance and variation in Prokaryotes		1
	III	Overview and cells and organs of immune system		1
	IV	Antigen recognition and Effector Mechanisms		1

PAPER - II Title: Developmental Biology and Neurosciences - I

Course code	Unit	Topic Heading	Credits	L/week
RUSLSc502	Ι	Concepts of Developmental Biology	2.5	1
	II	Animal Development		1
	III	Introduction to behaviour and the nervous system		1
	IV	Overview of the Cellular organization of the nervous system		1

Course code	Unit	Topic Heading	Credits	L/week
RUSLSc503	Ι	Fermentation technology – Principles		1
	II	Fermentation technology - Food and Beverage Production	2.5	1
	III	Gene Cloning – Principles		1
	IV	Gene Cloning – Technology		1

PAPER - IV Title: Ecology, Conservation Biology, Assessment and Management - I

Course code	Unit	Topic Heading	Credits	L/week
RUSLSc504	Ι	Introduction to Fundamentals of Environmental sciences	2.5	1
	II	Biodiversity of India		1
	III	Pesticides and Toxicology Management		1
	IV	Sustainable Development and Citizens Awareness		1

PRACTICALS

Course code	Topic Heading	Credits	L/week
RUSLScP501	Practicals in Genetics and The Immunology - I	1.5	3
RUSLScP502	Practicals in Developmental Biology and Neurosciences – I	1.5	3
RUSLScP503	Practicals in Biotechnology and Genetic Engineering – I	1.5	3
RUSLScP504	Practicals in Ecology, Conservation Biology, Assessment and Management – I	1.5	3

SEMESTER V

Course Code	Т	Title	Lectures
RUSLSc 501	GENETICS AND IMMUNOLOGY 1		2.5 Credits
			(60 Lectures)
UNIT – I: The G	enetic material:		15 Lectures
			2
1.1 Introduction	- Discovery of the g	<u>enetic</u> :	Lectures
Griffith's experim	ent of 1928; Avery,	McLeod and McCarty's experiment of	
1944; Hershey-Ch	ase's experiment of	1952; and Fraenkel-Conrat and B.	
Singer's experimen			
*To be given as Ass	signment/Presentatio	ons.	
1.2 Molecular aspe	ects:		4
		and repetitive sequences of	Lectures
DNA; Den	aturation kinetics ar	nd 'CoT' value; Satellite DNA	
.3 Genomes:			1
1.3.a Structural or	ganization of a prok	aryotic genome	Lecture
1.3.b Structural or	ganization of a euka	ryotic genome	3
Higher order	s of chromosome pa	cking; 'C value paradox';	Lectures
1.4 <u>Gene regulatio</u>			
1.4.a Chromatin co	<i>,</i>		1Lecture
		acetylation and methylation	2Lectures
1	U 1	oters and enhancers and Transcription	2Lectures
Initiation con	mplex, GAL4-UAS	system)	
			-

 <u>UNIT – II: Mechanisms of Inheritance and variation in Prokaryotes</u> <u>2.1 Genetic recombination in Bacteriophages</u>: 2.1.a Life Cycle of lytic and lysogenic phages; 2.1.b Complementation in phages (Intra- and Inter-genic); 2.1.c Recombination mapping – Two- and three- factor crosses, 	<u>15 Lectures</u> 1 Lecture 2 Lectures 2 Lectures
 2.2 Genetic recombination in Bacteria: 2.2.a The processes of: Conjugation Transformation Transduction 	5 Lectures
2.2.b Mapping the genome by each method. Numerical examples and problem solving	5 Lectures
UNIT – III Overview and cells and organs of immune system3.1. Overview of the Immune system - Innate Vs Adaptive Immunity3.1.a Innate immunity *To be given as Assignment/Presentations.i) Anatomical, Physiological, Phagocytic, Inflammatory barriersii) Concept of Apoptosis vs Necrosisiii) Concept of PAMP, PRR and TLR	<u>15 Lectures</u> 4 Lectures
 3.1.b Cells and organs of the immune system i) <u>Primary and secondary lymphoid organs</u> ii) Cells Myeloid cells- structure and functions Lymphoid cells NK cells 	4 Lectures
3.2 <u>Recognition of antigens</u>	
 3.2.a Antigen-antibody interactions i) Antigen-Specificity, avidity, affinity, immunogenicity ii) Antibody-Structure, Functions and variations iii) Monoclonal and polyclonal antibodies (Hybridoma 	1 Lecture 2 Lectures 1 Lecture
Technique) iv) Organization and expression of Immunoglobulin genes v) Antigen-antibody interactions –Cross reactivity, Precipitation, Immunoelectrophoresis, Agglutination, Radioimmunoassay, ELISA, Immunofluorescence	2 Lectures 1 Lecture

UNIT – IV Antigen recognition and Effector Mechanisms	15 Lectures
4.1 Recognition of antigens.	
 4.1.a Major Histocompatibility Complex i) MHC-I and MHC-II molecules. ii) MHC allelic polymorphism iii) MHC restriction iv) Antigen processing and presentation-endogenous and exogenous pathways 4.2 Maturation and activation of Lymphocytes 4.2.a B- cell maturation, Activation and Differentiation 	1 Lecture 1 Lecture 1 Lecture 2 Lectures 4 Lectures
4.2.b T- cell maturation, Activation and Differentiation and T- cell receptor 4.3 Immune Effector Mechanisms	
 4.3.a Cytokines IL-1, IL-2, IL-4, IFNs and TNFs 4.3.b Complement i) Classical, alternate and lectin pathways and comparison ii) Biological consequences of complement activation iii) Complement fixation tests 	1 Lecture 2 Lectures
4.3.c Cell-mediated effector responses Cell-mediated cytotoxicity of T cells Role of TH1, TH2,TH17 and Tc cells	3 Lectures

Course Code	Title	Lectures
RUSLSc 502	DEVELOPMENTAL BIOLOGY AND NEUROSCIENCES I	2.5 Credits (60 Lectures)
UNIT 1 : Concep	ts of Developmental Biology :	15 Lectures
	sic concepts in development- *To be given as assignments	1 Lecture
	Iosaic vs. Regulative Development	1 Lecture
-	: acquisition of multicellularity	3 Lectures 2 Lectures
	nutation series and early development.	2 Lectures
	situ hybridization and trace gene expression.	1 Lecture

1.7 Arabidopsis as the model System	1 Lecture
 1.7.a Life cycle of Arabidopsis – sporophytic and gametophytic generation, Fertilization and embryo development, Formation of meristems (root and shoot), 1.7.b Formation of different organs – leaf, flower, androecium [including development of anthers, pollen grain, pollen tube etc.] and gynoecium [development of pistil - up to formation of embryo sac], 1.7.c. Double fertilization, seed formation. [Eventual formation of fruit], 1.7.d. Role of Homeotic genes specifying parts of a flower 1.7.e Plant genome project (Arabidopsis and rice) 	1 Lecture 1 Lecture 1 Lecture 1 Lecture
UNIT II : Animal Development : 2.1.a Amphibian development- Introduction , Germ cell and Fertilization	15 Lectures 2 Lectures
2.1.b Cleavage, Morula and blastula.2.1 .c Gastrulation. *To be given as Assignment/Presentations.	1 Lectures 1 Lectures
 2.2 Chick development – 2.2.a Introduction, Germ cells and Fertilization, 2.2.b Cleavage, Morula and blastula, 2.2.c Gastrulation. 2.3.d Neurulation neural induction, Neural tube formation in amphibians and Chick 2.4 Organogenesis – Eye OR limb 2.5 Neural Crest Cells 	2 Lectures 1 Lectures 1 Lectures 2 Lectures 3 Lecture 2 Lectures
<u>UNIT III : Introduction to behavior and the nervous system:</u>	<u>15 Lectures</u>
 3.2 General organization of nervous system : 3.2.a Invertebrate Nervous system: Organization of neurons in brain and ganglia of Invertebrates Nerve net, nerve plexus and ganglionated nervous 	3 Lecture
 system e.g. hydra, starfish and earthworm. 3.2.b Vertebrate nervous system: Central Nervous System and Peripheral Nervous system. Functional organization of the human central nervous System 	4 Lecture

3.3.c Subdivisions of the CNS – Spinal cord, the medulla, the pons, the cerebellum, the midbrain, the diencephalon, and the cerebral hemispheres. 4 Lectures 3.3.d Various lobes of the Brain- Fore brain, mid brain and spinal cord, lobes of The brain and their functional familiarization e.g., motor areas somatosensory, emotions. Limbic System, Memory and Hypothalamo – Hypophysial Axis. 4 Lectures UNIT – IV Overview of the Cellular organization of the nervous system 15 Lectures 4.1 Chemical Basis of Neural transmission- Introduction Ionic basis of resting membrane potential: Donann's equilibrium experiments, Nernst's potential Goldman's equation, Sodium –Potassium pump. 5 Lectures 4.2 Action Potential & propagation of Action Potential – 2 Lectures 4.3 Neuro – muscular junctions 1 Lecture 4.4 Synapse and synaptic transmission. 4.4 a Synapse: Structure, Types – chemical and electrical, Neurotransmitters –		
The brain and their functional familiarization e.g., motor areas somatosensory, emotions. Limbic System, Memory and Hypothalamo – Hypophysial Axis.15 LecturesUNIT – IV Overview of the Cellular organization of the nervous system15 Lectures4.1Chemical Basis of Neural transmission- Introduction Ionic basis of resting membrane potential: Donann's equilibrium experiments, Nernst's potential Goldman's equation, Sodium –Potassium pump.5 Lectures4.2 Action Potential & propagation of Action Potential – 4.2a Synaptic potential and synaptic integration [Electrical and Chemical Synaptic Potential] Excitatory Post Synaptic Potential (EPSP), Inhibitory Post Synaptic Potential (IPSP)2 Lectures4.3 Neuro – muscular junctions1 Lecture	· · ·	4 Lectures
 4.1 Chemical Basis of Neural transmission- Introduction Ionic basis of resting membrane potential: Donann's equilibrium experiments, Nernst's potential Goldman's equation, Sodium –Potassium pump. 4.2 Action Potential & propagation of Action Potential – 4.2a Synaptic potential and synaptic integration [Electrical and Chemical Synaptic Potential] Excitatory Post Synaptic Potential (IPSP) 4.3 Neuro – muscular junctions 4.4 Synapse and synaptic transmission. 	The brain and their functional familiarization e.g., motor areas somatosensory, emotions. Limbic System, Memory and Hypothalamo –	4 Lectures
 4.1 Chemical Basis of Neural transmission- Introduction Ionic basis of resting membrane potential: Donann's equilibrium experiments, Nernst's potential Goldman's equation, Sodium –Potassium pump. 4.2 Action Potential & propagation of Action Potential – 4.2a Synaptic potential and synaptic integration [Electrical and Chemical Synaptic Potential] Excitatory Post Synaptic Potential (IPSP) 4.3 Neuro – muscular junctions 4.4 Synapse and synaptic transmission. 	UNIT – IV Overview of the Cellular organization of the nervous system	15 Lectures
 4.2a Synaptic potential and synaptic integration [Electrical and Chemical Synaptic Potential] Excitatory Post Synaptic Potential (EPSP), Inhibitory Post Synaptic Potential (IPSP) 4.3 Neuro – muscular junctions 4.4 Synapse and synaptic transmission. 	resting membrane potential: Donann's equilibrium experiments, Nernst's	5 Lectures
Synaptic Potential] Excitatory Post Synaptic Potential (EPSP), Inhibitory Post Synaptic Potential (IPSP) 4.3 Neuro – muscular junctions 1 Lecture 4.4 Synapse and synaptic transmission. 1 Lecture	4.2 Action Potential & propagation of Action Potential –	
4.4 Synapse and synaptic transmission. 1 Lecture	Synaptic Potential] Excitatory Post Synaptic Potential (EPSP), Inhibitory	2 Lectures
4.4 Synapse and synaptic transmission.	4.3 Neuro – muscular junctions	1 Lootuus
		1 Lecture
4.4a Synapse: Structure, Types – chemical and electrical, Neurotransmitters –		
General Introduction Biosynthesis, physiological role, pharmacological		
significance, (examples of one agonist and one antagonist for each 2 Lecture		2 Lecture
neurotransmitter mentioned below. 4.4.b Acetylcholine (Nicotinic and muscarinic receptors).		
5 Lactures		5 Lectures
4.4.c Dopamine (D1 and D2 receptors).4.4.d GABA and Glutamate		
4.4.0 GABA and Gutaniate 4.5 Neuropeptide (Endorphin and Enkephalin).		

Course Code	Title	Lectures
RUSLSc		2.5 Credits
503	BIOTECHNOLOGY AND GENETIC ENGINEERING 1	(60 Lectures)
<u>Unit I</u>		15 Lectures
Fermentation tec	hnology – Principles	
1.1 History and de	evelopment of Food & Fermentation Technology *Presentation	1 Lecture
1.2 Fermentati	on technology & Instrumentation *Presentation	1 Lecture
1.3.a Principles of	f microbial growth,	1 Lecture
1.3.b Screening (primary & secondary)	1 Lecture
-	provement (mutation & selection using auxotrophy & analogue	2 Lecture
Resistance		2 Lectures
1.4 The Bioreac	tor / Fermenter & accessories (Stirred tank & Airlift)	2 Lecture
-	n for fermentation (include molasses, corn steep liquor)	
1.6 Downstream Disruption	processing (use ex of Penicillin and an enzyme? for cell	1 Lecture
1.7 Instrumenta	ation: Principles and technique of Centrifugation, tometry & Chromatography	4 Lecture
	hnology - Food and Beverage Production	<u>15 Lectures</u>
2.1 Batch vs Cor	ntinuous fermentation	2 Lectures
Ũ	aspects of industrial production of	1 Lecture
2.2.a Cheese		2 Lectures
2.2.b Beer		2 Lectures
2.2.c Vinega		2 Lectures
2.2.d Single (2 Lectures
2.2.e Mushro		2 Lectures
2.2.f Yoghurt 2.2.g Wine		
U	assurance: Regulatory & social aspects of food biotechnology	2 Lectures
		151
<u>UNIT III</u> Gene Cloping – I	Principles	<u>15 Lectures</u>
Gene Cloning – Principles3.1 Introduction to the history of Gene cloning *Presentation		1 Lecture

3.2 Methods in Molecular Biology : Molecular cloning methods	
3.2.a Cutting and joining DNA molecules: DNA ligase, Homopolymer tailing, Adaptors, Linkers, Use of Alkaline Phosphatase.	2 Lectures
3.2.b Role of Restriction enzymes, Type I, II ,III, patterns of DNA cutting by restriction enzymes	3 Lectures
3.2.c Restriction Mapping – concept and numerical problems	2 Lectures
 3.3. Vectors: The cloning vehicles Vectors for gene cloning (Plasmids, Bacteriophages as vectors example 3.3.a M13 vector, cosmid as vector. 	2 Lectures
3.3.b Plasmids and other advanced vectors.	1 Lecture
3.3.c pBluescript II.	2 Lectures
3.3.d Expression of Insulin and somatostatin gene in <i>E.coli</i> using pBR322.	2 Lectures
Unit IV	15 Testunes
Gene Cloning – Technology	15 Lectures
4.1.Cloning of genes	1 Lectures
4.1.a Isolation of cloning vectors, selection of gene cloning organisms, isolation of desired DNA to be cloned	2 Lectures
4.1.b. Identifying a specific clone with a specific probe, construction of	2 Lectures
recombinant DNA, transformation, culture and isolation of recombinant DNA from non recombinant one	1 Lecture
4.1.c Chromosome walking, jumping and painting and Shot gun cloning	1 Lootuno
4.1.d Making genomic and cDNA libraries in E. coli	1 Lecture
4.2. cDNA technology	
4.2.a Isolation of mRNA, cDNA synthesis, cloning of double stranded cDNA in plasmid or phase vector, screening a library with nucleic acid probe to find a clone.)	2 Lectures
4.2.b Polymerase chain reaction : An alternative to cloning (Method , limitations of PCR, Application of PCR, Reverse transcriptase PCR)	2 Lectures

4.3 . Methods of	expressing cloned genes	
4.3.a Expression	1Lectures	
4.3.b Screening a	1Lectures	
i) Immunolo	gical method	2 Lectures
ii) Nucleic a	cid hybridization method	
iii) Hybrid a	rrest and Hybrid release method (HART and HRT)	
Course Code	Title	Lectures
RUSLSc 504	ECOLOGY, CONSERVATION BIOLOGY, ASSESSMENT AND MANAGEMENT-1	2.5 Credits (60 Lectures)
<u>Unit I</u> Introduction	to Fundamentals of environmental science	<u>15 Lectures</u>
Biodiversity	and Human needs: Resource depletion and pollution, Dwindling consumers versus resource crunch(with suitable examples from and developing countries)	2 Lectures
1.1.b Sustainable Commission	2 Lectures	
1.2. Ecosystem d	ynamics:	
e		
mow, primar	interaction between biotic and abiotic components, Energy y and secondary productivity, Ecological Pyramids.	3 Lectures
-	y and secondary productivity, Ecological Pyramids.	5 Lectures 6 Lectures
1.2.b Chemical cy		

UNIT II	15 Lectures
2.1. Biodiversity and Habitats:	2 Lectures
2.1.a Biomes of the world: climate, vegetation and Geographical distribution pattern. Tropical biomes, desert, temperate, taiga and tundra biome.	
2.1.b Biological diversity of India: Indian Bio-geographic Zones, climate and its impact on biodiversity.	2 Lectures
2.2 Indian flora and fauna	
2.2.a Indian forest and vegetation types: diversity of flora and fauna. Endangered, Endemic and Extinct Species of India: Threatened species Role of NGO's (BNHS), (CBD), (UNEP), (COP), categories of IUCN, (EBSA), threatened species of plants and animals in India and their reasons, Red data books.	2 Lectures 1 Lecture
2.2.b Environmental biotechnology: Role of biotechnology in conservation of species, in-situ and ex-situ conservation.	1 Lecture
2.2.c Wildlife management and conservation: Wild life management: Goals and Strategies., Human land-use and wildlife management, role of local communities in wildlife management initiatives., Impact of Ecotourism	2 Lectures
2.3 Marine life	
 2.3 a Conservation of coastal habitats – a new approach eg. Maharashtra 2.3.b Biodiversity conservation: Global agreements and national concerns. RAMSAR sites 	
* Endangered, Endemic and Extinct Species of India to be given as student assignment.	5 Lectures
2.4. Population and consumption Dynamics with special reference to Human:	
2.4.a Energy and food oduction (grains, Livestock, aqua culture): Green revolution, Blue revolution. Nutrition: micro and macro nutrition, Ecological costs of food production.	
2.4.b Politics and economics of Hunger, GM foods and their	
 environmental concerns eg . <i>Bt</i> Brinjal 2.4.c International Treaty on Plant Genetic Resources for food and Agriculture (ITGR) Intellectual Property Rights (IPR), Biopiracy (e.g., Neem/Basmati), Seed Bank 	
2.4.d Human impact on climate: Ozone layer, green house effect, Methane, carbon dioxide.	
2.4.e Carbon footprints.	

<u>UNIT III</u> 3.1. Pest and pesticides:	15 Lectures
3.1.a Basic introduction about Pests, Pesticides and Environment Pesticide toxicity: Bioaccumulation and Biomagnification and	1 Lecture
3.1.b Bioremediation of OP pesticide, persistence, resistance and pollution health of farmers. Biological pest control: predators parasites, and pathogens. Genetically Engineering and pest control,	2 Lectures
3.1.c Bioremediation of OP pesticide: using Bacillus Sps. (eg. Malathion Pesticide)	2 Lectures
3.1.d Phytoremedian of Organochlorine pesticide (Chloropyrifos) using plants	2 Lectures
3.1.e Pesticide regulation: eg. Endosulphan issue.	1 Lecture
3.2. Toxicology Management.	
 3.2.a Toxicology : Basic concepts, toxicity and its impacts, industrial toxicants and hazardous materials, toxic and hazardous waste management, measurement of toxicity, TLM and lethality studies, *Only in brief. 	3 Lectures
3.2.b Limitation of Toxicological studies: Comparison of animal toxicological models and Toxicity in Humans.	2 Lectures
3.2.c Human clinical trials: Concept of Clinical trial phases - I, 2, 3 and 4.	1 Lectures
3.2.d Ethical issues of clinical trials: e.g. Thalidomide, Human Papillomavirus vaccine trials.	1 Lecture
<u>Unit IV</u>	15 Lectures
4.1 Sustainable Development Ecological and economical growth factor for sustainable development, integrating environmental concerns in economic decisions.	7 Lectures
Economic cost of environmental degradation. Costs benefit analysis	4 Lectures
4.2 Awareness of citizen on environmental legal provisions:	
(i) Constitutional Provisions for environment (ii) Legislative power relating to environmental law (iii) General laws relating to environment.	4 Lectures

Semester V

Practicals

Course code: RUSLScP 501 [Practicals Based on RUSLScP 501, Credits -1.5, Lectures- 60]

Genetics

I) Experiments to be performed by students: Expected learnin	ng outcomes
1. Extraction of chromosomal DNA from chicken liver / goat spleen	I, C,T,R
2. Streak plating of saliva on two different media	C,T,R
3. Viable count for enumeration of bacteria by –Bulk seed method	C,T,R
4. Viable count for enumeration of bacteria by - Surface spread method	C,T,R
Demonstration experiments:	
5 a) Study of Duccontile mutants from analyzing (slides (shots graphs	CD
5. a) Study of <i>Drosophila</i> mutants from specimen / slides / photographsb) Collection and observation of virgin <i>Drosophila</i> females for settin	
up of genetic crosses.	C,R
6. Study of UV-Visible Spectrophotometer	C,R
*Video presentation and GD	
Immunology	
I)Experiments to be performed by students:	
1. Study of ABO Blood groups and quantitative Coomb's Test.	C, R.
2. Study of Isohemagglutinin titre in blood.	C, R.
3. Quantitative Widal Test.	C, R.
Demonstration experiments:	
4. a) Dissect and expose the lymphoid organs of rat / photograph	C, R.
b) Study of Thymus, Spleen, and Lymph node tissue sections	C, R.
c) Observation of Blast cells in bone marrow of any mammal from	
slides / photographs.	C, R.
	,

Course code: RUSLScP 502 [Practical Syllabus Based on RUSLScP502, Credits: 1.5, Lectures : 60]

1) Temporary mount of chick embryo.

2) Cytochrome C- oxidase activity in a developing chick embryo. C, T

Plant Developmental Biology

1) Root and shoot development in sections of plant. I,C,T,R. eg. Scoparia dulces/beans/any other.

2) Role of GA in seed germination. C,T

Neurobiology

1) Differential staining of white and grey matter of vertebrate brain.

2) Dissection& display of Nervous system in invertebrates – earthworm / cockroach or any other suitable animal C,T,R

3) Dissection & display of Nervous system in vertebrates – chick brain/goat brain or any other suitable system C,T,R

4) Study of chick embryo for identification of fore, mid & hind brain areas (Refer above Developmental Biology Practical no.1)

5) Study of Permanent slides of: C,R

- a) Medullary nerve fibre:
- b) TS of Spinal cord
- c) Hodgkin and Huxley model
- d) Electron micrographs of neural tissue
- e) Animal Behaviour Innate and Learned

Demonstration Experiments (Any two of the following)

Study of the Nervous system of Sepia with special reference to Giant axon and stellate ganglia T,C,R.

Mammalian brain – eg. Goat brain

Programmed cell death in limb bud using Janus Green B stain (in chick embryo).C, T,R

Course code: RUSLScP 503

[Practical Syllabus Based on RUSLScP 503, Credits: 1.5, Lectures: 60]

1. Extraction of enzyme: (Amylase from sweet-potato / salivary amylase /

egg white lysozyme or any other convenient enzyme)

- 2. Purification of enzyme : Above enzyme extract used for purifying by salting-out method
- 3. Determination of i) enzyme <u>activity</u> ii) <u>specific activity</u>.

4. Determination of the effect of <u>pH and Temperature</u> on Enzyme activity (Amylase / any other convenient enzyme).

- 5. Determination of the $\underline{K}_{\underline{m}}$ of amylase/any other convenient enzyme.
- 6. Immobilization of Enzyme (Amylase/any other convenient enzyme) using hen egg-

white / alginate method and assay its activity.

- 7. Enzyme Activity staining / Zymogram of Amylase using starch agar plates.
- 8. Non-denaturing <u>Poly Acrylamide Gel Electrophoresis</u> of *E.coli* extract / Serum proteins / Saliva / Egg white any other suitable sample/Amylase

Course Code : RUSLScP 504

[Practical Syllabus Based on RUSLScP 504 Semester V Credits : 1.5,Lectures : 60]

- <u>Note:</u> I Instrumentation, C Conceptual understanding, T Technical skill, R Relevance to daily life.
 - 1. A visit to aquatic ecosystem and methods for water and plankton collection/ Plankton identification and quantification from river / lake water samples (**CTR**)
 - 2. Identification of minimum 5 plants and animals that form mangrove ecosystem, pneumatophores vivipary adaptations eg., *Kandelia kandel*, *Heritiera littoralis* Visit to Godrej mangrove (**CTR**)
 - 2. Vegetation studies by line, quadrates and belt transect methods and their analysis. (CT)
 - 3. Preparation of media for microbial culture, Isolation and culturing of microbes from

Soil / water samples (Fungal /Bacterial /Algal organism) .	(CTR)
4. Study of fecundity from the given sample of freshwater/marine fish	(CTR)
5. Isolation and culturing of Rhizobium from the given sample.	(CTR)
6.Analysis of soils for pH, moisture, soil types.	(CTR)
7.Water analysis for physicochemical characteristics: (any three)	(CTR)
Salinity/Acidity/Alkalinity/BOD/DO/COD/Copper	

Semester V: Text Books and References RUSLSc 501: References books

Units I and II Genetics

- <u>Principles of Genetics</u> bySnustad and Simmons 4thedn. John Wiley and sons 2006.
 <u>I Genetics</u>; <u>A Molecular approach</u> by Peter Russel 2ndedn. Pearson 2006.
 <u>I Genetics</u>; <u>A Mendelian approach</u> by Peter Russel 2ndedn. Pearson 2006.
 <u>Introduction to Genetic Analysis</u> by Griffiths et al 8thednFreeman and co. 2005.

- 5. Genes IX by Benjamin Lewin; Jones and Bartlett publishers, 2008.
- 6. Principles of Gene Manipulation and Genomics by S. B. Primrose and R. M. Twyman 7thedn., Blackwell publication, asianedn Oxford publishers 2007.
- 7. <u>Concepts of Genetics</u> W. S. Klug and M. R. Cummings 7thedn. Pearson 2003.
- 8. Concepts of Genetics W. S. Klug, M. R. Cummings, C. A. Spencer 8thedn. Pearson 2006.
- 9. <u>Human Molecular Genetics</u> by Tom Strachan and Andrew Read, 3rdedn. Garland Science pub. 2004.
- 10. Principles of Genetics by R. Tamarin 7thedn 2002

Units III and IV Immunology

- 11. Immunology 5thedn. R.A.Goldsky, T. J. Kindt, B. A. Osborne, J. Kuby 2003.
- 12. <u>Immunology: The immune system in health and disease</u> 6th edn. C. A. Janeway, P. Travers, M. Walport, M. Shlomchik Garland Science Pub. 2005.
 13. <u>Cellular and Molecular Immunology</u>, 2nd edn. A. K. Abbas, A. H. Litchman, 5th edn
- 2000.
- 14. Basic Immunology: Functions and disorders of the immune system, 2ndedn. A. K. Abbas, A. H. Litchman, 2nd edn 2004.
 15. <u>Roitt's Essential Immunology</u> 11th edn. Blackwell publication 2006.
 16. <u>Immunology</u> 7th International edn. D. Mole, J. Bronstoff, D. Roth, I. Roitt, Mosbey
- Elsevier publication, 2006.
- 17. An Introduction to Immunology C. V. RaoNarossa Publishers 2002.
- 18. Gene cloning and DNA analysis T.A. Brown Wiley Publishing House.

RUSLSc 502: REFERENCE BOOKS

UNIT | and II Developmental Biology (Latest editions recommended)

1. Instant Lecture Notes- Developmental Biology

R.M.Twyman, Viva Books Private Limited, New Delhi, Latest Edition (First Edition – 2001)

2. Developmental Biology

T.Subramaniam, Narosa publishing Hopuse, Mumbai, Latest Edition (First Edition-2002)

3. Principles of Development

L. Wolpert, R. Beddington, J. Brockes, T. Jesell and P. Lawrencel Oxford University Press.

- 4. Developmental Biology. W.A. Miller Springer Verlag.
- 5.. Molecular Biology 3rd Ed.,

H.Lodish, D.Baltimore, A.Berk, S.L. Zipurski, P.Matsudaira and J. Darnell. Scientific American Book, W.H. Freeman, N.Y.

6. Molecular Biology of the Cell 3rd Edition.
B. Alberts, D. Bray, J.Lewis, M. Raff, K. Roberts and J.D.Watson. Garland Publishing Inc., N T and London.

7. 5. Plant Cell and Tissue Culture I. Vasil and T.A. Thorpe. Kluwer Academic Publishers.

8. Practical Zoology 2nd Edition. K.C. Ghone and B. Manna. New Central Book Agency Publishers.

9. Developmental Biology 4th edition. S.F. Gilbert. Sinauer Associates Inc. Publishers.

10. Pollen Analysis 2nd edition. P.D.Moore, J.A.Webb and M.E. Collinson Blackwell Scientific Publishers.

11. Pollen Biology – A laboratory manual (1992) K.R. Shivanna and N.S. Rangaswamy, Narosa Publishing, Calcutta.

11. Developmental Biology 2nd edition, L.W.Browder, Saunders College Publishing Co.

12. An Introduction to Embryology 5th Ed B. I. Ballinsky' Saunders, College Publishing Co.

13. Developmental Biology – Patterns, Problems and Principles. J. W. Saunders. J. R. MacMillan Publishing Co.,

14. An Introduction To the Embryology of Angiosperms. P. Maheshwari.

16. An Atlas Of Descriptive Embryology 2nd ed. W.W.Mathews. MacMillan Publishing Co.
15. Essential Developmental Biology – A Practical Approach Ed C.D. Stern and P.W.H. Holland. Oxford University Press

UNIT III and IV – Neurobiology (Latest Editions Recommended).

17. Neuroscience: Exploting the brain M.F.Baer, B.W.Connors&M.A.Paradiso, William & Wilkins, Baltimore, Latest Edition (First Edition1996)

18. Neurobiology 3rd edition G.M. Shepherd Oxford University Press.

19. Principles Of Neural Science. E.R.Kandel, J.H.Schwartz and T.M. Jessel. Prentice Hall Internation.

- 20. Instant Notes Neurosciences, A.Longstaff Viva Books Pvt Ltd., New Delhi, 2002
- 21. Text Book Of Medical Physiology A.C.Guyton and J.E.Hall Saunders College Publishers.
- 22. Elements Of Molecular Neurobiology C.U.M. Smith J Wiley and Sons Publishers, N.Y.
- 23. An Introduction to Molecular Neurobiology Z.W. Hall Sinauer Associates Inc. Publishers.
- 24. Ion Channels Molecules in Action D. J. Aidley and P.R. Stanfield. Cembridge University Press.
- 25. Comparative Neurobiology J. P. Mill Edward Arnold Publishers.
- 26. Physiology Of the Nervous Systems D Ottoson, McMillan Press.

RUSLSc 503: REFERENCE BOOKS

- 1. Principles of gene manipulation and Genomics by Primrose and Twyman, 7th edition, Blackwell publishing (2006)
- 2. Molecular Techniques in Biochemistry and Biotechnology by S Shrivastava (2010) Pub. New central book Agency (P) Ltd
- 3. Molecular Biology by Robert Weaver, second edition Pub Mc Graw Hill (2003)
- 4. Text book of cell and Molecular Biology by Ajoy Paul Pub Books and Allied (P) Ltd. Second edition (2009)
- 5. Cell and molecular biology by sp Vyas and Mehta (2011) CBS pub and Dist Pvt Ltd.
- 6. Industrial Microbiology. L.E.Casida (2003) New Age International (P) Ltd.
- 7. Industrial Microbiology. Prescott And Dunn's (2004) Chapman & Hall.
- 8. Industrial Microbiology. A H PATEL (2005) Macmillan India.

RUSLSc 504: REFERENCE BOOKS

- 1. Misra and Pandey (2011), "Essential environmental studies ", Ane Books
- 2. Martens (1998),"Health and climate change ", Earth Scan
- 3. Saxena (1998), "Environmental Analysis of soil and air", Agrobotanica

4. Chakraborti (2005),"Energy efficient and environment friendly technologies for rural development", Allied Publishers

5. Dash M C (2004) "Ecology, chemistry and Management of environmental Pollution ",Mac Millan India

6. Nayak ,Amar(2006) "Sustainable sewage water Management ",Mc Millan India

- 7. Dolder, Willi (2009), "Endangered animals, Parragon
- 8. Gupta P K (2000)," Methods in environmental Analysis ", Agrobio (India)

9. Fumento, Michael (2003),"Bioevolution : How biotechnology is changing our world", California encounter Books

- 10. Kapur (2010) "Vulnerable India ", SAGE
- 11. Jacob, Miriam(2004)," Silent Invaders", Orient Longman
- 12. Mc Cafferty (1998) ,"Aquatic Entomology ", Jones and Barlett
- 13. Subramnyam (2006),"Ecology ", 2nd ed.Narosa
- 14. Dilip Kumar, Rajvaidya (2004)," Environmental Biotechnology ", APH
- 15. Sharma and Khan (2004)," Ozone Depletion and Environmental Impacts",

Pointer publishers

EXAMINATION PATTERN FOR TYBSc

T.Y.BSc

	PAPER	EXAM	TOTAL MARKS
	Ι	Theory	60
		Theory Internals	40
		Practicals Internals	20
		Practicals Final	30
	Ш	Theory	60
Semester V		Theory Internals	40
		Practicals Internals	20
		Practicals Final	30
	III	Theory	60
		Theory Internals	40
		Practicals Internals	20
		Practicals Final	30
	IV	Theory	60
		Theory Internals	40
		Practicals Internals	20
		Practicals Final	30

	INTERNALS FOR SEMESTER V			
Paper	20 mks	08 mks	07 mks	5 mks
Ι	Written Test	Presentation on topic from syllabus / Quiz / Open book test	Presentation on any journal article/ newsletter/ book review/ conference/ guest lecture	Attendance
Π	Written Test	Presentation on topic from syllabus / Quiz / Open book test	Presentation on any journal article/ newsletter/ book review/ conference/ guest lecture	Attendance
ш	Written Test	Presentation on topic from syllabus / Quiz / Open book test	Presentation on any journal article/ newsletter/ book review/ conference/ guest lecture	Attendance
IV	Written Test	Visit / Project / Quiz / Open book test	Presentation on any journal article/ newsletter/ book review/ conference/ guest lecture	Attendance