AB/II (20-21).2.RPS9

S. P. Mandali's

Ramnarain Ruia Autonomous College

Syllabus for MSc Part I and MSc Part II

Program: MSc

Program Code: Microbiology (RPSMIC)

(Credit Based Semester and Grading System for academic year 2020–2021)

PROGRAM OUTCOMES

In the post graduate courses, S.P.Mandali's Ramnarain Ruia Autonomous College is committed to impart conceptual and procedural knowledge in specific subject areas that would build diverse creative abilities in the learner. The College also thrives to make its Science post graduates research/ job ready as well as adaptable to revolutionary changes happening in this era of Industry 4.0.

PO	PO Description
	A student completing Master's Degree in Science program
	will be able to:
PO 1	Demonstrate in depth understanding in the relevant science
	discipline. Recall, explain, extrapolate and organize conceptual
	scientific knowledge for execution and application and also to
	evaluate its relevance.
PO 2	Critically evaluate, analyze and comprehend a scientific problem.
	Think creatively, experiment and generate a solution
	independently, check and validate it and modify if necessary.
PO 3	Access, evaluate, understand and compare digital information
	from various sources and apply it for scientific knowledge
	acquisition as well as scientific data analysis and presentation.
PO 4	Articulate scientific ideas, put forth a hypothesis, design and
	execute testing tools and draw relevant inferences. Communicate
1.	the research work in appropriate scientific language.
PO 5	Demonstrate initiative, competence and tenacity at the
	workplace. Successfully plan and execute tasks independently as
	well as with team members. Effectively communicate and
	present complex information accurately and appropriately to
	different groups.
PO 6	Use an objective, unbiased and non-manipulative approach in
	collection and interpretation of scientific data and avoid
	plagiarism and violation of Intellectual Property Rights.
	Appreciate and be sensitive to environmental and sustainability

	issues and understand its scientific significance and global					
	relevance.					
PO 7	Translate academic research into innovation and creatively					
	design scientific solutions to problems. Exemplify project plans,					
	use management skills and lead a team for planning and					
	execution of a task.					
PO 8	Understand cross disciplinary relevance of scientific					
	developments and relearn and reskill so as to adapt to					
	technological advancements.					

WHITTER WITTER

PROGRAM SPECIFIC OUTCOMES

PSO	Description					
	A student completing Master's Degree in Science program in the subject of Microbiology will be able to:					
PSO 1	Recall the basic concepts of gene expression and regulation, exemplify					
	cytoplasmic inheritance and transposons. Analyse the genetics					
	underlying cancer and cell cycle. Solve problems based on allelic and					
	genotypic frequencies					
PSO 2	Apply the principles of thermodynamics to understand stability of					
	biological molecules, execute experiments for their detection and					
	estimation in samples. Summarize the metabolism of one and two					
	carbon compounds by microorganisms					
PSO 3	Attribute pathogenesis of diseases to virulence mechanisms, outline the					
	pathogenesis, transmission and treatment of emerging bacterial and					
	viral infections. Recognize the role of microbiome in the overall					
	physiology of humans. Execute antibiotic susceptibility assays and					
	evaluate efficacy in context of antibiotic resistance. Also, implement					
	diagnostic tests for infectious diseases					
PSO 4	Formulate a hypothesis, design a research project, execute the					
	experiments including appropriate calibrations and controls, implement					
	appropriate methods for data collection and analyse data with					
	appropriate statistical tools. Abstract and paraphrase scientific					
	information, extrapolate it and present it creatively in the appropriate					
	scientific language for verbal and non-verbal communication, using ICT					
	tools.					
PSO 5	Recall the structure and functions of cell membrane and cytoskeleton					
	as well as the concept of protein trafficking and transport. Compare					
	various transport mechanisms, and analyse the significance of cell to					
	cell communication. Explain the process of development and					
	organogenesis in higher animals and correlate it to genes with specific					
	reference to Drosophila.					

PSO 6	Execute extraction, purification and analysis of various biomolecules. Compare the mechanisms of enzyme catalysis of different classes of enzymes and solve problems on enzyme kinetics. Recall different cell signalling mechanisms. Outline the biochemistry of degradation of various xenobiotics by microorganisms
PSO 7	Recall methods used to study microbial ecology and execute analysis of samples from varied environments. Extrapolate potential of extremophilic proteins to industrial applications, attribute problems like biofouling and biocorrosion to microbial activity. Recall the role of microbes in soil and demonstrate their role in plant growth. Outline, appreciate and apply the principles of solid and hazardous waste management and appreciate various regulations enacted with respect to biosafety.
PSO 8	Access appropriate biological databases and apply various bioinformatics tools for varied analysis, recall concepts of synthetic biology and systems biology. Extrapolate understanding of contemporary tools in Molecular Biotechnology for DNA sequencing, mutagenesis and protein expression studies. Execute experiments for preparation of nanoparticles and their analysis
PSO 9	Understand and evaluate the significance of viral genetics in representative bacterial viruses and apply it in rDNA technology. Recall and extrapolate the types of animal and plant viruses, describe their mechanisms of infections, control and treatment. Explain and give an overview of emerging & re-emerging viral infections responsible for causing pandemics. Outline the mechanism of tumorigenesis by oncogenic viruses.
PSO 10	Recall detailed mechanisms of innate and adaptive immunity, and emphasize the molecular interactions that help distinction of self from non self in immune mechanisms. Outline the mechanisms of immune tolerance and exemplify reasons for autoimmune diseases as well as cancer. Apply principles of immunoassays for execution of diagnosis of disorders and diseases. Summarize and illustrate concepts in

	immunotherapy. Extrapolate basics of vaccine development to combat emerging infections
PSO 11	Understand and illustrate different concepts in food microbiology like- fermentations, preservation, microbial analysis and quality control. Check food and water samples for microbiological quality as per prescribed standards and maintain records. Recall concepts and monitor processes in food industry and bottled water manufacturing units with emphasis on BIS regulations, regulatory frameworks, GMP and HACCP.
PSO 12	Recall and explain the principle and working of techniques like spectroscopy, chromatography, hyphenated techniques, PCR based assays, microarrays, electrophoresis, X ray diffraction and SPR and compare all the different types included under each technique. Understand and extrapolate these concepts to analyse biological samples for biomolecular composition and/or structure.
PSO 13	Understand, explain and monitor processes in pharmaceutical industry with respect to regulatory aspects, QA, QC, GLP, ISO standards and validation. Check microbial quality of bulk and finished pharmaceutical products, judge their quality and maintain records. Apply concepts in bioinformatics, proteomics, high throughput screening and pharmacogenomics for discovering new drugs
PSO 14	Recall and apply various concepts in modern Biotechnology like gene therapy, stem cell technology, 16SrRNA sequencing in fields like diagnostics, therapeutics and genetic counselling. Summarize and evaluate the biotechnological potential of fungi and algae for production of commercial products like pharmaceutics, pigments, enzymes, biofuels etc. and in processes like bioremediation and wastewater treatment. Summarize and interpret the laws for IPR, biodiversity conservation and recall the perspectives of bioethics. Implement patent searches and outline prerequisites and steps in patentability.

PSO 15	Recall aspects in epidemiological study designs and public health surveillance and detect agents that could be associated with bioterrorism. Categorize biofuels and outline fermentation technologies for their manufacture. Exemplify enzymes with industrial potential and recall and explore technologies like immobilization for their application in industrial products. Explain techniques in protein engineering for increasing activity and specificity.
PSO 16	Outline work plans and execute tasks independently and to completion. Coordinate and cooperate with team members for execution of experiments. Maintain records, make reports and interpret them for making summaries. Communicate information accurately and effectively. Follow ethical practices at workplace, take initiative, exhibit competency and imbibe other professional skills.
PSO 17	Apply theoretical concepts effectively and think innovatively to translate ideas to research projects and projects to products. Understand the significance of microbiology as a science that has transdisciplinary relevance and immense potential to improve quality of life for all humankind.
	RHNR

PROGRAM OUTLINE

YEAR	SEM	COURSE	COURSE TITLE	CREDITS
		CODE		
		RPSMIC 101	MICROBIAL GENETICS	04
		RPSMIC 1P1	Practicals based on Microbial Genetics	02
		RPSMIC 102	MICROBIAL BIOCHEMISTRY	04
		RPSMIC 1P2	Practicals based on Microbial Biochemistry	02
		RPSMIC 103	MEDICAL AND CLINICAL MICROBIOLOGY	04
		RPSMIC 1P3	Practicals based on Medical And Clinical Microbiology	02
		RPSMIC 104	RESEARCH METHODOLOGY	04
MSc I		RPSMIC 1P4	Practicals based on Research Methodology	02
200		RPSMIC 201	CELL BIOLOGY	04
	R	RPSMIC 2P1	Practicals based on Cell Biology	02
		RPSMIC 202	MICROBIAL BIOCHEMISTRY	04
	I	RPSMIC 2P2	Practicals based on Microbial Biochemistry II	02
		RPSMIC 203	ENVIRONMENTAL MICROBIOLOGY	04
		RPSMIC 2P3	Practicals based on Environmental Microbiology	02
		RPSMIC	EMERGING AREAS IN	04

		204	BIOLOGY	
		RPSMIC 2P4	Practicals based on Emerging	00
			Areas In Biology	02
		RPSMIC	VIROLOGY	04
		301	VIROLOGI	04
		RPSMIC 3P1	Practicals based on Virology	02
		RPSMIC		04
		302	IMMUNOLOGY	
		RPSMIC 3P2	Practicals based on Immunology	02
	III	RPSMIC	FOOD AND WATER	
		303	MICROBIOLOGY	04
		RPSMIC 3P3	Practicals based on Food And Water Microbiology	02
		RPSMIC	TOOLS AND TECHNIQUES:	
		304	BIOMOLECULAR ANALYSIS	04
		RPSMIC 3P4	Practicals based on Tools And Techniques: Biomolecular Analysis	02
MSc II		RPSMIC		04
		401		
		RPSMIC 4P1	Practicals based on Pharmaceutical And Cosmetic	02
	0	DDOMIO	Microbiology	
	\mathcal{M}	RPSMIC 402	ADVANCES IN BIOTECHNOLOGY	04
21	IV	RPSMIC 4P2	Practicals based on Advances In Biotechnology	02
		RPSMIC 403	EMERGING AREAS IN BIOLOGY	04
		RPSMIC 4P3	Practicals based on Emerging Areas In Biology II	02
		RPSMIC 404	INTERNSHIP	04
		RPSMIC 4P4	Practicals based on Internship	02

3

Course Code: RPSMIC 101 Course Title: Microbial Genetics Academic year 2020-21

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
CO 1	Recall the basic genetic mechanisms like transcription and translation mechanisms, post translational modifications, levels of gene expression
CO 2	Compare and contrast between prokaryotic and eukaryotic transcription and demonstrate an in depth understanding of gene regulation
CO 3	Implement the knowledge about oncogenes and cancer genetics in research
CO 4	Structure the medical and evolutionary relation of transposition
CO 5	Critique the best model organism for genetic studies
CO 6	Outline the factors leading to changes in genetic structure in a population
CO 7	To apply Hardy-Weinberg's Law and evaluate problems based on genotypic and allelic frequencies
CO 8	Outlining the significance of cytoplasmic inheritance, giving emphasis to the evolutionary relationship of inheritance

DETAILED SYLLABUS

Course Code	Unit	Course/ Unit Title	Credits/ Lectures
RPSMIC 101		MICROBIAL GENETICS	4/60
I		Gene expression and its regulation	15
	1.1	Gene expression	05
		 a) Revision of prokaryote transcription and translation b) Transcription process in eukaryotes c) Pre-mRNA processing and Small RNA molecules i. Structure of mRNA ii. Post transcriptional processing of pre-mRNA 1. Addition of 5"cap 2. Addition of Poly(A)tail 3. RNA splicing 4. RNA editing ii. Small RNA molecules 1. RNA interference 2. Types 3. Processing 4. Function of micro RNAs d) mRNA surveillance e) Post translational modification of Proteins 	
	1.2.	Regulation of gene expression	09
		 a) Control of gene expression in prokaryotes i. Levels of gene regulation ii. DNA binding proteins iii. Antisense RNA molecules iv. Riboswitches v. Operon (Revision with examples) 	03
24		 b) Control of gene expression in eukaryotes Regulation through modification of gene structure DNase I hypersensitivity histone modifications chromatin remodelling DNA methylation. ii. Regulation through regulatory molecules Transcriptional activators Co-activators Repressors Enhancers Insulators 	06

		de une de Cele	
		degradation	
	1.0	iv. Regulation through RNA interference	
	1.3	Chromosomal Rearrangements and effects on gene expression	01
		a) Amplification and deletion of genes	
		b) Inversions that alter gene expression	
		c) Phase variation in <i>Salmonella</i>	
		Cytoplasmic Inheritance (Organellar Genetics)	15
	2.1	Mitochondrial Inheritance	06
		a) Mitochondrial genome structure	
		b) Ancestral and derived mitochondrial genome	
		c) Mitochondrial DNA of Human, yeast and	
		flowering plants	
		d) Endosymbiotic theory	
		e) Mitochondrial DNA replication, transcription &	
		translation	
		f) Codon usage in Mitochondria	
		g) Damage to Mitochondrial DNA and aging.	
		h) Evolution of mitochondrial DNA	
		i) Mt DNA analysis for study of evolutionary	
		relationships	
	2.2	Chloroplast DNA (cp DNA)	05
		a) Gene structure and organization	
		b) General features of replication, transcription and	
		translation of cp DNA	
		c) Comparison of nuclear, eukaryotic, eubacterial	
		mitochondrial and chloroplast DNA	
		d) cp DNA maps	
	2.3 Examples of extranuclear inheritance		
		a) Leaf Variegation	05
		b) Poky mutant of Neurospora	
		c) Yeast petite mutant,	
		d) Human genetic diseases	
		Transposable genetic elements and population	15
	$\leq \sim$	genetics	10
	3.1 Transposable genetic elements		08
	a) Revision of prokaryotic transposable elements		
\circ		b) Transposable Elements in Eukaryotes	
~		i. Ac and Ds Elements in Maize	
		ii. P Elements and Hybrid Dysgenesis in	
		Drosophila	
		iii. Retro-transposons Retrovirus like Elements	
		Retroposons	
		iv. Transposable elements in Humans	
		c) The Genetic and Evolutionary Significance of	
		Transposable Elements	
		d) Transposons and Genome Organization	
	l.		

Transposons and Mutation e) Transpositions that alter gene Expression i. Antigenic variation in Trypansomes			
i Antigonic variation in Trypansomos			
i. Antigenic variation in Trypansomes			
ii. Mating type switching in yeast			
3.2 Population genetics 0	7		
a) Population and gene pool			
i. Genotypic and Allelic frequencies			
ii. Calculation of Genotypic frequencies and			
Allelic frequencies for autosomal and X linked			
loci			
iii. Problems –calculation of allelic and genotypic	\sim		
frequencies			
iv. Hardy-Weinberg Law, genotypic frequencies			
at HWE, Implications of the H-W Law			
v. H-W proportions for multiple alleles,			
vi. X-linked alleles			
vii. Testing for H-W proportions and problems			
viii. Genetic ill effects of in-breeding			
b) Changes in the genetic structure of populations:			
i. Mutation			
ii. Migration and gene flow			
iii. Genetic drift			
iv. Natural selection and Simple problems based			
on the natural forces	5		
IV Model organisms and Genetic basis of cancer			
4.1 Model organisms			
a) Characteristics of an ideal model organism			
b) Elaborating each model organism			
i. E. coli			
ii. Yeast			
iii. C. elegans			
iv. A. thaliana			
v. Mus musculus			
	8		
a) Forms of Cancer, cancer and the Cell Cycle			
b) Genetics Basis for Cancer			
c) Oncogenes			
d) Tumor-Inducing Retroviruses and Viral			
Oncogenes			
e) Cellular Homologs of Viral Oncogenes: The			
Proto-Oncogenes Mutant Cellular Oncogenes			
and Cancer			
f) Chromosome Rearrangement and Cancer			
g) Tumor Suppressor Genes			
h) Johanitad Canaara and Kaudaania Tuu Liit			
h) Inherited Cancers and Knudson's Two-Hit			
Hypothesis Cellular Roles of Tumor Suppressor			

References:

- a) Watson, Baker, Bell, Gann, Levine, Losick, "Molecular Biology of the Gene", 5th Ed, Pearson Education (LPE)
- b) Russell, P.J., "iGenetics- A Molecular Approach", 3rd Ed, Pearson International Edition
- c) Snustad & Simmons, "Principals of Genetics", 3rd Ed, John Wiley & Sons Inc
- d) Pierce, B.A, "Genetics- A Conceptual Approach", 2nd Ed, W.H. Freeman & Co
- e) Gray Micheal *et al*, "The origin and early evolution of Mitochondria", *Genome Biology*, 2001, 2(6)
- f) Gray Micheal, "The origin and evolution of Mitochondrial DNA", Annual Reviews in Cell Biology, 1989, 25-50
- g) Howe Christopher J *et al*, "Evolution of the chloroplast genome", *The Royal Society*, 2003, 358, 99-107
- h) Kelchner, S. A., "The Evolution of Non-Coding Chloroplast DNA and Its Application in Plant Systematics", 2000, Annals of the Missouri Botanical Garden, 87(4), 482.
- i) Ladoukakis Emmanuel *et al "*Evolution and inheritance of animal mitochondrial DNA: rules and exceptions", *Journal of Biological Research*, 2017, 24:2.
- j) Wallace Douglas C., "Mitochondrial DNA in evolution and disease", Nature, 2016, 535(7613), 498–500.

Practicals: RPSMIC1P1 (60 Contact Hrs)

- a. ß galactosidase assay
- b. Isolation of genomic DNA from yeast
- c. Demonstration of Mating type switching in yeast
- d. Isolation of mitochondria DNA & chloroplast DNA
- e. Problems on population genetics
- f. Transformation of yeast
- g. Tetrad analysis of yeast
- h. Artificial transformation of bacteria
- i. Bacterial conjugation
- j. Study of transduction

Course Code: RPSMIC 102 Course Title: Microbial Biochemistry-I Academic year 2020-21

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	
CO 1	Recall the basics of biochemical calculations like SI units and
	expression of concentration
CO 2	Illustrate various biochemical processes with the help of
	thermodynamic principles
CO 3	Remember the basics of amino acids and peptides and understand
	further details about secondary structure of polypeptide chain.
CO 4	Differentiate between various polysaccharides like glycoproteins
	and proteoglyans
CO 5	Organize various events in evolution of metabolic pathway
CO 6	Explain the method of transport of four major biomolecules into the
	cell
CO 7	Execute various chemical methods to characterize the
	biomolecules

DETAILED SYLLABUS

Course Code	Unit	Course/ Unit Title	Credits/ Lectures
RPSMIC		MICROBIAL BIOCHEMISTRY I	4/60
102			
I		Biochemical Calculations and Thermodynamics	15
	1.1	Biochemical Calculations	09
		 a) SI Units Relevant to Biochemistry Prefixes for Multiples and Fractions of Units Relative molecular mass (Mr) Stoichiometry b) Various units of expressing and inter-converting concentration of solutions Molarity Moles Normality Normality Osmolarity Mole fraction Nole fraction Specific gravity c) Bronsted Concept of conjugate acid–conjugate base pairs Ionization of solutions PH Titration curves Buffers: preparation, action and their use in Biology d) Henderson-Hasselbalch equation Buffer capacity Polyproteic acids 	
	$\langle N \rangle$	iii. Amphoteric salts	
		iv. Ionic strengths (problem solving under all heads)	
	1.2	Thermodynamics	06
		a) Energy Transformations	
		b) First and second law of thermodynamics	
		 Statement and Introduction Enthalpy, examples from biochemistry and energy conservation in living organisms 	
		iii. Entropy of universeiv. Protein denaturationc) Gibbs Free Energy-Applications	
		i. Introduction	

RAMNARAIN RUIA AUTONOMOUS COLLEGE, SYLLABUS FOR MSc MICROBIOLOGY 2020-2021

		ii. Photosynthesis, glycolysis, and the citric acid	
		cycle	
		iii. Oxidative phosphorylation and ATP hydrolysis	
		iv. Enzyme–substrate interaction	
		v. Protein solubility	
		vi. Protein stability	
II		Biomolecules	15
	2.1	Amino acids and Proteins	04
		a) Amino Acids and Peptides (Revision)	
		i. Properties of α-Amino Acids	CX
		ii. Acidic and Basic Side Chains	
		iii. The Peptide Unit	
		iv. Polypeptides	\mathbf{V}
		b) The Architecture of Folded Proteins	
		,	
		i. Conformations of Polypeptide Chains	
		ii. The Extended Chain β Structures	
		iii. Helices	
		iv. Turns and Bends, Domains, Subunits, and	
		Interfaces	
		v. Packing of Side Chains	
		c) Dynamic Properties of Proteins	
		i. Packing of Side Cha Motion of Backbone and	
		Side Chains	
		ii. Conformational Changes	
		iii. Denaturation and Refolding	
		iv. Effects of pH and Solvent	
		v. Irreversible Damage to Proteins	
	2.2	Sugars, Polysaccharides and glycoproteins	03
	L .L	Structures and Properties of Simple Sugars	00
		a) Glycosides, Oligosaccharides, Glycosylamines, and	
		Glycation	
		b) Polysaccharides (Glycans)	
		c) Glycoproteins and Proteoglycans	
	2.3	Lipids	03
	∇A	 A) Lipid Structures 	
		i. Fatty Acids, Fatty Alcohols, and Hydrocarbons	
		ii. Acylglycerols, Ether Lipids, and Waxes	
		iii. Phospholipids	
		iv. Glycolipids	
		v. Sphingolipids	
		vi. Sterols and Other Isoprenoid Lipids	
		b) Membranes-The Structure of Membranes	
	2.4	Evolution of Metabolic pathway	05
		a) The primordial metabolism	
		b) The role of duplication and fusion of DNA sequences	
		in the evolution of metabolic pathways in the early	
		cells	
		UEIIS	

	c) Hypotheses on the origin and evolution of metabolic	
	pathways	
	d) The reconstruction of the origin and evolution of	
	metabolic pathways	
	One and two Carbon metabolism	15
3.1	Metabolism of one carbon compounds	07
	a) Methylotrophs	
	i. Oxidation of methane, methanol, methylamines	
	ii. Carbon assimilation in methylotrophic bacteria	
	and yeasts Methanogens	
	b) Methanogenesis	
	i. Methanogenesis form H ₂ , CO2, CH ₃ OH,	
	HCOOH, methylamines	
	ii. Energy coupling and biosynthesis in	
	methanogenic bacteria	
	c) Acetogens: autotrophic pathway of acetate synthesis	
	and CO ₂ fixation,	
	d) Carboxidotrophs: Biochemistry of	
	chemolithoautotrophic metabolism	
	e) Cyanogens and cynotrophs	
	i. Cynogenesis	
	ii. Cyanide degradation	
3.2	Metabolism of two- carbon compounds	08
	a) Acetate	
	i. TCA	
	ii. Glyoxylate cycle	
	iii. Modified citric acid cycle	
	iv. Carbon monoxide dehydrogenase pathway and	
	disproportionation to methane	
	b) Ethanol- acetic acid bacteria	
	c) Glyoxylate and glycollate	
	i. Dicarboxylic acid cycle	
	ii. Glycerate pathway	
2.	iii. Beta hydroxyaspartate pathway	
	d) Oxalate- as carbon and energy source	
	e) Highlight about sign of 1C/2C utilization	
IV	Transport of Biomolecules	15
4.1	Transport of sugars	03
	a) Transport of D-Glucose and D-Fructose into E. coli	
	cell.	
	b) Glucose transporters of erythrocytes, various	
	glucose transporters present in humans (GLUT1-	
	GLUT12)	
4.2	Transport of amino acids	03
	Amino acid transporter families for various amino	
1	acids	

4.3	Transport of Fatty acid	03
	 a) Mobilization of triacylglycerols stored in adipose tissue 	
	 b) Fatty acid entry into mitochondria via the acyl- carnitine/carnitine transporter 	
4.4	Transport of proteins	06
	 a) Protein transport: extracellular protein secretion, drug export system 	
	 b) Folding of periplasmic proteins, translocation of folded proteins 	No.

References:

- a) Segel. R, "Biochemical calculations", 3rd edition John Wiley and Sons, 1995
- b) Mathew, Van Holde and Ahern, "Biochemistry" 3rd edition, Pearson Education
- c) Zubay, G., Wm.C., "Principles of Biochemistry", 4th edition, Brown Publishers, 1998
- d) Lehninger A.L., Cox and Nelson, "Principles of Biochemistry", 4th Edition, CBS Publishers and Distributors Pvt. Ltd. 1994
- e) G N Cohen, "Microbial Biochemistry", 2nd Edition, Springer, 2011
- f) Donald Haynie, "Biological Thermodynamics", 2nd Edition, Cambridge University Press, 2008
- g) David E. Metzler, "Biochemistry: The Chemical reactions of living cell", 2nd Edition Vol. 1
 & 2 Elsevier Academic Press
- h) David White, "The Physiology and Biochemistry of Prokaryotes", 3rd Edition Oxford University Press 2007
- i) John Gareth Morris, A biologist"s Physical Chemistry, 2nd Edition, Wiley
- j) Fani, R., & Fondi, M. "Origin and evolution of metabolic pathways" *Physics of Life Reviews*, 2009, 6(1), 23–52. doi:10.1016/j.plrev.2008.12.003

Practicals: RPSMIC1P2 (60 Contact Hrs)

- a) Preparation of buffers
- b) Determination of pK and PI value for an amino acid
- c) Extraction of total lipids
- d) Identification of fatty acids and other lipids by TLC
- e) Determination of degree of unsaturation of fats and oils
- f) Estimation of total sugars by phenol-sulphuric acid method
- g) Determination of molar absorption coefficient(ɛ)of I-tyrosine
- h) Determination of the isoelectric point of the given protein
- i) Estimation of polyphenols /tannins by Folin-Denis method
- j) Enrichment, isolation and identification of Methylobacterium
- k) Diffusion studies of molecules across RBCs
- I) Diffusion studies of molecules across yeasts cells

Course Code: RPSMIC 103 Course Title: Medical and Clinical Microbiology Academic year 2020-21

COURSE OUTCOMES:

b

COURSE	DESCRIPTION
OUTCOME	
CO 1	Elaborate on pathogenesis, mode of transmission, epidemiology
	and therefore modes of prophylaxis of some current and
	emerging diseases
CO 2	Understand nature of regulation of expression of pathogenicity,
	evasion of host defense
CO 3	Recognise and appreciate the importance of biofilms in
	different environments
CO 4	Identify and classify the nature and methods of eradication of
	biofilms, especially those on implants and medical devices
CO 5	Apply appropriate methodologies to tackle the threat of
	antibiotic resistance
CO 6	Perform and analyze all kinds of clinical microbiological tests
	associated with antibiotic susceptibility testing
CO 7	Analysing and hypothesizing the effects of gut microbiome on
.0	different aspects of human physiology

DETAILED SYLLABUS

Course	Sub-	Course/ Unit Title	Credits/
Code	Unit		Lectures
RPSMIC		MEDICAL AND CLINICAL	04/ 60
103		MICROBIOLOGY	
		Study of Infections – I	15
		Detailed Study of following infections including Etiology,	
		Transmission, Pathogenesis, Clinical Manifestations, Lab.	
		diagnosis, Prophylaxis, and Treatment:	
		MOTT (mycobacteria other than TB), MDR and XDR TB,	
		Legionellosis, Emerging infections like- Rickettsial	
		infections and C.auris, Conditions caused by Helicobacter	
		<i>pylori</i> , VRE (Vancomycin Resistant enterococci),	
		Listeriosis, Leptospirosis	
Ш		Study of Infections- II and introduction to	15
		microbiome	
	2.1	Detailed Study of following infections	06
		including Etiology, Transmission, Pathogenesis, Clinical	
		Manifestations, Lab. diagnosis, Prophylaxis, and	
		Treatment	
		Chikungunya, Dengue, Hepatitis non-A, Swine flu	
	2.2	Microbiome studies	09
		a) Stomach, small and large intestinal microbiome	
		b) Function of the Human Gut Microbiota	
		 c) Gut Microbiota in health and disease d) Out brain avia 	
		d) Gut-brain axis	4.5
III		Virulence regulation and strategies to evade	15
		defense	
	3.1	Revision of Virulence mechanisms in pathogens	02
	3.2	Mechanisms of virulence regulation	04
	\sim .	a) Types of regulationb) Quorum Sensing	
	3.3	Measuring Virulence	03
	3.4	Bacterial strategies for evading or surviving host	06
	5.4	defense systems	00
		a) Biofilms- Structure, development, biofilms on	
		implants and prosthetic devices, Biofilm	
		eradication	
		b) Colonization of host surfaces	
		c) Evading host responses	

IV		Clinical Microbiology- Antibiotic resistance and Antibiotic susceptibility testing	15
	4.1	Antibiotic resistance in microbes	07
		a) Mechanisms of antibiotic resistance	
		b) Transfer of antibiotic resistance	
		c) Maintaining antibiotic resistance through Selective	
		Pressure	
	4.2	Antibiotic susceptibility testing	08
		 a) Tests that predict the effectiveness of therapy Antibiotic Susceptibility Testing Methods- Indications, standardization, QC, Procedures and interpretation Detection of resistance- Beta lactamase and ESBL Antibiograms b) Tests that monitor the effectiveness of therapy Molecular detection MBC Serum killing curves Testing antibiotic combinations Time kill curves c) Test of therapeutic efficacy and avoidance of toxicity 	

References:

- a) Ananthnarayan & Paniker, "Textbook of Microbiology", 8th edition, University press 2009
- b) Richard Goering, Hazel Dockerell *et al*, "Mim's Medical Microbiology, 5th ed, Saunders, Elsevier, 2013
- c) David Greenwood *et al*, "Medical Microbiology: A Guide to Microbial Infections: Pathogenesis, Immunity, Laboratory Diagnosis and Control", 17th Edition, Churchill Livingstone/Elsevier, 2012
- d) Julian R. Marchesi, "The Human Microbiota and Microbiome, Advances in Molecular and Cellular Microbiology", CABI press, 2014
- e) Brenda Wilson, Abigail Salyers *et al*, "Bacterial Pathogenesis- A molecular approach", 3rd ed, ASM press, 2011
- f) Jana Jass, Sussane Surma et al, "Medical Biofilms. Detection Prevention and Control", Wiley, 2003
- g) Kendra Rumbaugh, Iqbal Ahmed, "Antibiofilm agents-From Diagnosis to treatment and Prevention", Springer Series on Biofilms Vol 8, Springer, 2014
- h) J. Vandepitte, J. Verhaegen *et al*, "Basic laboratory procedures in clinical bacteriology", 2nd
 ed, WHO, Geneva, 2003

- Gary Procop, Elmer Koneman *et al, "*Koneman's Color Atlas and Textbook of Diagnostic Microbiology", 7th Edition, Wolters Kluwer, 2017
- J) Indira Kudva, Nancy Cornick *et al, "*Virulence Mechanisms of Bacterial Pathogens", 5th ed, ASM Press, 2016
- k) A brief guide to emerging infectious diseases and zoonoses. WHO.
- Nett JE, "Candida auris: An emerging pathogen "incognito", *PLoSPathog*, 2019, 15(4): e1007638. https://doi.org/10.1371/journal.
- m) Spivak ES, Hanson KE, "Candida auris: an emerging fungal pathogen", *J Clin Microbiol*, 2018, 56:e01588-17.
- n) Abdad MY, Abou Abdallah R, Fournier P-E, Stenos J, Vasoo S, "A concise review of the epidemiology and diagnostics of rickettsioses: Rickettsia and Orienti spp", *J Clin Microbiol*, 2018, 56: e01728-17. https://doi.org/10.1128/JCM.01728-17.
- o) Narendra Rathi And Akanksha Rathi, "Rickettsial Infections: Indian Perspective", *Indian Pediatrics*, 2010, Volume 47.
- p) Haake, D. A., & Levett, P. N., "Leptospirosis in Humans", *Leptospira and Leptospirosis*, 2014, 65–97. doi:10.1007/978-3-662-45059-8_5.

Practicals: RPSMIC1P3 (60 Contact Hrs)

- a) Diagnosis for HIV Trispot/ ELISA for AIDS (Demonstration)
- b) Mono Spot Test for diagnosis of Chikungunya (Demonstration expt.)
- c) Diagnosis of leptospirosis Kit method (Demonstration)
- d) Diagnosis for *Helicobacter pylori* HPSA (Helicobacter pylori) (Demonstration expt.) (kit method)
- e) Study of Quorum Sensing in C.violaecium
- f) Study of Quorum sensing inhibitors
- g) Detection of Biofilm formation on different surfaces
- h) Determination of Minimum Biofilm Inhibition Concentration of an antibiotic
- i) Study of biofilms in flow systems
- j) Antibiotic Susceptibility Test microdilution methods according to CLSI guidelines
- k) Checkerboard assay
- I) E-test

Course Code: RPSMIC 104

Course Title: Research Methodology

Academic year 2020-21

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	
CO 1	Summarize the basics of research methodology
CO 2	Execute the experiments including appropriate calibrations and controls, with a carefully written record of the outcomes
CO 3	Implement different methods of data collection and process the collected data by conventional and modern methods.
CO 4	Hypothesize a solution to a research problem
CO 5	Design a research project
CO 6	Distinguish between laws, theory, postulates, and research types
CO 7	Carrying out statistical analysis of the result
CO 8	Selecting correct mode of scientific communication and quality literature

DETAILED SYLLABUS

Code	Unit	Course/ Unit Title	Credits/ Lectures
RPSMIC 104		RESEARCH METHODOLOGY	4/60
l		Research Fundamentals and Terminology	15
	1.1	Philosophy of natural science	02
		a) Traditional philosophy of science	
		b) Scientific explanation and modes of inference	
		c) Scientific rationality	
		d) Theory testing	
	1.2	Introduction to research	02
		a) Definition of research	
		b) Scientific research	
		c) General characters of research	
		d) Objectives of research	
		 e) Classification and types of research 	
	1.3	Research methodology	03
		 Types of research methods 	
		 b) Research methods verses methodology 	
		c) Research and scientific method	
		d) Research process	
		e) Criteria of good research	
	1.4	Strategies and analysis	04
		a) Research conditions	
		b) Importance of controls	
		c) Experimental protocol and experimental routine	
	1.4	Research problem	01
		a) Selection of a research problem	
		b) Necessity of defining a research problem	
		c) Technique involved in defining a research	
	1.5	problem Study designs	03
	1.5		
		Preparation for research project and data collection methods	15
	2.1	Literature search	02
-		a) Concept of Information literacy	
		b) Method: Systematic literature search	
		c) Literature Search Technique	
		d) Methodology filters	
		e) Concept of Quality of literature	
		f) Impact factor	

	2.2	Personal reference database	02
		a) Introduction to principal bibliographic	
		databases	
		b) Importance of being scientifically update	
		c) Medical and scientific internet search engines	
		d) Reference management softwares	
		 e) Significance of cite when you write 	
		f) Bibliographic format: output styles	
	2.3	Hypothesis and testing of hypothesis	04
		a) Meaning, nature of hypothesis,	
		b) Functions of hypothesis,	
		c) Importance of hypothesis,	
		d) Kinds of hypothesis,	
		e) Characteristics of good hypothesis,	
		f) Formulation of hypothesis	
	2.4	Methods and techniques of data collection	03
		a) Types of data	
		b) methods of primary data collection	
		(observation/ experimentation/ questionnaire/	
		interviewing/ case/ pilot study, methods)	
		c) methods of secondary data collection	
		(internal/external), schedule method	
	2.4	Experimental data processing	04
		a) Processing operations	
		b) Problems in processing	
		c) Elements of analysis in data processing	
		d) Software for data processing	
		 d) Software for data processing Sampling, Sampling distribution and Statistics 	15
III	3.1	 d) Software for data processing Sampling, Sampling distribution and Statistics Sampling 	15 05
III	3.1	 d) Software for data processing Sampling, Sampling distribution and Statistics Sampling a) Sampling frame 	
111	3.1	 d) Software for data processing Sampling, Sampling distribution and Statistics Sampling a) Sampling frame b) Importance of probability sampling 	
<u> </u>	3.1	 d) Software for data processing Sampling, Sampling distribution and Statistics Sampling a) Sampling frame b) Importance of probability sampling c) Types of sampling 	
111	3.1	 d) Software for data processing Sampling, Sampling distribution and Statistics Sampling a) Sampling frame b) Importance of probability sampling c) Types of sampling i. Simple random sampling 	
<u> </u>	3.1	 d) Software for data processing Sampling, Sampling distribution and Statistics Sampling a) Sampling frame b) Importance of probability sampling c) Types of sampling i. Simple random sampling ii. Systematic sampling 	
	3.1	 d) Software for data processing Sampling, Sampling distribution and Statistics Sampling a) Sampling frame b) Importance of probability sampling c) Types of sampling i. Simple random sampling ii. Systematic sampling iii. Stratified random sampling 	
	3.1	 d) Software for data processing Sampling, Sampling distribution and Statistics Sampling a) Sampling frame b) Importance of probability sampling c) Types of sampling i. Simple random sampling ii. Systematic sampling iii. Stratified random sampling iv. Cluster sampling 	
	3.1	 d) Software for data processing Sampling, Sampling distribution and Statistics Sampling a) Sampling frame b) Importance of probability sampling c) Types of sampling i. Simple random sampling ii. Systematic sampling iii. Stratified random sampling iv. Cluster sampling d) Problems due to unintended sampling 	05
	3.1	 d) Software for data processing Sampling, Sampling distribution and Statistics Sampling a) Sampling frame b) Importance of probability sampling c) Types of sampling i. Simple random sampling ii. Systematic sampling iii. Stratified random sampling iv. Cluster sampling d) Problems due to unintended sampling e) Ecological and statistical population in the 	05
	Ch l	 d) Software for data processing Sampling, Sampling distribution and Statistics Sampling a) Sampling frame b) Importance of probability sampling c) Types of sampling i. Simple random sampling ii. Systematic sampling iii. Stratified random sampling iv. Cluster sampling d) Problems due to unintended sampling e) Ecological and statistical population in the laboratory 	05
	3.1	 d) Software for data processing Sampling, Sampling distribution and Statistics Sampling a) Sampling frame b) Importance of probability sampling c) Types of sampling i. Simple random sampling ii. Systematic sampling iii. Stratified random sampling iv. Cluster sampling d) Problems due to unintended sampling e) Ecological and statistical population in the laboratory Variables 	05
	Ch l	 d) Software for data processing Sampling, Sampling distribution and Statistics Sampling a) Sampling frame b) Importance of probability sampling c) Types of sampling i. Simple random sampling ii. Systematic sampling iii. Stratified random sampling iv. Cluster sampling d) Problems due to unintended sampling e) Ecological and statistical population in the laboratory Variables a) Types of Variables 	05
	Ch l	 d) Software for data processing Sampling, Sampling distribution and Statistics Sampling a) Sampling frame b) Importance of probability sampling c) Types of sampling i. Simple random sampling ii. Systematic sampling iii. Stratified random sampling iv. Cluster sampling d) Problems due to unintended sampling e) Ecological and statistical population in the laboratory Variables a) Types of Variables i. Ordinal 	05
	Ch l	 d) Software for data processing Sampling, Sampling distribution and Statistics Sampling a) Sampling frame b) Importance of probability sampling c) Types of sampling i. Simple random sampling ii. Systematic sampling iii. Stratified random sampling iv. Cluster sampling d) Problems due to unintended sampling e) Ecological and statistical population in the laboratory Variables a) Types of Variables i. Ordinal ii. Discontinuous 	05
	Ch l	 d) Software for data processing Sampling, Sampling distribution and Statistics Sampling a) Sampling frame b) Importance of probability sampling c) Types of sampling i. Simple random sampling ii. Systematic sampling iii. Stratified random sampling iv. Cluster sampling d) Problems due to unintended sampling e) Ecological and statistical population in the laboratory Variables a) Types of Variables i. Ordinal ii. Continuous iii. Continuous 	05
	Ch l	 d) Software for data processing Sampling, Sampling distribution and Statistics Sampling a) Sampling frame b) Importance of probability sampling c) Types of sampling i. Simple random sampling ii. Systematic sampling iii. Stratified random sampling iv. Cluster sampling d) Problems due to unintended sampling e) Ecological and statistical population in the laboratory Variables a) Types of Variables i. Ordinal ii. Discontinuous 	05

	a. Effect measure, Comparing two proportions, Measures of association in 2 x 2 tables, Normal distribution, Comparison of means, Non- parametric methods, Regression analysis b. hypothesis testing and confidence interval i. Null and alternate hypothesis ii. Type-I & Type-II errors iii. Level of significance, iv. Power of test v. p value c. Parametric tests i. Large sample Tests a. Testing significance of single population mean b. Testing significance of two population mean ii. Small sample Tests a. Testing significance of single population mean b. Testing significance of single population mean c. Testing difference between two independent normal population mean c. Testing difference between two correlated normal population mean d. Testing significance of correlation coefficient iii. χ^2 test a. Testing single population variance b. Testing Goodness of fit c. Testing association between two attributes iv. F-test- Testing equality of variance a. ANOVA- one-way classification, two-way classification	
IV	Scientific writing and Communication	15
4.1	Report writing	03
	a) Types of research reports	
\mathcal{N}	 b) Guidelines for writing a report c) Report format 	
	c) Report formatd) Appendices	
\sim	e) Miscellaneous information	
4.2	Scientific communication	05
	a) Types of scientific documents	
	i. Journal articles	
	ii. Books	
	iii. Thesis	
	iv. Conference	
	v. Project reports	
	b) Components of a research paper	

1	a) Dublication process	
	c) Publication process	
	d) Copy right transfer and co-authorship	
	e) Open access	
4.3	How to write grant application	02
4.4	Communication skills	02
	a) Importance of communication	
	b) The process of communication	
	c) Verbal and nonverbal communication	
	d) Comparison of general, Business and scientific	<pre></pre>
	communication	CX
4.5	Modes of communication	03
	 a) Communication by presentations Structure and types of presentation PowerPoint presentation Handing PowerPoint Slide organisation and Content management Body language, gestures and voice modulation b) Communication by Email c) Poster presentations 	

References:

- a) Kothari, C.R, "Research Methodology- Methods and Techniques", New Delhi, Wiley Eastern Limited. 1985
- b) Das, S.K, "An Introduction to Research", Kolkata, Mukherjee and Company Pvt. Ltd. 1986
- c) Rosner B.A., "Fundamentals of Biostatistics", Cengage Learning, 2011
- d) Katz J.M., "From Research to Manuscript: A guide to scientific writing", USA, Springer Science, 2009
- e) Petter Laake, Haakon Breien Benestad and Bjorn Reino Olsen, "Research methodology in the medical and biological sciences" 1st Ed, Academic Press, 2007
- f) Pradip Kumar Sahu, "Research Methodology: A guide for Researchers in Agricultural Science", Social Science and other related fields, Springer, 2006
- g) Ranjit Kumar, "Research Methodology- A step-by-step Guide for beginners", 3rd Ed, Sage publications, 2005
- h) Daniel WW, "Biostatistics: A foundation for analysis in health sciences", 10th Edn, Cross CL., Wiley. 2013

Practicals: RPSMIC1P4 (60 Contact Hrs)

- a) Writing the Literature review on research topic that the students wishes to take for dissertation
- b) Problem solving on Biostatistics (manually and using software)
- c) Abstract writing or summary for a research paper
- d) Conduct a Lecture
- e) Data analysis using Software

Modality of Assessment:

I) Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

linterna		Κ.
Sr No	Evaluation type	Marks
1	One Review writing/ Review paper presentation/Research paper presentation/ Assignment	15
2	One class test (Multiple choice questions/ objectives)	20
3	Active participation in routine class instructional deliveries	05

B) External Examination- 60%- 60 Marks per paper

- 1. Duration- These examinations shall be of two hours and thirty minutes.
- 2. Theory question paper pattern
 - a. There shall be **five** questions each of **12** marks. On each unit there shall be one question and the fifth question will be based on all the three units.
 - b. All questions shall be compulsory with internal choice within the questions.

Paper pattern:

	Question	Options	Marks	Questions based on
	Q.1)	Any 2 out of 3	12	Unit 1
	Q.2)	Any 2 out of 3	12	Unit 2
	Q.3)	Any 2 out of 3	12	Unit 3
	Q.4)	Any 2 out of 3	12	Unit 4
6	Q.5) a)	Any 4 out of 5	04	All four units
	Q.5) b)	Any 4 out of 5	04	All four units
	Q.5) c)	Any 2 out of 3	04	All four units

	Paper I	Paper II	Paper III	Paper IV
Journal	05	05	05	-
Viva	05	05	05	-
Quiz	05	05	05	25
Laboratory work	35	35	35	-
Literature	-	-	-	25
Review				
Total	50	50	50	50

II) Practical Examination Pattern

Journal

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination. In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Co-ordinator / Incharge of the department; failing which the student will not be allowed to appear for the practical examination.

Overall Examination and Marks Distribution Pattern

Course	101			102			103			104			
	Internal	External	Total	Grand total									
Theory	40	60	100	40	60	100	40	60	100	40	60	100	400
Practicals	- /	50	50	-	50	50	-	50	50	-	50	50	200

Semester I

Course Code: RPSMIC201 Course Title: Cell Biology Academic year 2020-21

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
CO 1	Interpret the structure and analyze the function of cell membrane &
	Cytoskeleton.
CO 2	Discuss the concept of compartmentalization of cell and understand
	the process of membrane transport and protein trafficking.
CO 3	Interpret the phases of Cell cycle & discuss the apoptotic
	mechanisms.
CO 4	Exemplify cell communication strategies in plants & animals.
CO 5	Recall the basics of developmental biology and deconstruct the
	process of meiosis, embryonic cleavage, gastrulation &
	morphogenesis
CO 6	Justify the genetic basis of development in model organisms
CO 7	Analyze the entire genetically predisposed process of development
	in Drosophila.
CO 8	Execute & implement the techniques used to study cell structure &
\mathcal{L}_{i}	its components.

DETAILED SYLLABUS

Course	Unit	Course/ Unit Title	Credits/
Code	ļ!		Lectures
RPSMIC		CELL BIOLOGY	4/60
201			
I		Cell structure and cytoskeleton	15
	1.1	Techniques to study cell and cellular structure.	02
	1.2	Cell membrane structure	03
		a) Lipid bilayer	
		b) Membrane proteins	
		c) Spectrins	
		d) Glycophorin	
		e) Multi pass membrane protein	
		f) Bacteriorhodopsin	
	1.3	Cytoskeleton	05
		a) Cytoskeletal filaments	
		b) Microtubules	
		c) Actin regulation	
		d) Molecular motors	
		e) Cell behaviour	
	1.4	Cell Junctions and cell adhesion	05
		a) Anchoring	
		b) Adherence junctions	
		c) Desmosomes	
		d) Gap junctions	
		e) Cell-cell adhesion	
		f) Cadherins	
		Membrane Transport and Compartmentalization	15
	2.1	Membrane Transport (Revision)	05
		 A) Principles of membrane transport 	
		i. Ion channels	
		ii. electrical properties of membranes	
		b) Types of diffusion	
OV.		i. Passive Diffusion, and Facilitated Diffusion,	
\mathcal{C}		ii. Ion channels – Ligand gated and voltage gated	
		channels,	
		 c) Active transport – ion pumps (e.g.: Na+-K+ pump) 	
	2.2	Intracellular Compartments and protein sorting	07
		a) Compartmentalization of cells	
		b) Transport of molecules between the nucleus and	
		cytosol, peroxisomes, Endoplasmic reticulum	
		c) Transport of proteins into mitochondria and	
		chloroplasts	

	2.3	Intracellular vesicular traffic	03
		a) Endocytosis	
		b) Exocytosis	
		c) Transport from the ER through the Golgi apparatus	
111		Cell cycle & Cell communication	15
	3.1	Mechanism of cell division	04
		a) M-phase	<u>^</u>
		b) Cytokinesis	
	3.2	Cell cycle and Programmed cell death	03
		a) Control system	\sim
		b) Intracellular control of cell cycle events	
		c) Apoptosis	
		d) Extracellular control of cell growth and apoptosis	
	3.3	Cell communication	03
		a) Extracellular signal molecules	
		b) Nitric oxide gas signal	
		c) Classes of cell-surface receptor proteins	
	3.4	Signalling through enzyme linked cell surface receptors	04
		a) Docking sites	
		b) Ras	
		c) MAP kinase	
		d) PI-3kinase	
		e) TGF	
	3.5	Signalling in plants	01
		a) Serine/ Threonine kinases	
		b) Role of ethylene	
		c) Phytochromes	
IV		Developmental Biology	15
	4.1	The Process of Development in Animals	04
		a) Evo-Devo: The Study of Evolution and Development	
		b) Meiosis- Oogenesis, spermatogenesis and	
		fertilization	
		c) The Embryonic Cleavage Divisions and Blastula	
		Formation	
		d) Gastrulation and Morphogenesis	
	4.2	Genetic Analysis of Development in Model Organisms	01
012		a) Genetic Analysis of Development Pathways	
\sim		b) Molecular Analysis of Genes Involved in	
		Development	
	4.3	Maternal Gene Activity in Development	03
		Maternal-Effect Genes	
	4.4	Development of Drosophila	07
		a) Determination of the Dorsal-Ventral and Anterior-	
		Posterior Axes in Drosophila Embryos	
		b) Zygotic Gene Activity in Development	
		c) Specification of Cell Types	

d)	Genes of drosophila
	i. Drosophila signalling genes
	ii. gradient of nuclear gene regulatory protein
	iii. Dpp and Sog setup
	iv. Neural development

References:

- a) Albert, Johnson, Lewis, Raff, Roberts and Walter, "Molecular Biology of The Cell", 5th Ed, Garland Science Publishing, 2008
- b) Lodish, Birk, and Zipursky, "Molecular Cell Biology", Freeman Publishing, 2008
- c) Lipowsky and Sackmann, "The Structure and Dynamics of Cell Membrane", 1st Ed, Elsevier, 1995
- d) Dennis Bray, "Cell Movements: from Molecules to Motility", 2nd Ed, Garland Publications, 2001
- e) Snustad & Simmons, "Principles of Genetics", 3rd Ed, John Wiley & Sons Inc, 2002

Practicals: RPSMIC2P1 (60 Contact Hrs)

- a) Study of cell cytology using Phase contrast Microscopy-Demonstration
- b) Study of Cell structure using Confocal Microscopy- Demonstration
- c) Study of Cell structure using Fluorescence Microscopy- Demonstration
- d) Isolation of Chloroplasts.
- e) Isolation of Mitochondria from the cell.
- f) Cultivation of macrophage cell lines and study of cell viability
- g) Study of Mitosis.
- h) Study of Meiosis
- i) Estimation of NO (Nitric Oxide) produced by Macrophages.
- j) Study of Cell membrane integrity using up take of neutral red.

Course Code: RPSMIC 202 Course Title: Microbial Biochemistry-II Academic year 2020-21

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	
CO 1	Recall the basics of biochemical techniques for extraction and
	purification of biomolecules
CO 2	Compare modes of regulation of enzyme activity at protein level
CO 3	Understand the details of mechanism of enzyme activity for the
	representative enzyme from each class
CO 4	Attribute various mechanisms to the response to various
	environmental stimuli
CO 5	Analyze the mechanism of biodegradation of various xenobiotics by
	microorganisms
CO 6	Check various properties of amylase enzyme in the laboratory

Course	Unit	Course/ Unit Title	Credits/
Code			Lectures
RPSMIC		MICROBIAL BIOCHEMISTRY II	4/60
202			
I		Analytical Biochemistry	15
	1.1	Problems on Determination of	2
		a) Molecular weights	5
		b) Purity	
		c) Length and volume of organic compounds	
	1.2	Extraction, purification, application and analysis of	2
		proteins, carbohydrates and lipids	
	1.3	General methods of extraction	3
		a) Salting out	
		b) Use of organic solvents	
	1.4	Purification: Chromatographic techniques	2
	1.5	Mass determination	2
		a) Ultracentrifuge	
		b) GC-MS	
	1.6	Structure determination: X-ray diffraction	1
		Location: Confocal spectroscopy	
	1.7	Methods of analysis of:	3
		a) Proteins,	
		b) Carbohydrates	
		c) Lipids	
		d) Other organic compounds	45
II		Enzymology	15
	2.1	Introduction to enzymes	06
		a) Discovery of enzymes	
		 b) Enzyme terminology c) Basic aspects of chemical kinetics 	
		 c) Basic aspects of chemical kinetics d) Kinetics of enzyme catalysed reactions 	
		e) Enzyme inhibition (reversible and irreversible)	
		f) Specific examples	
\sim		i. Effect of pH on enzyme activity (Fumarase)	
		ii. Enzyme action by X-ray crystallography	
		iii. Nerve gas and its significance	
		iv. HIV enzyme inhibitors and drug design	
	2.2	Enzyme regulation:	05
		a) Phosphofructokinase as allosteric enzyme	
		b) General properties of allosteric enzymes	
		c) Two themes of allosteric regulations	
		d) Regulation by covalent modification	
		e) Regulation by multienzyme complexes and	

		multifunctional enzymes	
		f) specific example- the blood coagulation cascade	
		(problem solving)	
	2.3	Mechanisms of enzyme catalysis	04
		a) Five themes that occur in discussing enzymatic	
		reactions	
		b) Detailed mechanisms of enzyme catalysis for	
		example	
		i. serine protease	
		ii. ribonucleases	
		iii. triose phosphate isomerase	
		iv. lysozyme	
		 v. lactate and alcohol dehydrogenases 	
		vi. catalytic antibodies	
III		Cell Signalling in Prokaryotes	15
	3.1	Introduction to two-component signalling systems	06
		a) Response by facultative anaerobes to anaerobiosis,	
		nitrate and nitrite, nitrogen supply, inorganic	
		phosphate supply	
		b) Effect of oxygen and light on the expression of	
		photosynthetic genes in purple photosynthetic	
		bacteria, response to osmotic pressure and	
		temperature, response to potassium ion and external	
		osmolarity, response to carbon sources	
		c) Bacterial response to environmental	
		stress-heat-shock response, repairing damaged	
		DNA, the SOS response, oxidative stress	
	3.2	Synthesis of virulence factors in response to	04
	0.2	a) Temperature	••
		b) pH	
		c) nutrient	
		d) Osmolarity	
	-	e) Quorum sensors	
		f) Chemotaxis	
		g) Photo responses	
	\sim	h) Aero taxis	
	3.3	Bacterial development and quorum sensing	05
	0.0	a) Myxobacteria	00
\mathcal{O}		b) Caulobacter	
		c) Bioluminescence	
~		d) systems similar to Lux R/Lux I in non-luminescent	
		bacteria	
		e) Biofilms.	
IV		Biodegradation of Xenobiotics	15
1 V	A 4	<u> </u>	
	4.1	Microbial Degradation of	05
		a) Polychlorophenols	
		b) Decolorization and Degradation of Azo Dyes	

	c)	Degradation of High Molecular Weight Polynuclear	
		Aromatic Hydrocarbons	
	d)	Bacterial Degradation of Petroleum Hydrocarbons	
4.2	Biode	gradation by Fungus of	05
	a)	Aromatic Pollutants	
	b)	Chloro-organic Pollutants by White Rot Fungi	
4.3.	Biode	gradation of Xenobiotics	05
	a)	Microbial Degradation of Plastics and Water-Soluble	
		Polymers	
	b)	Degradation of PAHs: Organisms and Environmental	
	b)	Compartments	$\langle O \rangle$

- a) Mathew, Van Holde and Ahern, "Biochemistry", 3rd Ed, Pearson Education, 2000
- b) Zubay, "Principles of Biochemistry", 4th Ed, 1995
- c) Horton and Moran, "Principles of Biochemistry", 5th Ed, Scrimgeour Pears Rawn, 2011
- d) Lehninger A.L., Cox and Nelson, "Principles of Biochemistry", 4th Ed, CBS Publishers and Distributors Pvt. Ltd. 1994
- e) Conn and Stumpf, "Outlines of Biochemistry", 5th Ed, John Wiley and Sons, 2006
- f) White D, "The physiology and biochemistry of prokaryotes", 2nd Ed, Oxford University Press, 2000
- g) Biotechnology H.J. Rehm and G. Reed, "Biotransformation's", Volume 6 a., Verlag and Chemie, 1984
- h) Doelle H.W., "Introduction to bacterial metabolism", Academic Press, 1975
- i) Atlas R M and Bartha, "Microbial ecology", Addison Wesley Longman Inc., 1998
- j) Shree Nath Singh, "Microbial Degradation of Xenobiotics" Springer, 2012.
- k) Segel. R, "Biochemical calculations", 3rd edition John Wiley and Sons, 1995

Practicals: RPSMIC2P2 (60 Contact Hrs)

- a) Isolation of Amylase from Aspergillus spp and its Purification strategy
- b) Purification of an extracellular enzyme (βamylase) by salting out and dialysis
- c) Enzyme kinetics effect of enzyme concentration, substrate concentration, pH, temperature and inhibitors on enzyme activity,
- d) Demonstration of proteolytic activity
- e) Determination of glucose isomerase present intracellularly in Bacillus sp.
- f) Adaptation of *E. coli* to anaerobiosis
- g) Chemotaxis of Pseudomonas

- h) Effect of temperature and water activity on swarming of Proteus
- i) Different bacteriolytic response associated with addition of lysozyme and salt.
- j) Microbial degradation of polycyclic aromatic hydrocarbons (PAHs) enrichment, isolation and screening of bacteria
- k) Aqueous two-phase partitioning
- I) Extraction of protein by precipitation with Acetone

Course Code: RPSMIC 203

Course Title: Environmental Microbiology

Academic year 2020-21

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
CO 1	Recollect basic concepts of microbial ecology
CO 2	Design, execute and implement a protocol for sample collection from a natural environment and its microbiological analysis
CO 3	Discriminate and select the best genomic technique for microbial studies of different environmental samples
CO 4	Demonstrate an in depth understanding of microbial ecology of soil and marine environments
CO 5	Apply the understanding on industrial applications of extremophiles to explore and innovate for newer products
CO 6	Summarize the significance of microbes in elemental cycles
CO 7	Interpret the role of rhizosphere bacteria in plant growth and implement techniques for exploring them for commercial applications
CO 8	Explain and appreciate various regulations enacted with respect to biosafety and hazardous waste management

Course Code	Unit	Course/ Unit Title	Credits/ Lectures
RPSMIC		ENVIRONMENTAL MICROBIOLOGY	04/60
203			
		Microbial Ecology	15
	1.1	Basic concepts of Microbial Ecology, Sample	05
		collection and processing	
		 a) Revision of basic concepts of Microbial Ecology Concepts Niche Habitat Ecosystem Ecosystem Microbial diversity Interactions between micro-organisms Ecological succession b) Environmental sample collection and processing Cosile and Codiment 	
		i. Soils and Sediment ii. Water	
	1.2	Techniques for microbial analysis	08
		a) Cultural Methodsb) Physiological Methods: Measuring microbial	
	No.	 b) Physiological Methods. Measuring Microbial activity in pure culture i. Carbon respiration ii. Stable isotope probing iii. Use of radioisotopes as tracers iv. Adenylate energy charge v. Enzyme assays c) Functional genomics, Metagenomics & Proteomics- based approach 	
		d) Immunological methods	
		e) Nucleic acid-based methods	
5		f) Recombinant DNA Techniques	
		 i. RFLP ii. Denaturing/Temperature gradient iii. Plasmid analysis iv. Reporter genes v. Rep PCR fingerprinting and Microbial diversity 	
	1.3	Environmental genomics	02
	1.0	a) Metagenomics	V2

		b) Meta-trancriptomes	
		c) Metaproteomics	
		Study of Marine Ecosystem & Extremophiles	15
	2.1	Marine microbiology	03
		 Marine and estuarine habitats 	
		 b) Characterization and stratification of the 	
		oceans: Vertical and horizontal zones of	
		marine habitats	
		c) Marine microbes	
		i. Characteristics	
		ii. Distribution	
		iii. Composition & activity	
		d) Marine pathogens	
	2.2	Extremophiles	08
		a) Habitat	
		b) Effect of extreme conditions on cellular	
		components	
		c) membrane structure	
		d) nucleic acids	
		e) proteins	
		f) Adaptation mechanism in microorganisms in	
		diverse environments	
		g) Study, Industrial Applications and	
		Biotechnological applications of proteins	
		from:	
		i. Thermophiles	
		ii. Psychrophiles	
		iii. Halophiles	
		iv. Piezophiles	
		v. Acidophiles	
		vi. Alkaliphiles	
	1	vii. Xerophiles	
	0	viii. Radiation resistant organisms	
	\mathcal{N}	ix. Methanogens	
	2.3	Mechanisms of metal resistance, Metal	02
		transformations, Microbial metal remediation	
117	2.4	Geomicrobiology	02
		a) Biofouling	
6		b) Biocorrosion	
		c) Bioleaching	
III	1	Soil and Agricultural Microbiology	15
	3.1	Soil Microbiology	03
	1	a) Litho ecosphere	
		i. Soil formation	
		ii. Properties (physical and chemical)	
		b) Soil communities	

	3.2	Agricultural microbiology	04
		a) Factors affecting microbial load of soils	
		b) Relationship between plants and microbe's	
		rhizosphere, phyllosphere.	
		c) Beneficial uses of microorganisms for plant	
		growth and development	
		d) Interactions with aerial plant structures	
	3.4	Biofilms in plant-associated habitats	03
		a) In the phyllosphere (impact on survival and	
		bacterial interactions, interaction of plants with	
		epiphytic biofilms,)	
		b) In the Rhizosphere (ubiquity and importance	
		for rhizosphere bacteria, impact of rhizosphere	
		biofilms on plant biology)	
	3.5	Biogeochemical cycles and Degradation	05
		a) Biogeochemical cycles	
		i. Carbon	
		ii. Nitrogen	
		iii. Oxygen	
		b) Degradation of complex polymers	
		i. Cellulose	
		ii. Lignin	
		iii. Lignocellulose	
IV		Environmental & natural resources management and safety standards	15
	4.1	Environmental Impact Assessment and	02
		Sustainable Development	
	4.2	Microbes and global warming	02
		a) Microbial contribution to green-house gases	
		b) Combating Greenhouse effect using microbes	
		c) Concept of carbon credits	
	4.3	Solid waste management	02
	N/	a) Biodegradable waste from kitchen, abattoirs	
		and agricultural fields and their recycling by	
		aerobic composting or bio methanation.	
		b) Non-biodegradable waste like plastics, glass	
		metal scrap and building materials and plastic	
O		recycling, metal recycling.	
	4.4	Hazardous waste management	03
	1	a) Hazardous waste from paint, pesticides and	
		chemical industries and their composition	
		b) Probable means to reduce waste through	
		Common Effluent Treatment Plants.	
	4.6	Biohazards	03
	1	a) Introduction	
l		b) levels of biohazards	

	c) Risk assessment	
	d) Proper cleaning procedures	
	e) Biomedical waste management	
4.7	Biosafety guidelines for GMOs and LMOs	03
	 a) Role of Institutional biosafety committee. RCGM, GEAC, etc. for GMO applications in 	
	food and agriculture. Environmental release of GMOs.	
	 b) Overview of national regulations and relevant international agreements. 	~
	 c) Ecolabelling, IS 22000, Generally Recognized as Safe (GRAS) 	(0)

- a) Brock Madigan, Martinko, Dunlap, Clark, "Biology of microorganisms", 12th Ed, Pearson Intl, 2011
- b) R. M. Atlas and R. Bartha, "Microbial Ecology Fundamentals and Applications" Addison Wesley Longman Inc, 1998
- c) Johri and Satyanarayana, "Microbial Diversity- Current Perspective and Potential Application", International Pvt. Ltd, New Delhi, India, 2005
- d) Fred Rainey, Aharon Oren, "Methods in Microbiology- Extremophiles", Vol 35, Academic press, 2006
- e) R.M Maier, I. L. Pepper and C. P. Gerba, "Environmental Microbiology", Academic Press, 2010
- f) Rastogi & Sani, "Molecular Techniques to Assess Microbial Community Structure, Function, and Dynamics in the Environment", *Microbes and Microbial Technology*, 2011, pp 29-57,
- g) A K Bej and M H Mahbubani, "Applications of the polymerase chain reaction in environmental Microbiology", *Genome Res*, 1992, 1: 151-159
- h) Rolf Daniel, "The Metagenomics of soil", Vol 3, Nature reviews, 2005
- i) Susannah Green Tringe and Edward M. Rubin, "Metagenomics: DNA sequencing of environmental samples", Volume 6, 2005
- j) Colin Munn, "Marine Microbiology: Ecology and Applications", Garland publishing. ISBN: 0815365179
- k) G. Rangaswami, D. J. Bagyaraj, D.G. Bagyaraj, "Agricultural Microbiology", PHI Learning Pvt. Ltd., 2004
- Iqbal Ahmad, Farah Ahmad, John Pichtel, "Microbes and Microbial Technology: Agricultural and Environmental Applications", Springer, 2011.
- m) S. K. Maiti, "Water and Wastewater analysis: Handbook of methods in environmental studies", Volume 1, ABD Publishers, 2004

- n) S.K. Maiti, "Soil analysis Handbook of methods in environmental studies", Volume 2, ABD Publishers, 2004
- o) H. V. Jadhav, "Environmental management", Vipul Prakashan, 2002
- p) R.K. Jain, "Environmental management"
- q) M. H. Fulekar, "Industrial hygiene and safety"
- r) Medini Duccio et al, "Microbiology in the post-genomic era", Vol-6, *Nature review* Microbiology, 2008

Practicals: RPSMIC2P3 (60 Contact Hrs)

- a) Enrichment & isolation of thermophiles from hot springs/compost heaps & extraction of thermophilic enzymes & determination of their specific activity.
- b) Physical analysis of soil
 - i. Particle size analysis
 - ii. Water retention capacity
 - iii. Bulk density and tap density
- c) Chemical analysis of soil
 - i. Nitrogen
 - ii. Phosphorus
 - iii. Chloride
 - iv. Organic matter
 - v. Calcium carbonate content
- d) Microbial analysis of soil
 - i. Microbial load
 - ii. Presence of cellulose, lignin & xylan degraders
 - iii. Detection of inorganic metabolism
 - iv. Detection of siderophore producing bacteria
 - v. Isolation of iron bacteria
 - vi. Isolation of Plant Growth Promoting bacteria from Rhizosphere
 - vii. Dehydrogenase Activity of Soils
 - viii. Determination of nitrogen mineralization and nitrification in soils and the influence of
 - chemicals on these processes
- e) Visit to CETP

ć.

Course Code: RPSMIC204

Course Title: Emerging Areas in Biology I Academic year 2020-21

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
CO 1	Understand basics of bioinformatics and execute the analysis of
	molecular data using different databases & software.
CO 2	Design primer for PCR reaction & carryout phylogenetic analysis.
CO 3	Discuss the concept of synthetic biology & systems biology
CO 4	Illustrate & implement the methods for biosynthesis of nanoparticles & discuss its applications.
CO 5	Summarize and compare the principles of different Nucleic acid Sequencing methods.
CO 6	Compare and analyze the process of protein expression in prokaryotic & eukaryotic systems.
CO 7	Interpret the significance of concepts like directed mutagenesis, mapping & quantifying transcription & measuring protein accumulation.

Course Code	Unit	Course/ Unit Title	Credits/ Lectures
RPSMIC 204		EMERGING AREAS IN BIOLOGY I	04/60
		Bioinformatics	15
	1.1	Bioinformatics Basics	07
		a) Introduction	KY
		 b) Genome sequencing projects: technologies and impact 	
		c) Annotation, Databases and Protein Structures	
		 d) Pairwise Alignment, Multiple Alignment, and BLAST 	
	1.2	Introduction to omics	03
		a) Definitions of proteomics, genomics,	
		transcriptomics	
		b) High dimensional Biology	
		c) The omic experiment	
	1.3	Applications of Bioinformatics	05
		a) Primer Design	
		b) Phylogenetic Analysis	
II		Synthetic and systems biology	15
	2.1	Synthetic Biology	10
		a) Basic concepts in Engineering Biology	
		b) Parts, Devices and Systems	
		c) Logic gates	
		d) Synthetic Gene Circuits and examples like	
	2.2	Oscillators, Toggle Switches Overview of Systems biology	05
	LiL	a) Approaches and methodologies,	03
	\sim	b) Analysis of biological Networks,	
		c) Network Dynamics	
$^{\prime}D_{\prime}.$		d) Network Motifs and Functional Modules,	
		e) Dynamical Models	
6		f) Artificial Intelligence in Systems Biology	
		Nanobiotechnology	15
	3.1	Synthesis of nanostructures	07
		a) Physical	
		b) Chemical	
		c) Biological	

	3.2	Applications of nanomaterials	08
		a) Biomolecules as nanostructures	
		b) Nanoparticular carrier systems	
		c) Micro and Nanofluidics	
		d) Nano-biosensors	
		e) Drug and gene delivery systems	
		f) Chip technologies	
		g) Nano imaging	
		h) Nanomedicine	
		i) Cancer diagnostics and treatment	CX
IV		Contemporary tools in Molecular Biotechnology	15
	4.1	DNA Sequencing and Physical mapping	04
		a) Dideoxynucleoside method for sequencing of	
		DNA	
		b) Automated DNA sequencing	
		c) High-throughput Sequencing	
		d) Restriction Mapping reference	
	4.2	Heterologous protein production in eukaryotic cells	03
		a) Saccharomyces cerevisiae	
		b) Pichia pastoris	
		c) Baculovirus- Insect cell	
		d) Mammalian cell	
	4.3	Directed Mutagenesis	05
		a) Oligonucleotide directed mutagenesis with	
		plasmid DNA	
		b) PCR amplified oligonucleotide directed	
		mutagenesis	
		c) Random mutagenesis with degenerate	
		oligonucleotide primer	
		d) Random mutagenesis with nucleotide analogues	
		e) Error-prone PCR	
		f) DNA shuffling	
		g) Mutant proteins with unusual amino acids	
	4.4	Mapping and quantifying transcriptions	02
		a) S1 mapping	
		b) Primer extension reference	
' N'	, *	c) Run-off transcription	
		d) G-less cassette transcription	
2	4.5	Measuring protein accumulation in vivo:	01
		a) Assaying DNA –protein interactions	
		b) Foot printing methods	
		c) Chromatin immune-precipitation (ChIP)	

- a) Bernard R. Glick, Jack J. Pasternak, "Molecular Biotechnology: Principles and Applications of Recombinant DNA", ASM Press, 2010
- b) Henrik Christensen, "Introduction to Bioinformatics in Microbiology", Springer International Publishing, 2018
- c) Arthur Lesk, "Introduction to Bioinformatics", Oxford University Press, 2013
- d) Geoff Baldwin et al, "Synthetic Biology- A Primer", Imperial College Press, 2015
- e) Robert Meyer, "Synthetic Biology", 2 volume set, Wiley-Blackwell, 2015
- f) Iman Tavassoly, Joseph Goldfarb, Ravi Iyengar, "Systems biology primer: the basic methods and approaches", *Essays in Biochemistry*, 2018, 62 (4) 487-500.
- g) Michael Wink, "An Introduction to Molecular Biotechnology: Molecular Fundamentals, Methods and Applications in Modern Biotechnology", Wiley VCH, 2006
- h) Horgan Richard and Kenny Louise, "Omic technologies: genomics, transcriptomics, proteomics and metabolomics", SAC review, 2011, 13:189-195
- Sulabha Kulkarni, "Nanotechnology: Principles and Practices", 3rd Ed, Springer International Publishing, 2015

Practicals: RPSMIC 2P4 (60 Contact Hrs.)

- a) Exploration of DNA and protein databases
- b) Pair-wise and multiple alignment of DNA and Amino acid sequences
- c) Primer design and conceptual PCR troubleshooting
- d) Designing of Synthetic Gene Circuits
- e) Preparation of Nano silver particles by Wet reduction Method (Chemical) using Neem Extract (plants) & fungi (Microbiological)
- f) Preliminary characterization of Nano silver by UV spectrometry
- g) Antimicrobial effect of Ionic silver and Nano silver prepared by above methods
- h) Study of Nano silver coated Gauze/textiles for antimicrobial effect on different bacteria
- i) Demonstration of PCR

Modality of Assessment:

I) Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1	One Review writing/ Review paper presentation/Research paper presentation/ Assignment	15
2	One class test (Multiple choice questions/ objectives)	20
3	Active participation in routine class instructional deliveries	05

B) External Examination- 60%- 60 Marks per paper

- 1. Duration- These examinations shall be of two hours and thirty minutes.
- 2. Theory question paper pattern
 - a. There shall be **five** questions each of **12** marks. On each unit there shall be one question and the fifth question will be based on all the three units.
 - b. All questions shall be compulsory with internal choice within the questions.

Paper pattern:

Question	Options	Marks	Questions based on
Q.1)	Any 2 out of 3	12	Unit 1
Q.2)	Any 2 out of 3	12	Unit 2
Q.3)	Any 2 out of 3	12	Unit 3
Q.4)	Any 2 out of 3	12	Unit 4
Q.5) a)	Any 4 out of 6	04	All four units
Q.5) b)	Any 4 out of 6	04	All four units
Q.5) c)	Any 2 out of 3	04	All four units

II) Practical Examination Pattern

	Paper I	Paper II	Paper III	Paper IV
Viva	05	05	10	-
Quiz	-	10	-	-
Laboratory work	25	35	40	20
Proposal Writing	-	-	-	30
Research Proposal Presentation	20	-	-	
Total	50	50	50	50

Journal

- 1. The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.
- 2. In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Coordinator / In charge of the department; failing which the student will not be allowed to appear for the practical examination.

Research Proposal writing

Candidates are required to present duly certified Research proposal and make the PowerPoint presentation of the research proposal for evaluation by the examiner.

						•••••							
Course	201 202			203				204					
	Internal	External	Total	Grand total									
Theory	40	60	100	40	60	100	40	60	100	40	60	100	400
Practicals	-	50	50	-	50	50	-	50	50	-	50	50	200

Overall Examination and Marks Distribution Pattern

Semester II

X

Course Code: RPSMIC 301 Course Title: Virology Academic year 2020-21

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	
CO 1	Understand and compare the types of bacterial viruses, their
	structure, mode of replication and their characteristic features
CO 2	Summarize and infer the significance of viral genetics to map the
	genes and decode the ways to construct and use phage vectors
	in rDNA technology
CO 3	Recall the types of plant viruses, their general mechanisms of
	infections, steps in inducing the infection, diagnosis & control of
	plant viral infections
CO 4	Demonstrate an in depth understanding of the types and
	structure of animal viruses, their pathogenesis and attribute it to
	the mode of transmission, diagnosis, control & therapy of different
	animal viral infections
CO 5	Differentiate between the mechanisms of pathogenesis of plant
0	and animal viruses
CO 6	Illustrate and exemplify the types and mechanisms of oncolytic
- Uhr	viruses and their tumorigenic characteristics.
CO 7	Integrate knowledge on the novel emerging & re-emerging viral
	infections to attribute to pandemics
CO 8	Apply molecular biology techniques& bioinformatics tools to
	diagnose & control viral infections

Course	Sub-	Course/ Unit Title	Credits/
Code/Unit	Unit		Lectures
RPSMIC		VIROLOGY	4/60
301			
I		Viral Genetics & Bacterial Viruses	15
	1.1	Viral genetics	04
		a) Mapping the Bacteriophage genome.	
		b) Phage phenotypes	
		c) Genetic recombination in phages	
		d) Genetic fine structure mapping	
		e) Deletion mapping	
		f) Genes within genes: Bacteriophage ΦX174	
		 g) Constructing phage vectors-phage display vectors, suicide vectors, combining phage vectors and transposons 	
	1.2	Bacteriophages	02
		General properties of phages, properties of phage infected Bacterial cultures, Specificity of Phage Infection	
	1.3	E.coli Phage T4	02
		Properties of T4 DNA, Genetic organization, the T4 growth cycle, Replication of T4 DNA	
	1.4	E.coli PhageT7 and Lambda	03
	02	Organization of theT7 genes, Growth Cycle,	
1.	5	Regulation of transcription of T7phage.	
	1.5	<i>E.coli</i> Phage (phi) X174, Filamentous DNA phages, Single stranded RNA phages, Lysogenic cycle.	04
		Plant Viruses	15
6.	2.1	Plant viruses: General features & infection process	04
		 a) Morphology b) Modes of Transmission c) General life cycle d) Symptoms of infection 	
	2.2	Virus-plant interactions: steps in induction of disease	04
	2.3	Plant satellite viruses and satellite Nucleic acids	02

	2.4	Citrus Tristeza Virus (CTV): Viral structure, Genome,	03
		Host range, Transmission, Symptoms and Control.	
	2.5	Diagnosis and control of viral infections in plants	02
III		Animal Viruses	15
		Study of Structure, replication, life cycle,	
		pathogenesis, transmission, clinical features- Signs &	
		symptoms, diagnosis and control of following viral	
		infections:	
	3.1	Rabies	02
	3.2	Polio	03
	3.3	Hepatitis	04
	3.4	Pox virus, Vaccinia Virus, Orthopox virus, Variola Virus	03
	3.5	HSV, Varicella Zoster	02
	3.6	Epstein Barr & Cytomegalovirus	01
IV		Oncogenic Viruses & Emerging Viral infections	15
	4.1	a) Molecular mechanisms of virally induced	07
		tumor formation by	
		i. RNA tumor viruses (Retroviruses)	
		ii. DNA tumor viruses	
		b) Oncolytic Viruses	
	4.2	Ebola Virus	02
	4.3	Nipah Virus	02
		Corona Virus	02
	4.4		Ű.

- a) Luria, General Virology, 3rd Edition, John Wiley & Sons, 1978
- b) Edward Birge, Bacterial and Bacteriophage Genetics, 5th edition, Springer Publications, 2006
- c) Flint, Enquist, Racaniello & Skalka, Principles of Virology– Vol I and II, 3rd Edition, ASM, 2008
- d) Teri Shors, Understanding Viruses, 3rd Edition, Jones and Bartlett pub, 2016.
- e) Roger Hull, Matthew's Plant Virology, 4th edition, Academic Press, 2001.
- f) Edward K Wagner, Basic Virology, 3rd Edition, Blackwell Publishing house, 2008.
- g) CDC, "Preventing Emerging Infectious Diseases: A Strategy for the 21st Century Overview of the Updated CDC Plan", *MMWR*, September 11, 1998 / 47(RR15):1-14
- h) Devendra T Mourya *et al*, "Emerging/re-emerging viral diseases & new viruses on the Indian horizon", *Indian Journal of Medical research*, 2019, (149): 447- 467
- i) Aditi, M. Shariff, "Nipah virus infection: a review", Epidemiology and infection, 2019,

(95):147.

- j) Raj K Singh *et al*, "Nipah virus: epidemiology, pathology, immunobiology and advances in diagnosis, vaccine designing and control strategies – a comprehensive review", *Veterinary Quarterly*, 2019, (39): 26-55
- k) Shamimul H *et al*, "Ebola virus: A global public health menace: A narrative review", *Journal of Family Medicine and Primary Care*, 2019, 8(7): 2189–2201.
- I) Denis M et al, "Ebola virus disease", The Lancet, 2019, (393):936-948
- m) Yan-Rong Guo *et al*, "The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – an update on the status", *Military Medical Research*, 2020, (7) 11
- n) Xiaowei L *et al*, "Molecular immune pathogenesis and diagnosis of COVID-19", *Journal* of *Pharmaceutical Analysis*, 2020
- o) Hussain A Rathod *et al*, "The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak", *Journal of Autoimmunity*, 2020, (109): 102433

Practicals: RPSMIC 3P1 (60 Contact Hrs)

- a) Enrichment of coliphages & phage assay.
- b) One step growth curve.
- c) Induction of lytic cycle.
- d) Chick embryo inoculation.
- e) Case Studies on emerging viral infections.
- f) Viral bioinformatics

Xn,

Course Code: RPSMIC 302 Course Title: Immunology Academic year 2020-21

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	
CO 1	Explain the defense mechanisms in the human body against
	various infectious agents
CO 2	Recall the key players of innate and adaptive immune response
CO 3	Compare the T cell dependent and T cell independent immune
	responses
CO 4	Integrate the understanding of immune tolerance to distinguish
	between autoimmune and Immunity Mediated Inflammatory
	Disease
CO 5	Distinguish between immune tolerance and immune therapy and
	extend its application to treatment of Cancer
CO 6	Apply the understanding of immunological techniques for analysis
00	Apply the understanding of immunological techniques for analysis
2	of immune responses
CO 7	Critically evaluate the newer methods of vaccine developments
CO 8	Demonstrate the presence of immune cells in human peripheral
	blood

Course Code	Unit	Course/ Unit Title	Credits/ Lectures
RPSMIC 302		IMMUNOLOGY	04/60
I		Defense against infectious agents	15
		a) Viral infections	4
		b) Bacterial infections	4
		c) Fungal infections	2
		d) Parasitic and worm infections	3
		e) Emerging and re-emerging infections	2
I		Mechanisms of Innate immunity and Acquired Immunity	15
	2.1	Innate Immunity	7
		a) Inflammation	-
		i) Role of cytokines and chemokines in	
		leucocyte recruitment	
		ii) Inflammatory mediators	
		b) Phagocytosis	
		i) Role of PAMP's	
		ii) Soluble pattern recognition molecules	
		iii) TLR's and CLR's	
	2.2	c) Evasion of Innate immune mechanisms	8
	2.2	a) Molecular basis of diversity of immunoglobulin	0
		molecules	
		i) Mechanism of VDJ recombination	
		ii) Other mechanisms of generation of antibody	
		diversity	
		b) Mechanisms of T dependent responses	
		i) Antigen presentation by B cells	
		ii) Formation of germinal centres	
		iii) Somatic hypermutations and class switching	
	V X	c) Mechanisms of T independent responses	
		i) Types of T independent antigens	
		ii) B-1 B cells and Marginal zone B cells	
IU		Immune tolerance and Autoimmunity	15
$\sim N_{II}$	3.1	Establishment of immune tolerance	6
		a) Central Tolerance, Peripheral Tolerance,	
		Regulatory T cells	
-	3.2	b) B cell tolerance	7
	J.Z	Autoimmunity and Immune Linked Inflammatory diseases	
		a) Autoimmunity	
		i. Spectrum of autoimmune diseases	
		ii. Genetic factors for autoimmunity	
		iii. Induction of autoimmunity	
		iv. Treatment of autoimmune diseases	
		b) Immune linked inflammatory diseases (IMID)	
		i. Definition and examples	

	3.3	 ii. Inflammation & IMID iii. Genetic basis of IMID iv. Epidemiology of IMID v. Treatment of IMID Cancer Immunology a) Tumor antigens 	2
		b) Anti-Tumor Immune responses	
IV		Techniques in Immunology, Immunotherapy and Vaccines	15
	4.1	Techniques in Immunology	8
		 a) Estimation of antibodies and antigens Revision of Immunoprecipitation, Agglutination and solid Phase assays b) Cellular Techniques Flow Cytometry Fluorescence-activated cell sorting (FACS) Immunohistochemistry c) Methodologies for developing therapeutic antibodies- Humanization of mAbs and Human antibody-producing mice 	
	4.2	Immunotherapy	4
		a) Cancer Immunotherapyb) Using cytokines and Mab's for Immunotherapyc) Plantibodies	
	4.3	Vaccines	3
		a) Newer approaches to vaccine developmentb) Malarial vaccine	

- a) Oven, Punt, Stranford, Kuby "Immunology", 7th Ed W.H. Freeman, 2013
- b) Male, Brostoff, Roth, Roitt, "Immunology", 8th Ed, Elsevier, 2013
- c) Sulabha Pathak, Urmi Palan, "Immunology: Essential and Fundamental", 3rd Ed, Anshan Ltd, 2011
- d) Roitt, Delves, Roitt's, "Essential Immunology", 10th Ed Blackwell Science, 2001
- e) Delves, Martin, Burton, Roitt, Roitt's "Essential Immunology", 13th Ed, Wiley Blackwell, 2011
- f) Ruei-Min Lu, Yu-Chyi Hwang *etal*, "Development of therapeutic antibodies for the treatment of diseases", *Journal of Biomedical Science*, 2020, 27:1
- g) Gueven Edgue, Richard M Twyman, *et al.*, "Antibodies from plants for
 Bionanomaterials", *WIREs Nanomedicine and Nanobiotechnology*, 2017, Volume 9
- h) Krupa Naran, Trishana Nundalall, "Principles of Immunotherapy: Implications for Treatment Strategies in Cancer and Infectious Diseases", *Frontiers in Microbiology*, 2018, Volume:9, Article 3158
- i) Laura Walker, Dennis Burton, "Passive Immunotherapy of Viral Infections: 'Super-antibodies' enter the fray", *Nature Reviews Immunology*, 2018, Volume 18.

- j) Annabel Kuek, Brian L Hazleman, Andrew J K Ostor, "Immune-mediated inflammatory diseases (IMIDs) and biologic therapy: a medical revolution", *Postgrad Med J*, 2007;83:251– 260. doi: 10.1136/pgmj.2006.052688
- k) Hani El-Gabalawy, Lyn C. Guenther And Charles N. Bernstein, "Epidemiology of Immune-Mediated Inflammatory Diseases: Incidence, Prevalence, Natural History, and Comorbidities", *The Journal of Rheumatology*, 2010;85;2-10
- I) T. David, S. F. Ling and A. Barton, "Genetics of immune-mediated inflammatory diseases", *Clinical and Experimental Immunology*, 2018, 193: 3–12
- m) Linlin Chen, Huidan Deng, *etal*, "Inflammatory responses and inflammation-associated diseases in organs", *Oncotarget*, 2018, Vol. 9, (No. 6), pp: 7204-7218
- n) Caroline L. Sokol and Andrew D. Luster, "The Chemokine System in Innate Immunity", *Cold spring Harbour Perspectives in Biology*, 2019.
- o) Taro Kawai and Shizuo Akira, "Toll-like Receptors and Their Crosstalk with Other Innate Receptors in Infection and Immunity", *Immunity*, 2011
- p) Shirly Frizinsky, *et al.,* "The innate immune perspective of autoimmune and autoinflammatory conditions", *Rheumatology*, 2019;58:vi1vi8

PRACTICALS RPSMIC 3P2 (60 Contact Hrs)

- a) Phagocytosis & Phagocytic index
- b) Collection of human blood & separation of mononuclear cells by Ficoll Hypaque density gradient centrifugation,
- c) Counting of viable cells by trypan blue
- d) Separation of T and B cells
- e) Rocket immunoelectrophoresis
- f) SRID
- g) Demonstration of Flow cytometry
- h) Assignment on modern vaccines

K.

Course Code: RPSMIC 303

Course Title: Food and water Microbiology

Academic year 2020-21

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
CO 1	Outline the process of production of different fermented foods
CO 2	Construct a cause and effect model system for effective preservation of foods
CO 3	Understand microbiology of modern foods like probiotics, nutraceuticals and dehydrated foods
CO 4	Execute collection, processing and microbiological analysis of food and water samples
CO 5	Evaluate foods and water on the basis of their microbiological quality as per BIS/ISO/APHA standards
CO 6	Implement monitoring protocols for the quality of food and water using principles of HACCP
CO 7	Apply basic knowledge of fermented foods, food preservation, microbial analysis and standards to evaluate current techniques and improvise technology in food manufacturing or bottled water manufacturing units

Course Code	Unit	Course/ Unit Title	Credits/ Lectures
RPSMIC		FOOD MICROBIOLOGY AND WATER	04/60
303		MICROBIOLOGY	
I		Microbiology of fermented and non-fermented	15
		foods	$\langle \cdot \rangle$
	1.1	Basic concepts of Food Microbiology	01
		Revision of	
		a) Sources of microbes in food	
		b) Normal microbiological quality of food	
		c) Factors influencing microbial growth in food	
	1.2	Production of fermented foods	06
		 a) Starter cultures and their stress adaptations 	
		 b) Fermented meat product- Sausage 	
		c) Fermented cereal product- Soy sauce,	
		d) Fermented milk product- Blue cheese and Swiss	
		cheese	
		 e) Fermented legume product - Idli 	
	1.3	Nutraceuticals and Probiotics	04
		a) Microbial fructooligosaccharides	
		b) Probiotics and Prebiotics	
		i. Probiotics	
		ii. Screening of Potential Probiotics	
		iii. Industrial Aspects of Probiotic Production	
		iv. Prebiotics	
	1.4	Non-fermented food products	04
		a) Desiccated foods	
		b) Dehydrated foods	
II V	\bigcirc	Control of microbes in food	15
	2.1	Methods of control	01
		a) Control of access	
11.		 b) Control by physical removal 	
	2.2	Control by regulating the factors that affect	10
\mathcal{C}		microbial growth	
		a) Control by temperature	
		b) Control by reduced a _w	
		c) Control by low pH and organic acids	
		 d) Control by modified atmosphere 	
	2.3	Control by chemicals and physical methods	02
		a) Control by antimicrobial preservatives and	
		additives	
		b) Control by irradiation	

	2.4	Newer methods of Controlling Microbial growth	02
		a) Novel emerging techniques of food preservation	
		b) Control by combination of methods (Hurdle	
		concept)	
III		Detection of Microbes in food and water	15
	3.1	Conventional methods	04
		a) Sampling for microbial analysis	
		b) Qualitative methods of microbial detection	
		c) Quantitative microbial enumeration in food	
		d) Detection of Bacterial toxins	
		e) Toxicological evaluation of food additives	
	3.2	Modern methods	04
		a) Nucleic acid-based methods	
		i. Oligonucleotide DNA microarray	
		ii. Loop-mediated isothermal amplification	
		(LAMP)	
		iii. Nucleic acid sequence-based amplification	
		(NASBA)	
		b) Biosensors and enzymatic/ thermal techniques	
		for food analysis	
	3.3	Measurement of uncertainty as per BIS/ISO/APHA	04
		standards for	
		a) Mycotoxic fungi	
		b) Pathogenic bacteria (<i>Enteropathogenic E.coli,</i>	
		Vibrio, Salmonellae)	
	0.4	c) Viruses (Hepatitis A, Norwalk)	
	3.4	Microbiological analysis of Potable water	03
		a) Drinking water risk assessment	
		b) Regulatory Framework	
		c) Types of bottled waterd) Microbiology of bottled water	
		d) Microbiology of bottled watere) Potential chemical and microbiological hazards	
IV	\rightarrow	Controlling the Microbiological Quality of food and	15
IV		water	15
	4.1	Controlling the Microbiological Quality of food	07
		a) Quality and Criteria	•
		b) Sampling Schemes	
\mathcal{X}		c) QC using microbiological control	
		d) Control at source	
		e) Codes of GMP	
		f) HACCP	
		g) Laboratory Accreditation	
	4.2	Controlling the Microbiological Quality of water	08
	_	a) BIS Regulations regarding the production of	
		bottled waters with respect to final quality of the	

	b)	The application of HACCP in the bottling plants	
	c)	Point of use water purifier units	
	d)	Types of water purifiers.: Microbiological	
		specifications and methods used to certify water	
		purifiers	

- a) Bibek Ray and Arun Bhunia, "Fundamental Food Microbiology", 4th Ed. CRC Press, 2008
- b) James Jay, M Loessner and D Golden, "Modern Food Microbiology", 7th Ed, 2005
- c) Adams M R and Moss M O, "Food Microbiology", 3rd Ed. RSC Publishing. 2008
- d) Gerald Reed, "Prescott and Dunn's Industrial Microbiology" 4th Ed. CBS Publishers, 2004
- Petra Foerst, Chalat Santivarangkna, "Advances in Probiotic Technology", CRC Press A Science Publishers Book, 2016
- f) Aylward F, "Food Technology Processing and Laboratory Control", Agrobios (India), 2001
- g) Pressman P., Clemens R., Hayes W., & Reddy, "Food additive safety", *Toxicology Research and Application*, 2017, 1, 239784731772357. doi:10.1177/2397847317723572
- h) Fei Law Jodi Woan *et al*, "Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations", *Frontiers in Microbiology*, 2014, 5:770 doi: <u>10.3389/fmicb.2014.00770</u>
- *i) Girijal Srinivas et al, "*A Review on Thermo Analytical Techniques for Food Analysis", *Andhra Agricultural Journal*, 2018, 65, 422-429
- *j)* Reyes-De-Corcuera, J. I., & Powers, J. R., "Application of Enzymes in Food Analysis" *Food Analysis*, 2017, *469–486.* doi:10.1007/978-3-319-45776-5_26
- k) Manual For Packaged Drinking, Water Bureau Of Indian Standards, January 2005
- I) Guidelines For Drinking-Water Quality WHO 2008
- *m*) Guide standard and protocol for testing microbiological water purifiers, united states environmental protection act
- n) Rosenberg, F. A., "The microbiology of bottled water", *Clinical Microbiology Newsletter*, 2003, 25(6), 41–44. doi:10.1016/s0196-4399(03)80019-3
- o) Pooi, C. K., & Ng, H. Y. (2018). *Review of low-cost point-of-use water treatment systems for developing communities. Npj Clean Water, 1(1).* doi:10.1038/s41545-018-0011-0
- p) Yael Parag, "Bottled Drinking Water", Encylopedia of life support systems, 2011
- q) Ramprasad Venkatesha, S.B. Kedare, "Portable Water Purifiers", Technical Report, 2014.
- r) Damikouka, I., Katsiri, A., & Tzia, C., "Application of HACCP principles in drinking water treatment", *Desalination*, 2007, *210(1-3)*, *138-145*. doi:10.1016/j.desal.2006.05.039

Practicals: RPSMIC3P3 (60 Contact Hrs)

- a) Microbiological study of fermented foods (Idli batter)
- b) Microbiological load in carrot and apple juice, salad, mayonnaise
- c) Quality Assessment and Analysis of food
 - i. Milk (Raw)
 - ii. Cheese
 - iii. Sausages
 - iv. Desiccated food
 - v. Dehydrated food
- d) Film medium for detection of coliforms in water and food
- e) To detect coliform and faecal coliform bacteria in water by the membrane filtration method
- f) Comparative assessment of different types of water purifiers for removal of bacteria
- g) Study of efficiency of water purifiers

Course Code: RPSMIC 304

Course Title: Tools and Techniques: Biomolecular analysis Academic year 2020-21

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION				
CO 1	Understand the principles of various spectroscopic methods				
CO 2	Attribute various applications in biological sciences to the appropriate chromatographic technique				
CO 3	Summarize principle and applications of variants of PCR technique				
CO 4	Recall the basics of electrophoresis technique and apply it to study recent advances of the technique				
CO 5	Explain the use of microscopic and diffraction techniques to study nanostructures				
CO 6	Summarize methods other than microscopy and diffraction to study nanomaterials				
CO 7	Implement the knowledge of various techniques to carryout research project				

Course Code/ Unit	Unit	Course/ Unit Title	Credits/ Lectures
RPSMIC		TOOLS AND TECHNIQUES:	4/60
304		BIOMOLECULAR ANALYSIS	ζ.
I		Spectroscopic Techniques	15
		Principle and applications of:	
	1.1	UV-visible spectroscopy	02
	1.2	IR spectroscopy	02
	1.3	Atomic Absorption Spectroscopy	02
	1.4	Raman Spectroscopy	02
	1.5	Mass spectroscopy	05
	1.6	Circular Dichroism Spectroscopy	02
II		Chromatographic Techniques	15
	2.1	Gas Chromatography	05
		a) Principle	
		b) Instrumentation	
		c) Operation	
		d) Calibration	
		e) Accuracy	
		f) Applications	
	2.2	High Performance Liquid Chromatography	05
		a) Principles	
		b) Instrumentation	
		c) Operation	
		d) Calibration,	
		e) Accuracy	
		f) Applications	
	2.3	High Performance Thin Layer Chromatography	02
		a) Theory of TLC	
		b) HPTLC: Development, data and results	
		c) Applications	
-12-	2.4	Hyphenated techniques	03
		a) Principle	
		b) LC-MS	
		c) GC-MS	45
		Molecular Biology Techniques	15
	3.1	Variations/ Modifications of PCR	05
		a) Hot- Start PCR,	
		b) Multiplex PCR,	
		c) Nested PCR,	
		d) RT-PCR,	
		e) Broad Range PCR,	

		f) Arbitrarily primed PCR,	
		g) Quantitative PCR,	
		h) Real time PCR	
		i) Touchdown PCR	
		j) Colony PCR	
		k) Digital PCR – Droplet	
		 Loop mediated isothermal amplification 	
	3.2	Hybridization array technology	05
		a) Applications of microarrays in microbiology,	
		b) Microarray platform technologies	CX
		(oligonucleotide microarrays, cDNA	
		microarrays)	
	3.3	Electrophoresis	05
		a) 2D- Gel Electrophoresis	
		b) Capillary Electrophoresis	
IV		Microscopy and Nanotechnological Techniques	15
	4.1	Microscopy	09
		a) Scanning Probe Microscopes –	
		a) Ocanning i tobe microscopes	
		i. Scanning tunneling microscope (STM)	
		i. Scanning tunneling microscope (STM)	
		i. Scanning tunneling microscope (STM)ii. Atomic force microscope (AFM)	
		i. Scanning tunneling microscope (STM)ii. Atomic force microscope (AFM)b) Electron Microscopy:	
		 i. Scanning tunneling microscope (STM) ii. Atomic force microscope (AFM) b) Electron Microscopy: i. Scanning Electron Microscopy 	
	4.2	 i. Scanning tunneling microscope (STM) ii. Atomic force microscope (AFM) b) Electron Microscopy: i. Scanning Electron Microscopy ii. Transmission Electron Microscopy 	02
	4.2 4.3	 i. Scanning tunneling microscope (STM) ii. Atomic force microscope (AFM) b) Electron Microscopy: i. Scanning Electron Microscopy ii. Transmission Electron Microscopy c) Confocal Microscopy 	02 04
		 i. Scanning tunneling microscope (STM) ii. Atomic force microscope (AFM) b) Electron Microscopy: i. Scanning Electron Microscopy ii. Transmission Electron Microscopy c) Confocal Microscopy Diffraction Techniques- X Ray Diffraction 	_
		 i. Scanning tunneling microscope (STM) ii. Atomic force microscope (AFM) b) Electron Microscopy: i. Scanning Electron Microscopy ii. Transmission Electron Microscopy c) Confocal Microscopy Diffraction Techniques- X Ray Diffraction Other methods 	_
		 i. Scanning tunneling microscope (STM) ii. Atomic force microscope (AFM) b) Electron Microscopy: i. Scanning Electron Microscopy ii. Transmission Electron Microscopy confocal Microscopy Diffraction Techniques- X Ray Diffraction Other methods a) Dynamic Light Scattering 	_

- a) Kulkarni Sulabha, "Nantotechnology: Principles and Practices", New Delhi, Capital Publishing Company, 2011.
- b) Persing, H.D. et al., "Molecular Microbiology: Diagnostic principles and Practice", Washington D.C., ASM press, 2004.
- c) Upadhyay, Upadhyay and Nath, "Biophysical Chemistry: Principles and Techniques", Mumbai, Himalaya Publishing House, 2012
- d) Skoog, Holler and Nieman, "Principles of Instrumental Analysis", 5th Ed. Australia, Thomson Brock/Cole
- e) Wilson and Walker, "Principles and Techniques of Biochemistry and Molecular Biology", 7th Ed., Cambridge University Press, 2010.

- f) Sauer, S., & Kliem, M., "Mass spectrometry tools for the classification and identification of bacteria". *Nature Reviews Microbiology*, 2010, 8(1), 74–82.
- g) Singhal N. et al "MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis", *Front Microbiol*. 2015; 6: 791.
- h) Don R, Cox P, Wainwright B, Baker K, Mattick J., "'Touchdown' PCR to circumvent spurious priming during gene amplification", *Nucleic Acids Res*, 1991, 19 (14): 4008.
- i) Hecker K, Roux K., "High and low annealing temperatures increase both specificity and yield in touchdown and stepdown PCR". *BioTechniques*. 1996, 20 (3): 478–85.
- j) Bergkessel, M., & Guthrie, C., "Colony PCR. Laboratory Methods in Enzymology: DNA", 2013, 299–309.
- k) <u>https://www.bio-rad.com/en-in/applications-technologies/droplet-digital-pcr-ddpcr-</u> technology?ID=MDV31M4VY
- Kanagal-Shamanna, R., "Digital PCR: Principles and Applications. Methods in Molecular Biology", 2016, 43–50.
- m) Notomi, T., Mori, Y., Tomita, N., & Kanda, H., "Loop-mediated isothermal amplification (LAMP): principle, features, and future prospects", *Journal of Microbiology*, 2015, 53(1), 1–5.
- n) A. Zlatkis and R.E. Kaiser, "HPTLC High Performance thin-layer chromatography Journal of Chromatography", Library Vol 9 Elsevier Scientific Publishing Company, 1977
- https://www.chem.uci.edu/~dmitryf/manuals/Fundamentals/DLS%20measurement%20principles.pdf
- p) Sourav Bhattacharjee, "DLS and zeta potential What they are and what they are not?", Journal of Controlled Release, 2016, 235:337–351 Review Article
- q) Patel Kalpesh et al, "Introduction to hyphenated techniques and their applications in pharmacy", *Pharm Methods*. 2010 Oct-Dec; 1(1): 2–13.

Practicals: RPSMIC3P4 (60 Contact Hrs)

- a) Research project and Dissertation
- b) Research poster presentation

Modality of Assessment:

I) Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1	One Review writing/ Review paper presentation/Research paper presentation/ Assignment	15
2	One class test (Multiple choice questions/ objectives)	20
3	Active participation in routine class instructional deliveries	05

B) External Examination- 60%- 60 Marks per paper

- 1. Duration- These examinations shall be of two hours and thirty minutes.
- 2. Theory question paper pattern
 - a. There shall be **five** questions each of **12** marks. On each unit there shall be one question and the fifth question will be based on all the three units.
 - b. All questions shall be compulsory with internal choice within the questions.

Paper pattern:

Question	Options	Marks	Questions based on
Q.1)	Any 2 out of 3	12	Unit 1
Q.2)	Any 2 out of 3	12	Unit 2
Q.3)	Any 2 out of 3	12	Unit 3
Q.4)	Any 2 out of 3	12	Unit 4
Q.5) a)	Any 4 out of 6	04	All four units
Q.5) b)	Any 4 out of 6	04	All four units
Q.5) c)	Any 2 out of 3	04	All four units

	Paper I	Paper II	Paper III	Paper IV
Journal	05	05	05	-
Viva	05	05	05	-
Quiz	05	05	05	
Laboratory work	35	35	35	$\langle \langle O \rangle$
Thesis Writing	-	-		30
Research Poster Presentation	-	-	$\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}}}}$	20
Total	50	50	50	50

II) Practical Examination Pattern

Journal

- 1. The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.
- 2. In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Coordinator / Incharge of the department; failing which the student will not be allowed to appear for the practical examination.

Research project work

Candidates are required to present duly certified dissertation report based on the topic of research along with the laboratory notebook containing raw data and make the poster presentation of the research work for evaluation by the examiner.

Overall Examination and Marks Distribution Pattern

Course	301		302		303		304						
	Internal	External	Total	Grand total									
Theory	40	60	100	40	60	100	40	60	100	40	60	100	400
Practicals	-	50	50	-	50	50	-	50	50	-	50	50	200

Semester III

Course Code: RPSMIC 401

Course Title: Pharmaceutical Microbiology

Academic year 2020-21

COURSE OUTCOMES:

MALIN II

COURSE	DESCRIPTION				
OUTCOME					
CO 1	Recall the principles and terminologies used in pharmaceutical				
	industry				
CO 2	Design experiments on bioburden determination				
CO 3 Execute microbial and sterility testing of pharmaceutical produ					
CO 4	Monitor the factors which affect the quality of a pharmaceutical				
	product				
CO 5	Outline the process of validation and audit validation				
CO 6	Apply various softwares used for studying 3D structures of drug				
	and target molecule for drug discovery				
CO 7	Critique suitable candidates as potential drugs based on				
	theoretical knowledge				
CO 8	Design effective antimicrobial preservation methods for cosmetic				
	products				

Code		Course/ Unit Title	Credits/
			Lectures
RPSMIC		PHARMACEUTICAL MICROBIOLOGY	04/60
401			Č.
I		Principles and applications of GMP in	15
		pharmaceuticals	
	1.1	Principles – Applications and Definitions	01
	1.2	The concept of Quality	01
	1.3	Role of microbiology for Pharmaceutical industries	01
	1.4	The regulatory factors	02
	1.5	QC, QA and GMP	02
	1.6	Quality assurance beyond GMP	02
	1.7	IS and ISO standards: 9000, 17025	02
	1.8	Microbiological culture media and laboratory techniques	02
	1.9	Laboratory management and design	01
	1.10	Bioburden determination	01
II		Quality management and regulatory aspects	15
	2.1	Premises and contamination control	01
		a) Location	
		b) Design	
	0	c) Structure	
	\mathcal{N}	d) Layout	
~		e) Services and cleaning	
	2.2	Introduction to Documentation and Validation	03
	2.3	Microbiological hazard analysis and audit validation	02
11	2.4	Auditing sterilization processes and facilities	02
	2.5	Endotoxin and pyrogen testing	02
	2.6	Sterilization and sterility assurance	02
	2.7	Biological indicators: Measuring Sterilization	01
	2.8	Risk assessment and Microbiology	02

III		Cosmetic Microbiology	15
	3.1	History of cosmetic microbiology	02
	3.2	Global regulatory and toxicological aspects of cosmetic	02
		preservation	
	3.3	Testing methods and preservation	02
	3.4	Antimicrobial preservation efficacy and microbial content	03
		testing	
	3.5	Preservation of cosmetics	04
		A. Preservation strategy	<u> </u>
		B. Antimicrobial mechanisms of selected	
		preservatives and the bacterial response	
	3.6	Evaluation of antimicrobial mechanism	02
IV		Drug Discovery and Pharmacology	15
	4.1	Modern Methods of Drug Discovery	02
	4.2	Proteomics	02
	4.3	Bioinformatics	02
	4.4	High throughput screening technology	02
	4.5	Natural products for lead identification	02
	4.6	The role of protein 3D structures in the drug discovery	03
		process	
	4.7	Introduction to pharmacogenomics, Pharmacogenetics	02
		and toxicogenomics	

References:

- a) Sharp John, "Quality in the manufacture of medicines and other healthcare products" Pharmaceutical Press, 2000.
- b) Tim Sandle, "Pharmaceutical Microbiology- Essentials for Quality Assurance and Quality control", Woodhead Publishing, Elsevier, 2016
- c) Philip A, Taylor and Francis, "Cosmetic Microbiology a practical approach", 2nd Ed. 2006
- d) Hillisch A and Hilgenfeld R, "Modern Methods of drug discovery", Springer International, 2009
- e) S.B.Primrose, "Principles of Gene Manipulation and Genomics", 7th Ed, Blackwell Publishing, 2006

Practicals: RPSMIC4P1 (60 contact hrs)

- a) Sterility testing and reporting (as per Pharmacopia)
- b) Preparation of cosmetic product and its preservation study
- *c)* Microbial load in cosmetic product as per IS 14648:2011 w.r.t heterotrophic counts, presence of *Pseudomonas spp, Staphylococci spp, P.acne*
- d) Efficacy testing of preservatives like parabens as per ISO 11930
- e) Efficacy of preservation and shelf life study
- f) Bioburden test
- g) Performance of an audit of a test with proper documentation

Course Code: RPSMIC402

Course Title: Advances in Biotechnology

Academic year 2020-21

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
CO 1	Summarize the prenatal diagnostic techniques used for diagnosing
	genetic disorders.
CO 2	Justify the significance of gene therapy & understand antisense
	technology used for treatment of genetic disorders.
CO 3	Explain the importance of stem cell technology in regenerative
	medicine.
CO 4	Analyze and compare the advanced techniques & its utility for
	detection of pathogens.
CO 5	Evaluate the commercialization potential of fungal strains &
	understand the current trends in fungal biotechnology.
CO 6	Interpret the potential of microalgae in producing biofuels &
2.	biofertilizers.
CO 7	Explain IPR, traditional bill law, biodiversity law & ethics in
	biological research.
CO 8	Design & execute experiments to harness the commercial potential
\mathcal{L}	of fungal & algal strains, also to write, read and understand the
	patent claims.

Course Code	Unit	Course/ Unit Title	Credits/ Lectures	
RPSMIC 402	ADVANCES IN BIOTECHNOLOGY		04/60	
I		Medical Biotechnology	15	
	1.1	Diagnostics & therapeutic approach for Genetic disorders	07	
		a. Pre- natal diagnosis- Sample collection, processing, Advantages, disadvantages	01	
		 b. Karyotyping, FISH & PCR c. Gene Therapy: Vectors, Gene targeting & Tissue 	02	
		Specific Expression	02	
		d. Antisense Technology	01	
		e. Introduction to Genetic Counselling	01	
	1.2	Modern Diagnostic approach for pathogens	05	
	1.3	 a. Optical Tweezer b. 16S rRNA Sequencing c. Spectrometry d. VITEK e. API 20 f. FAME g. BIOLOG Stem Cell Technology a. Introduction to Stem cells & types b. Regenerative medicine 	03	
	0	 c. Genomic Reprogramming of cells d. Stem cells in Neurodegenerative disorders e. Stem cells in physiological dysfunctions Eg: Diabetes 		
"		Exploring microbes for commercial products (Fungal Biotechnology)	15	
	2.1	Introduction Fungal world	02	
0 P/1		 a. An overview of Fungi and fungal activities b. Fungal growth and Fungal nutrition c. Mycology: A Neglected Megascience 		
	2.2	Genetics of Fungus	02	
		a. Fungal Genetics b. Fungal Genomics		
	2.3	Fungal Pigments	04	
		 a. Genetic basis of pigment production b. Factors affecting pigment production c. Fermentation for pigment synthesis 		

		d Mucatavina and their replacement	
		d. Mycotoxins and their replacement	
		e. Relevance of pigments in various fields	
	2.4	Applications of Fungal Biotechnology	04
		a. Metabolic capacities of fungi for bioremediation	
		b. Fungal biomolecules and their Implications	
		c. Fungal Biocatalysts in the textile industry and	
		waste water treatment	
	2.5	Current trends in Fungal Biotechnology	03
		a. Myconanotechnology	
		b. Fungal Antitumor agents	
		c. Production of recombinant Peptides like	$\langle \cdot \rangle$
		Peptaibiotics and peptaibols	
		Exploring microbes for commercial products (Algal	15
		Biotechnology)	
	3.1	The microalgal cell	03
		a. Introduction	
		b. Structural and Morphological features of	
		Microalgae	
		c. Ultrastructure and cell division	
		d. Cell growth and development	
		e. Microalgal systematics	
	3.2	Basic culturing Techniques	03
		a. Isolation of Microalgae	
		b. Screening of Microalgae for bioactive molecules	
		c. Measurement of Growth Parameters	
		d. Modes of culture	
	3.3	Mass Production of Microalgae: Photobioreactors	03
		a. Definition of photobioreactors	
		b. Classification of photobioreactors	
		c. Types of bioreactors	
		d. Tubular photobioreactors	
		e. Flat photobioreactors	
		f. Vertical cylinders and sleeves	
		g. Axenic photobioreactors	
	\sim	h. Scale up of photobioreactors	
	3.4	Applications of Algal Biotechnology	03
	0.4	a. Microalgae as platforms for Recombinant proteins	
NN	•	b. Algae as a source of Biofuel	
$\mathcal{T}\mathcal{N}$		c. Algae as biofertilizer for rice	
$-'\gamma$	3.5		03
	3.3	Current trends in Algal Biotechnology	03
		a. Targeted Genetic Modification of Cyanobacteria	
P3 7		b. Phylogenomics in Algal research	
IV		IPR and Bioethics Traditional Knowledge &	15
		Biodiversity conservation.	
	4.1	Types of IPR & the Need of IPR in Biotechnology	02
		a. What is IPR?	
		b. Types of IPR: Patents, Trade Marks & Service	

r		
	Marks, Design Registration, Trade Secrets,	
	Geographical indications, Protection of New Plant Varieties, Copyright.	
	c. Need & Implications: Technology Transfer,	
	implications d. Global Harmonization: TRIPS Agreement	
4.2	Pre-requisites for patentability, the process & its	03
4.2	Implications	03
	a. Criteria to be fulfilled for Patentability - new/novel,	CX
	non-obvious/inventive step, useful/capable of	$\langle \cdot \rangle$
	industrial application.	
	b. Steps in patentability: Application to the grant of	
	patent	
	c. Implications of IPR in Biotechnology	
4.3	Patentability in Biology: What Can and What Cannot	03
	be patented?	
	a. Indian Scenario of patentability	
	b. Global Scenario of patentability	
	c. Implications in policy making and	
	commercialization due to variables	
4.4	Bioethics: Issues & Perspectives in the discipline of	02
	Microbiology	
	a. Ethics involved while working with	
	Microorganisms	
	b. Bioweapons- an Ethical issue	
	c. Bioethics: An Indian perspective	
4.5	Ethical guidelines for Biomedical research in Human	01
	subjects	
4.6	Safety, ethical, moral implications of Genetic	01
	engineering	
4.7	The protection of Traditional Knowledge Bill, 2016	01
4.8	Biodiversity Law	02
	a. Need for a biodiversity law	
Yza,	b. National Guidelines	
	c. International Guidelines	

References:

- a) Jogdand S. N., Medical Biotechnology, 2008, Himalaya Publishing House.
- b) Judit Pongracz, Mary Keen, Medical Biotechnology, 2009, Churchill Livingstone, Elsevier.
- c) Pratibha Nallari & V. Venugopal Rao, Medical Biotechnology, 2010, Oxford University Press, India
- d) Richard Re, The application of Antisense technology to medicine, 2000, The Oschner Journal, 2(4).

- e) Robert Lanza, Anthony Atala, Essentials of Stem Cell Biology, 3rd edition, 2012, Academic Press, Elsevier.
- f) Gary. S. Stein, Maria Borowski, Mai. X. Luong, Meng-Jiao Shi, Kelly. P. Smith, Priscilla Vazquez, Human stem cell technology & biology: A Research guide & Laboratory Manual, 2011, Wiley- Blackwell.
- g) Ricardo Franco-Duarte, Lucia Cernáková 3, Snehal Kadam, Karishma S. Kaushik, Bahare Salehi, , Antonio Bevilacqua, Maria Rosaria Corbo, Hubert Antolak, Katarzyna Dybka-Stepien, Martyna Leszczewicz, Saulo Relison Tintino, Veruska Cintia Alexandrino de Souza, Javad Sharifi-Rad, Henrique Douglas Melo Coutinho, Natália Martins and Célia F. Rodrigues. Advances in Chemical and Biological Methods to Identify Microorganisms—From Past to Present, 2019, Microorganisms, 7(130).
- h) Singhal N. et al "MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis", Front Microbiol. 2015; 6: 791.
- MICROBIAL IDENTIFICATION USING THE BIOMÉRIEUX VITEK® 2 SYSTEM David H. Pincus bioMérieux
- j) Wenhuan Xu* & Zhiwei Ge "Application and Optimization of Biolog EcoPlates in Functional Diversity Studies of Soil Microbial Communities" Matec web of conferences 22 04015 (2015)
- k) Bacterial Identification by Gas Chromatographic Analysis of Fatty Acid Methyl Esters (GC-FAME) Technical Note #101 Myron Sasser May 1990 Last Revised July 2006
- I) Jim Deacon, "Fungal Biology", 4th Ed, Blackwell Publishing, 2006
- m) Tulasi Satyanarayana and Sunil K. Deshmukh, "Developments in Fungal Biology and Applied Mycology", Springer, 2017
- n) Dinabandhu Sahoo, "The Algae World", Volume 26, Springer, 2015.
- o) Robert Andersen, "Algal culturing Techniques", Elsevier Academic Press, 2005
- P) Yuan Kun Lee, Microbial Biotechnology: Principles & Applications, 2nd edition, 2006, World Scientific Publishing Company.
- Prabuddha Ganguli, IPR- Unleading the knowledge economy, 1st Edition, 2017, McGraw Hill education.
- r) Kshitij Kumar Singh, Biotechnology and IPR Legal and Social Implications, 2015, Springer Publications.
- s) Law and National Biodiversity Strategies and Action Plans by the Law Division for the United Nations Environment Programme. A booklet issued by UN Environment committee. <u>https://www.unenvironment.org/resources/publication/law-and-national-biodiversity-</u> <u>strategies-and-action-plans</u>
- P Desikan, A Chakrabarti, V Muthuswamy. "Ethical issues in microbiology", Indian Journal of Medical Microbiology, 2011, 29(4). <u>http://www.ijmm.org/article.asp?issn=0255-</u> 0857;year=2011;volume=29;issue=4;spage=327;epage=330;aulast=Desikan

- u) Dr. Mohammed Sarosh Khan, Dr. Rakesh Kumar Gorea, Dr. Shafqat Qamar, Dr. Gulam Mustafa, Abhinav Gorea, "Some ethical Perspectives in the Discipline of Microbiology", International Journal of ethics, trauma & Victimology, 2015, 1(2). <u>https://www.researchgate.net/publication/286236507 Some Ethical Perspectives in the D</u> <u>iscipline_of_Microbiology</u>
- v) Ajit Avasthi, Abhishek Ghosh, Sidharth Sarkar, Sandeep Grover, "Ethics in medical research: General principles with special reference to psychiatry research", 2013, Indian Journal of Psychiatry 55(1). http://www.indianjpsychiatry.org/article.asp?issn=0019-

5545;year=2013;volume=55;issue=1;spage=86;epage=91;aulast=Avasthi

 w) The Protection Of Traditional Knowledge, Genetic Resources And Expressions Of Folklore Act, 2016, WIPO.
 https://www.wipo.int/edocs/lexdocs/laws/en/zm/zm056en.pdf

PRACTICALS RPSMIC 3P2 (60 Contact Hrs)

- a) IPR Case studies: An innovative approach to understand IPR & it's Implications.
- b) Case study on Bioethics: An innovative approach to understand bioethics & it's significance.
- c) Study of pigment production & purification from Trichoderma
- d) Bioremediation by fungi.
- e) Isolation and detection of laccase producing fungi
- f) Production, purification and immobilization of fungal amylase.
- g) Culturing microalgae in the lab & studying the effect of growth parameters on its multiplication.
- h) Bioprospecting algae for oils and flavouring compounds
- i) Visit to algal cultivation units

Course Code: RPSMIC403 Course Title: Emerging areas in Biology II Academic year 2020-21

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION	
CO 1	Demonstrate a basic understanding of epidemiological strategies study designs and evaluate the data for its statistical relevance.	
CO 2	Discuss and understand the strategies to detect & monitor biological agents used for bioterrorism & exemplify the significance of biosecurity.	
CO 3	Identify & implement potential solutions for energy needs by evaluating existing & novel biomass to energy technologies	
CO 4	Explain and recall the alternative sources for exhaustible fuels in the form of variety of biofuels.	
CO 5	Critique the current and emerging trends of enzyme technology 8 discuss the applications of enzymes.	
CO 6	Understand & execute methods for production, purification, characterization & immobilization of enzymes.	
CO 7	Discuss & recall the principles & procedure of protein engineering techniques.	

Course Code	Sub- Unit	Course/ Unit Title	Credits/ Lectures
RPSMIC		EMERGING AREAS IN BIOLOGY II	04/60
403			04/00
+03		Epidemiology, Bioterrorism and Biosecurity	01/15
•	1.1	Epidemiology	10
		 a. Historical aspects-definition b. Descriptive Epidemiology-aims and uses c. Epidemiological principles in prevention and control of Diseases d. Study Designs: i. Introduction ii. Observational Versus Experimental approaches in Epidemiology iii. Overview of study designs used in Epidemiology iv. Ecologic Studies v. Cross-Sectional studies e. Public health surveillance: 	
		 i. Purpose and characteristics ii. Identifying health problems for surveillance iii. Collecting data for surveillance iv. Analyzing and interpreting data v. Disseminating data and interpretation vi. Evaluating and improving surveillance 	
	1.2	Bioterrorism	03
		 a. Introduction b. Threat Agents by category c. Detection, Monitoring, and Identification of BT Agents d. The Potential for Misuse of Biotechnology e. Some examples of biological agents as warfare Smallpox, Bacillus anthracis, yersinia pestis 	
	1.3	Biosecurity	02
		a. Introduction	
		b. Constituents of a Biosecurity hazard	
11		Bioenergy	15
	2.1	Classification of biofuels: a. Conventional and Advanced Biofuels 1st generation biofuels- sugar and starch-based ethanol, conventional biodiesel, biogas	04

		b. 2nd generation biofuels – cellulosic ethanol,	
		advanced biodiesel, syngas, biooils and	
		biobutanol	
		c. 3rd generation biofuels- Biohydrogen and algal	
		based fuels.	
		d. 4th generation biofuels	05
	2.2	 a. Bioethanol: i. Starch based ethanol 	05
		 Starch based ethanol Cellulosic ethanol: Pretreatment of 	
		lignocellulosic entanol. Pretreatment of	
		hemicellulases, lignin degradation.	
		iii. Fermentation by yeast and bacteria	
		iv. Fermentation process Economics	
		b. Biodiesel:	
		i. Enzymatic Transesterification/ Esterification	
		ii. Types of biocatalysts	
	2.3	Biogas production	03
		i. Types of feedstocks	
		ii. Process types and digestors used	
	2.4	Microbial fuel cells	01
	2.5	Challenges and current trends	02
III		Enzyme Technology	15
	3.1	Different types enzymes, production and enzymatic	09
		analysis and assay methods	
		a. Amylases	
		b. Cellulases	
		c. Lipases	
		d. Laccases	
		e. Ligases f. Proteases	
	3.2	Enzyme immobilization- Need, methods, Carriers and	05
	J.L	applications	
	3.3	Therapeutic enzymes	01
IV		Protein Engineering	15
	4.1	Improvements of enzymes	05
	4.2	Protein engineering	04
	4.3	Molecular Biology methods	04
X	4.4	Directed evolution	02

References:

- a) Principles of epidemiology in public health practices 3rd Ed. (www.cdc.gov/training/products/ss1000)
- b) Ann Aschengrau, George R Seage, Essentials of Epidemiology in Public Health, 3rd Ed.
- c) Kenrad E Nelson, Carolyn Maters Williams, "Infectious Disease Epidemiology theory and practice", 3rd Ed, Jones & Bartlett Learning (Year)
- d) Burt Anderson, Herman Friedman, Mauro Bendinelli, "Microorganisms and Bioterrorism", Springer Science, 2006
- e) FAO Biosecurity Tool Kit, Food and Agriculture Organization of the United Nations Rome, 2007 (<u>http://www.fao.org/3/a1140e/a1140e.pdf</u>)
- f) Anju Dahiya, "Bioenergy Biomass to Biofuels", 2014, Academy Press, Elsevier
- g) Biofuels Production, Ed by Vikash Babu, Ashish Thapliyal & Girijesh Kumar Patel, 2014, Scrivener Publishing LLC. Co-published by John Wiley & Sons, Inc.
- h) Introduction to Biofuels, David M. Mousdale, 2010, CRC Press Taylor & Francis Group
- i) Biofuels, Alternative Feedstocks and Conversion Processes, Ed by Ashok Pandey, Christian Larroche, Steven Cricke, Claude-Gilles Dussap, Edgard Gnansounou, 2011, Academic Press
- j) Alka Dwivedi," Enzyme Immobilization Advances in Industry, Agriculture, Medicine, and the Environment", 2016, Springer
- k) Joanne L. Porter, Rukhairul A. Rusli, and David L. Ollis, "Directed Evolution of Enzymes for Industrial Biocatalysis", *ChemBioChem* 2016, 17, 197 – 203, Wiley
- I) Stefan Lutz and Samantha M. Iamurri, "Protein Engineering: Past, Present, and Future", 2017, Springer
- m) Alexander Zawaira, Anil Pooran, Samantha Barichievy, Denis Chopera, "A Discussion of Molecular Biology Methods for Protein Engineering", *Mol Biotechnol* (2012) 51:67– 102, Springer

Practicals: RPSMIC3P3 (60 Contact Hrs):

- a) Case Studies of epidemiological strategies
- b) Internship presentation

Course Code: RPSMIC 404

Course Title: Internship

Academic year 2020-21

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
CO 1	Understand how theoretical concepts transpire into application in workplaces like research institutes or industry
CO 2	Comprehend a scientific problem and execute prescribed protocols independently
CO 3	Demonstrate ability to complete tasks on time and record results without fabrication, falsification in prescribed formats
CO 4	Confidently communicate relevant information effectively to supervisors in clear and concise manner, in writing and orally.
CO 5	Capability to work with diverse teams with respect, empathy and understanding
CO 6	Demonstrate competency, integrity and commitment at the workplace

Course Code	Course/ Unit Title	Credits	
RPSMIC 404	INTERNSHIP	04	
	Internship to research institute/industry	16 weeks	3
Practicals: RF	SMIC4P4 (60 Contact Hrs)	COP-	
Internship repo	rt	15	
		^S	
	RAIN		
2PM			
8 VII	•		

Practicals: RPSMIC4P4 (60 Contact Hrs)

Modality of Assessment:

I) Theory Examination Pattern (RPSMIC 401,402,403):

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1	One Review writing/ Review paper presentation/Research paper presentation/ Assignment	15
2	One class test (Multiple choice questions/ objectives)	20
3	Active participation in routine class instructional deliveries	05

B) External Examination- 60%- 60 Marks per paper

- 1. Duration- These examinations shall be of two hours and thirty minutes.
- 2. Theory question paper pattern
 - a. There shall be **five** questions each of **12** marks. On each unit there shall be one question and the fifth question will be based on all the three units.
 - b. All questions shall be compulsory with internal choice within the questions.

Paper pattern:

Question	Options	Marks	Questions based on		
Q.1)	Any 2 out of 3	12	Unit 1		
Q.2)	Any 2 out of 3	12	Unit 2		
Q.3)	Any 2 out of 3	12	Unit 3		
Q.4)	Any 2 out of 3	12	Unit 4		
Q.5) a)	Any 4 out of 6	04	All four units		
Q.5) b)	Any 4 out of 6	04	All four units		
Q.5) c)	Any 2 out of 3	04	All four units		

Theory Examination Pattern- RPSMIC 404:

Internship evaluation by guide/ mentor- 60 marks

Internship report evaluation by internal faculty- 40 marks

II) Practical Examination Pattern

	Paper I	Paper II	Paper III	Paper IV	
Viva	05	05	-	-	
Quiz	05	05	-	-	
Laboratory work	40	40	-	-	
Internship presentation	-	-	50		
Internship report	-	-	-	50	
Total	50	50	50	50	

Journal

- 1. The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.
- In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Co-ordinator / In-charge of the department; failing which the student will not be allowed to appear for the practical examination.

Internship Report

- 1. Candidates are required to present duly certified Internship Report dissertation report based on the topic of Internship
- 2. The students also have to make a PowerPoint presentation of the work done during Internship for evaluation by the examiner.

								Sem	ester	IV				
Course	401			402	2 403			404						
	Internal	External	Total	Internal	External	Total	Internal	External	Total	Internal (Internship report evaluation by internal Faculty)	External (Internship evaluation by Guide /mentor)	Total	Grand total	
Theory	40	60	100	40	60	100	40	60	100	40	60	100	400	
Practical	-	50	50	-	50	50	-	50	50		50	50	200	

Overall Examination and Marks Distribution Pattern