Resolution Number : AC/II(20-21).2.RUS5

S. P. Mandali's

Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for

Program: B.Sc (Chemistry)

Program Code: RUSCHE

(Credit Based Semester and Grading System for academic year 2020–2021)

PROGRAM OUTCOMES

S. P. Mandali's Ramnarain Ruia Autonomous College has adopted the Outcome Based Education model to make its science graduates globally competent and capable of advancing in their careers. The Bachelors Program in Science also encourages students to reflect on the broader purpose of their education.

PO	Description
A stud	ent completing Bachelor's Degree in Science program will be able to:
	Recall and explain acquired scientific knowledge in a comprehensive manner and apply
PO 1	the skills acquired in their chosen discipline. Interpret scientific ideas and relate its
	interconnectedness to various fields in science.
	Evaluate scientific ideas critically, analyse problems, explore options for practical
PO 2	demonstrations, illustrate work plans and execute them, organise data and draw
	inferences.
	Explore and evaluate digital information and use it for knowledge upgradation. Apply
PO 3	relevant information so gathered for analysis and communication using appropriate
	digital tools.
PO 4	Ask relevant questions, understand scientific relevance, hypothesize a scientific
104	problem, construct and execute a project plan and analyse results.
	Take complex challenges, work responsibly and independently, as well as in cohesion
PO 5	with a team for completion of a task. Communicate effectively, convincingly and in an
	articulate manner.
PO 6	Apply scientific information with sensitivity to values of different cultural groups.
100	Disseminate scientific knowledge effectively for upliftment of the society.
	Follow ethical practices at work place and be unbiased and critical in interpretation of
PO 7	scientific data. Understand the environmental issues and explore sustainable solutions
	for it.
	Keep abreast with current scientific developments in the specific discipline and adapt
PO 8	to technological advancements for better application of scientific knowledge as a
	lifelong learner.

PROGRAM SPECIFIC OUTCOMES

PSO	Description
A stude	it completing Bachelor's Degree in Science program in the subject of Chemistry
will be a	ble to:
PSO 1	Acquire the fundamental knowledge of the main branches of chemistry viz. Physical, Inorganic, Organic and Analytical.
PSO 2	Identify and separate components of organic or inorganic origin and will also be able to analyse them by making use of the modern instrumental methods learned.
PSO 3	Communicate the results of the scientific work in oral as well as written format to both the scientists and the public at large.
PSO 4	Establish themselves as effective professionals and will be able to function effectively as a member of an interdisciplinary problem solving team.
PSO 5	Demonstrate the critical thinking, problem solving & analytical reasoning skills while developing solutions or strategies for solving the real problems through the use of the chemistry knowledge gain during the course.
PSO 6	Appreciate the central role of chemistry in our society and use this as a basis for ethical behaviour in issues facing chemists including an understanding of safe handling of chemicals, environmental issues and key issues facing our society in terms of energy, health and medicine.
PSO 7	Develop skills that will prepare them not only for immediate employment but also for life-long learning in advanced areas of Chemistry and related fields.

PROGRAM OUTLINE

		<u>PROGE</u>	RAM OUT	<u>rline</u>	
Year	Semester	Course Code	Course T	itle / Unit Title	Credits
Y.B.Sc	Ι	RUSCHE101	Chemistr	y-I	
			Unit-I	Chemical calculations	
			Unit-II	Gaseous State	2
				Solid State	
			Unit-III	Chemical Kinetics	
				Liquid State	
		RUSCHE102	Chemistr	y-II	2
			Unit-I	Atomic structure.	
				Periodic Table and periodicity	
				of Properties.	
				Chemistry of s-block	
				elements.	
			Unit-II	Chemical Bond and Reactivity	
			Unit-III	Nomenclature of Organic	
				Compounds.	
				Bonding and Structure of	
				organic compounds.	
			N.	Basic concepts involved in	
				organic reaction mechanism.	
	TT	RUSCHEP101	Practical Chamistr	1	2
	II	RUSCHE201	Chemistr		
			-	Stereochemistry	2
		Q.V.	Unit-II	Chemistry of Aliphatic	2
			Unit-III	Hydrocarbons	
		RUSCHE202	Chemistr	Aromatic Hydrocarbons	
		RUSCHE202	Unit-I	Concept of Qualitative	
			Umt-1	Analysis.	
		5		Acid-Base Theories	
			Unit-II	Oxidation Reduction	
				Chemistry.	2
				Study of Oxides of carbon,	-
/A				Oxides of Sulphur and	
				Nitrogen with respect to their	
				Environmental impact.	
	1	1	Unit-III	Chemical Thermodynamics – I	

		RUSCHEP102	Practical		2
S.Y.B.Sc	III	RUSCHE301	Chemistr	y-I	
			Unit-I	Chemical Thermodynamics-II	
			Unit-II	Electrochemistry-I :	
				Electrolytic Conductance And	2
				Transport Number	
			Unit-III	Chemical Bonding	
		RUSCHE302	Chemistr	y-II	
			Unit-I	Reactivity and reactions of	
				halogenated hydrocarbons,	
				Organomagnesium and	
				organolithium compounds,	
				Alcohols, phenols and	_
				epoxides.	2
			Unit-II	Chemistry of Carbonyl	
				Compounds	
			Unit-III	Chemistry of p-block	
				elements:	
				(Group 13 and 14)	
		RUSCHE303	Chemistr	_	
			Unit-I	Introduction to Analytical	
				Chemistry	
			Unit-II	Classical methods of analysis	_
				Gravimetric Analysis	2
				Titrimetric Analysis	
			Unit-III	Environmental Chemistry:	
				Chemistry of Water	
		RUSCHEP301	Practical		3
-	IV	RUSCHE401	Chemistr	y-I	
			Unit-I	Electrochemistry-II:	
				Electromotive Force of	
				Galvanic Cells.	
~				pH and Buffers	•
	U		Unit-II	Solutions of Liquid In Liquid	2
				Phase Equilibria	
\sim			Unit-III	Comparative Chemistry of the	
				transition metal.	
				Coordination Chemistry.	

				Bond.	
		RUSCHE402	Chemistr	y-II	
			Unit-I	Carboxylic acids and their	
				derivatives, Sulphonic acids.	
			Unit-II	Amines, Diazonium Salts,	
				Heterocyclic Compounds	2
			Unit-III	Chemistry of Group 15 and 16	
				elements	
				Organometallic Chemistry	
		RUSCHE403	Chemistr		
			Unit-I	Separation Techniques	
				Solvent Extraction	
				Chromatography (PC, TLC,	
				HPTLC)	2
			Unit-II	UV- Visible Absorption	2
				spectroscopy	
			C	Photometric titrations	
				Conductometric titrations	
			Unit-III	Industrial Chemistry	
		RUSCHEP401	Practical		3
T.Y.B.Sc	V	RUSCHE501	Chemistr	y-I	
			Unit-I	Molecular spectroscopy	
			Unit-II	Electrochemistry-III	
				Classification of galvanic cells	2.5
			Unit-III	Colligative properties	4.0
				Chemical kinetics-II	
			Unit-IV	Surface chemistry & catalysis	
	• •			Colloids	
		RUSCHE502	Chemistr		
		w.	Unit-I	Chemical bonding:	
				Molecular symmetry	
				Molecular orbital theory for	
	U			polyatomic species	2.5
	-			Metallic bonding.	
$/ \lambda$			Unit-II	Solid state chemistry	
			Unit-III	Chemistry of elements:	
	1	1	i .	lanthanides & actinides	

		Unit-IV	Chemistryofnonaqueoussolvents,inter-halogencompoundsandxenon	ć
ŀ	RUSCHE503	Chemistr		
		Unit-I	Mechanism of organic reactions	
		Unit-II	Stereochemistry	
		Unit-III	IUPAC nomenclature	2.5
			Polymers	
		Unit-IV	Synthesis of organic	
			compounds	
I	RUSCHE504	Chemistry	y-IV	
		Unit-I	Sampling	
			Treatment of analytical data	
		Unit-II	Titrimetric analysis:	
			Redox titrations	
			Precipitation titrations	
			Complexometric titrations	
		XN	Non-aqueous titrations	
		Unit-III	Atomic absorption	
			spectroscopy.	
			Atomic emission methods	2.5
			Fluorescence and	
			phosphorescence	
			spectroscopy.	
	\sim		Nephelometry and	
			turbidimetry.	
		Unit-IV	Thermal methods	
			Radioanalytical techniques	
			Mass spectrometry	
			Method validation	
	RUSCHEP501	Practical	(RUSCHEP501 +	2
		RUSCHE		3
	RUSCHEP502	Practical	(RUSCHEP503 +	2
		RUSCHE	P504)	3
VI I	RUSCHE601	Chemistry	y-I	
		Unit-I	NMR spectroscopy	2.5
			Polymers	

Г		TT 1 . TT	T	
		Unit-II	Electrochemistry-IV:	
			Decomposition potential,	
			overvoltage and electroplating	
			Crystalline State	NC
		Unit-III	Nuclear chemistry-III	
		Unit-IV	Basics of quantum chemistry	
	RUSCHE6			
		Unit-I	Coordination chemistry	
		Unit-II	Properties of coordination	
			compounds	2.5
		Unit-III	Organometallic chemistry	
		Unit-IV	Nanomaterials	
			Bioinorganic chemistry	
	RUSCHE6	03 Chemistr	y-III	
		Unit-I	Chemistry of carbohydrates	1
			Catalysts & reagents	
		Unit-II	Chemistry of amino acids,	
		X	proteins and nucleic acids	2.5
			Photochemistry	
		Unit-III	Spectroscopy –I	
		Unit-IV	Spectroscopy –II	
			Natural products	
	RUSCHE6	04 Chemistr		2.5
		Unit-I	Separation techniques	
	\sim	-	(GC, HPLC, ion exchange	
			chromatography)	
		Unit-II	Electro-analytical techniques:	
	1/2		Ion selective electrodes	
			Polarography	
	``		Amperometric titrations	
		Unit-III	Miscellaneous Methods	1
			Potentiometric Titrations	
^c			Bi-amperometric titrations	
			Gel electrophoresis	
			Size exclusion	
			chromatography	
		Unit-IV	Applications to different	1
			fields:	
			T HEIOS ¹	

Ĩ	RUSCHEP602	Practical RUSCHE	(RUSCHEP603 P604)	4	3	
		RUSCHE	P602)		3	
]	RUSCHEP601	Practical	(RUSCHEP601	+	2	
			Pharmaceutical analysis			
			Water analysis			
			Detergent analysis			J
			Cosmetic analysis			>

Resolution Number: AC/II(20-21).2.RUS5

S. P. Mandali's

Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

F.Y.B.Sc

Semester I & II

Program: B.Sc (Chemistry)

Program Code: RUSCHE

(Credit Based Semester and Grading System for academic year 2020–2021)

SEMESTER-I Course Code-RUSCHE101 <u>Course Title : CHEMISTRY-I</u> Academic Year 2020-21

Course Outcomes:

After s	tudying this course, the learner will be able to:
CO 1	Determine the strengths of solutions using mass based and volume based units of
	expressing concentration
CO 2	Differentiate between primary standards and secondary standards.
CO 3	Compare ideal gas and real gases using the van Der Waals' equation of state.
CO 4	Comprehend the characteristics of liquid state, physical properties and the concept of
	viscosity and surface tension and its determination methods.
CO 5	Know the difference between the rate of reaction and molecularity of a reaction and
	also the methods involved in determining the molecularity of the reaction.
CO 6	Draw planes in a given crystal lattice.

DETAILED SYLLABUS

RUSCHE101		CHEMISTRY-I	Credits-02
1	Unit	Unit Title	Lectures
]	I	1.1 Chemical calculations:	
	•	1.1.1 Mole concept, relation with molar mass,	
	\sim	conversion of amount into mole and vice versa,	
	0	relation with the number of particles present.	
		1.1.2 Amount and concentration, volume based	(15L)
	~	units for concentration, molarity, normality,	
		formality, mass based unit for concentration -	
<i>.</i>		molality and mole fraction, ppm and ppb, concept	
		of millimoles and milliequivalents.	

	1.1.3 Problem solving based on various concentration units	
	1.1.4 Stoichiometry and calculations based on it,	
	concept of limiting reactant and yield for a chemical	
	reaction.	
	1.1.5 Calculations based on stoichiometry.	
	1.1.6 Primary standards, properties of primary	
	standards, primary standards for different types of	
	titrations, secondary standards, standardization,	
	standard solutions.	
II	2.1 Gaseous State:	
	2.1.1 Postulates of kinetic theory of gases and Gas	
	Laws.	
	2.1.2 Ideal and real gases, deviations from the gas	
	laws, reasons for the deviations, compressibility	
	factor, Boyle temperature.	
	2.1.3 Volume correction and pressure correction,	
	van der Waals equation of state, use of the equation	
	to explain the deviations from the gas laws.	
	2.1.4 Problem solving based on gaseous laws and	(10L)
	vander Waals equation of state	
	2.1.5Joule-Thomson effect, Joule-Thomson	
	coefficient, inversion temperature, Linde's process	
	of liquefaction of gases.	
	2.1.6 Maxwell - Boltzmann's distribution of	
	velocities, the graphical presentation and its	
	interpretation, average velocity, most probable	
	velocity and R.M.S. velocity.	
	2.2 Solid state	(05L)

	2.2.1 Solid state and its characteristics, crystalline	
	and amorphous solids.	
	2.2.2 Space lattice and unit cell.	. 0
	2.2.3 Laws of crystallography, law of constancy of	
	interfacial angles, law of symmetry, law of	
	rationality of indices.	\mathbf{C}
	2.2.4 Weiss coefficients, Miller indices, 100, 110	U
	and 111 planes in a crystal.	
III	3.1 Chemical Kinetics:	
	3.1.1 Rate of a reaction, rate constant and	
	measurement of reaction rates.	
	3.1.2 Order and molecularity of reaction.	
	3.1.3 Integrated rate equation for zero, first and	
	second order reactions (with equal and unequal	(08L)
	initial concentration of the reactants).	
	3.1.4 Kinetic characteristics of zero, first and second	
	order reactions.	
	3.1.5 Numerical problems based on zero, first and	
	second order reactions.	
	3.1.6 Methods for the determination of the order of	
	a reaction (a) Integration method (b) Graphical	
	method (c) Half time method (d) Ostwald's	
	isolation method (e) differential method.	
	3.2 Liquid State:	
612	3.2.1 Introduction to liquid state, characteristics of	
	liquid state, physical properties of the liquids.	
	3.2.2 Determination of surface tension by drop	(07L)
	number method using stalagmometer.	(0/L)
	3.2.3 Surface active solutes and surface tension,	
	applications of surface tension measurement.	

0.

3.2.4 Viscosity: 1	Introduction, coefficient of
viscosity.	
3.2.5 Determination	n of coefficient of viscosity by
Ostwald viscometer.	
3.2.6 Applications of	of viscosity measurement.
3.2.7 Numerical prob	oblems based on calculation of
surface tension and v	viscosity

Course Code-RUSCHE102 <u>Course Title : CHEMISTRY-II</u> Academic Year 2020-21

Course Outcomes:

After stu	idying this course, the learner will be able to:
CO 1	Correlate earlier theories pertaining to atomic structure.
CO 2	Know the significance of quantum numbers.
CO 3	Differentiate between orbit and orbitals.
CO 4	Draw the shapes of orbitals.
CO 5	Understand the historical development of periodic table of elements.
CO 6	Classify elements depending on entry of valence electrons.
CO 7	Categorize different types of elements.
CO 8	Know the trends in periodic properties.
CO 9	Compare between ionic and covalent bond.
CO 10	Draw Lewis dot structures for given compound.
CO 11	Determine shape of the molecule using VSEPR model.
CO 12	Identify Isoelectronic species.
CO 13	Write IUPAC name of mono and bi-functional aliphatic compounds including their
	cyclic analogues.
CO 14	Draw structures of organic compounds based on their systematic names.
CO 15	Comprehend the fundamental concepts which govern the structure, bonding,
	hybridization, bond angles and shapes of molecules.
CO 16	Know the concept of electronic effects.
CO 17	Understand the importance of reaction intermediates

DETAILED SYLLABUS.

RUSCHE102		CHEMISTRY-II	Credits-0
	Unit	Unit Title	Lectures
	Ι	Atomic Structure and Periodic Table and	(15 L)
		Periodicity of Properties.	
		1.1 Atomic Structure	
		1.1.1 Rutherford's Atomic Model; Bohr's Theory	
		and its limitations, Somerfield extension to Bohr's	
		theory Zeeman effect ; their relationship with	
		quantum number; orbit and orbital.	
		1.1.2 Quantum Numbers of last electron; Hund's	
		rule, Aufbau principle; Pauli exclusion Principle.	
		1.1.3 Wave function, Schrodinger wave equation	
		(Mathematical expression not to be discussed),	
		Radial and Angular forms of the wave function;	
		Relationship between Radial function and	
		probability; plots of probability for different	
		orbitals; shapes of orbitals: s,p,d,f	
		1.2 Periodic Table and Periodicity of Properties.	
		1.2.1 Long form of the Periodic Table;	
		Classification of elements as main group, transition,	
		and inner transition elements;	
		1.2.2 Periodicity in the following properties:	
		Atomic and ionic size; electron gain enthalpy;	
		ionization enthalpy, effective nuclear charge (Slater	
		rule); Electronegativity:	
	5	Pauling and Mulliken	
		(Numerical problems expected, wherever	
. C		applicable).	
	5	1.3 Chemistry of s- block elements	
		1.3.1. Chemical properties, Uses of alkali and alkaling earth metals. Diagonal relationship of Li	
~0		alkaline earth metals, Diagonal relationship of Li	
		and Mg. 1 3 2 P ole of Na and K in biological systems	
		1.3.2 Role of Na and K in biological systems.	
	II	2.1 Chemical Bond and Reactivity	(15 L)

60

AMNARAIN RUIA AUTONOMOUS CO	LLEGE, SYLLABUS FOR F.Y B.Sc Sem I & Sem II CHEMISTRY 2020-2021	RULA COLLEGE Explore « Experience « Excel
	2.1.1 Types of chemical bonds; comparison between	
	ionic and covalent bonds; polarizability and its	0
	effect on a bond, (Fajan's Rules).	
	2.1.2 Shapes of simple molecules: Lewis dot	
	structures; Sidgwick-Powell theory; Basic VSEPR	
	Theory for AB _n type of molecules (neutral or	
	charged species), with and without lone pair of	
	electrons.	
	2.1.3 Isoelectronic species; applications and	
	limitations of VSEPR Theory.	
III	3.1 Nomenclature of Organic Compounds:	(05L)
	3.1.1 IUPAC nomenclature of mono functional	
	aliphatic compounds.	
	3.1.2 IUPAC nomenclature of bi-functional	
	aliphatic compounds and their cyclic analogues.	
	3.2 Bonding and Structure of organic	(051)
	compounds:	(05L)
	Concept of Hybridization (sp3, sp ² and sp	
	hybridization)	
	Hybridization: sp ³ , sp ² and sp hybridization of	
	carbon and nitrogen; sp ³ and sp ² hybridizations of	
	oxygen in organic compounds and their geometry	
	with suitable examples.	
	3.3 Basic concepts involved in organic reaction	
	mechanism:	(05L)
	3.3.1 Electronic Effects: Inductive, electromeric,	
	resonance effects, hyperconjugation.	
	3.3.2 Carbocations, Carbanions and Free	
	radicals:	
	Homolytic and heterolytic fission, examples of the	
	same.	
	Formation of carbocations, carbanions and free	
	radicals. (primary, secondary, tertiary, allyl,	
. <u>.</u>	benzyl), their relative stability.	
	j-,,	

Semester-I Chemistry Practicals

CHEMICEDY I.
CHEMISTRY-I:
Preparation of a solution of a primary standard for acid base titrations :
1. Determination of the strength of the supplied sodium hydroxide solution,
using solution of a primary standard for acid base titration.
Preparation of a solution of a primary standard for oxidation reduction
titrations:
2. Determination of the strength of the supplied sodium thiosulphate solution.
Use of the secondary standard:
3. Determination of the strength of the supplied iodine solution using the
sodium thiosulphate solution of known strength.
[determined in experiment - 2]
4. To determine the rate constant of the acid catalyzed hydrolysis of methyl
acetate.
5.To determine relative viscosity of a given polymer solution using Ostwald's
viscometer.
CHEMISTRY-II:
1. Commercial analysis of (ANY ONE)
a) Mineral acid
b) Acetic acid in vinegar
2. Analysis of solution containing Na ₂ CO ₃ and NaHCO ₃ using two
indicators
3. Gravimetric analysis
a) To determine the percentage composition of a mixture of BaSO ₄
and NH ₄ Cl.
b) To determine the percentage composition of a mixture of ZnO and
ZnCO _{3.}
4. Method of Purification: Purification of a given organic compound by
crystallization. (Minimum three)

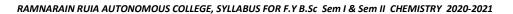
Modality of Assessment

Theory Examination Pattern:

A) Internal Assessment - 40% (40 Marks)

Sr No	Evaluation Type		Marks
1	Assignment		15
2	Class Test (MCQ / Objectives)		20
3	Active Participation in Class (Seminars/Presentations)		05
	Total	5	40

B) External Examination : 60 % (60 marks) Semester End Theory Examination :


- 1. Duration These examinations shall be of **two hours** duration.
- 2. Theory question paper pattern :-There shall be **three** questions each of **20** marks. On each unit there will be one question. All questions shall be compulsory with internal choice within the questions.

Questions	Options	Marks	Questions based on
Q.1)	Any 5 out of 7	20	Unit I
			0
Q.2)	Any 5 out of 7	20	Unit II
	101		
Q.3)	Any 5 out of 7	20	Unit III
	\mathbf{O}		
	Total	60	

Practical Examination Pattern:

(A) Internal Examination:- 40 % (20 Marks)

Particulars	Paper I	Paper II
Journal	05	05
Experimental Work	10	10
Participation	05	05
Total	20	20

(B) External Examination : 60 % (30 Marks)

Semester End Practical Examination:

Particulars	Paper I	Paper II
Laboratory Work	25	25
Viva	05	05
Total	30	30

PRACTICAL BOOK/JOURNAL

- The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.
- In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Co-ordinator / In-charge of the department ; failing which the student will not be allowed to appear for the practical examination.

Course		101	1	5	102		Grand Total
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practicals	20	30	50	20	30	50	100

Overall Examination and Marks Distribution Pattern:

(Total Marks : 300)

SEMESTER-II Course Code-RUSCHE201 Course Title : CHEMISTRY-I Academic Year 2020-21

Course Outcomes:

After st	After studying this course, the learner will be able to:			
CO 1	Identify types of isomers of given organic compounds.			
CO 2	Assign stereo-descriptors using CIP rules.			
CO 3	Compare the stability of cycloalkanes.			
CO 4	Draw the spatial arrangement of alkanes.			
CO 5	Know the reactions involved in aliphatic hydrocarbons			
CO 6	Recognize the mechanism involved in electrophilic aromatic substitution reactions.			
CO 7	Understand the effect of nitro group on nucleophilic aromatic substitution reaction.			

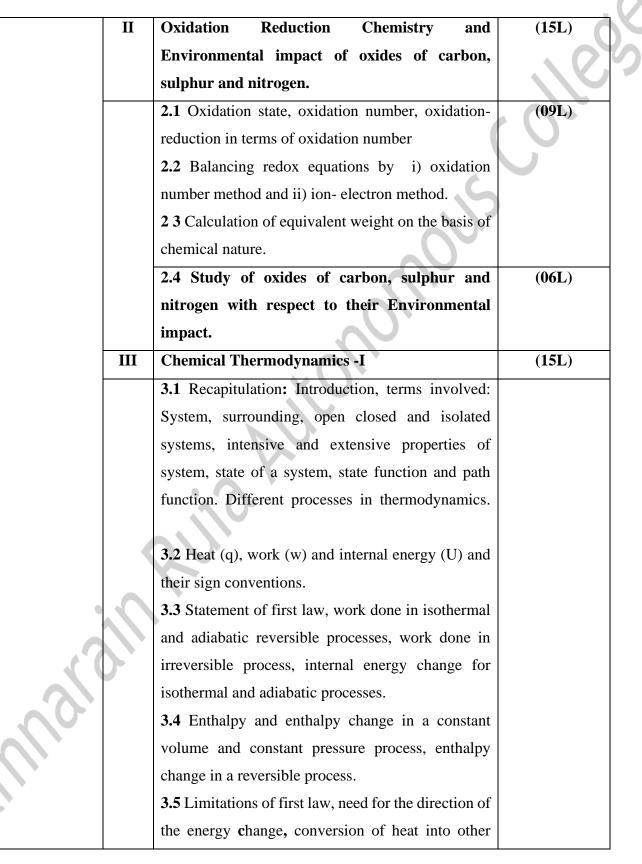
DETAILED SYLLABUS

RUSCHE201		CHEMISTRY-I	Credits-02
	Unit	Unit Title	Lectures
-	Ι	Stereochemistry:	(15L)
nal		 1.1.1 Optical Isomerism: optical activity, specific rotation, chirality, enantiomers, molecules with two similar and dissimilar chiral-centres, distereoisomers, mesostructures, racemic mixture. 1.1.2 Flying-wedge, Fischer, Newman and Sawhorse projection formulae (erythro, threo isomers) and their interconversion. 1.1.3 Relative and absolute configuration: D/L and R/S designations. 	

RAMNARAIN RUIA AUTONOMOUS C	OLLEGE, SYLLABUS FOR F.Y B.Sc Sem I & Sem II CHEMISTRY 2020-2021	RUIA CONTECTE Explore « Experience « Excel	7
	cycloalkanes: cis-trans isomerism and E/Z		5
	notations with C.I.P rules.		
	1.1.5 Conformational analysis of alkanes (ethane,		
	propane and n-butane) and their relative stability on the basis of energy diagrams.		
	1.1.6 Cycloalkanes and Conformational Analysis:		
	Types of cycloalkanes and their relative stability,		
	Baeyer strain theory, Conformation analysis of		
	cyclohexane: Chair, boat, half chair, and twist boat		
	forms and their relative stability with energy.		
II	2.1 Chemistry of Aliphatic Hydrocarbons:	(15L)	
	2.1.1 Carbon-Carbon sigma bond:		
	Chemistry of alkanes: Methods of Preparation of		
	alkanes, Wurtz reaction, Wurtz-Fittig reaction,		
	reactions of alkanes, free radical substitutions:		
	Halogenation - relative reactivity and selectivity.		
	2.1.2 Carbon-Carbon pi bonds: alkenes and		
	alkynes, methods of preparation of alkenes and		
	alkynes by elimination reactions: mechanism of E ₁		
	andE ₂ . Saytzeff and Hofmann eliminations.		
	2.1.3 Reactions of alkenes: electrophilic addition		
	and mechanism (Markownikoff/ Anti		
\$ O `	Markownikoff addition).		
	Mechanism of ozonolysis, reduction (catalytic and		
20	chemical), syn and anti-hydroxylation (oxidation).		
	1, 2 and 1, 4-addition reactions in conjugated		
	dienes, Diels-Alder reaction; Allylic and		
	benzylicbromination using N-bromosuccinimide		
	and its mechanism.		

214 Mathada of Duamanation and marting	
	C
Aromatic Hydrocarbons:	(15L)
3.1.1 Aromaticity: Benzene, Kekule's formulation	(\mathbf{V})
of benzene structure (historical background),	
Hückel's rule, anti-aromaticity, aromatic character	
of arenes.	
3.1.2Aromaticity: cyclic carbocations/carbanions	
and heterocyclic compounds with suitable	
examples, aromaticity and acidity, relative	
stabilities.	
3.1.3 Electrophilic aromatic substitution:	
sulphonation and Friedel-Craft alkylation/acylation	
and mechanisms for the same, mechanism of	
halogenation, nitration of benzene:	
3.1.4 Directing effects of the substituents/groups on	
electrophilic aromatic substitution, reactions of	
mono substituted benzene derivatives (-CH ₃ , -NH ₂ , -	
OH, NO ₂ , ⁻ X)	
3.1.5Nucleophilic aromatic substitution of Aryl	
halides (replacement by –OH group and effect of	
	 of benzene structure (historical background), Hückel's rule, anti-aromaticity, aromatic character of arenes. 3.1.2Aromaticity: cyclic carbocations/carbanions and heterocyclic compounds with suitable examples, aromaticity and acidity, relative stabilities. 3.1.3 Electrophilic aromatic substitution: sulphonation and Friedel-Craft alkylation/acylation and mechanisms for the same, mechanism of halogenation, nitration of benzene: 3.1.4 Directing effects of the substituents/groups on electrophilic aromatic substitution, reactions of mono substituted benzene derivatives (-CH₃,-NH₂,- OH, NO₂, X)

Course Code-RUSCHE202 <u>Course Title : CHEMISTRY-II</u> Academic year 2020-21


Course Outcomes:

After stu	Idying this course, the learner will be able to:
CO 1	Compare the properties of main group elements in the respective groups.
CO 2	Understand Concept of metallic and non metallic character with respect to electro positivity.
CO 3	Know the methods of preparation of the compounds which are commercially available along with their properties and uses.
CO 4	Understand different types of oxides and oxyacid's of Sulphur, nitrogen - their sources and reactions
CO 5	Balance redox reactions using oxidation number method and ion electron method.
CO 6	Calculate equivalent weight of oxidizing and reducing agents.
CO 7	Identify health hazards, environmental implications and remedial measures of oxides of carbon, nitrogen and Sulphur.
CO 8	Identify and signify the basic terms used in thermodynamics.
CO 9	Apply laws of thermodynamics to various systems.
CO 10	Derive an expression for first law of thermodynamics for different processes.
CO 11	Assess thermodynamic application using enthalpy, entropy and free energy.

DETAILED SYLLABUS

RUSCHE202		CHEMISTRY-II	Credits-02
Unit		Unit Title	Lectures
	Ι	Concept of Qualitative Analysis and Acid-Base	(15L)
		Theories:	
		1.1 Concept of Qualitative Analysis	(09L)
		1.1.1 Macro, Semi-Micro, Micro, Ultra Micro,)
		Trace Analysis	
		1.1.2 Reactions involving liberation of gases, Use of	
		Papers impregnated with Reagents in qualitative	
		analysis (With reference to papers impregnated with	
		starch-iodide, potassium dichromate, lead acetate,	
		dimethyl glyoxime, and oxine reagents) (balanced	
		Chemical Reactions expected).	
		1.1.3 Precipitation equilibria: Factors affecting the	
		solubility of an ionic compound viz. common ions,	
		uncommon ions, temperature, nature of the solvent,	
		pH, complexing agents (Balanced Chemical	
		Equations and Numerical Problems Expected)	
		1.2 Acid-Base Theories	(06L)
		1.2.1 Arrhenius; Lowry-Bronsted concept ;	
	5	Classification of solvents, auto dissociation of	
		amphiprotic solvents, Lewis concept ; Usanovich	
		concept	
		1.2.2 Hard and Soft Acids and Bases-HSAB (with	
		respect to occurrence and feasibility of chemical	
		reaction);.	

energy forms, heat engines, mechanical efficiency of a heat engine, Carnot's cycle, Carnot's theorem, Introduction to entropy, second law of thermodynamics, different statements of second law, entropy changes in a reversible and an irreversible process, combined statement of first and second law ,entropy changes for different physical processes. 3.6 Spontaneous processes, need for prediction of a spontaneous process, Free energy, Gibbs free energy and Helmholtz free energy, changes in Gibbs and Helmholtz's free energy and inter relation between them, criteria for spontaneity of a process. (Numericals are expected)

Semester-II Chemistry Practicals

RUSCHEP201	Credits: 2
CHE	CMISTRY-I
	1. Characterization of organic compound containing C, H, (O), N, S
	and X
	(Minimum of 6 compounds)
	Chemical synthesis (one step)
	a) Preparation of Iodoformderivative of methyl ketone.
	b) Preparation of acetylderivative of primary amine.
	c) Preparation of 2,4-DNPderivative of carbonyl compound.
CHE	CMISTRY-II:
1	. Qualitative analysis: (at least 5 mixtures to be analyzed)
	Semi-micro inorganic qualitative analysis of a sample containing two
	cations and two anions.
	Cations (from amongst):
	Pb ²⁺ , Ba ²⁺ , Ca ²⁺ , Sr ²⁺ , Cu ²⁺ , Cd ²⁺ , Fe ²⁺ , Ni ²⁺ , Mn ²⁺ , Mg ²⁺ , Al ³⁺ , Cr ³⁺ ,
	K^+, NH_4^+
	Anions (From amongst):
	CO ₃ ²⁻ , NO ₂ ⁻ , NO ₃ ^{-,} Cl ⁻ , Br ⁻ , I ⁻ , SO ₄ ²⁻ ,
	(The Qualitative analysis should not involve use of H ₂ S in any form)
2	. To determine the valence factor of KMnO ₄ by titrating with oxalic
	acid.
	. To determine the acid-neutralizing power of commercially available
	antacid formulation.

Reference Books:

Organic Chemistry

- 1. Morrison, R. T. and Boyd, R. N. Organic Chemistry, Dorling Kindersley (India) Pvt Ltd. (Pearson Education)
- 2. Stereochemistry, P. S. Kalsi, New Age International Publishers.
- 3. Paula Y. Bruice, Organic Chemistry, Pearson Education.
- 4. McMurry, J.E. Fundamentals of Organic Chemistry, 7th Ed. Cengage Course India Edition.
- 5. Organic reactions and their mechanism, P.S. Kalsi, New Age International Publishers.
- 6. Vogel, A.I., Tatchell, A.R., Furnis, B.S., Hannaford, A.J. & Smith, P.W.G., Textbook of Practical Organic Chemistry, Prentice-Hall.

Physical Chemistry

- 1. The Elements of Physical Chemistry, P.W. Atkins, Oxford University Press, Oxford.
- Khosla B.D., Garg V.C. and Gulati A., Senior Practical Physical Chemistry, R. Chand and Co., New Delhi (2011).
- 3. Athawale V.D. and Mathur P., Experimental Physical Chemistry, New Age International, New Delhi (2001).
- Principles of Physical Chemistry. By Maron and Pruton 4th Ed. Oxford and IBH publication.
- 5. Physical Chemistry, G.M. Barrow, Tata McGraw Hill Publishing Co.Ltd. New Delhi.
- 6. An Introduction to the Liquid State by P.A. Egelstaff, Publisher OUP Oxford

Inorganic Chemistry

- 1. Mendham, J., A. I. Vogel's *Quantitative Chemical Analysis* 6thEd., Pearson, 2009.
- 2. Lee, J.D. Concise Inorganic Chemistry ELBS, 1991.

3. Douglas, B.E. and McDaniel, D.H. Concepts & Models of Inorganic Chemistry Oxford, 1970

Modality of Assessment

Theory Examination Pattern:

A) Internal Assessment - 40% (40 Marks)

Sr No	Evaluation Type		Marks
1	Assignment		15
2	Class Test (MCQ / Objectives)		20
3	Active Participation in Class (Seminars/Presentations)	5	05
	Total		40

C) External Examination : 60 % (60 marks) Semester End Theory Examination :

- 1. Duration These examinations shall be of **two hours** duration.
- 2. Theory question paper pattern :-There shall be **three** questions each of **20** marks. On each unit there will be one question. All questions shall be compulsory with internal choice within the questions.

Questions	Options	Marks	Questions based on
Q.1)	Any 5 out of 7	20	Unit I
		•••	
Q.2)	Any 5 out of 7	20	Unit II
Q.3)	Any 5 out of 7	20	
			Unit III
	Total	60	

Practical Examination Pattern:

(A) Internal Examination:- 40 % (20 Marks)

Particulars	Paper I	Paper II
Journal	05	05
Experimental Work	10	10
Participation	05	05
Total	20	20

B) External Examination : 60 % (30 Marks)

Semester End Practical Examination:

Particulars	Paper I	Paper II
Laboratory Work	25	25
Viva	05	05
Total	30	30

PRACTICAL BOOK/JOURNAL

- The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.
- In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Co-ordinator / In-charge of the department ; failing which the student will not be allowed to appear for the practical examination.

Course		201		2	202		Grand Total
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practicals	20	30	50	20	30	50	100

Overall Examination and Marks Distribution Pattern:

(Total Marks: 300)

Resolution Number : AC/II(20-21).2.RUS5

S.P. Mandali's

Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for S.Y.B.Sc. Semester III & IV Program: B.Sc. (Chemistry) Program Code : RUSCHE

(Credit Based Semester and Grading System with effect from the academic year 2020-21)

Semester III Course Code: RUSCHE301 Course Title : CHEMISTRY-I Academic Year 2020-21

Course Outcomes :

After stu	udying the course, the learner will be able to:
CO 1	Understand significance of Gibb's and Helmholtz Free Energy and its applications.
CO 2	Apply Clapeyron equation to various phase transitions.
CO 3	Derive van't Hoff's Reaction Isochore and Isotherm.
CO 4	Derive various Maxwell relations.
CO 5	Give relationship between conductance, specific conductance, equivalent conductance and molar conductance.
CO 6	Describe the concept of Transport Number.
CO 7	Know the applications and Limitations of Valence Bond Theory
CO 8	Predict geometry of molecules based on Hybridization.
CO 9	Determine Bond Order, bond energy and magnetic behaviour of the compound based
	on Molecular Orbital Theory.

DETAILED SYLLABUS

RUSCHE301		CHEMISTRY-I	Credits-02
	Unit	Unit Title	Lectures
	Ι	Chemical Thermodynamics-II	(15L)
	0	1.1. Recapitulation.	
		1.2. Variation of Gibb's free energy with	
20		Pressure and Temperature, Gibbs-Helmholtz	
		equation.	
		1.3.Thermodynamics of open systems: partial	
0.		molal properties, chemical potential and its	

	variation with pressure and temperature,	(
	Gibb's Duhem equation.	
	1.4. Clapeyron equation and its application to	U
	phases in equilibria. Clausius- Clapeyron	
	equation and its application to Liquid-	
	Vapour equilibrium.	
	1.5. Concept of fugacity and activity	
	1.6. van't Hoff reaction isotherm and van't Hoff	
	reaction isochore.	
	1.7. Maxwell's relations.	
II	Electrochemistry-I: (15L)	
	Electrolytic Conductance And Transport Number	
	2.1 Electronic and electrolytic Conductors:	
	Conductance, cell constant, specific	
	conductance, equivalent conductance and	
	molar conductance and their relationships.	
	Variation of Molar conductance with	
	concentration, for weak and strong	
	electrolytes. Concept of limiting molar	
	conductance. (Numericals are expected).	
	2.2 Debye-Huckel theory for strong electrolytes:	
	1) Relaxation effect 2) Electrophoretic effect.	
	2.2 Kohlrausch's law of independent migration	
	of ions. Limiting molar conductances for	
	ions, determination of limiting molar	
	conductance for weak electrolytes.	
	2.3 Measurement of conductance and	
	determination of cell constant.	
	2.4 Applications of conductance measurements:	
	1) Determination of degree of dissociation	

	 and dissociation constant of weak electrolyte. 2) Determination of solubility and solubility product of sparingly soluble salts. 2.5 Transport number, relation between transport number and velocity of ions. Factors affecting transport number. 2.6 Hittorf's Rule and experimental determination of transport number using Hittorf's method 2.7 Experimental determination of transport number by moving boundary method. (Numericals are expected). 2.8 Absolute ionic mobility, relation between transport number, absolute ionic mobility and limiting molar conductance of ion. 	
III	Chemical Bonding	(15L)
	3.1. Valence Bond Theory	(07L)
	3.1.1. Valence bond theory: postulates of VBT, need for hybridisation, Orbitals involved in hybridisation sp , sp^2 , sp^3 , dsp , $^2 sp^3 d$, and $sp^3 d^{-2}$, sd), energetics of hybridisation, interaction between two hydrogen atoms and their Potential energy diagram, Bond energy of hydrogen molecule (experimental value), Theoretical improvements in bond energy of hydrogen molecule,	

3.1.2. Concept of resonance and Formal Charge; rules for resonance or canonical structures with examples.		
3.2 Molecular Orbital Theory	(08L)	
 3.2 Molecular Orbital Theory 3.2.1. Concept of orbital overlaps, types of orbital overlaps (s-s,s-p,p-p) 3.2.2. Linear combination of atomic orbitals to form molecular orbitals (LCAO-MO approach). 3.2.3. Application of MOT to Homonuclear diatomic molecules from He₂ molecule and for all the elements of second period, heteronuclear diatomic molecules (HCl, NO) 3.2.4 Molecular orbital Theory and determination of Bond Order and magnetic behaviour for 	(08L)	
$O_2, O_2^+ O_2^-, O_2^{-2-}$ (Problems are expected wherever applicable)		

Course Code: RUSCHE302 <u>Course Title : CHEMISTRY-II</u> Academic year 2020-21.

Course Outcomes:

After s	tudying the course, the learner will be able to:
CO 1	Know the reactions of halogenated hydrocarbons.
CO 2	Assign Nomenclature to organometallic compounds, alcohols, phenols and epoxides.
CO 3	Compare the acidic strengths of alcohols and phenols.
CO 4	Write mechanisms of condensation reactions.
CO 5	Know the use of active methylene compounds in organic synthesis.
CO 6	Understand the concept of electron deficient compounds and its correlation with Lewis acidity.
CO 7	Draw the structure and bonding involved in diborane and tetraborane.
CO 8	Comprehend the chemistry of Silicon and its compounds.

RUSCHE302		CHEMISTRY-II	Credits-02
	Unit	Unit Title	Lectures
	Ι	Organic Chemistry – I	(15L)
	5	1.1. Reactivity and reactions of halogenated	(04L)
	\sim	hydrocarbons:	
		1.1.1. Alkyl halides: Nucleophilic substitution	
		reactions: S_N^{-1} , S_N^{-2} and S_N^{-1} mechanisms with	
		stereochemical aspects, factors affecting	
		nucleophilic substitution reactions: nature of	
		substrate, solvent, nucleophile and leaving group.	
		1.1.2. Aryl halides: Reactivity of aryl halides	
		towards nucleophilic substitution reactions.	

Nucleophilic aromatic substitution (S _N Ar),	
addition-elimination and benzyne mechanism.	
1.2 Organomagnesium and Organolithium	(03L)
compounds:	
Type, Nomenclature. Nature, and reactivity of	
carbon-metal bond. Method of preparation using	\mathbf{O}
alkyl/aryl halide. Structure, stability and reactions	
of these compounds with compounds containing,	
acidic hydrogen, carbonyl, cyanides group,	
epoxides and CO ₂ .	
1.3.Alcohols, phenols and epoxides:	(08L)
1.3.1. Alcohols: Nomenclature, Methods of	
Preparation:	
1. Hydration of alkenes 2.Hydrolysis of alkyl	
halides 3. Reduction of aldehydes and ketones 4.	
Using Grignard reagent.	
Properties: Hydrogen bonding, effect of hydrogen	
bonding on properties. Acidity of alcohols,	
Reactions of alcohols	
1.3.2. Phenols: methods of preparation, physical	
properties and acidic character, comparative acidic	
strengths of alcohols and phenols, resonance	
stabilization of phenoxide ion, reactions of	
phenols.	
1.3.3. Epoxides: Nomenclature, methods of	
preparation and reactivity of epoxides, reactions of	
epoxides, ring opening reactions by nucleophiles,	
acid hydrolysis, reaction with halogen halide,	
alcohol, hydrogen cyanide. Reactions with	
ammonia, amines, Grignard reagents, alkoxides.	

II	Organic Chemistry II:	(15L)
	Chemistry of Carbonyl Compounds	
	2.1 Carbonyl Compounds:	
	Nomenclature of aliphatic, alicyclic and aromatic	
	carbonyl compounds, structure, reactivity of	
	aldehydes and ketones .	
	methods of preparation: oxidation of primary and	
	secondary alcohols using PCC, hydration of	
	alkynes, action of Grignard reagent on esters,	
	Rosenmund reduction, Gattermann – Koch	
	formylation and Friedel Craft acylation of arenes.	
	2.2 Mechanism of nucleophilic addition, and acid	
	catalyzed nucleophilic addition reactions.	
	2.3 Reactions of aldehydes and ketones with	
	NaHSO ₃ , HCN, RMgX, alcohol, amine, phenyl	
	hydrazine, 2,4-Dinitrophenyl hydrazine, LiAlH ₄	
	and NaBH _{4.}	
	2.4 Mechanism of the following reactions:	
	Benzoin condensation, Knoevenagel	
	condensation, Claisen-Schmidt and Cannizzaro	
	reaction.	
	2.5 Keto-enol tautomerism: mechanism of acid	
s 0-	and base catalysed enolization	
	2.6 Compounds with active methylene:	
~0.	Acetylacetone, ethyl acetoacetate diethyl	
	malonate, stabilised enols.	
	Reactions of Acetylacetone and ethyl	
	acetoacetate: alkylation, conversion to ketone,	
	mono- and dicarboxylic acid.	

& 14) 3.1 Chemistry of Group 13 elements 3.1.1 Electronic configuration, Trends in metallic characters: Oxidation states and Inert pair effect. 3.1.2 Electron deficient compounds – BH ₃ , BF ₃ , BCl ₃ with respect to Lewis acidity and applications. 3.1.3 Preparation of simple boranes like diborane and tetraborane. 3.1.4 Structure and bonding in diborane and tetraborane (2e-3c bonds) 3.1.5 Borazine – Preparation, properties, Structure and bonding. 3.2 Chemistry of Group 14 elements 3.2.1 Electronic configuration, Trends in metallic characters: Oxidation states and Inert pair effect. 3.2.1 Silica; Occurrence, Structure and inertness.
 3.1.1 Electronic configuration, Trends in metallic characters: Oxidation states and Inert pair effect. 3.1.2 Electron deficient compounds – BH₃, BF₃, BCl₃ with respect to Lewis acidity and applications. 3.1.3 Preparation of simple boranes like diborane and tetraborane. 3.1.4 Structure and bonding in diborane and tetraborane (2e-3c bonds) 3.1.5 Borazine – Preparation, properties, Structure and bonding. 3.2 Chemistry of Group 14 elements 3.2.1 Electronic configuration, Trends in metallic characters: Oxidation states and Inert pair effect.
 characters: Oxidation states and Inert pair effect. 3.1.2 Electron deficient compounds – BH₃, BF₃, BCl₃ with respect to Lewis acidity and applications. 3.1.3 Preparation of simple boranes like diborane and tetraborane. 3.1.4 Structure and bonding in diborane and tetraborane (2e-3c bonds) 3.1.5 Borazine – Preparation, properties, Structure and bonding. 3.2 Chemistry of Group 14 elements 3.2.1 Electronic configuration, Trends in metallic characters: Oxidation states and Inert pair effect.
 3.1.2 Electron deficient compounds – BH₃, BF₃, BCl₃ with respect to Lewis acidity and applications. 3.1.3 Preparation of simple boranes like diborane and tetraborane. 3.1.4 Structure and bonding in diborane and tetraborane (2e-3c bonds) 3.1.5 Borazine – Preparation, properties, Structure and bonding. 3.2 Chemistry of Group 14 elements 3.2.1 Electronic configuration, Trends in metallic characters: Oxidation states and Inert pair effect.
 BCl₃ with respect to Lewis acidity and applications. 3.1.3 Preparation of simple boranes like diborane and tetraborane. 3.1.4 Structure and bonding in diborane and tetraborane (2e-3c bonds) 3.1.5 Borazine – Preparation, properties, Structure and bonding. 3.2 Chemistry of Group 14 elements 3.2.1 Electronic configuration, Trends in metallic characters: Oxidation states and Inert pair effect.
 applications. 3.1.3 Preparation of simple boranes like diborane and tetraborane. 3.1.4 Structure and bonding in diborane and tetraborane (2e-3c bonds) 3.1.5 Borazine – Preparation, properties, Structure and bonding. 3.2 Chemistry of Group 14 elements 3.2.1 Electronic configuration, Trends in metallic characters: Oxidation states and Inert pair effect.
 3.1.3 Preparation of simple boranes like diborane and tetraborane. 3.1.4 Structure and bonding in diborane and tetraborane (2e-3c bonds) 3.1.5 Borazine – Preparation, properties, Structure and bonding. 3.2 Chemistry of Group 14 elements 3.2.1 Electronic configuration, Trends in metallic characters: Oxidation states and Inert pair effect.
 and tetraborane. 3.1.4 Structure and bonding in diborane and tetraborane (2e-3c bonds) 3.1.5 Borazine – Preparation, properties, Structure and bonding. 3.2 Chemistry of Group 14 elements 3.2.1 Electronic configuration, Trends in metallic characters: Oxidation states and Inert pair effect.
 3.1.4 Structure and bonding in diborane and tetraborane (2e-3c bonds) 3.1.5 Borazine – Preparation, properties, Structure and bonding. 3.2 Chemistry of Group 14 elements 3.2.1 Electronic configuration, Trends in metallic characters: Oxidation states and Inert pair effect.
 tetraborane (2e-3c bonds) 3.1.5 Borazine – Preparation, properties, Structure and bonding. 3.2 Chemistry of Group 14 elements 3.2.1 Electronic configuration, Trends in metallic characters: Oxidation states and Inert pair effect.
 3.1.5 Borazine – Preparation, properties, Structure and bonding. 3.2 Chemistry of Group 14 elements 3.2.1 Electronic configuration, Trends in metallic characters: Oxidation states and Inert pair effect.
and bonding. 3.2 Chemistry of Group 14 elements 3.2.1 Electronic configuration, Trends in metallic characters: Oxidation states and Inert pair effect.
3.2 Chemistry of Group 14 elements 3.2.1 Electronic configuration, Trends in metallic characters: Oxidation states and Inert pair effect.
3.2.1 Electronic configuration, Trends in metallic characters: Oxidation states and Inert pair effect.
characters: Oxidation states and Inert pair effect.
3.2.1 Silica: Occurrence. Structure and inertness.
3.2.2 Methods of preparation of $SiCl_4$ and its
structure.
3.2.3 Preparation of extra pure Silicon – Zone
refining and Single Crystal method
3.2.4 Silicones – Preparation, classification,
properties and uses.

Course Code: RUSCHE303 <u>Course Title : CHEMISTRY-III</u> Academic year 2020-21

Course Outcomes:

After stu	dying this course, the learner will be able to:
CO 1	Elaborate on the scope and importance of Analytical Chemistry.
CO 2	Describe and compare a range of classical and instrumental methods and will be
	able to explain their underlying theoretical principles.
CO 3	Enlist the advantages/disadvantages of classical & instrumental methods of analysis.
CO 4	Outline the steps involved in the analysis of a sample.
CO 5	Choose an appropriate analytical method to prepare, separate and quantify samples
	from various matrices.
CO 6	Classify different errors according to their sources
CO 7	Determine the different kinds of errors involved in chemical analysis.
CO 8	Suggest methods that can be adopted to minimize the different types of errors.
CO 9	Apply the scientific process, including statistical treatment of data, in the conduct
	and reporting of chemical analysis.
CO 10	Discuss the factors affecting the solubility of a precipitate.
CO 11	Enumerate the different steps involved in a precipitation gravimetry.
CO 12	Explain the effect of various experimental factors on the particle size of the
	precipitate.
CO 13	Define the various terms involved in titrimetric analysis.
CO 14	Explain the theory of acid-base indicators and choose a suitable indicator for a
	particular acid-base titration.
CO 15	Relate some of the properties of the water to its chemical makeup.
CO 16	Describe the composition of ground water.

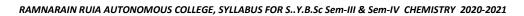
RUSCHE303		CHEMISTRY-III	Credits-02
	Unit	Unit Title	Lectures
	Ι	Introduction to analytical chemistry	(15L)
		1.1 Scope and importance of analytical	
		chemistry, difference between analytical	
		chemistry and chemical analysis, qualitative and	
		quantitative analysis, steps involved in analytical	
		chemistry, types of analysis on the basis of	
		sample size and the components estimated.	
		Factors for choosing a method.	
		1.2 Classification of analytical methods, classical	
		and instrumental, subdivision of classical and	
		instrumental methods with the emphasis on the	
		property measured, devices used and the nature	
		of analysis.	
		1.3 Steps involved in chemical analysis from	
		sampling to presentation of results and the	
		conclusions.	
		1.4 Performance characteristics of an analytical	
		method- qualitative and quantitative: LOD,	
•	\sim	LOQ, dynamic range, working range, sensitivity,	
		selectivity.	
		1.5 Quantitative analysis using calibration curve	
		method, standard addition method and internal	
20		standard method	
\sim		1.6 LR and AR grade chemicals, MSDS of	
		chemicals, glassware and its categories,	

		calibration of volumetric glassware, burettes,		
		pipettes and volumetric flasks.		
		1.7 Measurement, errors involved in the		
		measurement, propagation of errors, random,		r
		gross and determinate errors, classification of	$c O^{2}$	
		determinate errors, instrumental, methodic,		
		operational personal errors, minimization of		
		errors.	7	
		1.8 Accuracy and precision, measures of	•	
		accuracy: absolute error and relative error,		
		constant error and proportionate error, measures		
		of central tendency and dispersion: mean, mode,		
		median, deviation, absolute, relative, average,		
		standard deviation, range, review of data with		
		respect to accuracy and precision. (Numericals		
		are expected).		
	II	Classical methods of analysis	(15L)	
		2.1 Gravimetric analysis:	(07L)	
		2.1.1 Introduction to gravimetric analysis, types		
		of gravimetric analysis, conditions for a reaction		
		to be used in gravimetric analysis, solubility and		
		solubility product, factors affecting solubility:		
	\sim	temperature, common and diverse ion effect, pH,		
5		nature of the solvent, complexation.		
		2.1.2 Unit operations in gravimetric analysis,		
		precipitation, homogenous and heterogeneous		
		precipitation, relative super saturation,		
\mathcal{C}_{P}		nucleation and crystal growth, their effect on		
		nucleation and crystal growth, their effect on particle size, Ostwald's ripening, impurities		

	washing of the precipitate, drying and incineration, use of thermal methods.	R
	2.2 Titrimetric analysis	(08L)
	2.2.1 Introduction to titrimetric analysis,	
	conditions for a reaction to be used in titrimetric	
	analysis, terms involved: titrant, titrand,	(\mathbf{V})
	indicator, equivalence point, endpoint, titration	
	error, types of titrations.	
	2.2.2 Acid –base titrations	
	2.2.2.1 Acid base indicators, theory of acid base	
	indicators, conditions for choosing an indicator.	
	2.2.2.2 Types of acid base titrations, titration	
	curves.	
	2.2.2.3 Construction of the titration curves and	
	the choosing of the indicator for	
	A) strong acid –strong base	
	B) strong acid –weak base	
	C) weak acid – strong base	
	D) weak acid –weak base	
	2.2.4 Titration of dibasic acid with a strong base,	
	condition for obtaining two separate equivalence	
	points, qualitative description of the titration	
	curve, determination of the dissociation constant.	
2	2.2.4 Titration of phosphoric acid with a strong	
	base.	
Ш	Environmental Chemistry	(15L)
Y		

3.1 Chemistry of water		
3.1.1 Water as a natural resource : Physical and		
Chemical properties of water, significance of)
water as an universal solvent and its properties		
viz. pH , Dielectric constant ,boiling point.		
Anomalous behaviour of water.		
3.1.2 Hydrological cycle. chemical composition		
of ground water.	5	
3.1.3 Factors affecting solubility of gases in		
water . Solubility of CO ₂ and O ₂ in water		
3.1.4 Water quality : Parameters for determining		
water quality i) Physical parameters: - pH, pE,		
conductivity, TS, TSS, TDS ii) Chemical		
Parameters- acidity, alkalinity, hardness, salinity		
, chlorine demand , DO, COD, iii) Biological		
parameter – BOD, MPN		
3.1.5 Standards for Potable and industrial water.		

Ramnarain



Semester-III Practical Credits: 3

	Credits: 3
RUSCHEP301	CHEMISTRY-I
	1. To study the kinetics of the reaction between $K_2S_2O_8$ and KI for equal concentration.
	2. To determine conductance, specific conductance and molar conductance for giver
	electrolyte solution.
	3. To determine degree of dissociation and dissociation constant of weak electrolyte and
	hence to verity Ostwald's dilution law.
	4. To determine solubility of a sparingly soluble salt conductometrically.
	5. To determine the amount of strong acid in the given solution by conductometric
	titration.
	6. To determine the amount of strong acid in the given solution by pH-metric titration.
RUSCHEP302	CHEMISTRY-II
	Qualitative determination of anion and molecular composition of the salts such as coppe
	sulphate pentahydrate, nickel chloride hexahydrate, anhydrous cupric chloride using
	volumetric methods. (Learners will prepare EDTA solution).
	Minimum four salt samples will be given to every student.
	Organic preparation and their purification: Use 0.5-1.0g of the organic compound.
	Purify the product by recrystallization. Report theoretical yield, percentage yield and
	melting point of the purified product.
	Preparation of:
	1. Cyclohexanoneoxime from cyclohexanone.
	2. Tribromoaniline from aniline.
0	3. m-Dinitrobenzene from nitrobenzene
	4. Phthalic anhydride from phthalic acid by sublimation
	5. Preparation of 5-nitrosalicylic acid from salicylic acid.
	6.Benzoic acid from benzamide.
	7. Magneson – II from p-nitroaniline
RUSCHEP303	CHEMISTRY-III

1. Gravimetric estimation of Nickel (II) as Ni-DMG.
2. Gravimetric estimation of barium ions as BaSO ₄ .
3. To carry out the calibration ofpipette and burette.
4. To determine hardness of given water sample.
5. To determine Dissolved Oxygen of the given water sample.
6. To determine the COD of water sample.

Modality of Assessment

Theory Examination Pattern:

A) Internal Assessment - 40% (40 Marks)

Sr No	Evaluation Type	Marks
1	Assignment	15
2	Class Test (MCQ / Objectives)	20
3	Active Participation in Class (Case studies/Seminars/Presentations)	05
	Total	40

B) External Examination : 60 % (60 marks) Semester End Theory Examination :

- 1. Duration These examinations shall be of **two hours** duration.
- Theory question paper pattern : There shall be three questions each of 20 marks. On each unit there will be one question.
 All questions shall be compulsory with internal choice within the questions.

Questions	Options	Marks	Questions based on
Q.1)	Any 5 out of 7	20	Unit I
Q.2)	Any 5 out of 7	20	Unit II
Q.3)	Any 5 out of 7	20	Unit III
.0	Total	60	

Practical Examination Pattern:

(A) Internal Examination: - 40 % (20 Marks)

Particulars	Paper I	Paper II	Paper-III
Journal	05	05	05
Experimental Work	10	10	10
Participation	05	05	05
Total	20	20	20

(B) External Examination : 60 % (30 Marks)

Semester End Practical Examination:

Particulars	Paper I	Paper II	Paper II
Laboratory Work	25	25	25
Viva	05	05	05
Total	30	30	30

PRACTICAL BOOK/JOURNAL

- The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.
- In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Co-ordinator / In-charge of the department ; failing which the student will not be allowed to appear for the practical examination.

Course		301			302			303		Grand Total
	Internal	External	Total	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	40	60	100	300
Practicals	20	30	50	20	30	50	20	30	50	150

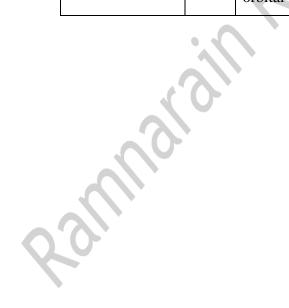
Overall Examination and Marks Distribution Pattern:

(Total: 450 marks)

Semester IV Course Code: RUSCHE401 <u>Course Title : CHEMISTRY-I</u> Academic year 2020-21

Course Outcomes :

After stud	lying the course, the learner will be able to:
CO 1	Apply the concepts of Gibbs' and Helmholtz Free Energy to EMF measurements.
CO 2	Understand the significance of Gibbs' and Helmholtz Free Energy and its
	applications to EMF measurements.
CO 3	Describe the types of Electrodes and Electrochemical Cells
CO 4	Derive Nernst Equation and can give its applications.
CO 5	Calculate the pH for strong and weak electrolytes and Buffer Action.
CO 6	Classify solutions on the basis of intermolecular forces.
CO 7	Determine molecular weight of a component in a given mixture by steam
	distillation.
CO 8	Apply phase rule to One-Component and Two-Component systems.
CO 9	Comprehend various Properties of Transition Metals.
CO 10	Define basic Terms involved in Co-ordination chemistry.
CO 11	Apply Werner's Theory to understand the model of co-ordination compounds.
CO 12	Know the significance of co-ordination compounds.
CO 13	Describe the nature of the Metal-Ligand Bond.


		DETAILED SYLLABUS	
RUSCHE401		CHEMISTRY-I	Credits-02
	Unit	Unit Title	Lectures
	Ι	Electrochemistry II and Concept of pH and	(15L)
		Buffers	V
		1.1.Electromotive Force of Galvanic Cells	(10L)
		1.1.1 Electrochemical cells, galvanic cells,	
		reversible cells and reversible electrodes,	
		conventions to represent Galvanic cells.	
		1.1.2 Types of electrodes, standard electrode	
		potential, electrochemical series.	
		1.1.3 Cell potential and standard cell potential.	
		1.1.4 Nernst equation and its importance.	
		1.1.5 Calculation of thermodynamic parameters:	
		ΔG , ΔH , ΔS and equilibrium constant from	
		EMF data.	
		1.1.6 Classification of galvanic cells: chemical	
		cells and concentration cells	
		1.1.7 Determination of pH using glass electrode	
		and quinhydrone electrode.	
		1.2 pH and Buffers	(05 L)
		1.2.1 pH concept, calculation of pH for strong and	
.9		weak electrolytes	
		1.2.2 Buffer, Henderson's equation for acidic and	
		basic buffer	
		1.2.3 Buffer Capacity.	
		(Numericals are expected).	
	II	Solutions of Liquid in Liquid and Phase	(15L)

	2.1 Solutions of Liquid In Liquid	(08 L)
	2.1.1 Thermodynamics of ideal solutions: ideal	
	solutions and Raoult's law, deviations from	
	Raoult's law.	
	2.1.2Vapour pressure-composition and	
	temperature –composition curves of ideal and non-	
	ideal solutions. Distillation of liquids forming	
	ideal and non-ideal solution, Azeotropes, steam)
	distillation.	
	2.1.3 Partially miscible liquids: critical solution	
	temperature; systems with upper critical solution	
	temperature, lower critical solution temperature	
	and having both.	
	2.1.4 Nernst distribution law and its applications	
	to solvent extraction	
	2.2 Phase Equilibria	(07L)
	2.2.1 Terms involved: Phases, components and	
	degrees of freedom. Gibbs Phase Rule.	
	2.2.2 Phase diagrams of one-component systems	
	(water, CO_2 and sulphur).	
	2.2.3 Two component systems involving	
	eutectic (lead-silver system)	
Ш	Comparative Chemistry of transition metals and	(15L)
	Co-Ordination Chemistry	
	3.1: Chemistry of Transition Metals	(06 L)
	3.1.1 Position in the periodic table, electronic	
	configuration.	
$\mathcal{O}_{\mathcal{V}}$	3.1.2 Significance of special stability of d^0 , d^5 and	
	d ¹⁰ configurations, Variable oxidation states and	
	their stabilities in aqueous solutions; ability to form	

complexes, colour, magnetic property, catalytic	
property.	
3.2 Coordination Chemistry:	(05 L)
3.2.1 Historical perspectives;	
3.2.2 Molecular compounds – Double salts and	
Complex salts	
3.2.3 Werner's theory	
3.2.4 Basic terms viz complex ion, charge on the	D
complex, ligands, coordination number, oxidation	
state, & Nomenclature	
3.2.5 Sidgwick – Powel Theory of coordination	
compounds; Effective atomic number rule.	
3.2.6 Stereoisomerism and optical isomerism of	·
coordination compounds (C.N.= 4 and 6).	
3.2.7 Evidence for the formation of coordination	
compounds.	
3.2.8 Application of coordination compounds.	
3.3. Nature of the Metal-Ligand Bond:	(04L)
3.3.1 Application of VBT to complexes with	
coordination number 4, 5 & 6, Inner and outer	
orbital complexes.	

Course Code: RUSCHE402 <u>Course Title : CHEMISTRY-II</u> Academic year 2020-21.

Course Outcomes:

After s	tudying this course, the learner will be able to:
CO 1	Write reactions of Carboxylic and sulphonic acids and their derivatives
CO 2	Assign Nomenclature and explain the nature, type and reactivity of Amines and
	Diazonium Compounds
CO 3	Write reactions for the preparation of given heterocyclic Compounds.
CO 4	Classify Organometallic compounds and illustrate their catalytic applications.
CO 5	Comprehend the chemistry of metal carbonyls.

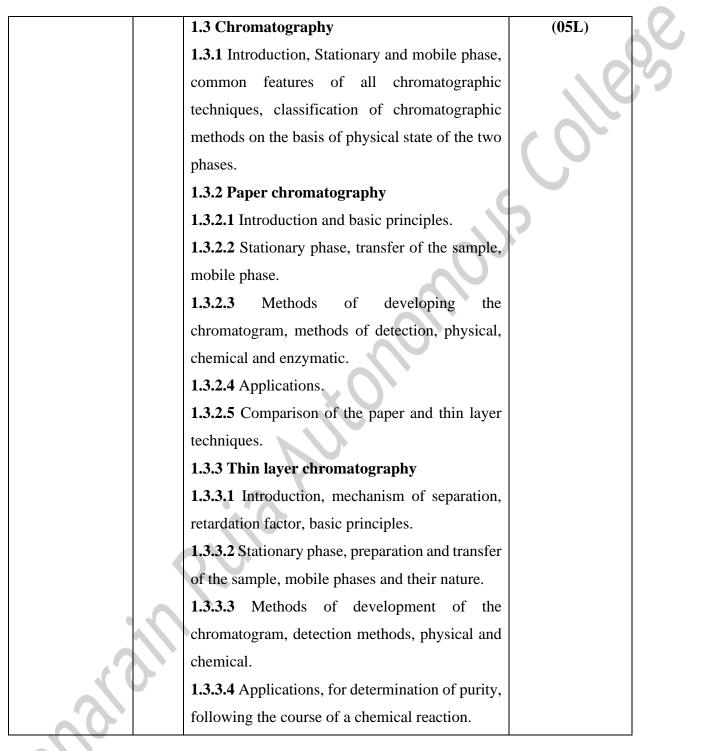
RUSCHE402		CHEMISTRY-II	Credits-02
	Unit	Unit Title	Lectures
	Ι	Chemistry of Carboxylic and Sulphonic Acids	(15L)
		 1.1Carboxylic Acids and their derivatives` 1.1.1. Nomenclature, structure and physical properties, acidity of carboxylic acids, effects of substituents on acid strength of aliphatic and aromatic carboxylic acids. 1.1.2. Preparation of carboxylic acids: oxidation of alcohols and alkyl benzene, carbonation of Grignard reagent and hydrolysis of nitriles. 1.1.3. Reactions: Acidity, salt formation, decarboxylation, reduction of carboxylic acids with LiAlH₄, diborane, Hell-Volhard-Zelinsky 	(11L)
0		reaction, conversion to acid chlorides, esters,	

	amides and acid anhydrides and their relative	
	reactivity.	
	1.1.4. Mechanism of nucleophilic acyl and acid-	
	catalysed nucleophilic acyl substitution.	
	Interconversion of acid derivatives by	
	nucleophilic acyl substitution.	
	1.1.5. Mechanism of Claisen condensation and	
	Dieckmann condensation.	
	1.2 Sulphonic acids:	(4L)
	1.2.1 Nomenclature, preparation of aromatic	
	sulphonic acids by sulphonation of benzene (with	
	mechanism), toluene and naphthalene.	
	1.2.2 Reactions: Acidity of arene sulfonic acid,	
	comparative acidity of carboxylic acid and	
	sulfonic acids reactions of arenesulphonic acid	
	such as salt formation, desulphonation ,	
	phosphorous pentachloride, ipso substitution.	
II	Chemistry of Amines and Heterocyclic	(15L)
	Chemistry	
	2.1Amines:	(4L)
	2.1.1.Nomenclature, effect of substituent on	
	basicity of aliphatic and aromatic amines.	
	2.1.2.Preparation: Reduction of aromatic nitro	
	compounds using catalytic hydrogenation,	
	chemical reduction using Fe-HCI, Sn-HCl, Zn-	
	acetic acid. Reduction of nitriles, ammonolysis of	
	halides, reductive amination, Hofmann	
	bromamide reaction.	
0	2.1.3.Reactions: salt Formation, N-acylation, N-	
	alkylation, Hofmann' exhaustive methylation	
P		

	 (HEM), Hofmann-elimination, carbylamine reaction, reaction with nitrous acid, Electrophilic substitution in aromatic amines: bromination, nitration and sulphonation. 2.2 Diazonium Salts: 2.2.1 Preparation: - Sandmeyer reaction, Gattermann reaction, Gomberg reaction. Reactions: Replacement of diazo group by -H,-OH. Azo coupling with phenols, naphthols and aromatic amines, reduction of diazonium salt to aryl hydrazine and hydroazobenzene. Synthetic application. 	
	2.3 Heterocyclic Compounds:2.3.1.Classification, nomenclature, electronic	(8L)
	structure, aromaticity in 5-numbered and 6-	
	membered rings containing one heteroatom.	
	2.3.2 Synthesis of Furan, Pyrrole (Paal-Knorr	
	synthesis, Knorr pyrrole synthesis, and Hantzsch	
	synthesis), Thiophene, Pyridine (Hantzsch	
	synthesis).	
	2.3.3. Reactivity of furan, pyrrole and thiophene	
	towards electrophilic substitution reactions on the	
	basis of stability of intermediate and of pyridine	
× 0	on the basis of electron distribution. Reactivity of	
	pyridine towards nucleophilic substitution on the	
0	basis of electron distribution.	
	2.3.4. Reactions of furan, pyrrole and thiophene:	
	halogenation, nitration, sulphonation, Vilsmeier-	
0	Haack reaction, Friedel-Crafts reaction. Furan:	
	Diels-Alder reaction, ring opening. Pyrrole:	

	Acidity and basicity of pyrrole. Comparison of	
	basicity of pyrrole and pyrrolidine.	
	2.3.5. Pyridine: Basicity. Comparison of basicity	
	of pyridine, pyrrole and piperidine. Reaction:	
	sulphonation (with and without catalyst),	cO
	Chichibabin reaction.	5
-	III Chemistry of Group 15 and Group 16 Elements	(15L)
	and Basics of Organometallic Chemistry	
-	3.1 Chemistry of Group 15 and 16 Elements	(08L)
	3.1.1 Trends in physical and chemical properties	
	of Group – 15 and Group – 16 Elements	
	3.1.2 Study of Compounds such as oxyacids of N	
	and S with respect to preparation, properties and	
	structure.	
	3.1.3 Physical properties of Hydrides of Group 15	
	and 16 Elements with respect to H- bonding.	
	3.2Organometallic Chemistry	(07L)
	3.1.1 Introduction, definition, classification based	
	on hapticity and nature of metal-carbon bond.	
	Eighteen electron rule and its applications,	
	exceptions	
	3.1.2 Importance and few applications of	
.9	organometallic compounds as catalysts (e.g.	
	Ziegler-Natta catalyst, Wilkinson), reagents	
	in organic synthesis etc.	
	3.1.3 Metal carbonyls: Bonding, general method	
$\langle \rangle$	of preparation and properties of Ni(CO)4,	
	Fe(CO) ₅ .	

~


Course Code: RUSCHE403 <u>Course Title : CHEMISTRY-III</u> Academic year 2020-21

Course Outcomes:

After com	pleting this course, the learner will be able to:
CO 1	Categorize the different types of separation methods under physical , chemical ,
	mechanical methods.
CO 2	Explain the basic principle of the solvent extraction and chromatography techniques.
CO 3	Define the terms partition coefficient & distribution ratio.
CO 4	Know the factors that affect extraction efficiency.
CO 5	Describe the different types of solvent extraction and will be able to enlist the
	advantages and limitation of each type.
CO 6	Illustrate the role of chelating agents in solvent extraction.
CO 7	Develop simple separation schemes and determine the optimal conditions for
	isolating and separating analyte, based on distribution ratios.
CO 8	Choose an appropriate mobile phase for the effective separation of different
	components present in a sample.
CO 9	Develop the chromatogram skilfully and will be able the apply the most suitable
	method for the detection of the resolved components.
CO 10	Apply the theoretical principles of chromatography learned to separate and quantify
	different components present in a sample.
CO 11	Explain the basic principle involved in quantitative analysis using UV-Vis
	spectroscopy.
CO 12	Derive the mathematical expression of Beer-Lambert's law.
CO 13	Describe the function of the different components of a colorimeter and
	spectrophotometer.
CO 14	Distinguish between colorimeters & spectrophotometers.
CO 15	Recognize the limitations of UV-Vis spectroscopy.
CO 16	Explain the basic principle involved in different types of conductometric titrations.
CO 17	Enlist the advantages and limitations of conductometric titrations.

RUSCHE403		CHEMISTRY-III	Credits-02
	Unit	Unit Title	Lectures
	Ι	Methods of Separation	(15L)
		1.1Separation Techniques in analytical	(04L)
		Chemistry	
		1.1.1 Introduction to separation Techniques	
		1.1.2 Separation and its importance in analytical	
		chemistry, estimation without separation.	
		1.1.3 Classification of separation methods	
		physical and chemical	
		1.1.4 Chemical methods, precipitation, complex	
		formation.	
		1.1.5 Physical methods of separation,	
		precipitation, fractional precipitation,	
		volatilization, distillation, fractional distillation,	
		vacuum distillation.	
		1.2 Solvent Extraction	(04L)
		1.2.1 Nernst's distribution law, partition	
		coefficient, distribution ratio,	
		1.2.2 Percentage extraction, extraction	
0	\sim	efficiency, percentage extraction for single step	
	D -`	and multistep process with the same total volume	
		of the extracting solvent	
		1.2.3 . Modes of extraction: Chelation, ion-pair	
		formation and solvation.	
		1.2.4 Batch and continuous extraction, Counter	
		current extraction	

	1.4 High Performance Thin Layer	(02L)
	Chromatography	
	1.4.1 Introduction, Choice of stationary and	
	mobile phases, sample application,	
	1.4.2 Development and recording in HPTLC,	
	1.4.3 Detectors used, single beam and double	
	beam detectors, fluorometric detector,	
	1.4.4 Quantitative determination,	2
	1.4.5 Applications of HPTLC	
	1.4.6 Advantages and limitations	
	1.4.7 Comparison between TLC and HPTLC	
II	UV-VIS Spectroscopy and Conductometric	(15L)
	Titrations	
	2.1 UV- Visible Absorption spectroscopy:	(12L)
	2.1.1 Recapitulation of basic concept of	
	spectroscopy.	
	2.1.2 Terms involved in absorption	
	spectroscopy, monochromatic and	
	polychromatic radiation, radiant power,	
	absorbance, transmittance, absorptivity, molar	
	extinction coefficient, wavelength of maximum	
	absorption.	
	2.1.3 Statement of Beer's law & Lamberts' law	
	combined mathematical expression for Beer-	
	Lambert's Law, deviations from Beer-Lambert's	
	law, types of deviations.	
	2.1.4 Components of an optical instrument and	
	their functions, photometers and	
	spectrophotometers.	
00		
		Page 61

\mathcal{O}		3.2 International Standards and their significance	
		Study, Quality control.	
		Product Development (Formulation), Stability	
	P	3.1 Concept of quality, Quality assurance,	
C	ш	Industrial Chemistry	(15L)
		2.2.3 Advantages and limitations.	
		4] Complexometric titrations	
		3] Precipitation titrations	
		2] Displacement titration	
		1] Acid –base titrations of all types	
		titration of	
		2.2.2Conductometric titration curves for the	
		procedure, determination of the equivalence point.,	
		titrations, basic principles, operational	
		2.2.1 Conductometry and conductometric	
		2.2 Conductometric titrations	(03L)
		2.1.6.3 Advantages and limitations	(021)
		determination of equivalence point.	
		types of photometric titration curves, and	
		2.1.6.2 Requirements for a photometric titration,	2
		operational procedures,	
		2.1.6.1 Basic principles, experimental set up and	
		2.1.6 Photometric titrations	
		(Numerical problems expected.)	
		for a single and double beam photometer.	
		sample containers and detectors, block diagram	

3.3 Unit Operations- Filtration, Distillation,	
Fractional distillation, Crystallisation	

Semester IV Practicals

RUSCHEP401	CHEMISTRY-I	Credits: 3
	1. To determine order of the reaction between $K_2S_2O_3$	3 and KI for unequal
	concentrations.	.
	2. To determine dissociation constant of weak acid by method using pH meter.	incomplete titration
	3. To determine dissociation constant of weak acid by p	pH metric titration.
	4. To determine the amount of strong acid in the potentiometric titration	e given solution by
	5. To determine standard cell potential (E ⁰ _{cell}), standar	d free energy change
	(ΔG^{0}) and equilibrium constant (K) for a given galve	anic cell.
	6. To determine the amount of weak acid in the	given solution by
	conductometric titration.	
	CHEMISTRY-II	
	1. Qualitative Analysis of bi-functional organic compour	nds (minimum four)
	on the basis of	
	i. Preliminary examination	
	ii. Solubility profile	
	iii. Detection of elements C, H, (O), N, S and X.	
~0`	iv. Detection of functional groups	
	v. Determination of physical constants (M.P/B.P)	
	Solid or liquid Compounds containing not more than t	wo functional groups
	from among the following classes may be given for a	analysis to be given:
5	Carboxylic acids, phenol, carbohydrates, aldehydes, ke	etones, ester, amides,
	nitro, anilides, amines, alkyl and aryl halides.	

RAMNARAIN RUIA AUTON	IOMOUS COLLEGE, SYLLABUS FOR SY.B.Sc Sem-III & Sem-IV CHEMISTRY 2020-2021
	2. Separation of binary organic mixture (solid+solid) and (solid+liquid) on
	the basis of type and nature. (Nature and physical constant expected).
	Minimum four binary mixtures will be given to every student.
	3. Inorganic preparation –
	1. <i>Tris</i> (ethylene diamine) nickel (II) thiosulphate.
	2. preparation of Copper DMSO
	3. Preparation of magnesium oxalate.
	CHEMISTRY-III
	1. Chromatography: Separation of cations Fe(III), Ni(II) and Cu(II) in a
	sample by paper chromatography
	2. To determine partition coefficient of iodine between water and CCl ₄
	3. Estimation of Fe(II) in the given solution by titrating against
	Ce(IV)potentiometrically.
	4. Determination of amount of Fe (III) in the given solution by photometric
	titration using salicylic acid.
	5. To verify Beer Lamberts law.
	6. Determination of Calcium and Magnesium in the given sample of
	Dolomite ore.
	7. To determine the purity of the given commercial sample of aspirin using
	phenol red indicator.

∂_{i}	Þ
0.0	

Reference Books for Physical Chemistry:

- 1) The Elements of Physical Chemistry, P.W. Atkins, Oxford University Press, Oxford.
- Principles of Physical Chemistry. By Maron and Pruton 4th Ed. Oxford and IBH publication.
- 3) Physical Chemistry, G.M. Barrow, Tata McGraw Hill Publishing Co.Ltd. New Delhi.
- Modern Electrochemistry, J.O'M. Bockris& A.K.N. Reddy, Maria. Gamboa Aldeco. Springer.
- Khosla B.D., Garg V.C. and Gulati A., Senior Practical Physical Chemistry, R. Chand and Co., New Delhi (2011).
- 6) Athawale V.D. and Mathur P., Experimental Physical Chemistry, New Age International, New Delhi (2001)

References for Organic Chemistry:

- 1. Organic Chemistry, F. A. Carey, Tata McGraw-Hill Publishing company Ltd.
- 2. Paula Y. Bruice, Organic Chemistry, Pearson Education.
- 3. Organic Chemistry, Finar, I. L. (Volume 1), Dorling Kindersley (India) Pvt. Ltd.
- Heterocyclic Chemistry, Synthesis reactions and Mechanisms, R.K Bansal, Wiley Eastern Ltd.
- 5. Mann, F.G. & Saunders, B.C. Practical Organic Chemistry, Pearson Education (2009)
- Vogel, A.I., Tatchell, A.R., Furnis, B.S., Hannaford, A.J. & Smith, P.W.G., Textbook of Practical Organic Chemistry, Prentice-Hall, 5th edition, 1996

<u>Reference Books for Inorganic Chemistry:</u>

- 1. A.I. Vogel. "Textbook of Quantitative Inorganic Analysis," Longman, London (1961).
- 2. J. D. Lee, 4thEdn., Concise Inorganic Chemistry, ELBS, The group III elements Pg. 359-648.

3. D. F. Shriver and P. W. Atkins, Inorganic chemistry, 3rd edition, Oxford University Press (1999) page 325-446.

4. Puri, Sharma and Kalia, Milestone publishers, Principles of Inorganic Chemistry, page 416-628.

- 5. Concepts of Inorganic Chemistry by James Huheey
- 6. Inorganic Chemistry by R.L. Madan

References for Analytical Chemistry:

- D. A. Skoog, D. M. West, F. J. Holler, and S. R. Crouch, Analytical Chemistry: An Introduction, 7th ed., Chapter 15, pp. 345-381.
- 2. A.I. Vogel. "Textbook of Quantitative Inorganic Analysis," Longman, London (1961).
- 3. R.V. Dilts. "Analytical Chemistry. Methods of Separation," van Nostrand, N.Y. (1974).
- 4. Asim K. Das, 'Environmental Chemistry with Green Chemistry' Books & Allied (P) Ltd.
- 5. K.A. Gavhane, 'Unit operations-I and II'

Modality of Assessment

Theory Examination Pattern:

A) Internal Assessment - 40% (40 Marks)

Sr No	Evaluation Type	Marks
1	Assignment	15
2	Class Test (MCQ / Objectives)	20
3	Active Participation in Class (Case studies/Seminars/Presentations)	05
	Total	40

B) External Examination : 60 % (60 marks)

Semester End Theory Examination :

- 1. Duration These examinations shall be of two hours duration.
- 2. Theory question paper pattern :-There shall be **three** questions each of 20 marks. On each unit there will be one question.

All questions shall be compulsory with internal choice within the questions.

Questions	Options	Marks	Questions based on
Q.1)	Any 5 out of 7	20	– Unit I
Q.2)	Any 5 out of 7	20	– Unit II
Q.3)	Any 5 out of 7	20	– Unit III
	Total	60	

Practical Examination Pattern:

A) Internal Examination:- 40 % (20 Marks)

Particulars	Paper I	Paper II	Paper-III
Journal	05	05	05
Experimental Work	10	10	10
Participation	05	05	05
Total	20	20	20

(B) External Examination : 60 % (30 Marks)

Semester End Practical Examination:

Particulars	Paper I	Paper II	Paper II
Laboratory Work	25	25	25
Viva	05	05	05
Total	30	30	30

PRACTICAL BOOK/JOURNAL

- > The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.
- In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Co-ordinator / In-charge of the department ; failing which the student will not be allowed to appear for the practical examination.

Course	401		0	402		403		Grand Total		
	Internal	External	Total	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	40	60	100	300
Practicals	20	30	50	20	30	50	20	30	50	150

Overall Examination and Marks Distribution Pattern:

(Total: 450 marks)

Resolution Number : AC/II(20-21).2.RUS5

S.P. Mandali's

Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for T.Y.B.Sc. SEMESTER V & VI Program : B.Sc. (Chemistry) Program Code : RUSCHE

(Credit Based Semester and Grading System with effect from the academic year 2020-21)

Semester V Course Code:RUSCHE501 <u>Course Title : CHEMISTRY-I</u> Academic Year 2020-21

Course Outcomes:

After stu	After studying this course, the learner will be able to:				
CO 1	Comprehend the fundamentals of rotational, vibrational and Raman spectra of				
	molecules.				
CO 2	Outline the applications of Galvanic Cells.				
CO 3	Apply Raoult's Law and Clapeyron Equation to study Colligative Properties				
CO 4	Understand reaction dynamics.				
CO 5	Apply principles of Surface Chemistry to Colloids				

RUSCHE501		CHEMISTRY-I	Credits-2.5
	Unit	Unit Title	Lectures
	Ι	MOLECULAR SPECTROSCOPY	(15L)
		1.1. Rotational Spectrum: Rotational spectrum of a	
		diatomic molecule, rigid rotor, moment of inertia,	
		energy levels, conditions for obtaining pure	
•		rotational spectrum, selection rule, nature of	
	\sim	spectrum, determination of inter-nuclear distance	
	D -1	and isotopic shift.	
		1.2. Vibrational spectrum: Vibrational motion,	
~~~		degrees of freedom, modes of vibration,	
		vibrational spectrum of a diatomic molecule,	
		simple harmonic oscillator, energy levels, zero	
0		point energy, conditions for obtaining vibrational	
		spectrum, selection rule, nature of spectrum.	



	<b>1.3.</b> Vibrational-Rotational (IR) spectrum of	
	diatomic molecule: vibrating rotor, energy levels,	
	selection rule, nature of spectrum, P and R branch	. 0.9
	lines, anharmonic oscillator, energy levels,	
	selection rule, fundamental band, overtones.	
	Applications of vibrational- rotational spectrum in	
	determining force constant and its significance	
	infrared spectra of simple molecules like H ₂ O and	
	$CO_2$	
	<b>1.4</b> Raman Spectroscopy: Scattering of	
	electromagnetic radiation, Rayleigh scattering,	
	Raman scattering, nature of Raman spectrum	
	(Stoke's lines and anti Stoke's lines), Raman shift,	
	quantum theory of Raman spectrum, comparative	
	study of IR and Raman spectra, rule of mutual	
	exclusion (example of CO ₂ molecule). Number of	
	modes of vibrations for linear and non-linear	
	molecules.	
II	ELECTROCHEMISTRY- III:	(15L)
	CLASSIFICATION OF GALVANIC CELLS	
	2.1 Lewis concept of Activity and Activity	
	coefficient, Mean ionic activity and mean ionic	
x 0-	activity coefficient of an electrolyte, ionic strength	
	of a solution, Debye-Huckel limiting law.	
0	2.2. Classification of galvanic cells: Chemical	
	Cells and concentration cells, Cells with	
	transference and without transference, Expression	
	transference and without transference, Expression	
	for EMF of each type of cell.	



50

RAMNARAIN RUIA AUTONOMOUS COL	LEGE, SYLLABUS FOR TY.B.Sc Sem-V & Sem-VI CHEMISTRY 2020-2021	RUIA COLLEGE Explore e Experience e Exoci
	2.4. Determination of solubility product and	
	solubility of a sparingly soluble salt by Chemical	. 00
	cell and by Concentration cell.	
	<b>2.5</b> Determination of liquid junction potential.	
III	COLLIGATIVE PROPERTIES AND	(15L)
	CHEMICAL KINETICS – II	
	3.1 COLLIGATIVE PROPERTIES	( <b>09L</b> )
	3.1.1 Colligative properties, Raoult's	
	law.	
	3.1.2 Relative lowering of vapour	
	pressure.	
	3.1.3 Elevation of boiling point –	
	Thermodynamic derivation for relation	
	between elevation of boiling point and	
	molality.	
	3.1.4 Depression in freezing point-	
	Thermodynamic derivation for relation	
	between depression in freezing point and	
	molality	
	3.1.5 Osmosis and Osmotic Pressure –	
	Determination of molar mass form	
	Osmotic pressure.	
	Abnormal molar masses of solute, van't Hoff	
	factor (Degree of dissociation and degree of	
	association).	
	Reverse osmosis.	
	3.2 CHEMICAL KINETICS-II	(06L)



ГТ		1
	<b>3.2.1</b> Recapitulation, Collision theory of reaction	
	rates, applications of collision theory to	
	bimolecular reaction and unimolecular	
	reaction (Lindemann's theory), Merits and	$\langle 0, 0 \rangle$
	demerits of Collision theory. Steric factor	
	and Probability factor.	
	3.2.2 Activated complex theory of bimolecular	
	reactions. Merits of Activated complex	
	theory.	
	3.2.3 Classification of reactions- slow, fast and	
	ultra fast, study of kinetics of fast reactions	
	by Stop Flow method.	
IV	SURFACE CHEMISTRY, CATALYSIS AND	(15L)
	CHEMISTRY OF COLLOIDS	
	4.1: Surface Chemistry and Catalysis	(08L)
	4.1.1 Adsorption: Physical and Chemical	
	Adsorption, Types of adsorption isotherms,	
	Langmuir's adsorption isotherm. B.E.T. equation	
	for multilayer adsorption, determination of surface	
	area of an adsorbent using B.E.T. equation.	
	<b>4.1.2.</b> Catalysis: Homogeneous and heterogeneous	
	catalysis, catalytic activity and selectivity,	
	promoters, inhibitors, catalyst poisoning and	
	deactivation.	
	4.1.2.1 Acid catalysis and Base catalysis,	
	mechanism and kinetics of acid and base	
	catalysed reactions, effect of pH on acid	
	and base catalysed reactions.	
	<b>4.1.2.2</b> Enzyme catalysis, mechanism and kinetics	
	<b>4.1.2.2</b> Enzyme catalysis, mechanism and kinetics of reaction (Michaelis-Menten equation).	



4.2 COLLOIDS	( <b>07L</b> )
<b>4.2.1</b> Introduction to colloidal state of matter.	
4.2.2 Origin of charge on colloidal particles.	
Concept of electrical double layer, zeta potential,	
Helmholtz and Stern model, electro kinetic	
phenomena: electrophoresis, electro-osmosis,	
streaming potential and sedimentation potential.	
<b>4.2.3</b> Colloidal electrolytes.	
<b>4.2.4</b> Donnan Membrane Equilibrium.	
4.2.5 Surfactants, Micelle formation,	
application of surfactants in detergents,	
food industry and pesticide formulations.	

## Course Code: RUSCHE502 <u>Course Title : CHEMISTRY-II</u> Academic year 2020-21

#### **Course outcomes:**

After stu	After studying this course, the learner will be able to:		
CO 1	Identify the elements of symmetry.		
CO 2	Assign point groups to molecules.		
CO 3	Correlate between bond angle and molecular orbitals.		
CO 4	Understand band theory and its application to metals.		
CO 5	Depict structure of solids and their defects.		
CO 6	Compare various aspects of lanthanides and actinides.		
CO 7	Describe properties and application of Uranium.		
CO 8	Distinguish between properties of Xenon and other noble gases.		



		DETAILED SYLLABUS	
RUSCHE502		CHEMISTRY-II	Credits-2.5
	Unit	Unit Title	Lectures
	Ι	Molecular Symmetry and Chemical Bonding	(15L)
		1.1 Molecular Symmetry	(07L)
		1.1.1 Introduction and Importance of symmetry in	V
		chemistry.	
		1.1.2 Symmetry elements and symmetry	
		operations.	
		1.1.3 Concept of a Point Group with illustrations	
		using the following point groups: (i) $C_{\alpha\nu}$ (HCl), (ii)	
		$D_{\alpha h}$ (H ₂ ),(iii) C ₂ v (H ₂ O), (iv) C _{3v} (NH ₃ ), (v)	
		$C_{2h}(trans - trichloroethylene)$ , and (vi) $D_{3h}(BCl_3)$ .	
		1.2 Molecular Orbital Theory for Polyatomic	(05L)
		Species	
		<b>1.2.1</b> Simple triatomic species: $H_3^+$ and $H_3$	
		(correlation between bond angle andMolecular	
		orbitals).	
		<b>1.2.2</b> Other molecules (considering only $\sigma$ -	
		bonding): i) BeH ₂ , ii) H ₂ O iii) CH ₄	
		1.3 Metallic Bonding	(03L)
		Band theory, explanation of electrical properties	
		of conductors, insulators and semi conductors,	
		intrinsic and extrinsic semiconductors.	
	II	Solid State Chemistry and Superconductivity	(15L)
		2.1 Structures of Solids	(11L)
		2.1.1 Terms involved: crystal lattice, lattice	

	2.1	.2 Closest packing of rigid spheres (hcp, ccp),	
	pac	king density in simple cubic, bcc, fcc and hcp	
	latt	ices (numerical problems expected).	. 0
	2.1	.3 Stoichiometric point defects in solids:	
	Fre	nkel and Schottky defects.	
	2.2	Superconductivity	(04L)
	2.2	.1 Discovery of superconductivity.	$\mathbf{O}$
	2.2	.1 Superconductivity, transition temperature	
	and	l Meissner effect.	
	2.2	.2 Different types of superconductors viz,	
	con	aventional superconductors, alkali metal	
	full	lerides (A ₃ C ₆₀ ) and high temperature	
	Sup	perconductors.	
	2.2	<b>.3</b> Applications of superconducting materials.	
	III Ch	emistry of <i>f</i> -block elements	(15L)
	3.1	Introduction: Definition, position in periodic	(01L)
	tab	le and electronic configuration of lanthanides	
	and	l actinides.	
	3.2	Chemistry of Lanthanides	(11L)
	3.2	.1 Lanthanide contraction and its	
	cor	nsequences.	
	3.2	.2 Oxidation states.	
	3.2	.3 Magnetic and spectral properties.	
.9	3.2	.4 Occurrence, extraction and separation of	
	lan	thanides by Solvent extraction.	
	3.2	.5 Applications of lanthanides.	
	3.3	Chemistry of Actinides	(03L)
$\mathcal{A}$	3.3	.1 Comparison between lanthanides and	
	acti	inides.	
P			



		3.3.2 Chemistry of Uranium and with reference to	
		occurrence and isolation (solvent extraction	Ċ
		method)	
		3.3.2 Properties and applications of Uranium.	
	IV	Non Aqueous Solvents and Chemistry of	(15L)
		Pseudohalogens, Interhalogens and Xenon	<b>O</b>
		4.1 Chemistry of Non-aqueous Solvents	(07L)
		Classification of solvents and importance of non-	)
		aqueous solvents.	·
		4.1.1 Super critical carbon dioxide and ionic	
		liquids as solvents	
		4.1.2 Characteristics and study of liquid ammonia,	
		dinitrogentetraoxide as non-aqueous solvents with	
		respect to i) acid base reactions and ii) redox	
		reactions.	
		4.2 Chemistry of Interhalogens:	( <b>03L</b> )
		Introduction, preparation, reactions and structures.	
		4.3 Chemistry of pseudohalogens:	(03L)
		Introduction, preparation, reaction and structures	
		4.4 Chemistry of Xenon:	(02L)
		Introduction, Compounds of Xenon: Oxides,	
	5	fluorides, oxyfluorides w.r.t. preparation ,	
		properties and bonding.	
5			
0.0.			
7			
$\overline{\mathbf{v}}$			



## Course Code: RUSCHE503 <u>Course Title : CHEMISTRY-III</u> Academic year 2020-21

### **Course Outcomes:**

After st	tudying this course, the learner will be able to:
CO 1	Apply fundamentals of Organic Reaction Mechanism to various reactions.
CO 2	Compare various conformations of some organic compounds
CO 3	Apply the concepts of stereochemistry to Organic reactions.
CO 4	Assign IUPAC names to spiro, bicyclo and heterocyclic compounds.
CO 5	Understand Basics of Polymer Chemistry.
CO 6	Illustrate basics of Green Chemistry to Organic Synthesis.

RUSCHE503		CHEMISTRY-III	Credits-2.5
	Unit	Unit Title	Lectures
	Ι	Mechanism of Organic Reactions	(15L)
		1.1 Recapitulation: Curved arrows, intermediates,	
		transition states, Electrophilicity vs acidity and	
		nucleophilicity vs basicity.	
		1.2 Elimination Reactions: Mechanisms and	
		stereochemistry.	
		1.2.1 $E_1$ and $E_2$ Mechanisms, factors influencing	
	0	the mechanism: nature of substrate, leaving group,	
		structure of base, solvent; Saytzeff and Hofmann	
		elimination; elimination vs substitution.	
		1.2.2 E ₁ CB mechanism	
		1.2.3 Pyrolytic elimination: Cope, Chugaev,	
0.		pyrolysis of acetates.	



	<ul> <li>1.3 Neighbouring group participation in nucleophilic substitution reactions: partcipation of lone pair of electrons, kinetics and stereochemical outcome.</li> <li>1.4 Acyl nucleophilic substitution (Tetrahedral mechanism): Acid catalysed esterification of carboxylic acids and base promoted hydrolysis of esters (B_{AC}2).</li> <li>1.5 Mechanism of following rearrangements with examples and stereochemistry wherever applicable.</li> </ul>	
	<ul> <li>1.5.1 Migration to electron deficient carbon:</li> <li>Pinacol, Benzylic acid.</li> <li>1.5.2 Migration to electron deficient nitrogen:</li> <li>Beckmann, Hofmann.</li> <li>1.5.3 Migration involving a carbanion: Favorski.</li> <li>2.3 Name reactions: Michael, Wittig (mechanism and examples).</li> </ul>	
П	Stereochemistry	(15L)
	<ul> <li>2.1 Molecular chirality and element of symmetry: Mirror Plane symmetry, inversion centre, rotation-reflection (alternating) axis.</li> <li>Chirality of compounds without stereogenic centre: cummulenes, spirans and biphenyls.</li> <li>2.2 Conformations of cyclohexane, mono, disubstitutedcyclohexanes and their relative stabilities</li> <li>2.3 Stereo selectivity and Stereo specificity: Idea of enantioselectivity (ee) and diastereoselectivity</li> </ul>	



	(de). Topicity- enantiotopic and diastereotopic	
	atoms, groups and faces.	
	2.4 Stereochemistry of:	
	2.4.1 Substitution reactions- $S_N^1$ , $S_N^2$ , $S_N^i$	
	(reaction of alcohol with thionyl chloride).	
	2.4.2 Elimination reactions: E ₂ -Base induced	
	dehydrohalogenation of 1-bromo-1,2-	
	diphenylpropane.	
	2.4.3 Addition reactions to olefins- i) catalytic	
	hydrogenation ii) bromination (electrophilic anti	
	addition) (iii) synhydroxylation with OsO4 and	
	KMnO ₄ . iv) epoxidation followed by hydrolysis.	
	III IUPAC Nomenclature and Chemistry of	(15L)
	Polymers	
	3.1 IUPAC Nomenclature	(06L)
	IUPAC systematic nomenclature of the following	
	classes of compounds (including substituted ones	
	up to two substituents/ functional groups):	
	3.1.1 Bicyclic compounds- spiro, fused, and	
	bridged (upto 11carbon atoms) - saturated and	
	unsaturated compounds.	
	3.1.2 Biphenyls.	
•	3.1.3 Cummulenesupto three double bonds.	
.0	3.2 Polymers	(09L)
	3.2.1 Introduction: Review of terms: monomer,	
	polymer, homopolymer, copolymer,	
	thermoplastics and thermosets.	
	3.2.2 Addition polymers: polyethylene,	
	polypropylene, Teflon, PVC and polystyrene.	
	polypropylene, renon, rvc and polystyrene.	



	3.2.3 Condensation polymers: polyesters,		
	polyamides, polyurethanes, polycarbonates and		2
	phenol-formaldehyde resins. Uses		
			2
	3.2.4 Mechanism of free radical addition		
	polymerization.		
	3.2.5 Stereochemistry of polymers: Tacticity.		
	Mechanism and stereochemical control of		
	polymerization using Ziegler-Natta catalyst		
	3.2.6 Natural and synthetic rubbers:		
	polymerization of isoprene: 1,2- and 1,4- addition		
	(cisand trans), styrene- butadiene copolymer.		
	3.2.7 Additives to polymers: Plasticizers,		
	stabilizers and fillers.		
	3.2.8 Biodegradable polymers: Classification and		
	uses. Polylactic acid- structure, properties and use		
	for packaging and medical purposes.		
	(Note: Identification of monomer in a given		
	polymer and the structure of a polymer from given		
	monomer(s) is expected. Conditions for		
	isomerisation not expected).		
IV	Synthesis of Organic compounds	(15L)	
	4.1 Introduction: Criteria for ideal organic		
	synthesis. Calculation of yields.		
	Concept of selectivity: Linear and convergent		
	synthesis, Multi-component reactions: Mannich		
	reaction, Hanztsch synthesis.		
	4.2 Introduction to retrosynthesis: Analysis and		
	synthesis, technical terms: target molecules (TM),		
0.0.			
	retrosynthetic analysis, FGA, FGI, Disconnection,		



	synthon and reagent. Retrosynthtic analysis of		
	Limonene, Salbutamol and Proparacaine.		
	4.3 Green chemistry and synthesis:		
	4.3.1 Introduction to green chemistry: definition,		
	need for and importance of green synthesis,		
	Twelve principles of green chemistry, Atom		
	economy and E-factor calculations and their		
	significance.		
	4.3.2 Green synthesis in industry:		
	Green starting materials: D-glucose to adipic acid.		
	Green reagents: Selective methylation of active		
	methylene using dimethyl carbonate.		
	Green solvent: Supercritical CO ₂ , deep eutectic		
	solvents (DES).		
	Green catalyst: Heterogeneous catalysis using		
	tellurium, biocatalysis.		
	Green synthesis of paracetamol.		
	4.4 Other methods of organic synthesis		
	Microwave assisted organic synthesis (Using		
	organic solvents and in solid state).		
	Ultrasound in organic synthesis, Phase transfer		
	catalysis. Polymer supported synthesis: Merrifield		
	polypeptide synthesis.		
e suurara			
		Page   82	





# Course Code: RUSCHE504 Course Title: CHEMISTRY-IV Academic year 2020-21

#### **Course Outcomes:**

After con	npleting this course, the learner will be able to:
CO 1	Elaborate on the need and importance of sampling and the various methods used for
	sampling of solid, liquids and gases.
CO 2	Evaluate the analytical data in terms of statistics.
CO 3	Interpret the sources of random errors and their effect on analytical results.
<b>CO 4</b>	State the significance of confidence limits in the error analysis.
CO 5	Specify the standard deviation of calculated results.
CO 6	Explain the Q-test for rejection of data.
CO 7	Outline a procedure for the application of null hypothesis to the data.
CO 8	Discuss the importance of graphical representation of data.
CO 9	Describe the different methods used for locating endpoints in precipitation titrations.
CO 10	Classify the different types of solvents used for non-aqueous titrations with respect to
	their acid base properties.
CO 11	Illustrate the effect of dielectric constant and nature of solvent on solute behaviour in
	non aqueous titrations.
CO 12	Explain the basic principle involved in AAS, AES, fluorescence, phosphorescence,
	turbidimetry and nephelometry.
CO 13	Describe the function of different components of AAS,flame photometer
	,Fluorimeter, Phosphorimeter, Turbidimeter and nephelometer.
CO 14	List the factors affecting fluorescence and phosphorescence and also the factors
	affecting scattering of light in turbidimetry and nephelometry.
CO 15	Relate fluorescence intensity with concentration



RUSCHE504		CHEMISTRY-IV		
	Unit	Unit Title	Lectures	
	Ι	Sampling and Treatment of Analytical Data	(15L)	
		1.1 Sampling:	(07L)	
		1.1.1 Sampling, need and importance, terms		
		involved, sampling techniques, non-random and		
		random sampling, sequential sampling,		
		1.1.2 Sampling of gases, precautions, methods		
		used, pressure and temperature sampling		
		1.1.3 Sampling of liquids, sample thief,		
		homogeneous and heterogeneous liquids,		
		stationary and flowing liquids,		
		1.1.4 Sampling of solids, bulk ratio, size to weight		
		ratio,		
		1.1.5 Sampling and equipment for sampling of		
		compact solids, powdered solids,		
		flowing solids and particulate solids.		
		1.1.6 Methods of reduction of the size of the		
		sample		
		1.1.7 Preservation of sample, dissolution of the		
		samples, use of fluxes		
		1.2 Treatment of analytical data	(08L)	



	1.2.1 Collection and processing of data, concept of	
	classes, and class frequencies, histogram and	
	frequency polygon.	
	1.2.3 Distribution of random errors, Gaussian	
	distribution curve and its salient features.	
	1.24 Concept of confidence limits and	
	confidence interval, computation of both by using	
	range, student's t and population standard	
	deviation.	
	1.2.5 Criterion for the rejection of a result,	
	empirical methods like 2.5 d and 4.0 d rule,	
	statistical approach.	
	1.2.6 Testing for significance, null hypothesis,	
	variance ratio test.	
	1.2.7 Graphical presentation of results, scatter	
	diagram, regression analysis, method of averages,	
	least square method for line of the type $y = mx + y$	
	c and $y = mx$	
	1.2.8 Significant figures and their use in data	
	treatment.	
II	Titrimetric analysis	(15L)
	2.1 Redox Titrations	(04L)
	2.1.1 General introduction, theory of redox	
2	indicators,	
	2.1.2 criterion for choosing an indicator for a	
	redox titration,	
	2.1.3 Construction of the titration curves in the	
	case of	
	i) Fe(II) vsCe(IV) ii) Fe(II) vs $Cr_2O_7^{2-}$	



	2.1.4 Use of diphenyl amine and ferroin as redox indicator.	
	2.2 Precipitation titrations	(04L)
	2.2.1 Basic principles of precipitation titrations	
	2.2.2 Argentimetric titrations, construction of the	
	titration curve for the titration of sodium chloride	
	with silver nitrate.	
	2.2.3 Mohr's method	
	2.2.4 Volhard's method	
	2.2.5 Adsorption indicators, examples and uses.	
	2.3 Complexometric titrations	(04L)
	2.3.1 General introduction of complexometric	
	titrations	
	2.3.2 EDTA titrations	
	2.3.2.1 EDTA as a chelating agent, structure of the	
	chelate, characteristic features of the metal EDTA	
	complexes.	
	2.3.2.2 Stability constant of the EDTA complexes,	
	conditional stability constants, construction of the	
	titration curve in the titration of a metal ion with	
	EDTA with the example of $Ca^{2+}$ .	
$\sim$	2.3.2.3 Types of EDTA titrations.	
	2.3.2.4 Methods of improving the selectivity of	
< O- `	EDTA titrations.	
	2.3.2.5 Metallochromic indicators	
	2.4 Non-aqueous titrations	(03L)
	2.4.1 Need for non-aqueous titrations,	
	2.4.2 Types of solvents, choice of the solvent for	
0	the non-aqueous titrations,	
	2.4.3 Acid base titrations in non-aqueous media,	



	2.4.4 Use of classic eastic acid as the solvent in	
	2.4.4 Use of glacial acetic acid as the solvent in	d
	non-aqueous titrations, non-aqueous	
	titrations with a visual indicator using an	
	instrument	
	<b>2.4.5</b> Advantages and limitations.	
III	Optical Methods	(15L)
	3.1 Atomic Absorption Spectroscopy (AAS)	(05L)
	3.1.1 Atomic energy level diagram, characteristic	
	features of atomic spectra.	
	3.1.2 Basic principles of Atomic Absorption	
	Spectroscopy, steps involved in the process of	
	atomization.	
	3.1.3 Instrumentation: Components-hollow	
	cathode lamp, chopper, types of atomizers: (i)	
	premix burner (ii) total consumption burner (iii)	
	electrothermal atomizers.	
	3.1.4 Qualitative and quantitative analysis,	
	calibration curve and standard addition method.	
	3.1.5 Applications of Atomic Absorption	
	Spectroscopy.	
	3.2 Atomic Emission Methods	(04L)
	3.2.1 Flame emission: basic principles of flame	
	photometry	
	3.2.2 Instrumentation, flames and burners,	
	detectors,	
	3.2.3 Qualitative and quantitative analysis,	
<i>(</i> ).	calibration curve, standard addition and internal	
	standard method	
	3.2.4 Applications of flame photometry.	

IV	Miscellaneous Methods	(15L)
	3.4.4 Applications of both techniques.	
$\sim$	turbidimetry.	
20	3.4.3 Instrumentation in nephelometry and	
	index.	
	particle size, wavelength, concentration, refractive	
	3.4.2 Factors affecting scattering of radiation,	
	nephelometry and turbidimetry,	
	3.4.1 Scattering of radiation, basic principles of	
	3.4 Nephelometry and turbidimetry	(03L)
	techniques.	
	3.3.6 Comparison of absorption and fluorimetric	
	phosphorimetry	
	3.3.5 Comparison of fluorimetry and	
	phosphorimetry	
	3.3.4 Applications of fluorimetry and	
	phosphorimetry	
	3.3.3 Instrumentation of fluorimetry and	
	concentration	
	3.3.2 Relation between fluorescence intensity and	
	phosphorescence	
	utility, factors affecting fluorescence and	
	phosphorescence, Jablonski diagram and its	
	3.3.1 Basic principles of fluorescence and	
	spectroscopy	
	<b>3.3 Fluorescence and phosphorescence</b>	(03L)
	emission methods	
	3.2.5 Comparison of atomic absorption and atomic	. 0



	1	
	4.1.1 Introduction to thermal methods,	.0
	classification of thermal methods,	
	4.1.2 Thermo gravimetric analysis, thermogram,	                                                                                                                                                                                                                                                                                                                                                     
	factors affecting the thermogravimetric curve	
	4.1.3 Instrumentation, components, thermo	
	balance, furnace, sample holder, recorder,	
	measurement of temperature	
	4.1.4 Applications, limitations.	
	4.2 Radioanalytical techniques	(04L)
	4.2.1 Neutron Activation Analysis (NAA)	
	4.2.1.1 Basic principles, characteristic features,	
	operational procedure	
	4.2.1.2 Advantages, limitations and application of	
	NAA.	
	4.2.2 Isotope Dilution Analysis (IDA)	
	4.2.2.1 Basic principles, operational procedure	
	4.2.2.2 Applications, advantages and limitations	
	of IDA	
	4.3 Mass spectrometry	(04L)
		(04L)
	4.3.1 Basic principles	
	4.3.2 Instrumentation, components, sources,	
	analysers, detectors.	
	4.4 Method validation	(03L)
	4.4.1 Need and significance of method validation	
	4.4.2 Parameters chosen for method validation	
<u> </u>	4.4.3 Procedure for method validation	
A 3		
Y		
		Page   89



## Semester V Practicals

	CHEMISTRY-I
	Physical Chemistry
	1. To study the effect of ionic strength on the rate of reaction between $K_2S_2O_8$ a
	KI using KCl.
	2. To study the rate of adsorption of acetic acid on activated charcoal.
	3. To study the relative strength of acetic acid and monochloroacetic acid.
	4. To determine $pK_1$ and $pK_2$ of phosphoric acid by pH-metry.
	5. To determine the amount of weak dibasic by conductometric titration.
	6. To determine the standard reduction potential of $Cu^{2+}/Cu$ electrode at root
	temperature.
	CHEMISTRY-II
	Inorganic preparations
	1. Potassium diaquobis- (oxalate)cuprate(II)K2[Cu(C2O4)2.(H2O]
	2. Bis(ethylenediamine)iron(II)sulphate[C2H4(NH2)2FeSO4.4H2O].
	Volumetric analysis
	1. Determination of magnesium from the supplied commercial sample of Milk of
	magnesia tablet
	2. Estimation of Nickel(II) complexometrically using murexide indicator
	(Learners are expected to standardize supplied EDTA solution using ZnSO4.7H20)
	3. Estimation of copper(II) complexometrically using fast sulphon black-F indicator
	(Learners are expected to standardize supplied EDTA solution using ZnSO4.7H20)
RUSCHEP502	CHEMISTRY-III
	I) Binary Mixture Separation: Separation of mixture containing (VL + NVL) &
	(VL+S) components.
	1. Minimum Six mixtures to be completed by the learners.
	1



	2. Components of the liq-liq mixture should include volatile liquids like acetone,
	methylacetate, ethylacetate, isopropylalcohol, methyl alcohol, ethyl alcohol,
	chloroform and non- volatile liquids like chlorobenzene, bromobenzene, aniline,
	N,N-dimethylaniline, acetophenone, nitrobenzene, ethyl benzoate.
	3. Components of the liq- solid mixture should include volatile liquids like acetone,
	methylacetate, ethylacetate, ethyl alcohol, methyl alcohol, isopropylalcohol,
	chloroform and solids such as water insoluble acids, phenols, bases, neutral.
	4. A sample of the mixture one ml to be given to the learnerfor detection of the
	physical type of the mixture.
	5. After correct determination of physical type, separation of the binary mixture to be
	carried out by distillation method using microscale technique.
	6. After separation into component A and component B, the physical constants and
	the yield of the separated components is to be determined.
	II) Organic Preparations:
	1. Acetylation of hydroquinone.
	2. Bromination of acetanilide.
	3. Hydrolysis of ethyl benzoate.
	4. Nitration of acetanilide.
	5. Microwave assisted synthesis of Schiff's base from aniline and p-
	anisaldehyde.
	6. Microwave assisted synthesis of coumarin by Knoevenagel reaction
	from salicylaldehyde andethylacetoacetate in presence of a base.
	CHEMISTRY-IV:
	1. Determination of the amount of fluoride in the given solution
0	colorimetrically.
~0	2. Estimation of Vitamin C content of a given tablet by titration with sodium
	hydroxide pH metrically
	3. To determine potassium content of a commercial salt sample by flame
	photometry.

4. To determine the amount of chloride in the given sample using Mohr's method. 5. To determine the amount of persulphate in the given sample by back titration with standard Fe(II) ammonium sulphate solution.

6. To estimate Fe(II) in a tablet using diphenylamine as an indicator.



### **Modality of Assessment**

#### **Theory Examination Pattern:**

#### A) Internal Assessment - 40% of total marks:

(40 marks)

Sr No	Evaluation type	Marks
1	One Assignment	10
2	One class Test (multiple choice questions / objective)	20
3	Active participation in routine class instructional deliveries (seminars//presentation)	05
4	Overall conduct, participation in co-curricular activities of the department.	05

#### **B** ) External examination – 60 %

#### Semester End Theory Assessment - 60%

- 1. Duration: These examinations shall be of two hours duration.
- 2. Theory question paper pattern is as follows :-

There shall be **Four** questions each of **15** marks. On each unit there will be one question. All questions shall be compulsory with internal choice within the questions.

60 marks

Questions	Options	Marks	Questions on
Q.1)A)	Any 3 out of 5	12	Unit I
Q.1)B)	Any 1 out of 2	03	Unit I
Q.2)A)	Any 3 out of 5	12	Unit II
Q.2)B)	Any 1 out of 2	03	Unit II
Q.3)A)	Any 3 out of 5	12	Unit III
Q.3)B)	Any 1 out of 2	03	Unit III
Q.4)A)	Any 3 out of 5	12	Unit IV
Q.4)B)	Any 1 out of 2	03	Unit IV



A)Internal Examin	<u>Pattern:</u> ation: -			Ó	C
	1	SCHEP501	RUSC	HEP502	0
	Paper I	Paper II	Paper III	Paper IV	
Journal	05	05	05	05	
Tests	10	10	10	10	
Active Participation	05	05	05	05	
Total	20	20	20	20	
(B) External (Seme	ster end prac	ctical examination	ı) <b>:-</b>		
Laboratory work	25	25	25	25	
Viva	05	05	05	05	
Total	30	30	30	30	

## **Practical Examination Pattern:**

#### PRACTICAL JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.

In case of loss of Journal, Certificate from Head/ Co-ordinator should be submitted, failing which the student will not be allowed to appear for the practical examination.

Course	501				Grand Total		
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practical	20	30	50	20	30	50	100
Course		503			504		
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practical	20	30	50	20	30	50	100
3				•	1	(Total Ma	rks : 600)

**Overall Examination and Marks Distribution Pattern** 



## SEMESTER VI Course Code: RUSCHE601 <u>Course Title: CHEMISTRY-I</u> Academic year 2020-21

#### **Course Outcomes:**

After stu	After studying this course, the learner will be able to:				
CO 1	Understand the basic principles of Nuclear Magnetic Resonance spectroscopy				
CO 2	Classify polymers based on various parameters				
CO 3	Determine overvoltage and decomposition potential				
CO 4	Illustrate the use of X-rays in the study of solid state				
CO 5	Differentiate between nuclear fission and nuclear fusion processes				
<b>CO 6</b>	Understand the basic operations used in Quantum Chemistry.				

RUSCHE601		CHEMISTRY-I	Credits-2.5
	Unit	Unit Title	Lectures
	Ι	Nuclear Magnetic Resonance Spectroscopy and	(15L)
		Polymer Chemistry	
		1.1: Nuclear Magnetic Resonance Spectroscopy	(08L)
		1.1.1. Nuclear spin, magnetic moment, criteria for	
	5	nuclei to be NMR active, energy levels,Larmor	
		precession, Relaxation processes in NMR ( spin-spin	
		relaxation and spin-lattice relaxation).	
		1.1.2. NMR Spectrometer, chemical shift, shielding	
~0`		and deshielding ofprotons, low resolution NMR	
		spectrum, high resolution NMR spectrum.	
		1.2 Polymers	(07L)

	1.2.1 Classification of polymers based on 1) source,	
	2) structure, 3)thermal response, 4) Physical	
	properties	
	1.2.2 Molar mass of polymers: 1) Number average	
	molar mass, 2) Weight average molar mass, 3)	
	Viscosity average molar mass, monodispersity,	V
	polydispersity, polydisperity index	5
	1.2.3 Methods of determining molar mass of	
	polymers: 1) Ultracentrifugation method 2)	
	Viscosity method of Viscosity average molar mass,	
	Mark-Houwink equation.	
II	Electrochemistry – IV And Crystalline State	(15L)
	2.1electrochemistry-IV:Decomposition Potential,	(08L)
	<b>Overvoltage And Electroplating</b>	
	2.1.1 Polarization, concentration polarization and its	
	elimination.	
	2.1.2 Decomposition potential and its experimental	
	determination, factors affecting decomposition	
	potential.	
	2.1.3 Over voltage and its experimental	
	determination, factors affecting overvoltage.	
	2.1.4 Tafel's equation for hydrogen overvoltage	
	2.1.5 Electroplating – Objectives and process	
	2.2 Crystalline State	(07L)
	2.2.1. Recapitulation: Laws of Crystallography	
~0`	2.2.2. Characteristics of simple cubic, face centered	
	and body centered cubic system, inter planar	
	distance in cubic lattices.	
	distance in cubic lattices. 2.2.3 Use of X- rays in the study of crystal structure,	



	studying crystal lattices, structure of NaCl,	
	Determination of Avogadro number.	6
III	Nuclear Chemistry	(15L)
	3.1 Structure of Nucleus.	
	3.2 Nuclear disintegration/ Nuclear radioactivity,	
	Types of nuclear radiations ( $\alpha$ -ray, $\beta$ -ray and $\gamma$ -	V
	ray).	
	3.3 Nuclear transmutation and Artificial	
	radioactivity, Nuclear transmutation with	
	different types of projectiles.	
	3.4 Kinetics of radioactivity: units of radioactivity,	
	expression of decay constant and its units, half	
	life of nuclear reactions.	
	3.5 Radioactive Equilibrium- 1) Secular 2) Transient;	
	Difference between chemical and radioactive	
	equilibrium.	
	3.6 Mode of decay of radioactive elements: 1)	
	emission of positrons 2) emission of	
	electrons 3) K-electron capture.	
	3.7 Energy involved in Nuclear reactions: Q-value	
	and Threshold energy.	
	3.8 Nuclear Fission process and its Characteristics	
	features of nuclear fission process, Factors	
	affecting Nuclear Fission: 1) Multiplication	
	Factor 2) Critical Mass	
	3.9 Fertile and fissile materials, conversion of fertile	
	material to fissile material.	
	3.10 Basic components of Nuclear Reactors,	
	Types of Nuclear Reactors: 1) Power Reactor	
	2)Breeder Reactor.	

	3.11 Nuclear Fusion - Characteristics; Mechanism of	
	nuclear fusion: 1) Carbon cycle 2) Proton cycle	
	3.12 Detection and measurement of radioactivity –	
	GM Counter andScintillation Detector	
	3.13: Applications of Radiochemistry: Carbon	$\sim$
	dating, isotopic labelling.	
IV	Basics of Quantum Mechanics	(15L)
	4.1 Classical mechanics: limitations of classical	
	mechanics: 1) Black body radiation 2) photoelectric	
	effect 3) Compton Effect.	
	4.2 Introduction to quantum mechanics, Planck's	
	theory of quantization, wave particle duality,	
	de-Broglie equation, Heisenberg's uncertainty	
	principle.	
	4.3 The Schrodinger wave equation	
	4.3 Postulates of quantum mechanics 1) State	
	function and its significance 2) Concept of operators:	
	definition, addition, subtraction and multiplication of	
	operators, commutative and non- commutative	
	operators, linear operator, Hermitian operator 3)	
	Eigen function and eigen value, eigen value equation.	
	4) Wave mechanical operator for evaluating various	
	classical properties. 5) Expectation value.	
	4.4 Solution of the Schrodinger wave equation for a	
	simple system: Particle in one dimensional box.	
0.0		
Y		
		Page   98



## Course Code: RUSCHE602 <u>Course Title : CHEMISTRY-II</u> Academic year 2020-21

#### **Course outcomes:**

After st	udying this course, the learner will be able to:
CO 1	Compare and contrast between Crystal Field Theory and Valence Bond Theory
CO 2	Calculate CFSE of complexes, and thus predict stability
CO 3	Apply MOT to octahedral complexes
<b>CO 4</b>	Carry out Spectral Analysis of Inorganic Compound: determine terms, term symbols and Orgel Diagrams
CO 5	Study Thermodynamic and Kinetic Stability of Complexes.
CO 6	Differentiate between complexes based on their lability.
CO 7	Describe general characteristics of Organometallic Compounds
CO 8	Study Nanomaterials with respect to their synthesis and properties

# **DETAILED SYLLABUS**

RUSCHE602		CHEMISTRY-II	Credits-2.5
	Unit	Unit Title	Lectures
	Ι	Coordination Chemistry	(15L)
		1.1 Theories of metal-ligand bond	(11L)
		<b>1.1.1</b> Recapitulation of VBT and its limitations.	
		1.1.2 Crystal field theory and effect of crystal	
	$\sim$	field on central metal valence orbitals in various	
<b>S</b>	0	geometries,	
		<b>1.1.3</b> Splitting of <i>d</i> orbitals in octahedral, square	
		planar and tetrahedral crystal fields	
		<b>1.1.4</b> Distortions from the octahedral geometry :	
		i) Effect of ligand field ii) Jahn- Teller	
5		distortions	



	115 Converted field applitting nonemator its	
	<b>1.1.5</b> Crystal field splitting parameter, its	. 0
	calculation and factors affecting it in octahedral	0
	complexes, Spectrochemical series.	
	<b>1.1.6</b> Crystal field stabilization energy (CFSE),	
	calculation of CFSE, for octahedral and	
	tetrahedral complexes with $d1$ to $d10$ metal ion	
	configurations.	
	1.1.7 Consequences of crystal field splitting on	
	various properties such as ionic radii, hydration,	
	energy, lattice energy, enthalpies of formation,	
	colour and magnetic properties.	
	1.1.8 Limitations of CFT	
	<b>1.1.9:</b> Evidences for covalence in metal	
	complexes: i) intensities of d-d transitions, ii)	
	ESR spectrum of [IrCl ₆ ] ²⁻ iii) Nephelauxetic	
	effect	
	1.2 Molecular Orbital Theory (MOT) of	(04L)
	<b>Coordination Complexes:</b>	
	Application to octahedral complexes in case of	
	(i) [Ti(H2O)]3+, (ii) Fluoro complexes of Fe(II)	
	and Fe (III) and (iii) Cyano complexes of Fe(II)	
	and Fe (III).	
u I	Properties of Co-ordination Compounds	(15L)
	2.1 Electronic Spectra	(07L)
	2.1.1 Origin of electronic spectra	
	2.1.2 Types of electronic transitions in	
	coordination compounds: intra- ligand, charge	
	transfer and intra-metal transitions.	
	<ul><li>transfer and intra-metal transitions.</li><li>2.1.3 Electronic configuration and electronic</li></ul>	



AMMARAIN ROIA AOTONOMOOS C	OLLEGE, STLLADOS FOR 1	Explore & Experience & Excel
	momenta (Ms), orbital momenta (Ml) and spin-	
	orbit coupling or Russell-Saunders coupling.	
	<b>2.1.4</b> Determination of Terms for $p^2$ and	
	$d^2$ electronic configuration	
	2.1.5 Terms and micro-states for transition metal	$cO^{2}$
	atoms/ions.	
	<b>2.1.6</b> Orgel diagrams for D and F terms (i.e. d ¹ to	
	d ⁹ electronic configurations in octahedral crystal	
	fields)	•
	2.1.7 Selection rules for electronic transitions :	
	Spin and orbital forbidden transitions ( Laporte	
	selection rules)	
	2.2 Stability of Metal Complexes	(04L)
	2.2.1 Thermodynamic stability and kinetic	
	stability of complexes with examples.	
	2.2.2 Stability constants: Stepwise and overall	
	constants and their interrelationship.	
	2.2.3 Factors affecting thermodynamic stability (	
	Factors related to nature of central metal atom,	
	nature of ligand, chelate effect to be discussed)	
	2.3 : Reactivity of Metal Complexes :	(04L)
	2.3.1 Comparison between inorganic and organic	
	reactions	
	<b>2.3.</b> 2 Types of reactions in metal complexes	
	2.3.3 Inert and labile complexes: Correlation	
	between electronic configuration and lability of	
	Complexes	
	2.3.4 Ligand substitution reactions: Associative	



		2.3.5 Acid hydrolysis, base hydrolysis and	1	C
		anation reaction		
	III	Organometallic Chemistry	(15L)	
		3.1 Organometallic Compounds of main	(09L)	
		group metals		
		3.1.1 General characteristics of various types of		
		Organometallic compounds, viz., ionic, sigma		
		bonded and electron deficient compounds	2	
		3.1.2 General synthetic methods: (i) Oxidative		
		addition (ii) Metal-Metal exchange		
		(Transmetallation) (iii) Carbanion-Halide		
		exchange (iv) Metal Hydrogen exchange (v)		
		Methylene insertion reactions.		
		3.1.3Chemical reactions: (i) Reactions with		
		oxygen (ii) Alkylation and arylation reactions		
		(iii) Reactions with protic reagents (iv) Complex		
		formation reactions.		
		3.2 Metallocenes	(04L)	
		Introduction, Ferrocene; Synthesis, properties,		
		structure and bonding on the basis of VBT		
		3.3 d- bonding in rhenium and molybdenum	(02L)	
		halide complexes.		
C	IV	Some Selected Topics	(15L)	
	0	4.1 Nanomaterials	(08L)	
		4.1.1Introduction and importance of		
		nanomaterials		
		4.1.2 Chemical methods of synthesis of		
		nanomaterials		
0-1		4.1.3 Characterisation of Nanomaterials (UV and		
		XRD techniques)		

Ć,



<ul> <li>4.1.4 Dimensions and forms of Nanomaterials : Nano films , nano layers , nano tubes , nanowires and nano particles.</li> <li>4.1.5 Properties (comparison between bulk and nano materials) : 1. Optical 2. Electrical and 3. Mechanical properties</li> <li>4.2.Bio-inorganic and Medicinal Chemistry</li> <li>4.2.1 Metal Co-ordination in biological system: Enzymes, apoenzymes and Coenzymes .</li> <li>4.2.2 Metal complexes in medicine: cis- platin and gold complexes</li> </ul>	(07L)	55
-		

# Course Code: RUSCHE603 Course Title: CHEMISTRY-III Academic year 2020-21.

#### **Course Outcomes:**

After st	udying this course, the learner will be able to:
CO 1	Classify carbohydrates.
CO 2	Study reactions shown by Glucose
CO 3	Illustrate general applications of various catalysts and Reagents
CO 4	Understand basic principles of Photochemistry
CO 5	Know basics of Natural Product chemistry- Including Amino acids, nucleic acids etc
CO 6	Apply Spectral techniques to Structure Determination



RUSCHE603		CHEMISTRY-III	Credits-2.5
	Unit	Unit Title	Lectures
	Ι	Chemistry of Carbohydrates and Catalysts and	(15L)
		Reagents	(2
		1.1 Chemistry of Carbohydrates	(09L)
		1.1.1 Introduction: Classification, reducing and	101
		non-reducing sugars, DL notation.	5
		1.1.2 Structures of monosaccharides: Fischer	
		projection (4-6 carbon monosaccharides) and	
		Haworth formula (Furanose and pyranose forms of	
		pentoses and hexoses). Interconversion: open and	
		Haworth forms of monosaccharides with 5 and 6	
		carbons. Chair conformation with stereochemistry	
		of D-glucose. Stability of chair forms of D-	
		glucose.	
		1.1.3 Stereoisomers of D-glucose: Enantiomers	
		and diastereomers, anomers and epimers.	
		1.1.4 Mutarotation in D-glucose with mechanism.	
		1.1.5 Chain lengthening and shortening reactions:	
		Modified Kiliani-Fischer synthesis (D- arabinose	
	5	to D-glucose and D-mannose), Wohl method (D-	
		glucose to D-arabinose).	
		1.1.6 Reactions of D-glucose and D-fructose: (a)	
		osazone formation (b) reduction- H ₂ /Ni, NaBH ₄	
20		c) oxidation: bromine water, HNO ₃ , HIO _{4 d} )	
		acetylation e) methylation (d and e with cyclic	
		pyranose forms).	
▼ ▶		1.1.7 Glycosides: general structure, formation of	
		alkyl glycosides and anomeric effect.	



	1.1.8 Disaccharides: Structures of sucrose and	
	maltose (cyclic forms: Haworth/chair).	
	1.2 Catalysts and Reagents :	(06L)
	Study of the following catalysts and reagents with	
	respect to functional group transformations and	<b>N</b>
	selectivity (no mechanism)	
	1.2.1 Catalysts: Catalysts for hydrogenation:	
	Raney Ni, Pt and PtO ₂ : C=C, CN, NO ₂ , aromatic	
	ring; Pd/C: C=C, COCl $\rightarrow$ CHO (Rosenmund);	
	Lindlar catalyst: alkynes; Wilkinson's catalyst:	
	olefins.	
	1.2.2 <b>Reagents</b> : (a) LiAlH4 and Red-Al: reduction	
	of CO, COOR, CN, and NO ₂ . (b) NaBH ₄ :	
	reduction of CO (c) SeO ₂ : hydroxylation of allylic	
	and benzylic positions, oxidation of $CH_2$ to $CO(d)$	
	<i>m</i> -CPBA epoxidation of C=C	
	(e) NBS: allylic and benzylicbromination.	
II	Chemistry of Amino Acids, Proteins and	(15L)
	Nucleic Acids and Photochemistry	
	2.1 Chemistry of Amino acids, Proteins and	(08L)
	Nucleic acids:	
	2.1.1 $\alpha$ -Amino acids: General structure,	
	configuration, essential (valine, leucine,	
0	phenylalanine), neutral (glycine, alanine), acidic	
	(glutamic acid) and basic (lysine) amino acids	
	(systematic names with abbreviations). pH	
	dependency of ionic structure and isoelectric	
	1 5	



	2.1.2 Polypeptides and Proteins: Nature of Peptide	
	bond. Nomenclature and representation of	
	peptides (di and tripeptides)	
	2.1.3 Proteins: general idea of primary, secondary,	
	tertiary and quartenary structures.	
	2.1.4 Nucleic acids: Controlled hydrolysis of	U I
	nucleic acids. Sugars and bases in nucleic acids.	5
	Structures of nucleosides and nucleotides in DNA	
	and RNA. Structure of nucleic acids (DNA and	
	RNA including base pairing).	
	2.2 Photochemistry:	(07L)
	2.2.1 Introduction: Difference between thermal	
	and photochemical reactions. Jablonski diagram,	
	singlet and triple states, allowed and forbidden	
	transitions, fate of excited molecules,	
	photosensitization.	
	2.2.2 Photochemical reactions of olefins:	
	photoisomerisation, photochemical rearrangement	
	of 1,4-dienes (di $\pi$ methane)	
	2.2.3 Photochemistry of carbonyl compounds:	
	Norrish I, Norrish II cleavages, photoreduction	
	(e.g. benzophenone to benzpinacol).	
m	Spectroscopy-I (UV-Visible, IR and ¹ H NMR)	(15L)
	3.1 Introduction: Electromagnetic spectrum, units	
	of wavelength and frequency.	
	3.2 UV- Visible spectroscopy: Basic theory,	
	solvents, nature of UV-VIS spectrum, concept of	
	Chromophore, auxochrome, bathochromic shift,	
	Hypsochromic shift, hyperchromic and	

	and chromophore -auxochrome interactions.	
	Calculation of absorption maxima by Woodward-	
	Fieser Rule for conjugated polyenes. Applications	
	of UV-Visible spectroscopy.	
	3.3 IR Spectroscopy: Basic theory, selection rule,	
	nature of IR spectrum, characteristic vibrational	r O
	frequencies of functional groups, fingerprint	
	region. Applications IR Spectroscopy.	
	3.2. ¹ H NMR Spectroscopy: Basic theory of ¹ H	
	NMR, nature of ¹ H NMR spectrum,	
	chemical shift ( $\partial$ unit), standard for ¹ H	
	NMR, solvents used. Factors affecting	
	chemical shift: inductive effect and	
	anisotropic effect (with reference to C=C,	
	C=C, C=O and benzene ring). Spin- spin	
	coupling and coupling constant.	
	Application of deuterium exchange	
	technique. Application of ¹ H NMR in	
	structure determination.	
137		(1 = T )
IV	Spectroscopy-II and Natural Products	(15L)
	4.1 Spectroscopy-II	(08L)
	4.1.1 Mass Spectrometry: Basic theory. Nature of	
	mass spectrum. General rules of fragmentation.	
	Importance of molecular ion peak, isotopic peaks,	
	base peak, Nitrogen rule. Fragmentation of	
	alkanes and aliphatic carbonyl compounds	
	including Mclafferty rearrangement.	
	4.1.2 Spectral characteristics of following classes	
	4.1.2 Spectral characteristics of following classes of organic compounds, including benzene and	

	VIS, IR, ¹ H NMR: (1) alkanes (2) alkenes and	
	polyenes (3) alkynes (4) haloalkanes (5) alcohols	
	(6) carbonyl compounds (7) ethers (8) carboxylic	. 0
	acids (9) esters (10) amines (11) amides (broad	
	regions characteristic of different groups are	
	expected).	$(\mathbf{V})$
	4.1.3 Problems of structure elucidation of simple	$\mathbf{O}$
	organic compounds using individual or combined	
	use of the UV-VIS, IR, ¹ H NMR and Mass	
	spectroscopic techniques. (index of hydrogen	
	deficiency expected).	
	4.2 Natural Products :	(07L)
	4.2.1 Introduction, sources, classification and	
	functions to the following natural products	
	(Structures of the compounds specified are	
	expected)	
	(a) Terpenoids: (isoprene rule). citral, $\alpha$ -	
	terpeniol, camphor and $\alpha$ -pinene.	
	(b) Alkaloids: nicotine, atropine.	
	(c) Vitamins: vitamin A and vitamin C.	
	(d) Hormones: adrenaline, thyroxine.	
	(e) Steroids: cholesterol, progesterone.	
	4.2.2 Structure determination of natural products:	
	(a) Ozonolysis in terpenoids: Examples of	
	open chain and monocyclic	
	monoterpenoids.	
0.	(b) Hofmann exhaustive methylation and	
	L.	



	4.2.3 Commercial synthesis: (a) camphor from $\alpha$ -		. (
	pinene (b) $\alpha$ - and $\beta$ - ionones from citral.		5
	4.2.4 Introduction to primary and secondary	0	U
	metabolites and broad classification of		/
	natural products based on biosynthesis.		
1			

# Course Code: RUSCHE604 <u>Course Title: CHEMISTRY-IV</u> Academic year 2020-21

#### **Course Outcomes:**

After st	After studying this course, the learner will be able to:	
<b>CO 1</b> Outline the basic principles, instrumentation of these advanced separation		
	techniques and electroanalytical methods.	
CO 2	Assess advantages and limitations of these techniques.	
CO 3	Correlate these techniques with industrial applications.	
CO 4	Relate the applications of analytical methods in day-to-day life.	

# **DETAILED SYLLABUS**

RUSCHE604		CHEMISTRY-IV	Credits-2.5
	Unit	Unit Title	Lectures
	Ι	Separation Techniques.	(15L)
		1.1 Gas Chromatography	(06L)
		<b>1.1.1</b> Introduction, basic principles, terms	
~0`		involved,	
		1.1.2 Rate theory and plate theory of	
		chromatography	
		1.1.3 Instrumentation, components of the	
5		instruments, Types of columns, packing	
		materials.	



	<b>1.1.4</b> Types of detectors, TCD, FID, ECD, their	
	relative advantages and imitations	
	<b>1.1.5</b> Qualitative and quantitative analysis,	
	<b>1.1.6</b> Applications of GC	
	1.2 High Pressure Liquid Chromatography	(05L)
	<b>1.2.1</b> Introduction, basic principles.	<b>U</b>
	<b>1.2.2</b> Instrumentation and its components.	
	1.2.3Solvent reservoirs, degassing system,	
	1.2.4Types of pumps, pneumatic, reciprocating,	
	syringe type, their advantages and limitations,	
	1.2.5Pre-column, types of columns, packed and	
	capillary, sample injection systems	
	<b>1.2.6</b> Detectors, UV-Visible, refractive index,	
	<b>1.2.7</b> Applications of HPLC	
	1.3 Ion Exchange Chromatography	(04L)
	1.3.1 Introduction, types of ion exchangers,	
	synthetic and natural, cation and anion, properties	
	of resins	
	<b>1.3.2</b> Ion exchange equilibria, selectivity	
	coefficient, separation factors, factors affecting	
	separation of ions	
	<b>1.3.3</b> Ion exchange capacity and its determination	
$\langle \Phi \rangle$	<b>1.3.4</b> Applications of ion exchange	
	chromatography, preparation of demineralized	
	water, separation of amino acids, separation of	
	lanthanides, preparation of exact concentration of	
	acids or bases	
П	Electroanalytical Methods	(15L)



	<b>2.1</b> : Introduction and classification of	(01L)
	electroanalytical methods and specific features of	
	each of the major category.	
	2.2 Ion Selective Electrodes:	(04L)
	2.2.1 Ion selective and ion specific electrodes,	ro
	components of ion selective electrode, properties	
	of membrane in ion selective electrode,	
	classification of ion selective electrodes	
	2.2.2 Solid membrane electrodes: Fluoride ion	
	selective electrode, Glass membrane electrode,	
	Glass electrode.	
	2.2.3 Liquid membrane electrode: Calcium ion	
	electrode	
	2.3 Polarography	(07L)
	2.3.1 Basic principles, polarizable and	
	nonpolarizable electrodes, supporting electrolyte,	
	its function, selection of supporting electrolyte	
	2.3.2 The polarogram, terms involved, residual	
	current, limiting current, diffusion current, half	
	wave potential.	
	2.3.3 Oxygen interference and its removal,	
	polarographic maxima and use of maxima	
	suppressors.	
$\langle O \rangle$	2.3.4 Equation of polarographic wave,	
	determination of half wave potential and diffusion	
	current from the polarogram	
	2.3.5Ilkovic equation, terms involved and their	
	explanation	
0-	2.3.6 DME, Construction, working, advantages	
	and limitations;	

	2.3.7 Instrumentation, H- shaped polarographic	
	cell , Qualitative and quantitative analysis,	
	calibration curve method, standard addition	
	method.	
	<b>2.3.8</b> Applications of polarography.	$\sim$
	2.4 Amperometric titrations	(03L)
	<b>2.4.1</b> Basic principles: construction of the titration	
	curve, Different types of amperometric titration	
	curves,	
	2.4.2 Rotating platinum electrode, construction,	
	working, advantages and limitations.	
	2.4.3 Applications of amperometric titrations,	
	2.4.4 Comparison of amperometry and	
	polarography	
III	Miscellaneous Methods	(15L)
	3.1 Potentiometric titrations	(04L)
	3.1.1Potentiometry and potentiometric titrations,	
	basic principles, indicator and reference electrode,	
	types of titrations and indicator electrodes used for	
(	each type.	
	3.1.2 Experimental set up & procedures for the	
	potentiometric titrations,	
	3.1.3 Determination of equivalence point in	
	potentiometric titrations, use of E vs.V, first and	
	second derivative plots vs. V for the determination	
~0`	of the equivalence point.	
	<b>3.1.4</b> Advantages and limitations.	
	3.2 Biamperometric titrations,	(02L)
	5.2 Diamperometrie utrations,	` ´
	<b>3.2.1</b> Basic principles, experimental set up,	



	<b>3.2.2</b> Biamperometric titration curves,	
	determination of the equivalence point	
	3.2.3 Determination of water content by Karl	
	Fischer method.	
	3.3 Gel electrophoresis	(06L)
	<b>3.3.1</b> Basic principle,	
	3.3.2 Factors affecting migration rate, supporting	
	media, SDS page, Isoelectric focussing	
	3.3.3 2D gel support, application of the sample,	
	procedure.	
	3.3.4 Separation and identification methods	
	3.3.5 Applications	
	3.4 Size exclusion Chromatography	(03L)
	3.4.1 Introduction, principles,	
	<b>3.4.2</b> Operational procedures,	
	3.4.3 Applications of size exclusion	
	chromatography	
IV	Selected Industrial Applications of Analytical	(15L)
	Chemistry	
	4.1 Food analysis	(05L)
	4.1 .1 Milk powder	
	<b>4.1.1.1</b> Determination of lactose	
	<b>4.1.1.2</b> Determination of calcium and iron	
	4.1.2 Honey	
	4.1.2.1 Total reducing sugars in honey	
	4.2 Cosmetic analysis	(02L)
	4.2.1 Talcum powder	
	4.2.2 Analysis of face powder	
	4.3 Detergent analysis	(03L)



RAMNARAIN RUIA AUTONOMOUS COLLEGE, SYLLABUS FOR T..Y.B.Sc Sem-V & Sem-VI CHEMISTRY 2020-2021

<b>4.3.1</b> Determination of active anionic matter		
<b>4.3.2</b> Determination of alkalinity		
<b>4.3.3</b> Determination of oxygen releasing capacity.		
4.4 Water analysis	(03L)	
<b>4.4.1</b> Determination of dissolved oxygen		
<b>4.4.2</b> Determination of chemical oxygen demand		
4.5 Pharmaceutical Analysis	(02L)	
4.5.1 Determination of drugs by non-aqueous		
titration		

# Semester-VI Practicals

RUSCHEP601	Credits-3
0	CHEMISTRY-I
	1. To determine the energy of activation for the acid catalyzed
	hydrolysis of methyl acetate.
	2. To determine the molecular weight of high polymer polyvinyl
	alcohol (PVA) by viscosity measurement.
	3. To determine acidic and basic dissociation constant of amino acid
	and hence calculate isoelectric point.
	4. To determine the amount of weak acid and strong acid in the given
	mixture by conductometric titration.
	5. To determine the solubility and solubility product of AgCl
	potentiometrically using chemical cell.
~0	6. To determine Critical Micelle Concentration (CMC) using
	conductometer.
	NHEMICTOX II
	CHEMISTRY-II
	norganic preparations



	1. Mercury tetrathiocyanatoCobaltate (II) Hg[Co(SCN)4]
	2. Magnesium oxinate[Mg(Ox)2]
	3. Tris-acetyl acetonato iron(III) [Fe(AcAc)3]
	4. Tetramminecopper(II) sulphate. [Cu(NH3)4]SO4.H2O
	Inorganic estimations/ Analysis
	1. Estimation of copper iodometrically using sodium thiosulphate.
	2. Estimation of lead by complexometrically using EDTA solution.
RUSCHEP602	CHEMISTRY-III
	Binary Mixture Separation & identification (Solid + Solid)
	(2.0 g mixture to be given)
	1. Minimum six mixtures to be completed by the learners.
	2. Components of the mixture should include water soluble and water
	insoluble acids (carboxylic acid), water insoluble phenols ( $\alpha$ -naphthol, $\beta$ -
	naphthol), water insoluble bases (nitroanilines), water soluble (urea and
	thiourea) and water insoluble neutrals (Aromatic hydrocarbons, m-
	dinitrobenzene, anilides, amides)
	3. A sample of binary mixture to be given (<1.0 gram) to the learners for
	detection of chemical type of mixture. After correct determination of the
	chemical type, the fixing reagent should be decided by the learners for
	separation.
	4. Follow separation scheme with the bulk sample of the binary mixture.
	5. After separation of the components into independent components A and B,
	a. One component (decided by the examiner) is to be analyzed and identified
	by chemical method with melting point and also by IR spectroscopy. (This
	component is not to be weighed).
5	b. The other component is to be purified, dried, weighed and melting point is
	to be determined.
	CHEMISTRY-IV:
0.	1. Estimation of Chromium in water sample by using diphenylcarbazide
	spectrophotometrically.



2. Determination of acetic acid content in vinegar sample by using
quinhydrone electrode potentiometrically.
3. Determination of phosphoric acid in cola sample pH metrically.
4. Estimation of calcium and magnesium content in Talcum powder.
5. Estimation of reducing sugar in honey by Wilstatter method.
6. Separation and estimation of Mg(II) and Zn(II) from given sample
solution using an anion exchanger.

#### **Physical Chemistry**

- 1. Physical Chemistry, Ira Levine, 5th Edition, 2002 Tata McGraw Hill Publishing Co.Ltd.
- 2. The Elements of Physical Chemistry, P.W. Atkins, Oxford University Press, Oxford..

3. Modern Electrochemistry, J.O.M Bockris& A.K.N. Reddy, Maria Gamboa – Aldeco 2nd Edition, 1st Indian reprint,2006 Springer

- 4. Physical Chemistry, G.M. Barrow, 6th Edition, Tata McGraw Hill Publishing Co. Ltd. New Delhi.
- 5. The Elements of Physical Chemistry, P.W. Atkins, 2nd Edition, Oxford UniversityPress Oxford
- 6. Physical Chemistry, G.K. Vemullapallie, 1997, Prentice Hall of India, Pvt.Ltd. New Delhi.

### **Inorganic Chemistry**

1. D. Banerjea, Coordination chemistry, Tata McGraw Hill, New Delhi, (1993).

2. D. F. Shriver and P. W. Atkins, Inorganic chemistry, 3rd Ed., Oxford University Press, (1999).

3. N. N. Greenwood and E. Earnshaw, *Chemistry of elements*, Pergamon Press, Singapore, (1989).

4. W. L. Jolly, Modern inorganic chemistry, 2nd Ed. McGraw Hill Book Co., (1991).

5. B. E. Douglas and H. McDaniel, *Concepts and models in inorganic chemistry*, 3rd Ed., John Wiley & Sons, Inc., New York, (1994).

6. G. N. Mukherjee and A. Das, *Elements of bioinorganic chemistry*, Dhuri and Sons, Calcutta, (1988).

7. R. W. Hay, Bioinorganic chemistry, Ellis Harwood, England, (1984).

8. R. C. Mehrotra and A. Singh, *Organometallic chemistry: A unified approach*, Wiley Eastern, New Delhi, (1991).



 Practical Inorganic Chemistry by G. Marr and B. W. Rockett, VanNostrand Reinhold Company London1972. P 34. (For synthesis of iron ethylenediamine sulphate)
 Microscale Inorganic Chemistry by Z. Szafran, Ronald M. Pike and Mono M. Singh.
 Pub.John Wiley and Sons1991.p.218.(For preparation of CuCl₂.2DMSO.

#### **Organic Chemistry**

- 1. Organic Chemistry, Francis A Carey, Pearson Education, 6th Edition, Special Indian Edition 2008.
- 2. Organic Chemistry, R.T. Morrison and R.N. Boyd, 6th Edition, Pearson Edition.
- 3. Organic Chemistry, T.W.G. Solomon and C.B. Fryhle, 8th Edition, John Wiley & Sons, 2004.
- 4. Organic Chemistry Baula Y. Bruice, Pearson Edition, 2008.
- 5. Organic Chemistry, J.G. Smith, 2nd Editionm Special Indian Edition, Tata. McGraw Hill.
- 6. Stereochemistry, P.S. Kalsi, New Age International Ltd. 4th Edition, 2006
- 7. Organic Spectroscopy by Jag Mohan

8. Furniss, B. S.; Hannaford, A. J.; Rogers, V.; Smith, P. W. G.; Tatchell, A. R. Vogel's Textbook of Practical Organic Chemistry, ELBS.

#### **Analytical Chemistry**

1. D. Harvey, Modern Analytical Chemistry, The McGraw-Hill Pub. 1st Edition (2000)

2. H.S. Ray, R Sridhar and K.P. Abraham, Extraction of Nonferrous Metals, AffiliatedEast-West Press Pvt. Ltd. New Delhi (1985) reprint 2007.

3. G.H. Jeffery, J. Bassett, J. Mendham and R.C. Denney, Vogel's Textbook of Qunatitative Chemical Analysis, Fifth edition, ELBS Publication (1996)

4. D.A. Skoog D.M. West and F.J. Holler, Fundametals of Analytical Chemistry, 7thEdition (printed in India in 2001) ISBN Publication.

- 5. Analytical Chemistry, J.G. Dick, 1973 Tata McGraw Hill Publishing Co. Ltd. New Delhi.
- 6. Quantitative analysis, Dey& Underwood, Prentice Hall of India, Pvt. Ltd. New Delhi
- 7. Fundamentals of Analytical Chemistry, Skoog 8th edition, Saunders college publishing.



## **Modality of Assessment**

#### **Theory Examination Pattern:**

#### A) Internal Assessment - 40% of total marks:

(40 r	narks)
-------	--------

Sr No	Evaluation type	Marks
1	One Assignment	10
2	One class Test (multiple choice questions / objective)	20
3	Active participation in routine class instructional deliveries (seminars//presentation)	05
4	Overall conduct, participation in co-curricular activities of the department.	05

#### **B** ) External examination – 60 %

Semester End Theory Assessment - 60% 60 marks

- 1. Duration: These examinations shall be of **two hours** duration.
- 2. Theory question paper pattern is as follows :-There shall be **Four** questions each of **15** marks. On each unit th

There shall be **Four** questions each of **15** marks. On each unit there will be one question. All questions shall be compulsory with internal choice within the questions.

Questions	Options	Marks	Questions on
Q.1)A)	Any 3 out of 5	12	Unit I
Q.1)B)	Any 1 out of 2	03	
Q.2)A)	Any 3 out of 5	12	Unit II
Q.2)B)	Any 1 out of 2	03	
Q.3)A)	Any 3 out of 5	12	Unit III
Q.3)B)	Any 1 out of 2	03	
Q.4)A)	Any 3 out of 5	12	Unit IV
Q.4)B)	Any 1 out of 2	03	

#### **Practical Examination Pattern:**

	RUS	CHEP601	RUSC	RUSCHEP602		
	Paper I	Paper II	Paper III	Paper IV		
Journal	05	05	05	05		
Tests	10	10	10	10		
Active Participation	05	05	05	05		
Total	20	20	20	20		
(B) External (Seme	ster end prac	tical examinatio	n):-			
Laboratory work	25	25	25	25		
Viva	05	05	05	05		
Total	30	30	30	30		
Grand Total	100		100			

#### PRACTICAL JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.

In case of loss of Journal, Certificate from Head/ Co-ordinator should be submitted, failing which the student will not be allowed to appear for the practical examination.



Course		601			602		Grand Total
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practical	20	30	50	20	30	50	100
	1			1			)
Course		603			604		
		E-4 and al	Total	Internal	External	Total	
	Internal	External	Total	muthai	Enternat		
Theory	Internal 40	External 60	100an	40	60	100	200
Theory Practical							200 100

# **Overall Examination and Marks Distribution Pattern**