
S.P. Mandali's RAMNARAIN RUIA AUTONOMOUS COLLEGE

Course Code: BIOTECHNOLOGY (RPSBTK)

Explore Experience Excel

(Choice Based Credit System (CBCS) with effect from academic year 2019-20)

S.P Mandali's Ramnarain Ruia College

Department of Biotechnology

Semester III **Course code** Unit **Topic Credits** Lectur es/wee 45hrs/w eek k Paper I : PTC Unit I Plant tissue culture 4 15 1 and ATC Unit II Plant tissue culture 1 15 RPSBTK301 Unit III Animal tissue culture 1 15 Unit IV Animal tissue culture 1 15 4 1 15 Paper II: Unit I Cytogenetics Unit II Medical 1 15 Medical microbiology Microbiology Unit III Molecular diagnostics 1 15 RPSBTK302 Unit IV **Biofilms** 1 15 Drug discovery and Pre clinical Paper III: 4 1 15 Clinical Unit I toxicology Studies 1 15 Introduction to Clinical trials RPSBTK303 Unit II Clinical study design 1 15 Unit III Unit IV Medical writing 15 Paper IV: 1 15 Human Embryonic development: Unit I Development Post fertilization events 1 15 Unit II al Biology Sex hormones and Implantation 1 15 Unit III RPSBTK304 Unit IV Infertility and reproductive vaccines 15 2 Practical credits Practical based on all the four papers each TOTAL 24 CREDITS

	Semester IV					
Course code	Unit	Торіс	Credits	Lectur es/wee k	45hrs/ week	
Paper I:	Unit I	Introduction, synthesis of nanomaterials	4	1	15	
Nanotechnol ogy	Unit II	CNTs and nanomotors		1	15	
	Unit III	Nanomedicine		1	15	
RPSBTK401	Unit IV	Applications of nanotechnology		1	15	
Paper II:	Unit I	Introduction to GMOs	4	1	15	
GMO and Environment	Unit II	GMO crops		1	15	
RPSBTK402	Unit III	Solid waste management		1	15	
	Unit IV	Biodegradation		1	15	
Paper III : Bioinformati	Unit I	Sequence Analysis	4	1	15	
cs, evolution and vitamins	Unit II	Applications of Bioinformatics		1	15	
RPSBTK403	Unit III	Phylogenetics		1	15	
	Unit IV	Vitamins		1	15	
Paper IV : Biostatistics	Unit I	Introduction Statistics	4	115	15	
RPSBTK404	Unit II	Gauussian distribution and normality		1	15	
	Cint II	Hypothesis testing		1	15	
_	Unit III					
Evra	Unit IV	ANOVA			15	
Practical	Practical based on all the four	2 credits each		CX	CEI	
TOTAL	papers		24			
CREDITS			<i>∠</i> +			

MSc Part II: Biotechnology

Semester III

Paper I - PTC and ATC

Course Objectives:

- The main objective of this course is to familiarize the students with tissue culture theory and basic lab practices
- To make them aware of various protocols and norms to be followed in these laboratories
- To help them understand the basic functioning, routine procedures and maintenance of these labs

- The student must be able to discuss the basic requirements of a tissue culture laboratory
- Student should be able to understand and carry out minor experiments in PTC, ATC following the required norms and protocols
- Student be able to understand the safety and precaution controls in these labs
- Student must be able to design and conduct simple experiments in ATC, PTC labs

Course Code	UNIT	TOPICS	Credits	Lectures
			Carlo	
	I	Introduction to primary and		
		secondary metabolism, important		
D		pathways leading to biosynthesis of		
No.		secondary metabolites in plants,		
RPSBTK301		Metabolic products produced from		
	=,,	in vitro culturing of plant cells,		
F 1		selection of plant cells/ tissues for		
FVN	AKA	production of a specific products,	CO 1	15
LAPI	DIC	culture system in secondary		
		plantproduct, Biotransformation of	4	
		precursors by cell culturing,		
		metabolic engineering for		
		production of secondary		
		metabolites, Hairy root culture,		
		elicitation		
	II	Cryopreservation -Principle and		15
		types. Germplasm conservation,		13

	Transgenic plants-Edible vaccine,	
	Golden rice	
TTT		
III	Biology of cultured cells, Culture	
	vessels, Culture Media,	
	Microbial contamination, cross	15
	contamination. Cryopreservation	
IV	Drimony aultuma Tymas isolation of	
1 V	Primary culture: Types, isolation of	
	tissues, culturing of different cells.	
	Cell lines: Development, Subculture	
	and propagation, immortalization of	
	cell line, cell line designation,	15
	selection of cell lines, routine	
	maintenance, Cytotoxicity,	
	Transformation, Culture of tumor	
	cells	

References:

- 1. Plant Cells in liquid culture (1991) Author: Payne Shuler, Hanser Publishers
- 2. Biochemistry and molecular biology of plants by Buchanan, Gruissem, Jones; 1st Edi; I.K International publishers
- 3. Textbook of Plant Pharmaceuticals by Chandrakant Kokate; 1st edition; Elsevier
- 4. Plant Biotechnology by K.G. Ramawat , 1st Ed. S.Chand and Company
- 5. Culture of Animal Cells: A Manual of Basic Techniques by Ian Freshney

Explore Experience Excel

Paper II: Medical Microbiology

Course Objectives:

- This course is oriented to introduce advanced tools and techniques in medical microbiology
- Medical Microbiology introduces basic principles and then applies clinical relevance in four segments of the academic preparation for physicians: immunology, bacteriology, mycology, and virology.
- This rigorous course includes many etiological agents responsible for global infectious diseases

- Students should be able to understand the basics of medical microbiology
- They should be able to comment and appreciate the significance of this field
- They are expected to develop an understanding of various disease related issues of medical microbiology

Course Code	UNIT	TOPICS	Credits	Lectures	
	I	Chromosomal disorders,			
		Karyotyping, G-banding,			
		Chromosome analysis, variations,		15	
RPSBTK302		Chromosome painting, Molecular			
		Cytogenetics, FISH, CGH			
	II	Infections of Respiratory tract-			
		Pneumonia, Tuberculosis.			
		Nosocomial- Pseudomonas. Viral		15	
7.0	N. W	infections-HIV, Hepatitis. Fungal-		13	
		Candidiasis	4		
E	TIT			E	
	ше	Introduction to molecular	100	EXC	
-ALPA	010	diagnostics, pros and cons, importance, molecular			B.
		techniques,amplification based			
		techniques(probe ,signal and		4.5	
		target amplification) molecular		15	
		diagnostics of pneumonia,			
		tuberculosis,HIV, hepatitis and			
		candidiasis			

IV	Biofilms in medicine:	
	Outline specifications: Stages in	
	biofilm formation, Quorum	
	sensing, biofilm in medical	
	devices- implants &treatments,	15
	biofilms in pathogenesis, biofilm	
	forming organisms- E.coli,	
	Pseudomonas spp, S.aureus	

References:

- 1. Industrial Microbiology an Introduction Michael, Neil, John & Gary
- 2. Diagnostic Microbiology 5th edition Elmer Koneman, Stephen Allen Lippincott
- 3. Molecular Microbiology: Diagnostic Persing, Tenover, ASM press Washington
- 4. Principles & Practice (2004) Versalone DC
- 5. Pharmaceutical microbiology 7th ed., (2004) Hugo Russell's Edited by Stephen P. Denyer, Hodges and Sean P. Gorman

Paper III: Clinical Studies

Course Objectives:

- To be aware of the ethical issues involved in human subjects research;
- To become familiar with the roles and responsibilities of the principal investigator and the institution when conducting clinical research in the NIH intramural research program;
- To have an understanding of Food and Drug Administration (FDA) oversight of clinical research; and
- To become familiar with how developments in science and health are reported by the media and how to work effectively with reporters.

Course Outcomes:

- Students will understand ethical issues in human subjects research
- Students should be familiarized with Roles and responsibilities of the investigator and the institution
- Be aware of various related regulatory issues

• Know about the companies and organizations associated in this field

Course Code	UNIT	TOPICS	Credits	Lectures	
	I	Drug discovery: Purpose, main			
		steps, process, timeline etc.			
RPSBTK303		PreClinical toxicology: General			
		Principals, Systemic toxicology,	X -		
		(Single dose and repeat dose			
		toxicity studies), Carcinogenicity,		15	
		Mutagenecity, Teratogenicity,			
1		Reproductive toxicity, Local			
		toxicity, Genotoxicity, animal			
		toxicity requirements			
F 1			4	100	
LVI	Tro	Types of clinical trials, single	100	LV/	80
LAUI	DIE	blinding, double blinding, open		LA	1
		access, randomized trials and their			
		examples, interventional study,		1.5	
		ethics committee and its members,		15	
		cross over design etc and institution			
		ethics committee/ independent			
		ethics committee			
	III	New drug discovery process-			
	111	purpose, main steps involved in		15	
		purpose, main steps involved in			

	new drug discovery, process, timeline of each steps, advantages and purposes of each steps, Ethics in clinical research, unethical trials, thalidomide tragedy, Phase I, II, III, IV trials. Introduction and designing- Various phases of clinical trials, Post Marketing		
IV	Medical Writing: Literature search and medical articles, contract writing, publication, abstracts, bibliography, clinical study reports, principles and softwares in CDM (Clinical Data Management)		15

References:

- 1. EC R1 guidelines
- 2. ICMR ethical guidelines
- 3. D & C Rules Schedule Y
- 4. Law Of Intellectual Property Rights Shiv Sahai Singh Deep & Deep Publications (p) Ltd
- 5. WTO And Intellectual Property Rights By TalwarSabanna (2007) Serials Publications
- 6. IPR: Unleashing the Knowledge Economy (2003) PrabuddhaGanguli Tata Mcgrow Hill publication

Explore • Experience • Excel

Paper IV: Developmental Biology

Course Objectives:

- A particular emphasis is the intimate connection between developmental biology and evolution, which will be a theme throughout the course.
- Additional emphasis is on the connection between mechanisms of normal development and disease etiology. The course will cover general principles of development and current important issues.
- Relevant ethical issues will be discussed.

- Student would be able to apply key principles of developmental biology toward evaluating and analyzing primary literature in the field.
- Be able to explain key concepts, including mechanisms by which differential gene activity controls development, mechanisms that determine cell fate and mechanisms that ensure consistency and reliability of development.

Course Code	UNIT	TOPICS	Credits	Lectures
RPSBTK304	I	Human Embryonic development: Events during fertilization, in-vitro fertilization, Zonapellucidaa, glycoprotein, Oelemma protein and their role in fertilization, sperm, antigens and their functional		15
REXPL	nellone	significance. Molecular and biochemical events during sperm function Post fertilization events: early embryonic development, establishing multi-cellularity, formation of blastula, embryonic germ layer, tracking of migrating cells.		15
	III	Molecular mechanism of sex hormone action and regulation of gene expression. Implantation and endometrium antigens involved in implantation. Immunology of pregnancy. Superovulation, embryo culture and embryo transfer		15

	technology	
IV	Infertility and reproductive vaccines. Frontiers in contraceptive research. Cryopreservation of sex gametes and embryos. Ethical issues related to embryo research	15

References:

- 1. Langman's Medical Embryology (9th Edition 2004) T. W. Sadler. Lippincott Williams & Wilkins
- 2. Essential Developemental Biology (2nd Edition 2006) J. M. W. Slack Blackwell Publishing 11
- 3. Developemental Biology (8th Edition 2006) Scott F. Gilbert Sinauer Associates, Inc

Practicals Semester III Based on Paper I to IV

	Sr No.	Experiment TOTAL CREDITS: 08
	I	PTC
		1. Media preparation: MS, B5 and Coconut Water
		2. Seed sterilization
		3. Callus induction and characterization
		4. Subculture of Callus and plantlet establishment
		5. Synthetic seed
		6. Somatic embryogenesis
	II	ATC
		1. Dissection of Chick Embryo
		2. Monolayer formation (fibroblast)
	RL	 To assay the radical scavenging activity of tissue hydrolysate- DPPH method Techniques for cell preservation
_	III	Toxicology MTT Assay
Esta	IV	Study and present a published clinical case report
	7101	Medical diagnostic – Identification of organisms from specimens
	V	(Multiple drug resistant <i>S. aureus, Pseudomonas</i> spps, Klebsiellapneumoniae, E. coli); Staining of Biofilms
	VI	Candling, Observing Chick embryo- stages of development, prepared slides/ Preserved specimen
	VII	Developmental biology- Visit to laboratory/video lectures for latest development in the field. To be documented

M.Sc Part II SEMSTER IV

PAPER I: NANOTECHNOLOGY

Course Objectives:

- Student will have broad knowledge in your chosen discipline, with deep knowledge in its core concepts.
- Understanding applications of nanotechnology to medical systems
- Have an insight of naturally occurring nanostructures
- Understand upcoming applications of nanomaterials in food and allied industries

- Students will be familiar with the basics of nanotechnology, tools used for characterizing nanomaterials and specific applications of nanotechnology
- Have knowledge of latest developments in nanotechnology in the field of medical sciences and other commercial products
- Be able to appreciate the thrust in this science and feel encouraged to take it ahead in research

Course Code	UNIT	TOPICS	Credits	Lectures
RPSBTK401	<u>U</u> ore	Introduction, synthesis of nanomaterials, biological methods, use of microbial system & plant extracts, use of proteins & templates like DNA. Characterization of nanomaterials, analysis techniques, properties of nanomechanical, optical, magnetic properties, electrical conductivity, thermal conductivity.		15 15
	II	Carbon nanotubes, Nanorobotics devices of nature: ATP synthase, the kinen, myosin, dynein, flagella modulated motion		15

III	Nanomedicine: biopharmaceutics, implantable materials, implantable chemicals, surgical aids, diagnostic tools, nanosensors, nano scanning, nano enabled drug delivery system, nanorobotics in medicine.	15
IV	Application of nanomaterials in food, cosmetics, agriculture, environment management	15

References:

- 1. The Nanoscopeencyclopedia of nanoscience and nanochehnology, Vol I, V and VI (2005) Dr.ParagDiwan and AshishBharadwaj Pentagon Press New Delhi
- 2. Nano forms of carbon and its applications (2007) Prof.Maheshwar Sharon and Dr.Madhuri Sharon Manad Nanotech Pvt. Ltd.
- 3. Biotechnanotechnology lessons from Nature (2004) David Goodsell Wiley-Liss A John Wiley and sons
- 4. Nanotechnology- Basic science and emerging technologies (2005) WillsonKannangava, Smith, Simmons, Raguse Oversease Press
- 5. Texbook of Biotechnology (2005) R. C. Dubey S. Chand and Co.
- 6. Nanotechnology- Principles and practices S. K. Kulkarni Capital Publishing Co.

Paper II: GMO and Environment

Course Objectives:

- To introduce the student to the processing and control of genetically modified organisms with examples
- Learn about the Indian laws and system of regulating GMOs in our country
- Effects of human and industries on the environment
- Study sources of environmental contaminants and methods to combat them

- By the end of this course student must be able to explain what GMOs and GM crops are.
- Understand the historical context of GMOs.
- Have an understanding on the development of GMOs to date.
- Be able to name frequently used GMO crops
- Describe the way modification is used to affect agriculture
- Discuss the potential risks & benefits of human activities on the environment
- Discuss the potential risks & benefits associated with GMO crop consumption
- Be able to make arguments for both sides of the debate

	1			1
Course Code	UNIT	TOPICS	Credits	Lectures
	I	Genetically modified		
		microorganisms, examples and		
RPSBTK402	ore	methods, Humulin, ice minus bacteria, GM bacteria in bioremediation, use of PCR as a GMO identification tool, risks and controversies related to use genetically modified microorganisms. Protein based assay methods, Toxicological evaluation	LE ICE	GE 15 Exc
	II	GE crops' Arabidopsis as a model plant for studies in genetic engineering; Protocols on food and feed safety assessments, acute oral safety study in rats and mice, sub chronic feeding study in rodents, protein thermal stability, pepsin		15

	digestibility, livestock feeding	
III	Solid waste treatment, pollution indicators & biosensors biodegradation of xenobiotics, pesticides, phytoremediation	15
IV	Biodegration of waste from food, textile, petrochem, paper industries, biological detoxification, Removal of oil spillage & grease deposits	15

References:

- 1. Environmental Biotechnology (2nd Edition, 2005) Alan Scragg Oxford University Press
- 2. Environmental Biotechnology- Basic Concepts and Applications (2006) InduShekhar Thakur I. K. International Pvt. Ltd.
- 3. Environmental Biotechnology M. H. Fulekar Oxford & IBH Publishing

PAPER III: BIOINFORMATICS

Course Objectives:

- To impart basic knowledge of bioinformatics
- To introduce different websites related to bioinformatics sources and databases
- To introduce the applications of the enormously growing database regulation
- To introduce advanced aspects of evolution and vitamins

Course Outcomes:

- Student would have learnt about Sequencing Alignment and Dynamic Programming
- Sequence Databases
- Evolutionary Trees and Phylogeny

• Be able to understand advanced concepts related to evolution and vitamins

 Be able to understand advanced concepts related to evolution and vitamins 					
Course Code	UNIT	TOPICS	Credits	Lectures	
RPSBTK403	I	Database search using ENTREZ (G Query) Hidden Marker Model (Equation, Eg Gene finding/ exon intron finding, Signal peptide finding) Motif finding using HMM, ANN (Eg			
		Prosite) Sequence alignment, MSA- algorithm under clustal W (ref: N Gautam) Protein sequence analysis,	4	15	
R	u	Protein structure analysis (Secondary: Chou Fasman algorithm, GOR algorithm; Tertiary : Homology modelling, Threading, Ab initio, Structure prediction)	4 5 (GE	
Explo) re	Microarray data analysis (Printing techniques, Features of microarray, Flag features of microarray, Data normalization in microarray)	ice •	Exc	e
		Human genome project and specialised databases under NCBI (Eg OMIM, chromosome, PubMed) Proteomics		15	
		Consesnsus sequence, PSSM			

	Sequence logo	
III	Darwinism and neo Darwinism	
	theories of evolution. Population	
	genetics and different forces	
	acting on it.	
	Bioinformatics tools for	
	phylogenetic analysis.	
	Evolution in detail Darwinism	15
	and neo Darwinism theories of	
	evolution. Population genetics	
	and different forces acting on it.	
	Bioinformatics tools for	
	phylogenetic analysis	
IV	NIH ODS for vitamins; B1,	
	2,3,5,6,7,12; A D E K	
	Major focus on sources, activity	15
	of vitamins, deficiency disorders,	
	overconsumption effects.	

References:

- 1. Computer Based Decision Making in Medicine E. A. Shortifile American Elsevier
- 2. Bioinformatics: Sequence and Genome Analysis (Second Edition 2004) David W. Mount ColdspringHarbor Laboratory Press
- 3. Bioinformatics and Functional Genomics (2003) Jonathan Pevsner John Wiley & Sons Publications
- 4. Buxevanis

PAPER IV: BIOSTATISTICS

Course Objectives:

- To recognize and give examples of different types of data arising in public health and clinical studies
- Interpret differences in data distributions via visual displays
- Calculate and interpret confidence intervals for population means and proportions
- To help them be able to select an appropriate test for comparing two populations on a continuous measure, when the two-sample t-test is not appropriate
- Choose an appropriate method for comparing proportions between two groups; construct a 95% confidence interval for the difference in population proportions

- Student would be able to Calculate standard normal scores and resulting probabilities
- Interpret and explain a p-value
- Perform a two-sample t-test and interpret the results; calculate a 95% confidence interval for the difference in population means
- Understand and interpret results from Analysis of Variance (ANOVA), a technique used to compare means amongst more than two independent populations
- Understand and interpret relative risks and odds ratios when comparing two populations

Course Code	UNIT	TOPICS	Credits	Lectures
100	I	Statistical population, sample from	7 1	
		population, Random sample.	- //	
		Central Tendency: Mean, Median		15
RPSBTK404		and Mode, Standard Deviation		
FYNI	nra	Confidence intervals		FY
PAPI		PVACIFICI		LA
-	II	Gaussian Distribution and testing		
		for normality, Non-parametric tests	4	
		(Sign test, Wilcoxon test, Mann-		
		Whitney Test, Krushkal- Whllis		15
		test,), transforming data to create		
		Gaussian Distribution		
	III	Test of Significance. Hypothesis		15
		testing:- Theory of errors - Type I		13

	and Type II errors, Null hypothesis, P values-one v/s two tail P values, t-test(paired & unpaired), z-test, Chi square test, contingency table.	
IV	Comparing three or more groups- Introduction to ANOVA, One way ANOVA, repeated measures ANOVA, Friedman Test. Correlation and Regression: Linear and multiple Correlation and Regression.	15

References:

- 1. A Introduction to Biostatistics (Second Edition-2005) N. Gurumani M J P Publishers
- 2. Basic Biostatistics (2008) B. Burt Gerstman Jones and Bartlett Publishers
- 3. Biostatistics: Afoundation For Analysis In Health Sciences (7th Edition 1999) Wayne W. Daniel John Wiley & Sons Inc.
- 4. Fundamentals of Biostatistics (2006) Veer BalaRastogi Ane Books India
- 5. Biostatistics- The Bare Essentials (Second Edition 2000) NosmanStreiner B. C. Decker Inc.

Practicals Semester IV

Based on Paper I to IV

Sr. No.	Experiment TOTAL CREDITS: 08
1.	Classification of biological databases specially cover NCBI and INSDC
2.	Phylogenetic analysis using Bvotstrap and Homology modelling
3.	Multiple alignment- Phylogenetic tree
4.	BLAST – orthologs, paralogs, Homologs
5.	Motif finding
6.	KEGG
7.	Structure of proteins – identification of chains helices, special groups, metal ions etc. CATH/SCOP classification of a given protein
8.	Nanoparticles – synthesis chemical and biological methods, Spectroscopic analysis
9.	Bioremediation- isolation of metal tolerant organisms & study their growth
	characteristics and pattern
10.	Composting – physical and chemical parameters
11.	GMO validation – kit based/ demo

Students will have to undergo a mandatory hand on project in an established laboratory for 4-5 months. This should involve one or more relevant instrumentation technique. Thesis on the same to be evaluated by the guide for 70M based on the students' performance, written matter and experimentation. A certificate/mark list to be appended with the thesis. External examiner to assess for the 70M/ 65M as a presentation during practical exams, along with internal examiner who will also assess the student for 60M/ 65M.