Resolution number AC/II(20-21).2.RUS2

S. P. Mandali's

Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for

Program: BSc

AMMAR

Program Code: RUSBCH

(Credit Based Semester and Grading System for academic year 2020–2021)

PROGRAM OUTCOMES

РО	PO Description		
	A student completing Bachelor's Degree in SCIENCE		
	program will be able to:		
PO 1	Recall and explain acquired scientific knowledge in a		
	comprehensive manner and apply the skills acquired in their		
	chosen discipline. Interpret scientific ideas and relate its		
	interconnectedness to various fields in science.		
PO 2	Evaluate scientific ideas critically, analyse problems, explore		
	options for practical demonstrations, illustrate work plans and		
	execute them, organise data and draw inferences.		
PO 3	Explore and evaluate digital information and use it for knowledge		
	upgradation. Apply relevant information so gathered for analysis		
	and communication using appropriate digital tools.		
PO 4	Ask relevant questions, understand scientific relevance,		
	hypothesize a scientific problem, construct and execute a project		
	plan and analyse results.		
PO 5	Take complex challenges, work responsibly and independently,		
	as well as in cohesion with a team for completion of a task.		
	Communicate effectively, convincingly and in an articulate		
	manner.		
PO 6	Apply scientific information with sensitivity to values of different		
	cultural groups. Disseminate scientific knowledge effectively for		
	upliftment of the society.		
PO 7	Follow ethical practices at work place and be unbiased and		
2Y	critical in interpretation of scientific data. Understand the		
	environmental issues and explore sustainable solutions for it.		
PO 8	Keep abreast with current scientific developments in the specific		
	discipline and adapt to technological advancements for better		
	application of scientific knowledge as a lifelong learner		

PROGRAM SPECIFIC OUTCOMES

PSO	Description
	A student completing Bachelor's Degree in SCIENCE program
	in the subject of BIOCHEMISTRY will be able to:
PSO 1	Achieve better understanding of the major thrust areas of the
	disciplines like Chemistry of Biomolecules & their metabolism,
	Cell biology (Basics, Membrane biochemistry, Cancer),
	Enzymology, Genetics, Plant Biochemistry, Pharmacology,
	Microbiology & Immunology.
PSO 2	Gain acumen of the fundamental biochemical processes
	occurring at the molecular and gene level.
PSO 3	Understand the role of Biochemistry in food, human nutrition and
	environmental science.
PSO 4	Get insights into multiple important analytical tools for
	Biochemical testing and apply contextual knowledge and tools of
	biochemical research for problems solving.
PSO 5	Acquire and empower technical knowledge by connecting
	disciplinary and interdisciplinary aspects of biochemistry.
PSO 6	Compile and interpret Biological data using Biostatistics and
	Bioinformatics tools.
PSO 7	Express ideas persuasively through scientific writing and oral
7	presentation which will help in the development of the leadership
8	qualities.
PSO 8	Possess scientific temperament by research project-based
	learning.
PSO 9	Procure hands-on real time experience in industries.
PSO 10	Get exposure to the strong theoretical and practical
	understanding of various dimensions of Biochemistry and take
	up research-oriented courses in the fields of Biochemistry,
	Nutrition & Dietetics, Molecular Biology, etc.

PROGRAM OUTLINE

YEAR	SEM	COURSE COURSE TITLE			
		CODE			
		RUSBCH101	Biomolecules	2	
		RUSBCH102	Cell Biology	2	
		RUSBCHP101	Practicals based on RUSBCH101	1	
FYBSc		RUSBCHP102	Practicals based on RUSBCH102	1	
FIDSC		RUSBCH201	Physiology	2	
		RUSBCH202	Basics Of Genetics	2	
	11	RUSBCHP201	Practicals based on RUSBCH201	1	
		RUSBCHP202	Practicals based on RUSBCH202	1	
		RUSBCH301	Analytical Techniques in Biochemistry	2	
		RUSBCH302	Enzymology	2	
		RUSBCH303	Metabolism I	2	
	111	RUSBCHP301	Practicals based on RUSBCH301	1	
		RUSBCHP302	Practicals based on RUSBCH302	1	
SYBSc		RUSBCHP303	Practicals based on RUSBCH303	1	
31030		RUSBCH401	Microbiology & Industrial Biotechnology	2	
		RUSBCH402	Plant Biochemistry	2	
	IV	RUSBCH403	Metabolism II	2	
	IV	RUSBCHP401	Practicals based on RUSBCH401	1	
		RUSBCHP402	Practicals based on RUSBCH402	1	
		RUSBCHP403	Practicals based on RUSBCH403	1	
		RUSBCH501	Membrane Biochemistry & Cancer Biology	2.5	
		RUSBCH502	Analytical Techniques & Introduction to	2.5	
7	TOSECH302	Immunology			
		RUSBCH503	Molecular Biology	2.5	
	V	RUSBCH504	Biostatistics & Bioinformatics	2.5	
2		RUSBCHP501	Practicals based on RUSBCH501	1.5	
		RUSBCHP502	Practicals based on RUSBCH502	1.5	
TYBSc		RUSBCHP503	Practicals based on RUSBCH503	1.5	
		RUSBCHP504	Practicals based on RUSBCH504	1.5	
		RUSBCH601	Human Physiology & Pharmacology	2.5	
		RUSBCH602	Food Biochemistry & Environmental Science	2.5	
	VI	RUSBCH603	Biochemistry of Metabolism	2.5	
	VI	RUSBCH604	Nutritional Biochemistry	2.5	
		RUSBCHP601	Project Work	1.5	
		RUSBCHP602	Practicals based on RUSBCH602	1.5	

A.

RUSBCHP603	Practicals based on RUSBCH603	1.5
RUSBCHP604	Practicals based on RUSBCH604	1.5

Course Code: RUSBCH101

Course Title: Biomolecules

Academic year 2020-21

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION		
CO 1	Understand the classification, structures, biological significance of biomolecules - carbohydrates, proteins & lipids which forms the foundation of Biochemistry		
CO 2	Acquire knowledge in quantitative & qualitative estimation and understanding the role and functions of biomolecules.		
CO 3	Describe the chemistry that governs physical, chemical properties and reactions of carbohydrates, proteins and amino acids & lipids.		
CO 4	Comprehend the classification and structures of several monosaccharides, disaccharides and polysaccharides, and explain their functions.		
CO 5	Elucidate the structures of amino acid, peptide bond formation and classes of amino acids, identify the four levels of protein structure and summarize the function for a range of proteins.		
CO 6	Categorize lipids, identify structure and functions of fats, phospholipids and cholesterol, and explain the structural differences between saturated, monounsaturated and polyunsaturated fatty acids with the functional implications.		
CO 7	Enhance their ability to learn important reactions taking place in the biotic world to study metabolic pathways which will be utilized in higher classes of this program.		

Course	Unit	Course/ Unit Title	Credits/
Code/		Biomolecules	Lectures
Unit		RUSBCH101	2 Credits
	1	Carbohydrates	15L
	1.1	Definition, Occurrence and functions of	2L
		carbohydrates	
	1.2	Classification (Monosaccharides,	
		Oligosaccharides, Polysaccharides)	
	1.3	Monosaccharides	3L
	1.3.1	Concept of aldoses and ketoses	
	1.3.2	Structures and significance of biologically important	
		monosaccharides: glucose, fructose, galactose,	
		mannose, and ribose.	
	1.4.1	Physical Properties:	2L
		Chirality: Isomerism D & L, Stereoisomerism:	
		Enantiomers and Diastereomers, Epimers and	
		Anomers, Optical Isomers, Mutarotation	
	1.4.2	Chemical reactions:	3L
		Oxidation to acidic sugars (Aldonic, Aldaric and	
		Uronic acids) (with respect to glucose)	
I		Reduction to sugar alcohols (In boiling alkali,	
		Enediol formation) (with respect to glucose and	
		fructose)	
		Osazone formation (with respect to glucose and	
		fructose)	
		Orcinol formation (with respect to ribose)	
	1.5	Disaccharides	2L
		Occurrence and structure of Maltose, Lactose and	
$\mathcal{O}_{\mathcal{U}}$		Sucrose	
		Chemical reaction: Formation of glycosidic bonds	
	1.6	Polysaccharides	3L
*		Classification based on structure, occurrence,	
		properties and biological importance	
		Composition: Homopolysaccharides and	
		Heteropolysaccharides with examples	
		Storage: Starch and Glycogen – action of amylase	
		on starch	
		Structural: Cellulose and Chitin	

	2	Amino acids & Proteins	15L
	2.1	Amino acid	3L
	2.1.1	Structure- D & L forms of all 20 amino acids	
	2.1.2	Detailed classification based on: Polarity,	
		Nutritional classification (Essential & Non-	
		essential)	
	2.2.1	Physical Properties: Zwitter ion, pl of amino acids	3L
		and Amino acids as ampholytes	
	2.2.2	Chemical reactions of amino acids with Ninhydrin,	$C^{\mathcal{A}}$
		Sanger's reagent, Edman's reagent and Dansyl	
		chloride	
	2.3	Non-standard amino acids	2L
	2.4	Functions of amino acids (in brief)	
	2.5	Comparative overview of D- and L-amino acids	
II	2.6	Peptides and Proteins	2L
		ASBC- APS classification on the basis of shape,	
		Function and physical properties & solubilities	
		(Simple, conjugated & derived proteins)	
		Nutritional classification (Complete & incomplete	
		proteins)	
		Properties and colour reactions of proteins	
	2.7	Overview of Protein structure	3L
	2.8	A) Primary structure -Formation and	
		characterization of the peptide bond	
		B) Secondary structure -Alpha helix and beta	
		sheet	
		C)Tertiary and Quaternary structures- an	
		introduction with one example of each	
	2.9	Protein denaturation	1L
	3	Lipids	15L
	3.1.1	Definition and function of lipids	2L
	3.1.2	Classification (Simple, Complex and Derived lipids)	
	3.2	Fatty Acids and Triacylglycerols	3L
	3.2.1	Classification & Chemistry	
		Saturated fatty acids - classification of C2 to C20	
		(even carbon). Common and IUPAC names	
		Unsaturated fatty acids MUFA, PUFA (2,3,4 double	
		bonds)	
		Omega – 3, 6, 9 fatty acids	
		Triacylglycerol - simple and mixed (names and	
		structure)	
	3.2.2	Chemical Reactions of fats	4L
		Saponification, Iodination, Ozonolysis, Auto-	

	1	
	oxidation, Action of heat on glycerol and choline, Rancidity	
	Definition & significance - Acid number,	
	Saponification number, lodine number, Reichert - Meissel number	
0.0		41
3.3	Compound Lipids	4L
	Functions of glycerophospholipids	
	Phosphosphingolipids (ceramide, sphingomyelin)	
	Glycolipids / Cerebrosides (gluco &	
	galactocerebrosides)	
3.4	Steroids and Lipoproteins	2L
	Steroids - Cholesterol structure and biochemical	
	significance	
	Lipoproteins – Types (Chylomicrons, VLDL, LDL	
	and HDL) and biochemical significance	
	Practicals – RUSBCHP101	1 Credit
1	Safety measures in laboratories.	
2	Qualitative tests for carbohydrates	
3	Qualitative test for amino acids, proteins.	
4	Qualitative tests to detect the unknown	
	carbohydrates and proteins from the given solution	
5	Isoelectric precipitation of casein	
6	Qualitative test for lipids	
7	Saponification value of fat	
8	Determination of the acid value of a fat	
9	Estimation of Glycine by Soronsen's method	
10	Determination of the iodine value of a fat	

- 1. Lehninger, Albert L, Biochemistry, Kalyani Publishers
- 2. Zubay, Geoffrey L., Biochemistry; Wm. C. Brown publishers
- 3. Stryer, Lubert; W.H.; Biochemistry; Freeman publishers
- 4. U. Satyanarayan, U. Chakrapani; Biochemistry. Elsevier
- 5. Plummer, David T.; Introduction to practical biochemistry; Tata Mc. Graw and Hill publishers.
- 6. Biochemical methods by S Sadashivam & A Minackam, New Age International publisher.
- 7. Sawhney, S.K. and Singh, Randhir; Introductory practical biochemistry; Narosa Publishing House

St.

Course Code: RUSBCH102

Course Title: Cell Biology

Academic year 2020-21

COURSE OUTCOMES:

COURSE	DESCRIPTION		
OUTCOME			
CO 1	Understand the structure and basic components of prokaryotic and		
	eukaryotic cells and gain insights into its broad classification and		
	differentiation.		
CO 2	Acquire knowledge about morphology, types and functions of		
	different types of cell organelles – Mitochondria, Chloroplast,		
	Nucleus, Ribosomes, Endoplasmic Reticulum, Golgi Complex,		
	Lysosomes and Peroxisomes		
CO 3	Appraise the role of cytoskeleton and understand its different		
	components, function and distribution.		
CO 4	Illustrate the mechanism of cell to cell interaction and cell division,		
	to explain structural and functional aspects of the cells.		
CO 5	Provide in depth knowledge of cell cycle and its check points also to		
	learn structure and functions of chromosomes and phases of cell		
	cycle & division.		
CO 6	Identify and describe the parts of microscope. To study the		
	distinguishing features, principle components and applications of		
	various types of light and electron microscope.		
CO 7	Develop an analytical insight to understand the principle and		
	methodology of centrifugation, different types & application of		
	centrifuge and rotors.		
6.			
ar			
V			

Course Code/ Unit	Unit	Course/ Unit Title Cell Biology RUSBCH102	Credits/ Lectures 2 Credits
	1	Cell Organelles	15L
	1.1	Broad classification of cell types: prokaryotic and eukaryotic cells and their characteristics.	16
	1.2	Cell wall and Cell membrane	3L
	1.3	Cell Organelles	3L
	1.3.1	Nucleus: Structure & Function of the nucleus, nuclear envelope, nuclear pore complex, nuclear matrix and nucleolus	
I	1.3.2	Mitochondria & chloroplast: Structure, function, endosymbiont theory, genome	3L
	1.3.3	Ribosome: Structure & Function	01
	1.3.4 1.3.5	Endoplasmic reticulum: RER and SER, Function Golgi apparatus: Organization and function	3L
		Brief overview of cotranslational and post- translational transport of proteins	
	1.3.6	Lysosome: Development of different forms of lysosomes, role in cellular digestion	3L
	1.3.7	Peroxisome: assembly, functions (H ₂ O ₂ metabolism, fatty acid oxidation), glyoxysomes	
	2	Cytoskeleton, Cell-cell interaction & Cell cycle	15L
	2.1	Introduction and Importance of Cytoskeleton	3L
	2.2	Types (Microtubules, Microfilaments & Intermediate Filaments)	
	2.2.1	Structure, assembly and function of Microtubules: Axonemal and cytoplasmic microtubules (cilia, flagella, centrioles, basal bodies)	
	2.2.2	Microfilaments: Actin & Myosin, Cytoplasmic streaming	2L
~	2.2.3	Intermediate Filaments: Anchoring cell junctions	
	2.3	Motor Proteins – Kinesins, Dyneins & Myosins	1L
	2.4	Cell - Cell Interaction	2L
	2.4.1	Cell-Cell Interactions and Cell-Matrix Interactions	
	2.2.4	Components of Extracellular Matrix: Collagen and Non-Collagen Components	
	2.4.3	Tight Junctions; Gap Junctions; Chemical synapses and Plasmodesmata	2L

RAMNARAIN RUIA AUTONOMOUS COLLEGE, SYLLABUS FOR BIOCHEMISTRY 2020-2021

	2.5	Role & Importance of Cell Interaction	
	2.6	Cell Cycle	2L
	2.6.1	Overview of Cell Cycle	
	2.6.2	Phases of Cell Cycle	
	2.6.3	Role of checkpoints	2L
	2.6.4	Regulation of cell cycle - Cyclins & CDKs	
	2.6.5	Cell Division (Mitosis and Meiosis)	1L
	3	Tools of Cell Biology (Microscopy &	15L
		Centrifugation)	
	3.1	Microscopy	3L
	3.1.1	Introduction and basic concept of Magnification,	
		Resolving power, Numerical aperture, Limit of	
		resolution, refractive index and role and RI of oil)
	3.1.2	Parts and functions of Compound microscope	
	3.1.3	Light microscope- Bright Field, Dark field, Phase	4L
		contrast, Fluorescence microscopy	
		(Immunofluorescence and FISH), Confocal	
		Microscopy	
III	3.1.4	Electron Microscopy	
	3.2	Centrifugation	2L
	3.2.1	Principle of centrifugation, basic rules of	
		sedimentation, sedimentation coefficient	
	3.2.2	Types and applications of centrifuges – Clinical,	3L
		High speed, Ultra centrifuge - preparative and	
		analytical.	
	3.2.3	Centrifuge rotors: vertical, fixed angle, swinging	3L
		bucket	
	3.2.4	Types of centrifugation and its applications-	
		Differential, Rate zonal, Isopycnic	
	0	Practicals – RUSBCHP102	1 Credit
		To study the parts of a microscope	
	2	Cytochemical staining of proteins by Methylene	
		blue	
	3	Cytochemical staining of polysaccharides by PAS	
	4	To study different stages of mitosis by temporary	
\mathcal{O}		preparation in onion root tip	
	4	To study of cell organelles by using electron	
		micrographs	
	6	To isolate mitochondria by differential	
		centrifugation	
	7	Staining and visualization of mitochondria by Janus	
		Green Stain	
		Effect of hypotonic, isotonic and hypertonic	

8	solutions on the cells	
	Visualization of nuclear fraction by acetocarmine	
9	stain	

- 1. Zubay, Geoffrey L., Biochemistry; Wm. C. Brown publishers
- 2. Stryer, Lubert; W.H.; Biochemistry; Freeman publishers
- 3. U. Satyanarayan, U. Chakrapani; Biochemistry. Elsevier
- 4. Stanier,Ingraham et al ,General Microbiology 4th & 5th Ed. 1987, Macmillan Education Ltd
- 5. Analytical Biochemistry by David Holme
- 6. Biophysical Chemistry, Avinash Upadhyay
- 7. Keith Wilson & John Walker, Practical Biochemistry, principle and technique, Cambridge University, 5th edition
- 8. Plummer, David T.; Introduction to practical biochemistry; Tata Mc. Graw and Hill publishers.
- 9. Boyer, Rodney F., Modern experimental biochemistry
- 10. Sawhney, S.K. and Singh, Randhir; Introductory practical biochemistry ; Narosa Publishing House

11

 \bigcirc

Modality of Assessment (SEMESTER I)

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1	One Assignment/poster presentation/Quiz	20
2	One class Test (multiple choice questions / subjective)	20
	TOTAL	40

B) External Examination- 60%- 60 Marks Semester End Theory Examination:

- 1. Duration These examinations shall be of **02 HOURS** duration.
- 2. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions Based on
Q1. A	Any 2 out of 3	04	
Q1. B	Any 2 out of 3	06	UNIT I
Q2. A	Any 2 out of 3	04	
Q2. B	Any 2 out of 3	06	UNIT II
Q3. A	Any 2 out of 3	04	
Q3. B	Any 2 out of 3	06	UNIT III
25	TOTAL	60	

Practical Examination Pattern:

A) Internal Examination: 40%- 40 Marks

Particulars	Practical I & II
Journal	05
Experimental tasks	15
Total	20

B) External Examination: 60%- 60 Marks

Semester End Practical Examination:

Particulars	Practical I & II
Laboratory work	25
Viva	5
Total	30

OLLEGE Overall Examination & Marks Distribution Pattern

Semester I

Course	101				02		Grand Total
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practicals	20	30	50	20	30	50	100

RAMMARAMAR

Course Code: RUSBCH201

Course Title: Physiology

Academic year 2020-21

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
CO 1	Enumerate the biological significance and functions of water, acids, bases and buffers.
CO 2	Gain knowledge about the principles of pH measurement, acid- base, buffers and biological buffers its properties and determination of pH using electrodes.
CO 3	Explain difference between weak and strong acids/bases, recognize different ways of expressing concentrations of a solution
CO 4	Develop practical aspects on study of water, acid, bases and buffers to understand the standardization of laboratory reagents and prepare buffer solutions at a given pH and concentration.
CO 5	Categorize fundamentals and application of physiology to study biological systems and regulate life processes.
CO 6	Comprehensively study digestion for absorption of nutrients throug the digestive system.
CO 7	Summarize the flow of respiratory and excretory system and to broadcast its functioning.
CO 8	Holistically understand the different organ systems with respect to their biochemical events that co-ordinate working of the organ system.
2AMMA	

Course	Unit	Course/ Unit Title	Credits/
Code/		Physiology	Lectures
Unit		RUSBCH201	2 Credits
	1	Water and Acids, bases & buffers	15L
	1.1	Water	/
	1.1.1	Water and its biological significance, water as a	
		universal solvent.	
	1.1.2	Hydrogen bonding and structure	
	1.1.3	Concepts of mole, molar, molar equivalent and	2L
		normal, Dalton	
	1.1.4	Ionization of water, weak acids and weak bases	
	1.1.5	Numericals based on the above concept	
	1.2	Acid and Bases	4L
	1.2.1	Definitions and Introduction of pH Scale,	
I		Measurements, Indicators, Strong and Weak	
		Electrolytes	
	1.2.2	Titration Curve of glycine	
	1.2.3	Working of pH meter and glass electrode	1L
	1.3	Buffers	2L
	1.3.1	Mechanism of Buffer Action, Buffering Capacity	
	1.3.2	Preparation of Buffer Solutions – Acidic and Basic	4L
		Expression of Hendersen–Hasselbalch equation,	
		Henderson equation of acidic and basic buffer	
		solution	
	1.3.3	Numericals based on the above concept	
	2	Digestion & Absorption	15L
	2.1	Histology and Functions of gastro intestinal tract	5L
	N	(GIT)	
	2.2	Organs and Glands associated with GIT	
	2.3	Secretions and Juices of GIT (Saliva, Gastric juice,	3L
		Intestinal juice, pancreatic and Bile juice)	
	2.4	Introduction to digestion	3L
2	2.4.1	Mechanism of Digestion and Absorption of	
		carbohydrates, Lipids & Proteins	
	2.4.2	Physiology of Disorders related to digestive system	3L
		- Peptic ulcer, Lactose Intolerance, Celiac disease,	
		Pancreatitis	
	3	Respiration & Excretion	15L
III	3.1	Respiration	3L
	3.1.1	Components of Respiratory system and their	

		functions	
	040	functions	
	3.1.2	Breathing - inspiration and expiration	
	3.1.3	Composition of air and partial pressure of gases	
	3.1.4	Physical exchange of gases - Transport of oxygen	4L
		and carbon dioxide in blood	
	3.1.5	Respiratory disorders – Asthma, pharyngitis,	
		laryngitis, hay fever, pneumonia, occupational lung	
		disease (silicosis & asbestosis), cyanosis,	
		respiratory acidosis and alkalosis	
	3.2	Excretion	3L
	3.2.1	Components of the Excretory system, Functional	
		anatomy of kidney	
	3.2.2	Ultrastructure of nephron: Malpighian Body &)
		Renal tubule	
	3.2.3	Juxta-Glomerular apparatus, Ultrafiltration, GFR	3L
		(Pressures involved & Regulation)	
	3.2.4	Mechanism and Regulation of Urine formation	
	3.2.5	Normal & Abnormal constituents of urine	2L
	3.2.6	Excretory disorder: Nephritis	
		Practicals – RUSBCHP201	1 Credit
	1	Preparation & standardization of laboratory	
		reagents	
	2	Quantitative estimation of normality of FAS	
	3	Demonstration of pH meter	
	4	Preparation of buffers, phosphate and acetate	
		buffers	
	5	Determination of pKa of glycine	
	6	Study of the human digestive system	
	7	Determination of achromic point of salivary	
		amylase	
	8	Estimation of total and free gastric juice acidity	
	9	Study of the human respiratory system using virtual	
	K -	lab	
	10	Study of the human excretory system using virtual	
N.		lab	
ar	11	Biochemical profile of urine (Physical	
		characteristics & Qualitative assay)	

- Keith Wilson & John Walker, Practical Biochemistry, principle and technique, Cambridge University, 5th edition
 Frelfelder D- Physical Biochemistry

- 3. Skoog Douglas A Principles of Instrumental Analysis Harcourt Brace publishers, London
- 4. Human Physiology Chatterjee.C.C, Medical Allied Agency
- 5. Upadhyaya et al Biophysical Chemistry, Himalaya Publishing Home, New Delhi
- 6. Textbook of Medical Physiology: Gyton and Hall, Elsevier publishers
- under solution of the solution 7. Sawhney, S.K. and Singh, Randhir: Introductory practical biochemistry, Narosa Publishing House

Course Code: RUSBCH202

Course Title: Basics of Genetics

Academic year 2020-21

COURSE OUTCOMES:

RAMMARAMAR

COURSE	DESCRIPTION
OUTCOME	
CO 1	Describe the structure and function of nucleic acid strengthening
	the basic information of DNA and RNA, understanding nitrogenous
	bases, their bond formation & reactions of nucleic acids.
CO 2	Gain insights about types, structure and properties of nucleic acids
CO 3	Elaborate on central dogma to overview the process of Replication,
	Transcription and Translation
CO 4	Learn basic concepts of genetics and transmission of genetic
	information.
CO 5	Explain derivatives from Mendel's model of the inheritance of traits.
CO 6	Study of Human Pedigree analysis in understanding the inheritance
	of genes in humans
CO 7	Critically understand the components of DNA and the process of
	sequencing structural properties of chromosome.
CO 8	Recognize normal and abnormal karyotypes, describing the
	abnormalities in chromosomal number.

Course	Unit	Course/ Unit Title	Credits/
Code/		Basics of Genetics	Lectures
Unit		RUSBCH202	2 Credits
	1	Nucleic acids	15L
	1.1.1	Introduction to nucleic acids	3L
	1.1.2	Structure - Purine & Pyrimidine bases, ribose,	
		deoxyribose, nucleosides and nucleotides (ATP, CTP, GTP, TTP, UTP)	
	1.2	Formation of phosphodiester bond and shorthand representation of polynucleotide strand	ÍL.
	1.3	RNAs (various types in prokaryotes and eukaryotes) mRNA, hnRNA, rRNA, snRNA & snoRNA - general account, tRNA - clover leaf model, Ribozymes	3L
	1.4	DNA	2L
	1.4.1	Physical evidence of DNA helical structure. Chargaff's rules (chemical evidence), Watson-Crick model of DNA & its features	
	1.4.2	Physical properties of DNA - Effect of heat on physical properties of DNA (Viscosity, buoyant density, UV absorption), Hypochromism, hyperchromism, denaturation of DNA.	3L
	1.5	Reactions of nucleic acids (with DPA and Orcinol)	1L
	1.6	Central Dogma of Life (Overview: Replication, Transcription, Translation & Reverse Transcription)	2L
	2	Mendelian Inheritance & Chromosomal Abnormalities	15L
	2.1.1 2.1.2	Concept of alleles, genotype & Phenotype Mendel's experimental design	2L
	2.2.1	Monohybrid cross- principle of segregation, Confirmation of principle using back cross	3L
Ph.	2.2.2	Dihybrid cross- principle of independent assortment	
K.	2.3	Deviation from Mendelian genetics	3L
	2.3.1	Multiple allele- ABO blood group, Drosophila eye colour, Relation of multiple allele with molecular genetics	
	2.3.2	Inheritance pattern of single gene- Wild type allele, Mutant allele, Dominant mutant allele & their effect on phenotype	2L
	2.4	Numericals based on above concepts	2L

	2.5.1	Concept of Genes and Chromosomes	3L
	2.5.2	Chromosomal abnormalities (Down's Syndrome,	_
		Klinefelter's Syndrome, Turner's Syndrome, Cri-du-	
		chat syndrome, Philadelphia Chromosome)	
	3	Genome Organization & Human pedigree	15L
		analysis	
	3.1	Prokaryotic Genome: Organization of circular	1L
		chromosome	
	3.2	Eukaryotic chromosomes: Organization of DNA	2L
		into chromosomes (upto Solenoid structure)	
	3.3	DNA supercoiling, Topoismerase, Chromatin	5L
	0.0	structure, Euchromatin, Heterochromatin, structure	
		of condensed chromatin, Nucleosomes	
		[Centromere, kinetochrome, telomere], Acetylation	r
		& deacetylation of histones, Role of Telomerase	
	3.4	Comparison of chromosomal structure in	1L
III		prokaryotes and eukaryotes	
	3.5	Transformation: Definition and transformation in	1L
		S.pneumoniae	
	3.6	Transduction: Definition; Explain general features	1L
		with one example	
	3.7	Conjugation: Mechanism, F+, F- and Hfr strain	1L
	3.8	Human Pedigree Analysis	3L
	3.8.1	Standard symbols used in pedigree analysis	
	3.8.2	Applications of pedigree analysis – Autosomal	
		recessive and dominant traits, X-linked recessive	
		and dominant traits, Y-linked traits	
	3.8.3	Problems based on this concept	
		Practicals – RUSBCHP202	1 Credit
		Qualitative test for nucleic acids	
		Cytochemical staining of RNA by Methyl Green	
	2	Pyronin	
		Squash preparation of salivary glands of Dipteran	
	3	larva to observe polytene chromosomes	
1.		Demonstration of induction of polyploidy in onion	
	4	roots	
		Smear technique to demonstrate sex chromatin in	
	5	buccal epithelial cells	
		Problems on Mendelian genetics –Mono & dihybrid	
	6	cross, Back cross, Test cross	
		Isolation and spooling of DNA from onion/ moong	
	7	Study of abnormal human karyotype and pedigrees	
	8	(dry lab)	

- 1. Voet, D. and Voet, J.G. (2004) Biochemistry, 3rd Edition, John Wiley & Sons, Inc. USA. Biochemistry by Zubay, Geoffrey L.; Wm. C. Brown publishers
- 2. Zubay, Geoffrey L., Biochemistry; Wm. C. Brown publishers
- 3. Peter J. Russel , i-Genetics
- 4. Benamin Lewin, Gene VII, Oxford University Press
- 5. M.W. Strickberger, Genetics
- atic s-zach courte cour 6. Biochemical methods by S. Sadashivam & A. Minackam, New Age International publisher.Experiments in Molecular Biology - Biochemical Applications - Zachary F.

 \bigcirc

Modality of Assessment (SEMESTER II)

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1	One Assignment/poster presentation/Quiz	20
2	One class Test (multiple choice questions / subjective)	20
	TOTAL	40

B) External Examination- 60%- 60 Marks Semester End Theory Examination:

- 1. Duration These examinations shall be of **02 HOURS** duration.
- 2. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions Based on
Q1. A	Any 2 out of 3	04	
Q1. B	Any 2 out of 3	06	UNIT I
Q2. A	Any 2 out of 3	04	UNIT II
Q2. B	Any 2 out of 3	06	
Q3. A	Any 2 out of 3	04	
Q3. B	Any 2 out of 3	06	UNIT III
S.	TOTAL	60	

Practical Examination Pattern:

A) Internal Examination: 40%- 40 Marks

Particulars	Practical I & II
Journal	05
Experimental tasks	15
Total	20

B) External Examination: 60%- 60 Marks

Semester End Practical Examination:

Particulars	Practical I & II
Laboratory work	25
Viva	5
Total	30

OLLEGE Overall Examination & Marks Distribution Pattern

Semester II

Course	201			2	02		Grand Total
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practicals	20	30	50	20	30	50	100

RAMMARAMA

Course Code: RUSBCH301

Course Title: Analytical Techniques in Biochemistry

Academic year 2020-21

COURSE OUTCOMES:

trate broad knowledge in basic analytical instrumentation p knowledge in its core concepts and its applications. and the principle, Instrumentation, working of spectroscopic es (Flame photometry & AAS) and its applications in esearch fields knowledge about the basics and latest developments in ical investigation tools and importance of plant and animal biochemical investigation trate skill to explain about principle, Bioinstrumentation and ons of protein purification techniques like Electrophoresis
and the principle, Instrumentation, working of spectroscopic es (Flame photometry & AAS) and its applications in esearch fields knowledge about the basics and latest developments in ical investigation tools and importance of plant and animal biochemical investigation trate skill to explain about principle, Bioinstrumentation and ons of protein purification techniques like Electrophoresis
es (Flame photometry & AAS) and its applications in esearch fields knowledge about the basics and latest developments in ical investigation tools and importance of plant and animal biochemical investigation trate skill to explain about principle, Bioinstrumentation and ons of protein purification techniques like Electrophoresis
esearch fields knowledge about the basics and latest developments in ical investigation tools and importance of plant and animal biochemical investigation trate skill to explain about principle, Bioinstrumentation and ons of protein purification techniques like Electrophoresis
knowledge about the basics and latest developments in ical investigation tools and importance of plant and animal biochemical investigation trate skill to explain about principle, Bioinstrumentation and ons of protein purification techniques like Electrophoresis
ical investigation tools and importance of plant and animal biochemical investigation trate skill to explain about principle, Bioinstrumentation and ons of protein purification techniques like Electrophoresis
biochemical investigation trate skill to explain about principle, Bioinstrumentation and ons of protein purification techniques like Electrophoresis
trate skill to explain about principle, Bioinstrumentation and ons of protein purification techniques like Electrophoresis
ons of protein purification techniques like Electrophoresis
PAGE) and Chromatography and their applications in
esearch fields.
cognitive, technical and creative skills which enables
to gain an established knowledge and practice concerning
alytical instrumentation and measurement techniques
to choose and apply suitable analytical technique to
lifferent biomolecules
skill in carrying out research projects by employing the
chemical and molecular techniques.

Course	Unit	Course/ Unit Title	Credits/
Code/		Analytical Techniques in Biochemistry	Lectures
Unit		RUSBCH301	2 credits
	1	Spectroscopic techniques	15L
	1.1	Concept of Electromagnetic radiation,	2L
		Electromagnetic spectrum, Emission,	
		Luminescence, Scattering, Transmittance,	
		Absorbance	
I	1.2	Flame Photometry	3L
	1.3	Principle, Components, Structure of flame,	2L
		Interferences in analysis, Applications	
	1.4	Atomic Absorption Spectroscopy	5L
	1.5	Principle, Instrumentation and Applications	3L
	2	Biochemical Investigations	15L
	2.1	Approaches to and levels of biochemical	2L
		investigations	
	2.2	Whole animal and plant studies – the advantages	4L
		and disadvantages of model systems for	
		biochemical investigation (E.coli, Yeast,	
		Dictyostelium, C. elegans, Drosophila, Arabidopsis)	
	2.3	Organ & Tissue studies	3L
II	2.4	Isolated and cultured tissue and cell techniques :	
		isolation, culture and counting of cells	
	2.5	Cell Fractionation:	3L
	2.5.1	Cell rupture – solid shear, liquid shear, high	
		pressure, ultrasound, osmotic shock, chemical	
		treatment (enzyme, organic solvent), temperature	
	2.5.2	Choice of suspension medium (isotonic &	3L
	X-	hypotonic solution, PBS) and separation methods	
	2.5.3	Problems of cell fractionation	
	3	Protein Purification Techniques	15L
Ch.	3.1	Protein Isolation	3L
2		Selection of a Protein Source	
		Methods of Solubilization	
		Stabilization of Proteins	
III		Assay of Proteins	
	3.2	General Strategy of Protein Purification	3L
		Solubilities of Proteins	
		Effects of Salt Concentrations	
		Effects of Organic Solvents	
		Effects of pH	

	Crystallization	
3.3	Ultracentrifugation- Preparative Ultracentrifugation	1L
3.4	Chromatographic Separations- Gel Filtration	4L
	Chromatography, Ion Exchange Chromatography,	
	Affinity Chromatography	
3.5	Electrophoresis- Gel Electrophoresis, SDS PAGE,	4L
	Isoelectric Focusing	
	Practicals – RUSBCHP301	1 Credit
1	Study of spectrophotometer	\sim
2	Determination of absorption maxima (λmax)	
3	Estimation of glucose by DNSA method	
4	Estimation of proteins using UV-absorbance and	
	Biuret method	
5	Estimation of proteins using Lowry method	
6	Demonstration of flame photometer	
7	Demonstration of separation of protein by SDS	
	PAGE	
8	Separation of proteins by gel filtration	
	chromatography	
9	Demonstration of separation of proteins using	
	anion-exchange chromatography	
10	Ammonium sulphate fractionation of proteins	
11	Virtual lab – Study of model organisms in research	
12	Isolation & Partial purification of an enzyme (Cell	
	lysis, Centrifugation, salting out dialysis & size	
	exclusion chromatography)	

- 1. Principles & Techniques of Practical Biochemistry Wilson, Walker- Cambridge Univ. Press.
- 2. Biophysical Chemistry, Principles & Techniques Upadhyay, Upadhyay and Nath Himalaya Publ. House.
- 3. Analytical Biochemistry David Holme & Hazel Peck Pearson Education Ltd, England
- 4. Principles of Instrumental Analysis Douglas A. Skoog, F. James Holler, Stanley R. Crouch Thomson Brooks/Cole
- 5. Cell Biology: Essential techniques David Rickwood Wiley
- 6. Cell Separation A practical Approach D. Fisher, G E Francis and D Rickwood Oxford University Press
- 7. A.L., Lehninger, Principles of Biochemistry (1982), Worth Publishers, Inc. New York.
- 8. Protein Purification: Principles, High Resolution Methods, and Applications (Methods of Biochemical Analysis), Jan-Christer Janson, 2011.
- 9. Biochemical methods S Sadashivam and A Manickam New Age International publishers
- 10. Laboratory Manual in Biochemistry J. Jayaraman New Age International
- 11. An Introduction To Practical Biochemistry Plummer David

4

Course Code: RUSBCH302

Course Title: Enzymology

Academic year 2020-21

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
CO 1	Have a deeper insight in to the fundamentals enzyme properties,
	nomenclatures, characteristics and mechanisms
CO 2	Describe structure, functions and the mechanism of action of
	enzymes. Learning kinetics of enzyme catalysed reactions and
	enzyme inhibitions and regulatory process, Enzyme activity,
	Enzyme Units, Specific activity
CO 3	Apply biochemical calculation for enzyme kinetics.
CO 4	Discuss the factors affecting enzymatic reactions.
CO 5	Describe the concepts of co-operative behaviour, enzyme inhibition
	and allosteric regulation
CO 6	Compare methods for production, purification, characterization and
	immobilization of enzymes.
CO 7	Describe the major applications of enzymes in industry, understand
	the principles of enzyme immobilisation techniques and enzyme
	extraction procedures
CO 8	Develop new ideas for the development of enzyme-based
	diagnostic kits
CO 9	Discuss various application of enzymes that can benefit human life
CO 10	Discover the current and future trends of applying enzyme
0	technology for the commercialization purpose of biotechnological
	products.
AMA	

Course	Unit	Course/ Unit Title	Credits/
Code/		Enzymology	Lectures
Unit		RUSBCH302	2 credits
	1	Introduction to enzymes	15L
	1.1	Introduction to enzymology	4L
	1.1.1	Understanding the basic terminology in	
		enzymology Enzyme, Apoenzyme, Holoenzyme,	
		Prosthetic group, Active site, Turnover number,	
		Specific activity, Katal, IU, Coenzyme and Cofactor	
	1.1.2	Proteolytic cleavage of zymogens and enzyme	
		denaturation	
	1.2	Classification of enzyme- IUB system	
	1.3	Principle types of reactions catalysed by enzymes	4L
	1.3.1	Group transfer reactions – Acyl group transfer,	
		Phosphoryl group transfer, Glycosyl group transfer	
1	1.3.2	Oxido-reduction reactions	
•	1.3.3	Elimination, isomerization and rearrangement	
		reactions	
	1.4	Enzyme specificity	4L
	1.4.1	Theories of specificity of enzyme : Fischer's, lock &	
		key and Koshland's, induced fit theories	
	1.4.2	Characteristics of enzymes and enzyme substrate	
		complex	
	1.4.3	Concept of active center, binding sites, Stereo	
		specificity and ES complex formation	
	1.5	Enzyme activity	3L
	1.5.1	Factors affecting enzyme activity	
	1.5.2	Concept of activation energy and transition state	
	K	theory	
	2	Enzyme – kinetics, regulation, inhibition	15L
	2.1	Enzyme kinetics	4L
	2.1.1	Derivation of Michaelis - Menten equation and	
25		Lineweaver Burke equation and Graphical	
	0.1.0	procedures for monosubstrate reactions	
II	2.1.2	Significance of Vmax & Km	41
	2.2	Enzyme regulation	4L
	2.2.1	Introduction & its importance	
	2.2.2	Types of regulatory mechanisms- Product	
		inhibition, Feedback	41
	2.3	Enzyme inhibition	4L

	2.3.1	Types of inhibitors- Competitive, Non-competitive	
		and Uncompetitive, and their mode of action and	
		experimental determination considering suitable	
		example.	
	2.3.2	Graphical understanding of effect of different	
		inhibitors on enzyme kinetics (Use of LB Plot)	
	2.3.3	Numericals based on the above concepts	3L
	3	Immobilized enzymes and Application of	15L
		enzymes	<u> </u>
	3.1	Immobilized enzymes	7L
	3.1.1	Introduction	
	3.1.2	Importance of immobilization	
	3.1.3	Methods of immobilization- lonic bonding,	
		Adsorption, Covalent bonding (based on R group	
		of amino acids), Microencapsulation and Gel	
		entrapment	
	3.1.4	Enzyme extraction and optimum conditions,	3L
		kinetics of immobilized enzyme	
	3.1.5	Industrial examples related to the technique	
	3.1.6	Problems associated with enzyme immobilization	
	3.2	Application of enzymes	3L
	3.2.1	Isoenzymes. Applications of enzymes in research.	
	3.2.2	Application of enzymes in diagnostics	
	3.2.3	(SGPT, SGOT, creatine kinase, alkaline and acid	2L
		phosphatases),	
	3.2.4	Enzyme immunoassay (HRP),	
		Practicals – RUSBCHP302	1 Credit
	1	Extraction of β -Amylase, Urease & Invertase from	
		suitable sources	
	2	Determination of optimum pH of β-Amylase	
	3	Determination of optimum temperature of β-	
		Amylase	
	4	Determination of Km and Vmax of β -Amylase	
	5	Assay to determine enzyme activity and specific	
		activity	
25	6	Study the effect of inhibitor on β-Amylase	
	7	Comparative assessment of the β -Amylase activity	
		in free and immobilized state	
	8	Immobilization of Yeast and its use in	
		determination of Invertase activity	
	9	Demonstration of separation of isoenzymes of LDH	
		by electrophoresis	

- 1. A.L., Lehninger, Principles of Biochemistry (1982), Worth Publishers, Inc. New York.
- 2. Harper's Biochemistry Murray, Granner, Mayes, and Rodwell Prentice Hall International Inc.
- 3. Textbook of medical physiology A. C. Gyton, and J. E Hall Saunders Elsevier Publications
- 4. Advances in Enzymology and Related Areas of Molecular Biology, Mechanism of Enzyme Action - Daniel Purich
- 5. Medical Biochemistry Ramakrishnan (2012)
- 6. Molecular and cellular enzymology Jeannine Yon-Kahn, G. Hervé
- Biochemical methods S Sadashivam and A Manickam New Age International publishers
- 8. Laboratory Manual in Biochemistry J. Jayaraman New Age International RAMMARINALIA

Course Code: RUSBCH303

Course Title: Metabolism I

Academic year 2020-21

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
CO 1	Discuss the overall concept of cellular metabolism – anabolic and
	catabolic pathways, energy storage and release, production of
	building blocks for macromolecule synthesis.
CO 2	Understand the relationship between the properties of
	macromolecules and cellular activities, cell metabolism and
	chemical composition.
CO 3	Illustrate the reactions involved in the metabolic pathways of
	biomolecules
CO 4	Explain glucose homeostasis (pathways and hormonal regulation).
	Discuss Krebs cycle, electron transport, and the pentose phosphate
	pathway
CO 5	Describe common pathways of amino acid catabolism to release
	ammonia (handled by the urea cycle) and carbon skeletons.
CO 6	Differentiate between ketogenic and glucogenic amino acids, and
	diseases resulting from defective catabolism (phenylketonuria,
	maple syrup urine disease) and biosynthesis of non-essential
	amino acids.
CO 7	Describe the structure, biosynthesis, oxidation and storage of fatty
	acids.
CO 8	Deeply understand the metabolic pathways of cholesterol
CO 8	

Course	Unit	Course/ Unit Title	Credits/
Code/		Metabolism I	Lectures
Unit		RUSBCH303	2 Credits
	1	Carbohydrate Metabolism	15L
	1.1	Overview of glucose metabolism	4L
	1.1.1	Glycolysis- Salient features, reactions,	
	1.1.2	Conversion of pyruvate to lactate & its significance	
	1.1.3	Irreversible reactions of glycolysis	
	1.1.4	Regulation of glycolysis	
	1.2	Conversion of pyruvate to Acetyl CoA- Role of	1L
		Pyruvate dehydrogenase complex & its regulation	
I	1.3	Citric acid cycle- Pathway with reactions & its regulation	3L
	1.4	Glycogenolysis – [schematic – no structures, but	1L
		with enzymes and coenzymes]	
	1.5	HMP shunt (Cellular location, sequence of	2L
		reactions, multifunctional nature)	
	1.6	Gluconeogenesis, Glycogenesis – [schematic – no	3L
		structures, but with enzymes and coenzymes]	
	1.7	Glyoxylate pathway	1L
	2	Amino acid metabolism	15L
	2.1.1	Chemical nature, functional groups and reactivity of	4L
		amino acids	
	2.1.2	Reactions of amino acids: Deamination,	
		Transamination , Decarboxylation ,	
		Transmethylation, Transdeamination,	
		Ammonia formation, transport and detoxification in	
II	2	brain and liver.	
	2.2	Urea cycle & its regulation	3L
	2.3	Metabolism of significant amino acids– Glycine,	4L
		Phenylalanine, Tyrosine, Tryptophan	
6.	2.4	Formation of specialized products from amino	4L
		acids and their functions-glutathione, creatine,	
		creatinine, biogenic amines (dopamine,	
		norepinephrine, GABA, Histamine)	
	3	Lipid metabolism	15L
	3.1	Introduction to lipid metabolism	5L
III	3.1.1	Lipid Digestion, Absorption, and Transport	
	3.1.2	Fatty Acid Oxidation-Fatty Acid Activation,	
		Transport Across the Mitochondrial Membrane,	

	Beta-Oxidation	
3.1.3	Oxidation of Unsaturated Fatty Acids	
3.1.4	Oxidation of Odd-Chain Fatty Acids	
3.2	Ketone Bodies	2L
3.3	Fatty Acid Biosynthesis- Pathway Overview, Acetyl	3L
	CoA Carboxylase, Fatty Acid Synthase, Transport	
	of Mitochondrial Acetyl-CoA Into the Cytosol,	
	Elongases and Desaturases,	
3.4	Synthesis of Triacylglycerols	1L
3.5	Regulation of Fatty Acid Metabolism	1L
3.6	Cholesterol Metabolism- Cholesterol Biosynthesis,	3L
	Control of Cholesterol Biosynthesis and Transport,	
	Cholesterol Utilization	
	Practicals – RUSBCHP303	1 Credit
1	Estimation of glucose by the Folin-Wu method	
2	Estimation of glucose by the GOD-POD method	
3	Demonstration of glucose metabolism using	
	handheld glucometer	
4	Assay of serum transaminases – SGOT and SGPT	
5	Estimation of serum urea.	
6	Estimation of serum creatinine.	
7	Assay of glutamate dehydrogenase	
8	Lipid Profile –	
а	Estimation of total cholesterol and HDL	
b	Estimation of Triglycerides	
С	Estimation of LDL by calculation	
9	Field trip to pathology lab/super-speciality hospitals	

- 1. Biochemistry U. Sathyanarayana Books and Allied (P) Ltd. Kolkata.
- 2. Biochemistry Voet, D. and Voet, J.G. John Wiley & Sons, Inc. USA.
- 3. Biochemistry by L. Stryer W.H. Freeman Press, San Francisco, USA.
- 4. Outlines of Biochemistry E.E. Conn and P.K. Stumpf Wiley Eastern, New Delhi.
- 5. Text book of Biochemistry J.L Jain
- 6. Text Book of Biochemistry D.M. Vasudevan
- 7. Text Book of Biochemistry A.C. Deb, 9th revised edition (2017)
- 8. Biochemistry Garret, R.H. and Grisham, C.M. (2005) Thomson Learning INC.
- 9. Biochemical methods S Sadashivam and A Manickam New Age International publishers
- 10. Laboratory Manual in Biochemistry J. Jayaraman New Age International
- 11. An Introduction to Practical Biochemistry Plummer David

Modality of Assessment (SEMESTER III)

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1	One Assignment/poster presentation/Model making/Quiz	20
2	One class Test (multiple choice questions / subjective)	20
	TOTAL	40
B) Exter	nal Examination- 60%- 60 Marks	\tilde{C}

B) External Examination- 60%- 60 Marks Semester End Theory Examination:

- 1. Duration These examinations shall be of 02 HOURS duration.
- 2. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions Based on
Q1. A	Any 2 out of 3	04	
Q1. B	Any 2 out of 3	06	UNIT I
Q2. A	Any 2 out of 3	04	UNIT
Q2. B	Any 2 out of 3	06	II
Q3. A	Any 2 out of 3	04	UNIT
Q3. B	Any 2 out of 3	06	111
	TOTAL	60	

Practical Examination Pattern:

A) Internal Examination: 40%- 40 Marks

Particulars	Practical I, II & III
Journal	05
Experimental tasks	15
Total	20

B) External Examination: 60%- 60 Marks

Semester End Practical Examination:

Particulars	Practical I, II & III	
Laboratory work	25	
Viva	5	
Total	30	
	larks Distribution Pattern	COLLE
	.5	

Overall Examination & Marks Distribution Pattern

Semester III

Course	301			302			303			Grand Total
	Internal	External	Total	Internal	External	Total	Interna	External	Total	
Theory	40	60	100	40	60	100	40	60	100	300
Practicals	20	30	50	20	30	50	20	30	50	150
		Ŕ	5							
2411	R									

Course Title: Microbiology & Industrial Biotechnology

Academic year 2020-21

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
CO 1	Demonstrate practical skills in microscopy and handling techniques related to it and staining procedures
CO 2	Apprehend the basic microbial structure and function and study the structural similarities and differences among various physiological groups of microorganisms
CO 3	Know various Culture media and their applications in order to apply them for the industrial production
CO 4	Acquire information about large scale production and purification of various industrially important produces.
CO 5	Appreciate how microbiology is applied in manufacture of industrial products
CO 6	Appreciate the different types of fermentation processes
CO 7	Master aseptic techniques and be able to perform routine culture handling tasks safely and effectively
CO 8	Know about design of bioreactors, factors affecting growth and production, heat transfer, oxygen transfer and Understand the rationale in medium formulation & design for microbial fermentation
CO 9	Procure information about types and applications of biosensors in the field of biology
CO 10	Appreciate the technological advances in the field of Biosensors and get fascinated with the advances in the research field and try to pursue them.
CO 11	Quantitative estimation of biomolecules like vitamins & antibiotics will help in understanding their efficacy

Course Unit Course/ Unit Title		Credits/	
Code/		Microbiology & Industrial Biotechnology	Lectures
Unit		RUSBCH401	2 Credits
	1	Introduction to Microbiology	15L
	1.1	Historical background (contributions or	2L
		Leeuwenhoek. Pasteur, etc) and General	
		characteristics (size, shape, and structure) of	
		Bacteria	
	1.2	Microbial Taxonomy: Microbial species and strains.	4L
		Classification of bacteria based on morphology	
		(shape and flagella). staining reaction, nutrition and	
		extreme environment (extremophiles:	
		Thermophiles, Psychrophiles, Halophiles,	
I		Magnetotactic, Radiation resistant organisms:	
		examples with their application)	
	1.3	Bacterial cell wall: Structure and function,	2L
		components of peptidoglycan framework	
	1.4	Staining methods (principles of staining & types or	3L
		stains) and microscopic identification of bacteria	
	1.5	Microbial Growth - Growth Curve, Mathematical	2L
		expression, Synchronous growth, Generation	
		time	
	1.6	Culture media (N, C, Special requirements),	2L
		Natural and Synthetic media	
	2	Fermentation Technology	15L
	2.1	Basics of fermentation	1L
	2.2	Types of fermentation processes based on the	5L
	OX	products formed (biomass, enzymes, metabolites,	
		recombinant products, transformation process to	
	2.3	modify a product)	2L
	2.3	Stages of a typical fermentation process Media preparation and optimization based on	2L 2L
D	2.4	biochemical parameters	ZL
25	2.5	Sterilization and disinfection techniques	3L
	2.5	Basic design of fermenter	2L
	2.0 3	Industrial Biotechnology	15L
	3.1	Introduction	3L
	3.2	Recovery and purification of fermented products	
III	3.3	Industrial synthesis of different products obtained	6L
	0.0	from Bioprocess technology	
	3.3.1		
	J.J.I	Penicillin, Vit B ₁₂ , Cheese, Amylase, Protease,	

		Ethanol, Acetic Acid	
3	3.3.2	Biosensors, Features of biosensors	6L
		Types of Biosensors based on:	
		Enzymes (environmental monitoring)	
		Antibodies (detection of pathogens)	
		Nucleic acids & Aptamers (clinical diagnosis)	
		Practicals – RUSBCHP401	1 Credit
	1	Testing of Air micro-flora by plate exposure	
		technique	c^{\times}
	2	Demonstration of Micrometry	
	3	Permanent slides of Nostoc & Rhizopus	
	4	Staining Techniques – Gram staining, Capsule	
		staining, endospore staining, lipid staining) ~
	5	Study of microbial growth curve	
	6	Cell count in a culture medium using optical	
		density (We use serial dilution method and analyse	
		using colorimeter)	
	7	A study of culture inoculation methods – Pour	
		plate, Spread plate & Streak plate	
	8	Determination of minimum inhibitory concentration	
		of any one disinfectant	
	9	Antibacterial activity testing using disc diffusion	
		and agar well method	
	10	Determination of percentage purity of acetic acid in	
		vinegar solution	
	11	Estimation of vitamin C by dichlorophenol dye	
		method	
	12	Bioassay of penicillin by agar diffusion method	
	13	Bioassay of Vitamin B12 by agar diffusion method	

- 1. Microbiology M. Pelczar, E.C.S. Chan and M.R. Krieg McGraw Hill Inc., Singapore (1997).
- 2. General Microbiology, Vol. I & II Powar, Daginawala Himalaya Publishing House. (2015).
- 3. General Microbiology Stanier, Adelberg, Ingraham The Macmillan Press, London (1987)
- 4. Industrial microbiology A.H. Patel Macmillan India Ltd.
- 5. Industrial microbiology L. E. Casida New age international publishers
- 6. Microbial Biochemistry G. N. Cohen
- 7. Industrial Fermentation Paul Allen
- 8. Biochemical methods S Sadashivam and A Manickam New Age International publishers
- 9. Laboratory Manual in Biochemistry J. Jayaraman New Age International

 $\langle \cdot \rangle$

Course Code: RUSBCH402

Course Title: Plant Biochemistry

Academic year 2020-21

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
CO 1	Study the structural details of the plant cell
CO 2	Illustrate the chemistry of different plant pigments in order to
	explore their isolation, characterization and applications in various fields
CO 3	Explain and understand the biochemistry of photosynthetic process
	and its relation to man and its environment.
CO 4	Understand the mechanism of Nitrogen fixation and its importance
	in agricultural production and environment
CO 5	Acquire knowledge about the importance of secondary metabolites
	and its industrial applications.
CO 6	Identify the class and functions of secondary metabolites and
	appreciate their role in physiology of plants
CO 7	Know the significance of plant growth regulators in the development
	of plants
CO8	Understand the basics of plant tissue culture as it is an important
	tool for both basic and applied aspects of plant based research
CO9	Become competent to explain relation between Photosynthesis,
	growth hormones and Plant growth
CO10	Develop skills and knowledge to conduct basic research work in the
	field of Plant Biochemistry

Course	Unit Course/ Unit Title		Credits/
Code/		Plant Biochemistry	Lectures
Unit	Unit RUSBCH402		2 Credits
	1	Plant cell structure, plant pigments & nitrogen	15L
		metabolism	
	1.1	Introduction to Plant cell	8L
	1.1.1	Plant cell wall (structure), Vacuole (tonoplast	
		membrane), plasmodesmata, plastids and other	
		cell organelles	
	1.1.2	Overview of Leaf structure – Upper epidermis,	
		palisade mesophyll, spongy mesophyll, lower 🦳 💛	
		epidermis, Guard cells and stomata	
	1.1.3	Specialized plant cells (in brief) – Parenchyma,	
		Sclerenchyma, Collenchyma, Xylem and phloem	
l 1	1.1.4	Concept of apoplast, apoplastic and symplastic	
•		pathways	
	1.2	Plant pigments –	4L
	1.2.1	Primary pigment - Chlorophyll (Types and function)	
	1.2.1	Role of accessory pigments and their biological	
		significance	
		Carotenoids, Xanthophylls, Betalains,	
		Anthocyanins and other flavonoids	
	1.3	Nitrogen metabolism	3L
	1.3.1	Sources of Nitrogen, different forms of nitrogen in	
	4.0.0	plants	
	1.3.2	Conversion of nitrate to nitrite & finally to ammonia,	
	0	biological nitrogen fixation in plants	451
	2	Plant Biochemistry	15L
	2.1 2.1.1	Photosynthesis	4L
	2.1.1	Light reactions: Light harvesting complexes, Absorption of light, Photophoshorylation: Cyclic	
		and Non-cyclic (Z scheme)	
	2.1.2	Dark reactions: Calvin cycle, regulation of Clavin	3L
	۲.۱.۲	cycle	
	2.2	C4 cycle and CAM pathway	
	2.3	Photorespiration	2L
	2.4	Photoperiodism and photoinhibition	
	2.5	HMP shunt – Oxidative phase & Non-oxidative	1L
	2.6	Synthesis of glucose, starch, sucrose	1L
	2.7	Physiology of plant movements	4L

Г				
			Physical movements – Xerochasy, Hydrochasy	
			Vital movements – Protoplasmic streaming,	
		paratonic movements		
		Tactic movements – Chemotaxis, Phototaxis,		
			Thermotaxis	
			Tropic movements – Chemo / geo / hydro / photo /	
			thigmo tropism	
			Nastic movements – Seismonasty, Nyctynasty,	
			Photonasty, Chemonasty, Thermonasty	\sim
		3	Regulation of plant growth, secondary	15L
			metabolites & PTC	
		3.1	Plant Growth Substances	3L
			Structure and Function of - Auxins, Gibberellins,	
			Cytokinins, Ethylene and Abscisic Acid	
		3.2	Secondary metabolites of plants	5L
			Nitrogen containing compounds (Alkaloids),	
			Terpenes & Phenolic compounds – An introduction	
	Ш		to Shikimic acid pathway, Mevalonic acid pathway,	
			MEP Pathway	
		3.3	Plant Tissue-culture	7L
		3.3.1	Introduction; Plant breeding; Techniques for	
			maintenance	
		3.3.2	Genetic culture techniques: Callus regeneration,	
			mutant selection from culture; Protoplast fusion,	
			Transformation	
		3.3.3	Applications of PTC	
			Practicals – RUSBCHP402	1 Credit
		1	Study the photosynthetic O2 evolution in hydrilla	· c.cuit
		•	plant	
		2	Isolation of chloroplast from spinach leaves and	
			estimation of chlorophyll content	
		3	Separation of photosynthetic pigments by TLC	
		4	Isolation of starch from potato	
		5	Estimation of carotene in fruits and vegetables	
		6	Estimation of anthocyanin content in vegetable	
		7	Separation of plant pigments by Adsorption	
	2	8	Column Chromatography/TLC	
		9		
			Phytochemical Screening Using Suitable Source Estimation of Total Phenolic Content	
		10		
		11	Estimation of Flavonoids Content	
		12	Study of Plant Tissue Culture techniques	

- 1. Biochemistry & Molecular Biology of Plants Bob B. Buchanan Wilhelm Gruissem and Russel L. Jones
- 2. Plant Biochemistry Heldt H.-W., Piechulla B.
- 3. Methods in plant biochemistry and molecular biology Dashek, William V
- 4. Plant Secondary Metabolites: Occurrence, Structure and Role in the Human Diet -Alan Crozier
- 5. Plant Physiology Taiz and Zeiger Sinauer Associates Inc.
- 6. Plant Biochemistry Caroline Bowsher, Martin steer, Alyson Tobin Garland science
- 7. Plant Biochemistry P.M Dey and J.B. Harborne Academic Press
- entr. Jentr. 8. Biochemical methods - S Sadashivam and A Manickam - New Age International

Course Title: Metabolism II

Academic year 2020-21

COURSE OUTCOMES:

 Understand simple concepts related to metabolism, metabolic roles played by vitamins and minerals, appreciate the correlation between energy molecules, reducing equivalents and their role in metabolic pathways. Comprehend the pathways and cycles of nucleic acid metabolism. Describe the interrelationship between metabolic pathways of different biomolecules and their interdependence Appreciate the importance of enzymes and coenzymes in pathophysiology of diseases.
 played by vitamins and minerals, appreciate the correlation between energy molecules, reducing equivalents and their role in metabolic pathways. Comprehend the pathways and cycles of nucleic acid metabolism. Describe the interrelationship between metabolic pathways of different biomolecules and their interdependence Appreciate the importance of enzymes and coenzymes in
 between energy molecules, reducing equivalents and their role in metabolic pathways. Comprehend the pathways and cycles of nucleic acid metabolism. Describe the interrelationship between metabolic pathways of different biomolecules and their interdependence Appreciate the importance of enzymes and coenzymes in
 metabolic pathways. Comprehend the pathways and cycles of nucleic acid metabolism. Describe the interrelationship between metabolic pathways of different biomolecules and their interdependence Appreciate the importance of enzymes and coenzymes in
Comprehend the pathways and cycles of nucleic acid metabolism. Describe the interrelationship between metabolic pathways of different biomolecules and their interdependence Appreciate the importance of enzymes and coenzymes in
different biomolecules and their interdependenceAppreciate the importance of enzymes and coenzymes in
Appreciate the importance of enzymes and coenzymes in
pathophysiology of diseases.
AMRUAN

Course	Course Unit Course/ Unit Title		Credits/
Code/		Metabolism II	
Unit		RUSBCH403	2 credits
	1	Metabolism of Vitamins and Co-enzymes	15L
	1.1	Water soluble vitamins	7L
	1.1.1	Vitamin B complex(Chemistry of the vitamin & its	
		coenzyme form, Biochemical role and disorders) –	
		Thiamin, Riboflavin, Niacin, Pyridoxine, Biotin,	
		Lipoic acid:- Chemistry of the Vitamin and its	
		coenzyme form [structure not to be done, only	
		group involved in its activity]	
	1.1.2	Vitamin C	
	1.2	Fat soluble vitamins A,D,E,K (Chemistry of the	
		vitamin & its coenzyme form, Biochemical role and	
•		disorders) –	
	1.2.1	Vitamin A – Chemistry, Wald's Visual cycle and	4L
		role of Rhodopsin (with structure), Transducin,	
		cGMP in vision; Deficiency disorders (Night	
		Blindness, Xerosis Conjunctiva, Xerosis Cornea,	
		Bitot's Spots, Keratomalacia, Follicullar	
		Hyperkeratosis)	
	1.2.2	Vitamin D – role in Ca absorption and mobilization,	2L
		Deficiency disorders (Rickets, Osteomalacia);	
	1.2.3	Vit E and Vit K– physiological role	2L
		(Vitamins D, E, K no structures)	
	2	Nucleic Acid Metabolism & Integration of	15L
	0.4	Metabolism	01
	2.1	Metabolism of Purine and pyrimidine	6L
	2.1.1	Biosynthesis and degradation	-
	2.1.2	Salvage pathway	41
	2.1.3	Inhibitors	1L
	2.2	Integration of metabolism	
0.5	2.2.1	Integration of major metabolic pathways of energy	1L
	0.0.0	metabolism	41
	2.2.2	Organ specialization and metabolic integration –	4L
		Liver, Adipose tissues, Skeletal muscle, Brain,	
	222	Kidney	21
	2.2.3	Metabolism of starvation - Liver, Adipose tissues,	3L
	3	Skeletal muscle, Brain	451
III	-	Metabolic disorders	15L
	3.1	Inborn error: With respect to Etiology and Clinical	1L

		monifostationa	
	0.0	manifestations	41
	3.2	Disorders related to Carbohydrate Metabolism:	4L
		Glycogen storage diseases and its types, Glucose-	
		6-phosphate dehydrogenase deficiency disease,	
		Wernicke-Korsakoff syndrome, Fabry's disease	
		Classical galactosemia, essential fructosuria	
	3.3	Disorders related to Amino acid Metabolism:	4L
		Hyperammonemia, Glycinuria, Phenyl ketonuria,	
		Tyrosinemia & its types, Alkaptonuria, Albinism,	$C^{\mathcal{N}}$
		Metabolic disorders of urea cycle, Hartnup's	
		disease, Cystinuria, Cystinosis, Homocystinuria	
		&its types, Maple syrup disease	
	3.4	Disorders related to Lipid Metabolism:	4L
		Wolman disease	
		Disorders of Fatty acid oxidation – Genetic	
		deficiencies in carnitine transport and Acyl CoA	
		dehydrogenase (Jamaican vomiting sickness,	
		SIDS), Refsum's disease	
		Disorders of Sphingolipids – Neimann-Pick,	
		Farber's disease, Tay-Sach's and	
		Sphingolipidoses	
		Disorders of lipoprotein metabolism – Hypo and	
		hyper lipoproteinemias, Deficicency of LDL	
		receptors	
		Disorders of glycolipids – Gaucher & Krabbe's disease	
	2 5	Disorders related to Nucleic acid Metabolism:	21
	3.5		2L
		Purine metabolism disorders (Gout and its types,	
		Lesch-Nyhan syndrome), Pyrimidine metabolism	
	6	disorders (Orotic aciduria, Reye's syndrome)	
	QX	Practicals – RUSBCHP403	1 Credit
	1	Estimation of Vitamin A by Carr Price method	
	2	Estimation of tocopherol by Mary & Quaife method	
	3	Estimation of vitamin C iodometrically	
N.	4	Estimation of Thiamine by Thiochrome method	
as	5	Estimation of Riboflavin by Slater method	
	6	Estimation of serum uric acid by phosphotungstic	
		acid method (Caraways method)	
	7	Use of softwares to understand metabolism –	
		KEGG, Ecocyc, Metacyc, Biocyc	
	8	Case study and questionnaire designing for survey	
		on metabolic disorders	

- 1. Biochemistry U. Sathyanarayana Books and Allied (P) Ltd. Kolkata.
- 2. Biochemistry Voet, D. and Voet, J.G. John Wiley & Sons, Inc. USA.
- 3. Biochemistry by L. Stryer W.H. Freeman Press, San Francisco, USA.
- 4. Outlines of Biochemistry E.E. Conn and P.K. Stumpf Wiley Eastern, New Delhi.
- 5. Text book of Biochemistry J.L Jain
- 6. Text Book of Biochemistry D.M. Vasudevan
- 7. Text Book of Biochemistry A.C. Deb, 9th revised edition (2017)
- 8. Biochemistry Garret, R.H. and Grisham, C.M. (2005) Thomson Learning INC.
- 9. Biochemical methods S Sadashivam and A Manickam New Age International publishers
- 10. Laboratory Manual in Biochemistry J. Jayaraman New Age International RAMMARAMARIAN
 - 11. An Introduction To Practical Biochemistry Plummer David

Modality of Assessment (SEMESTER IV)

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Mar ks
1	One Assignment/poster presentation/Model making/Quiz	20
2	One class Test (multiple choice questions / subjective)	20
	TOTAL	40
		.01

B) External Examination- 60%- 60 Marks Semester End Theory Examination:

- 1. Duration These examinations shall be of 02 HOURS duration.
- 2. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions Based on
Q1. A	Any 2 out of 3	04	UNIT I
Q1. B	Any 2 out of 3	06	UNIT
Q2. A	Any 2 out of 3	04	UNIT II
Q2. B	Any 2 out of 3	06	
Q3. A	Any 2 out of 3	04	UNIT III
Q3. B	Any 2 out of 3	06	
	TOTAL	60	

Practical Examination Pattern:

A) Internal Examination: 40%- 40 Marks

Particulars	Practical I, II & III
Journal	05
Experimental tasks	15
Total	20

B) External Examination: 60%- 60 Marks

Semester End Practical Examination:

Particulars	Practical I, II & III	
Laboratory work	25	
Viva	5	
Total	30	
Overall Examination & M	arks Distribution Patter ster IV	

Overall Examination & Marks Distribution Pattern

Semester IV

Course	401		401 402		403				Grand Total	
	Internal	External	Total	Internal	External	Total	Interna	External	Total	
Theory	40	60	100	40	60	100	40	60	100	300
Practicals	20	30	50	20	30	50	20	30	50	150
		, ₁ 2	51							
	R	R	51							
	ARI	R	31							
2001	R	R	31							
2001	AR	R	51							

Course Title: Membrane Biochemistry & Cancer Biology

Academic year 2020-21

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
CO 1	Understand the importance of carbohydrates, lipids and proteins as
	a structural component of biomembranes.
CO 2	Summarize the composition and structure of biomembranes,
	transport mechanisms across biological membranes.
CO 3	Illustrate the mechanism of oxidative phosphorylation,
	photophosphorylation and basic concept of Bioenergetics
CO 4	Learn the concept and mechanism of ATP synthesis
CO 5	Describe factors that contribute to cancer development, discuss
	cancer prevention and currently available therapeutic treatments.
CO 6	Develop an understanding on various genetic and molecular
	changes which takes place during transformation into malignant
	cells.

RAMMARAM

Course Code/ Unit	Unit	Course/ Unit Title Membrane Biochemistry & Cancer Biology RUSBCH501	Credits/ Lectures 2.5 Credits
	1	Biomembranes & Cell Surface	15L
	1.1	Overview of membrane functions	2L
	1.2	Fluid mosaic model	. Co
	1.3	Chemical Composition of Membranes	3L
	1.3.1	Membrane lipids (Phospholipids, Glycolipids, sterols (Cholesterol), Lipid rafts	
I	1.3.2	Membrane proteins - Classification- Peripheral Proteins, Integral Membrane Proteins and Lipid-Anchored proteins Peripheral Proteins- Spectrin on RBC Integral Membrane Proteins- Glycophorin A on RBC Lipid-Anchored proteins- Role of GPI anchored protein in blood grouping	8L
	1.3.3	Membrane carbohydrate – Role of membrane glycoproteins	2L
	2	Membrane Transport, Vesicular Transport and Membrane Fusion	15L
	2.1	Introduction to the transport mechanism across cell membrane Passive transport – Passive diffusion (Polar & Non polar),diffusion and osmosis, facilitated diffusion of ions and molecules	3L
I	2.3	Ion channels- Ligand gated, mechanical gated, Voltage gated	3L
	2.4.1	Primary Active transport ATPases pump- Na ⁺ -K ⁺ Pump, ABC transporter	2L
2 P ^{N} ^{i}	2.4.2	Secondary active transports Symport (Mechanism of Absorption of peptides by eneterocytes)	2L
	2.5	Specialized ion channels- Aquaporins	3L
	2.6	Antiport -Absorption of peptides by eneterocytes,	
	2.7	Artificial membrane vesicle-Liposomes, Micelles	2L
	3	Bioenergetics & Oxidative Phosphorylation	15L
ш	3.1.1	Principle of Bioenergetics	2L
	3.1.2	Importance of thermodynamics, concept of Gibb's free energy, enthalpy, entropy, Standard free	3L

		· · · · · · ·	
		energy change and equilibrium constant	
	3.2	Oxidative phosphorylation	4L
		Electron transfer reactions in mitochondrion	
		(Complexes I to IV; Q cycle in Complex III)	
	3.3	Structure of ATP synthase and ATP synthesis	4L
		Models for ATP synthesis - chemiosmotic model &	
		Rotational Catalysis	
	3.4	Inhibitors & Uncouplers of ETC and ATP synthesis	2L
	4	Cancer Biology & Apoptosis	15L
	4.1.1	Introduction to the biology of cancer	2L
	4.1.2	Difference between tumor and Cancer	
	4.2.1	Classification of tumor	2L
	4.2.2	Properties of cancer cells	
	4.3	Cell cycle regulators and cancer	1L
	4.4.1	Oncogene- Ras protein	2L
	4.4.2	Tumor suppressor gene- Role of P53, Comparison	
		between functional & Non Functional p53	
IV	4.5	Assays – Trypan blue exclusion method, MTT	2L
		assay, Soft Agar Colony Formation Assay	
	4.6	Cancer therapy -	2L
	4.6.1	Chemotherapy (purine & pyrimidine analog)	
	4.6.2	Demethlyating agents	
	4.7	Apoptosis –	2L
	4.7.1	Properties of apoptotic cells	
	4.7.2	Difference between apoptosis and Necrosis	
	4.7.3	Role of caspases in apoptosis	
	4.7.4	Mechanism (Intrinsic & Extrinsic pathway)	2L
		Practicals – RUSBCHP501	1.5 Credits
	1	Osmosis across dialysing membrane	
	2	Diffusion rate of KMnO ₄	
	3	Study the differential permeability of a semi-	
		permeable membrane	
	4	Effect of temperature and molecular weight on	
11,		diffusion	
	5	Visualization of cells by methylene blue	
25	6	Study of viability of cells using Neutral red Assay	
		Mitochondrial respiration and effect of different	

- 1. Jain MK. Introduction to Biological membranes, John Wiley and sons New York, 1988
- 2. Vance DE & Vance JE, Biochemistry of lipids and Biomembranes, Benzamin Cummings 1985
- 3. Biomembranes by RB Gennis Springer Verlag 2012 2nd edition
- 4. Jones MN & Chapman D. Micelles monolayers and biomembranes Wiley-Lis New York, 1995
- 5. Molecular Biology of Cell: Bruce Alberts, 4th Edition, Garland Science
- 6. Weinberg RA. The Biology of Cancer, Second Edition, NewYork: GarlandScience,2013.
- 7. Ruddon RW. Cancer Biology, fourth edition, Oxford University Press, USA.
- 8. Biochemistry by Voet & Voet, International student version
- 9. Lehninger's Principles of Biochemistry by David L. Nelson
- 10. Introductory Practical Biochemistry by Sawhney
- 11. Practical Biochemistry by David Plummer
- 12. Biochemical methods by S Sadashivam & A Minackam, New Age International RAMMARAMARUMAN publisher.

Course Title: Analytical Techniques & Introduction to Immunology

Academic year 2020-21

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
CO 1	Understand isolation, culture and counting of cells and model
	organisms used in research.
CO 2	Describe the separation & purification techniques for proteins &
	techniques to quantify biomolecules.
CO 3	Develop an understanding of the characteristics and the nature of
	antigen – antibody reactions
CO 4	Justify the role of immune cells and their mechanism in body
	defence system
CO 5	Illustrate various mechanisms that regulate immunological
	response and how it's triggered and regulated
CO 6	Learn different tools & techniques used in diagnosis like
	Radioimmunoassay, ELISA, Immunofluorescence, Western
	Blotting, etc.

RAMMARAM

Course	Unit	Course/ Unit Title	Credits/
Code/		Analytical Techniques & Introduction to	Lectures
Unit		Immunology	
		RUSBCH502	2.5 Credits
	1	Biochemical Investigation	15L
	1.1	Approaches to and levels of biochemical	2L
		investigations	
	1.2	Whole animal and plant studies – the advantages	4L
		and disadvantages of model systems for	
		biochemical investigation (<i>E.coli</i> , Yeast,	
		Dictyostelium, C. elegans, Drosophila,	
		Arabidopsis)	
	1.3	Organ & Tissue studies	3L
•	1.4	Isolated and cultured tissue and cell techniques:	
		isolation, culture and counting of cells	
	1.5	Cell Fractionation:	3L
	1.5.1	Cell rupture – solid shear, liquid shear, high	
		pressure, ultrasound, osmotic shock, chemical	
		treatment (enzyme, organic solvent), temperature	
	1.5.2	Choice of suspension medium (isotonic &	3L
		hypotonic solution, PBS) and separation methods	
	1.5.3	Problems of cell fractionation	
	2	Protein Purification Techniques	15L
	2.1	Protein Isolation	3L
		Selection of a Protein Source	
		Methods of Solubilization	
	N	Stabilization of Proteins	
	2.2	Assay of Proteins	3L
	2.2	General Strategy of Protein Purification Solubilities of Proteins	JL
		Effects of Salt Concentrations	
		Effects of Organic Solvents	
05		Effects of pH	
		Crystallization	
	2.3	Ultracentrifugation- Preparative Ultracentrifugation	1L
	2.4	Chromatographic Separations- Gel Filtration	4L
		Chromatography, Ion Exchange Chromatography,	
		Affinity Chromatography	
	2.5	Electrophoresis- Gel Electrophoresis, SDS PAGE,	4L
	_	Isoelectric Focusing	
	1		

	3	Introduction to Immunology	15L
	3.1.1	Innate immunity – Anatomical barriers,	4L
		physiological barriers, phagocytic/endocytic	
		barriers, Inflammatory barriers	
	3.1.2	Adaptive immunity – Active & Passive	
	3.2	Cells of the immune system:	4L
		Lymphocytes – B cells and T cells, Natural killer	
		cells – Mononuclear phagocytes, Granulocytes,	
III		Antigen presenting cells	CA
	3.3	Organs of the immune system	4L
	3.3.1	Primary lymphoid organs: Thymus, Bone marrow	
	3.3.2	Secondary lymphoid organs: Lymphatic system,	
		Lymph nodes, Spleen, MALT	
	3.4	Immune responses - Humoral & Cell mediated	3L
		response	
		Overview of B-cell & T-Cell activation, maturation &	
	3.5	differentiation	
	4	Antigens and antibodies	15L
	4.1	Antigens: Antigenecity, immunogenecity, epitope,	3L
		factors determining immunogenecity, Haptens,	
		adjuvants	
	4.2	Antibodies	5L
	4.2.1	Tiselius & Kabat Experiment, Porter & Edelman	
		Experiment	
	4.2.2	Fine structure of immunoglobulin	
	4.2.3	Antibody classes and biological activities	
IV	4.2.4	Antigenic determinants on immunoglobulins, B-cell	
		receptor	
	4.3	Antigen- Antibody interactions: Forces involved,	2L
	0	antibody affinity, antibody avidity, Cross reactivity	
	4.3.1	Precipitation reactions – Oudins, Ouchterlony	2L
	4.3.2	Agglutination reactions: Blood typing, bacterial	3L
	N.	agglutination, passive agglutination, agglutination	
		inhibition, Coomb's test	
	4.3.3	Immunoelectrophoresis : Principles of	
25		Radioimmunoassay, ELISA, Immunofluorescence,	
		Western Blotting	
		Practicals – RUSBCHP502	1.5 Credits
	1	Separation of proteins by gel filtration	
		chromatography	
	2	Demonstration of separation of proteins using	
		anion-exchange chromatography	
	3	Ammonium sulphate fractionation of proteins	

4	Virtual lab – Study of model organisms in research	
5	Isolation & Partial purification of an enzyme (Cell	
	lysis, Centrifugation, salting out dialysis & size	
	exclusion chromatography)	
	(Note- Size exclusion chromatography- Separation	
6	based on molecular weight)	
	Preparation of blood smear and Differential	
7	leucocyte count	
8	Immunoprecipitation of antigen and antibody	\sim
9	Ouchterlony double immunodiffusion (DID)	ン
	Assays based on agglutination reactions - Blood	
	typing	
10	Demonstration of Enzyme linked immunosorbent	
	assay (ELISA)	
11	WIDAL test – Qualitative & Quantitative	
8 9 10	Immunoprecipitation of antigen and antibody Ouchterlony double immunodiffusion (DID) Assays based on agglutination reactions - Blood typing Demonstration of Enzyme linked immunosorbent assay (ELISA)	ふう

- 1. Cell Biology: Essential techniques David Rickwood Wiley
- Cell Separation A practical Approach D. Fisher, G E Francis and D Rickwood Oxford University Press
- 3. A.L., Lehninger, Principles of Biochemistry (1982), Worth Publishers, Inc. New York.
- 4. Protein Purification: Principles, High Resolution Methods, and Applications (Methods of Biochemical Analysis), Jan-Christer Janson, 2011.
- 5. Immunology by Goldsby and Kuby, W.H. Freeman Co.
- 6. Weir D.M., Immunology: Student's Notes, ELBS- Oxford.
- 7. Bowry T.R., Immunology Simplified, 2nd Ed., ELBS and Oxford.
- 8. Ivan, Immunology Method Manual, Vol. 4 1997, Academic Press, Sani Diego.
- 9. Roitt Ivan and others, Immunology, 6th Ed., Mosby, Edinburg.
- 10. Hood Leroy E., Immunology, 2nd Ed., 1976, Benjamin Cummings Publication
- 11. Biochemical methods S Sadashivam and A Manickam New Age International publishers
- 12. Laboratory Manual in Biochemistry J. Jayaraman New Age International
- 13. An Introduction to Practical Biochemistry Plummer David

Course Title: Molecular Biology

Academic year 2020-21

COURSE OUTCOMES:

After successful completion of this course, the students would be able to:

COURSE OUTCOME	DESCRIPTION
CO 1	Learn the molecular events of DNA Replication, transcription and
	translation process
CO 2	Understand the principle of gene organization and the roles of
	promoters, coding and termination sequences
CO 3	Distinguish and compare the transcription process occurring in
	prokaryotes and eukaryotes
CO 4	Describe how gene expression is regulated at the post-
	transcriptional level
CO 5	Analyse the tools and techniques for construction of recombinant
	DNA, cloning vectors & genomic and cDNA library
CO 6	Gain knowledge on the applications of RDT in various field

RAMMARAM

Course	Unit	Course/ Unit Title	Credits/
Code/		Molecular Biology	Lectures
Unit		RUSBCH503	2.5 Credits
	1	DNA Replication & Repair	15L
	1.1.1	Replication of DNA (in prokaryotes)	3L
	1.1.2	Modes of DNA replication: Theta & rolling circle	
	1.2	Enzymes (pol I, II and III) and accessory proteins	3L
	1.3	Mechanism of semi-conservative replication (Initiation, elongation & termination)	3L
	1.4	DNA repair Mechanisms	4L
I		-	4L
	1.4.1	Direct repair (Photoreactivation, O ⁶ methyl guanine DNA methyl transferase)	
	1.4.2	Excision repairs - base & nucleotide excision,	
		Mismatch repair (Hemimethylation of DNA)	
	1.4.3	SOS repair	2L
	1.4.4	Recombinational repair	
	2	Transcription & Post-transcriptional	15L
	0.1	Modifications	41
	2.1	Introduction to Transcription	1L
	2.2	Types of RNA & its function	2L
	2.3	Assembly for transcription-Template strand, RNA	
		polymerase Holoenzyme, Transcriptional unit, Promoter	
	2.4	Mechanism of RNA transcription in prokaryotes:	3L
	2.4	Initiation, elongation and termination	JL
	2.5	Significance of Sigma factor, Concept of Abortive	1L
		initiation	
	2.6	Comparative overview of transcription in	2L
I		prokaryotes & eukaryotes	
	2.7	Inhibitors of transcription -Rifampicin, Actinomycin	
		D	
	2.8.1	mRNA (Mechanism of formation of 5'-cap and poly	1L
		A tail),	
	2.8.2	Post-transcriptional modifications: Concept of	2L
		introns, exons, split genes and mechanism of	
		mRNA splicing	
	2.8.3	Processing of tRNA, rRNA (arrangement of	1L
		prokaryotic rDNA)	
	2.9	Reverse transcription (Mechanism, significance &	2L
		application)	

	3	Translation & Post-translational Modifications	15L
	3.1	Introduction to Translation (protein biosynthesis) in	1L
		prokaryotes	
	3.2	Characteristics of Genetic code, tRNA synthetase	2L
	3.3	Mechanism of translation: Activation of amino	4L
		acids, chain initiation, elongation & termination	
	3.4	Inhibitors of prokaryotic translation (Puromycin,	2L
111		Streptomycin, Tetracycline, Chloramphenicol,	
		Erythromycin)	CX
	3.5	Post translational modifications of proteins	2L
		(proteolytic cleavage, acylation, phosphorylation,	
		methylation, glycosylation)	
	3.6	Signal hypothesis	2L
	3.7	Concept of Protein sorting in cell organelles	2L
	4	Introduction to RDT & techniques of RDT	15L
	4.1	Introduction of RDT	3L
	4.2	Tools for RDT	
	4.2.1	Enzymes- Restriction endonucleases, ligases,	
		terminal transferases, reverse transcriptase	
	4.2.2	Cloning and Expression Vectors-	3L
		Plasmid, pBR 322, PUC-19	
		Bacteriophage – Lambda phage	
		Cosmid; Artificial Chromosomes(BAC and YAC)	
n <i>4</i>		Shuttle vectors	
IV	4.2.3	Probes- DNA probes	2L
	4.3	Applications of RDT- Agriculture (Bt Cotton);	
		Medicine (Insulin); GM food	
	4.4	Isolation of gene: Gene library and c-DNA library;	2L
		Southern blot; Northern blot	
	4.5	Gene Transfer: Transfection, Electroporation,	3L
	ax	Microinjection, Liposome, Microprojectile (in brief)	
	4.6	Selection and screening- Antibiotic and colony	2L
		hybridization	
	4.7	DNA Amplification by PCR	
N		Practicals – RUSBCHP503	1.5 Credits
25	1	To hydrolyze DNA and separate nucleotide bases	
	0	by paper chromatography	
	2	Estimation of UV absorption of nucleic acids &	
	3	proteins	
	4	Study of viscosity of DNA solution	
	5	Estimation of DNA by the Diphenylamine method	
	6	Isolation of chromosomal DNA from <i>E coli</i> cells	
		Isolation of RNA from Yeast/ Liver	

8	Estimation of RNA by Orcinol Method	
	Extraction of total nucleic acids from plant tissue	

- 1. Molecular Biology of Cell: Bruce Alberts, 4th Edition, Garland Science
- 2. Tropp, B.E. Molecular Biology. Genes to Proteins.2011 (4th Ed.) Jones and Bartlett publications.
- 3. Freifelder, D. Essential of Molecular Biology, 1998 (3rd Ed.)
- 4. Lewin, B. Gene X, Jones & Bartlett, 2009
- 5. Molecular Cell Biology by James Dernell, Harvey Lodish and David Baltimore, W.H. Freeman & Co., 2007 (6th Ed.).
- 6. From Genes to Genomes by Bale J.W. & Schantz M. V. (2003).
- 7. Gene Biotechnology by Jogdand
- Biochemical methods by S Sadashivam & A Minackam, New Age International publisher.

60

Course Title: Biostatistics & Bioinformatics

Academic year 2020-21

COURSE OUTCOMES:

CO 1	Organize the fundamental concepts in the design and analysis of medicinal studies, including difference between observational and
	medicinal studies, including difference between observational and
	modelina otation, molaaling amoronoo botwoon oboorvational and
	experimental studies, the outcome measure of study, comparability
	of the control group or control population.
CO 2	Collect data relating to variables which can be examined and
	descriptive statistics can be calculated from the obtained data
CO 3	Translate the knowledge gained on types of data and tools of data
	collection in compiling and performing statistical analysis.
CO 4	Gain knowledge about various biological databases that provide
	information about nucleic acid and proteins.
CO 5	Locate and extract data from key bioinformatics databases and
	resources.
CO 6	Understand the use of computational skills in the field of Biology
AMMA	RAMRU

Course	Unit	Course/ Unit Title	Credits/
Code/		Biostatistics & Bioinformatics	Lectures
Unit		RUSBCH504	2.5 Credits
	1	Biostatistics & descriptive statistics	15L
	1.1	Introduction to Biostatistics	2L
	1.2	Scope and applications of biostatistics	. ()
	1.3	Common statistical terms: Sources, nature and	3L
		presentation of data; Measurement and scales of	
		measurement	
I	1.4	Descriptive statistics:	4L
	1.4.1	Measures of central tendency - Mean, Median and	
		mode	
	1.4.2	Measures of dispersion- Range, percentiles,	6L
		variance, SD, Mean deviation, Coefficient of	
		variation	
	2	Test of Hypothesis I	15L
	2.1.1	Normal distribution and normal curve	4L
	2.1.2	Asymmetric distribution	
	2.1.3	Normal variate & its significance	
	2.1.4	Statistical problems based on the above concepts	
	2.2	Introduction to Hypothesis	3L
	2.2.1	Concept of Level of Significance, Degrees of	
II		freedom, One-tailed and two tailed tests, Type I	
		and Type II errors	
	2.2.2	Hypothesis testing of mean - Z-test, t-test (grouped	5L
		and ungrouped data)	
	2.2.3	Statistical problems based on the above concepts	
	2.3.1	Introduction to ANOVA, Types of ANOVA	3L
	2.3.2	Statistical problems based on the above concepts	
	3	Test of Hypothesis II	15L
$\mathcal{O}_{\mathcal{V}}$	3.1.1	Introduction to Hypothesis testing of difference	5L
		between population means	
	3.1.2	Z-test, t-test (Paired and unpaired)	
	3.1.3	Statistical problems based on the above concepts	
III	3.2	Tests based on Chi-square distribution	4L
	3.2.1	Test of population variance	
	3.2.2	Test of goodness of fit	3L
	3.2.3	Test of association - 2 x 2 Table, Yates' correction	3L
	3.2.4	Statistical problems based on the above concepts	
IV	4	Bioinformatics	15L

			41
	4.1	Introduction to Bioinformatics	1L
	4.2	Sequence & Nomenclature	2L
	4.2.1	IUPAC Symbol	
	4.2.2	Nomenclature of DNA Sequences	
	4.2.3	Nomenclature of Protein Sequences	
	4.2.4	Directionality of sequences	
	4.3	Types of sequences used in bioinformatics-	2L
		Genomic DNA, cDNA, Organelle DNA, EST's,	
		Gene sequencing tag, STS & Biomolecules	$C^{\mathcal{N}}$
	4.4	Information sources in Bioinformatics	1L
		Genome database, Mouse genome database,	
		Genebank	
	4.5	Information retrieval from biological databases-	3L
		Entrez, Taxonomy browser, Locus link & Sequence	
		Retrieval Systems (SRS)	
	4.6	Similarity based database searching tools- BLAST	3L
		& FASTA	
	4.7	Resources for gene level sequence- Uni-gene	2L
		database, Homo-gene database & Refseq	
		database	
	4.8	Applications of informatics tools in Analysis-	1L
		Genomics and Proteomics	
		Practicals – RUSBCHP504	1.5 Credits
	1	Descriptive statistics using Microsoft excel	
	2	Hypothesis testing of means & ANOVA using excel	
	3	Hypothesis testing of difference between means &	
	-	Chi-square test using excel	
	4	Sequence retrieval (protein and gene) from NCBI	
		and Molecular file formats - FASTA,	
	-	GenBank/Genpept.	
	5	BLAST suite of tools for pairwise alignment	
\$	6	Molecular Visualization Softwares: Pymol and	
		Rasmol for protein structures from PDB	
	7	Multiple sequence alignment	
2.		(CLUSTALW/TCoffee) and construction of	
25		phylogenetic trees	
	í		

- 1. Biostatistics by P. K. Malhan and P. N. Arora, Himalaya Publishing house
- 2. Methods of biostatistics for medical students and research workers by Mahajan, B.K.; Jaypee brothers publishers.

- 3. Bioinformatics- Concepts, Skill and applications by Rastogi, S.C.; Mendiratta, Namita and Rastogi, Parag; C.B.S. Publishers & Distributors
- 4. Principles of biostatistics, M. Pagano and K. Gauvreau (2000); Duxbury Thomas learnings
- 5. Essential Bioinformatics (2006), JinXiong, Cambridge University Press
- 6. Bioinformatics: Sequence and Genome Analysis (2001), 1st ed., Mount, D.W. Cold Spring Harbor Laborator Press (New York)
- 7. Bioinformatics and Functional Genomics (2003), 1st ed., Pevsner, J., John Wiley & Sons,Inc. (New Jersey)
- 8. Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins (2005), 3rd ed.,Baxevanis, A.D. & Ouellette, B.F., John Wiley & Sons, Inc. (New Jersey)
- si Rammanna 9. Bioinformatics – Principles and Applications (2008), 1st ed. Ghosh, Z. and Mallick, B., Oxford University Press (India)

Modality of Assessment (SEMESTER V)

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1	One Assignment/poster presentation/Model making/Quiz	20
2	One class Test (multiple choice questions / subjective)	20
	TOTAL	40
) Exter	nal Examination- 60%- 60 Marks	c

B) External Examination- 60%- 60 Marks Semester End Theory Examination:

- 1. Duration These examinations shall be of 02 HOURS duration.
- 2. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions Based on
Q1. A	Any 1 out of 2	03	
Q1. B	Any 2 out of 3	06	UNIT I
Q2. A	Any 1 out of 2	03	
Q2. B	Any 2 out of 3	06	UNIT II
Q3. A	Any 1 out of 2	03	
Q3. B	Any 2 out of 3	06	UNIT III
Q4. A	Any 1 out of 2	03	
Q4. B	Any 2 out of 3	06	UNIT IV
10,	TOTAL	60	

Practical Examination Pattern:

A) Internal Examination: 40%- 40 Marks

Practical I, II, III & IV
05
15
20

B) External Examination: 60%- 60 Marks

Semester End Practical Examination:

Particulars	Practical I, II, III & IV	
Laboratory work	25	
Viva	5	
Total	30	
Overall Examination &	Marks Distribution Pattern	.0~

Overall Examination & Marks Distribution Pattern

Semester V

Course	501			5	02		Grand Total
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practicals	20	30	50	20	30	50	100

Course	503		5		04		Grand Total	
	Internal	External	Total	Internal	External	Total		
Theory	40	60	100	40	60	100	200	
Practicals	20	30	50	20	30	50	100	
	$2A^{11}$							
A	2011							
MNA	2All							
AMMA	2All							

Course Title: Human Physiology & Pharmacology

Academic year 2020-21

COURSE OUTCOMES:

CO 1Understand the functions of physiological systems such as call and reproductive and its related disorders.CO 2Elucidate the structure, layer, chamber and valves of the hun cardiac systemCO 3Describe the structure of the organs of the reproductive system males and females.CO 4Recognize the speed of onset of drug action, intensity of the
cardiac system CO 3 Describe the structure of the organs of the reproductive system males and females.
males and females.
CO 4 Recognize the speed of onset of drug action, intensity of the
effect and duration of action controlled by fundamental pathw drug movement and modification in the body - Absorption, Distribution, Metabolism and Elimination.
CO 5 Impart fundamental knowledge on the mode of action of diffe therapeutic drugs its mechanism and adverse effects.
CO 6 Apply knowledge of research culture at under graduate level, know the concept of research its objectives, tools and import and techniques of documentation.

Course	Unit	Course/ Unit Title	Credits/
Code/		Human Physiology & Pharmacology	Lectures 2.5 Credits
Unit		RUSBCH601	
	1	Cardiac Physiology and related disorders	15L
	1.1.1	Structure of the heart	3L
	1.1.2	Layers of the heart wall	
	1.1.3	Chambers and valves of the heart	01
	1.2	Physiology of the cardiac muscle	2L
	1.3	Conducting system of heart, comparative rates of conduction system of heart	3L
	1.4	Heart sound, heart rate and factors influencing heart rate	2L
	1.5	Cardiac cycle and effect of heart rate on cardiac cycle	2L
	1.6	Cardiac output	1L
	1.7	Hypertension, congestive heart disease, myocardial infarction, cardiac arrhythmias	2L
	2	Reproductive system	15L
	2.1	Male reproductive system: scrotum, testes,	3L
		reproductive system ducts of in males, accessory	
		sex glands	
	2.2	Female reproductive system: Ovaries, uterine	3L
		tubes, uterus, vagina, vulva, perineum, mammary glands	
l	2.3	The female reproductive cycle: Hormonal	2L
II		regulation of the female reproductive cycle, phases	
		of the female reproductive cycle	
	2.4	Birth control measures; abortion: Surgical	2L
		sterilization, hormonal methods, abortion	
	2.5	Development of the reproductive systems	2L
Dr.		Aging; reproductive systems	
	2.6	Clinical connection: Cryptorchidism, vasectomy,	3L
K'		circumcision, premature ejaculation, ovarian cysts	
	3	Pharmacokinetics & Bioassay	15L
	3.1	Physicochemical properties of drugs	2L
	3.2	Routes of drug administration	3L
	3.2.1	Drug absorption: through-GIT, pulmonary, renal, placental and blood-brain barrier	2L
	3.2.2	Bioavailability and Bioequivalence	1L
	3.3	Drug Distribution	1L

	2.4	Drug Matchaliam and Exerction	21
	3.4	Drug Metabolism and Excretion	2L
	3.5	Factors affecting drug dosage and drug delivery	2L
	3.6	Bioassays: Preclinical and clinical evaluation,	2L
		Therapeutic drug monitoring	
	4	Therapeutic drugs & Drugs acting on	15L
		Haemopoietic System	41
	4.1	Therapeutic drugs: (Mechanism of action and	1L
		adverse effects)	
	4.1.1	Anti-inflammatory – Non steroid anti-inflammatory	1L
		NSAID [lbuprofen], Salicylates – [Aspirins]	
	4.1.2	Cardiovascular drugs- CVS [Ca channel blocker-	1L
		Amlodipine, and Beta blocker – Proprenolol]	
	4.1.3	Antibiotic – Penicillin and Sulphonamide	2L
	4.1.4	Antacid- Proton pump blocker –Omeprazole	
	4.2	Drugs acting on Haemopoietic System	
	4.2.1	Metabolism of iron	1L
	4.2.2	Iron therapy: Oral Iron preparations, Parental Iron	2L
IV		preparations, Toxicity of Iron: Desferrioxamine	
		Mesylate	
	4.2.3	Folic Acid (Pteroylglutamic acid) : Mode of Action,	1L
		Therapeutic Uses	
	4.2.4	Vitamin B12 (Cyanocobalamin): Mode of Action,	1L
		Therapeutic Uses	
	4.2.5	Hydroxycobalamin	1L
	4.2.6	Erythropoietin	
	4.2.7	Colony Stimulating Factors: Filigrastim,	1L
		Lenograstim, Molgramostim	
	4.2.8	Anti-coagulants – Mechanism of Haemostasis	3L
		Intravenous anticoagulants – Heparin	
		Oral anticoagulants – Coumarin derivatives &	
	0	Indanedione derivatives	
		Practicals – RUSBCHP601: PROJECT WORK	1.5 Credits
		Guideline to Carry Out Project work	
		1. The main purpose of introduction of Project Work	
		at TYBSc is to inculcate research culture at	
~		under-graduation level. It will also make the	
		students familiar with Research Methodology i.e.	
		reference work, experimental work, analysis of	
		experimental data, interpretation of results	
		obtained, writing of project work and compilation	
		of bibliography in proper order.	
		2. Each student individually or in a group shall	
		complete a small research project during their	

academic year of TYBSc. However, the initial	
reference work for the project can be started	
after the conclusion of SYBSc Semester IV	
examination and summer vacation to TYBSc.	
3. Nature of Research Project:-Experimental-based	
involving laboratory analytical work will be	
considered as the Research Project.	
4. Duration of Project work:-Using the infrastructure	
available in the Biochemistry Department,	CX-
Ramnarain Ruia Autonomous College, the	
duration to complete the project work will be from	
the commencement of the project work till the	
mid of January of TYBSc (Sem V) academic	
year.	
5. Schedule for Submission of project Work:-	
Experimental work must be completed and the	
report on the same (2 Copies) will have to be	
submitted by the end of January of TYBSc (Sem	
V) academic year.	
6. The project should be divided into the following	
parts:-	
a) Certification of completion of Project Work	
b) Acknowledgement	
c)Introduction	
d) Review of Related Literature	
e) Aims and Objectives	
f) Plan of work a) Motorial and Mathada	
g) Material and Methods h) Results	
i) Discussion	
j) Bibliography	
7. The project will be assessed	
GUIDELINE FOR THE ASSESMENT OF	
PROJECT WORK	
1. The practical 601 of Sem VI (Course Code No.	
RUSBCHP601) shall be exclusively devoted for	
the project.	
2. Each student will complete the project (2	
copies) and get both the copies certified by the	
guiding teacher and the Head of Dept. (HOD)	
by January of TYBSc (Sem V) academic year.	
3. One copy of the certified project will be	

4. T 4. T 8 7 8 7 8 7 8 9 8 9 9 9 9 9 9 9 9 9 9 9	 submitted to the Department; while the other copy will be retained by the students for his/ her personal record. 4. The candidate is required to present the Research Project to the examiner followed by Viva- Voce examination based on the project work by the examiner. 5. The following Marking Scheme shall be considered while assessing the project work 						
Par	ticular	Marks					
a)	Project Work (Contents Submitted in the bound form)	30					
b)	Presentation of Project Work to examiner	10					
c)	Viva- voce Exam based on Project Work	10					
	TOTAL	50					
	6						

2 211

- 1. Principles of Anatomy and Physiology: Gerard J, 12th edition, John Wiley & Sons.
- 2. Human Physiology Chatterjee.C.C, Medical Allied Agency
- 3. Vander's Human Physiology (2008) 11th ed., Widmaier, E.P., Raff, H. and Strang, K.T., McGraw Hill International Publications (New York),
- 4. Textbook of Medical Physiology (2011) 10th ed., Guyton, A.C. and Hall, J.E., Reed Elseviers India Pvt. Ltd. (New Delhi).
- 5. Fundamental of Anatomy and Physiology (2009), 8th ed., Martini, F.H. and Nath, J.L., Pearson Publications (San Francisco),
- 6. Essentials of Pharmacotherapeutics by FSK Barar

Course Code: RUSBCH602

Course Title: Food Biochemistry & Environmental Science

Academic year 2020-21

COURSE OUTCOMES:

After successful completion of this course, the students would be able to:

COURSE OUTCOME	DESCRIPTION
CO 1	Understand physical & chemical reactions in food, the role of
	enzymes in food processing and how they aid in carrying out changes in food
CO 2	Identify the chemistry and applications of enzymes in food industries and flavour.
CO 3	Acquire thorough knowledge about the changes in reactions in foc and how enzymes could be of great importance in food processing
CO 4	Know the properties of different food components and to understand the principle underlying the biochemical techniques used in food analysis.
CO 5	Describe the interdisciplinary nature of environmental studies and also create awareness for the same.
CO 6	Impart knowledge of various methodologies that are adapted for effective monitoring of environmental parameters.
CO 7	Introduce the concept of water and waste water treatment techniques and the aspects involved in solid waste minimization and complete environmentally safe method of their disposal.

DETAILED SYLLABUS

Course	Unit	Course/ Unit Title	Credits/
Code/		Food Biochemistry & Environmental	Lectures
Unit		Science	
		RUSBCH602	2.5 Credits
	1	Physicochemical Principles of food	15L
	1.1	Introduction & Importance	2L
	1.1.1	Physical & chemical characteristics of food	
	1.2	Factors affecting physicochemical properties	4L
	1.2.1	Enzymatic reactions- softening, Oxidation	
		(Ascorbic acid & Phenolic oxidation) Glycolytic	
		reaction, Hydrolytic reactions, pigmentation	
		(Cholorophylase) browning, Maillard reaction &	
		Caramelization reaction	
	1.2.2	Chemical reactions-	4L
		1. Lipid oxidation, non-enzymatic browning	
		2. Colour changes - Chlorophylls - Anthocyanins -	
		Carotenoids (lipid soluble compounds)	
•		3. Flavour changes	
		4. Phenophytinisation -photo- oxidation. –	
		Oxidation –	
		5. Enzyme-induced oxidative breakdown of	
		unsaturated fatty acids	
	1.3	Physicochemical changes in following food	1L
		Changes in fruit ripening	
		Comparison between Raw vs Ripe Fruit	
	1.3.1	Changes in meat- Post Mortem Changes in Meat	3L
		(Pre-rigor stage, Rigor Mortis, Post Rigor Stage	
	2	Lipid oxidation	
	1.3.2	Non enzymatic hydrolysis by Haeme protein	1L
		Autolytic enzyme spoilage	
en.	2	Enzymes in Food Processing	15L
by.	2.1	Enzymes in carbohydrates, proteins and lipid	3L
K.		modifications	
	2.1.1	Enzymes for starch modification-	
11		maltodextrins and corn syrup solids: liquefaction,	
		saccharification, dextrinization, isomerization for	
		production of high-fructose-corn-syrup, fructose	
		and fructo-oligosaccharides	
	2.1.2	Enzymes for protein modification - hydrolysates	3L
		and bioactive peptides	

	2.1.3	Enzymes for Lipid modification- Lipase catalyzed	3L
	2.1.5	synthesis of structured triglycerides, fats, and	JL
		margarine	
	2.2	Enzymes as processing aids	3L
	2.2.1	Role of enzymes in Dairy processing - cheese	JL
	۲.۲.۱		
	2.2.2	making and whey processing	
	2.2.2	Role of enzymes in meat processing- tenderization and flavour development	
	2.2.3	Role of enzymes in fish processing- De-skinning,	
	2.2.3	collagen extraction	
	2.2.4	Role of enzymes in Egg processing- catalase,	
	2.2.4	glucose oxidase, hydrolase	
	2.3		3L
		Role of enzymes in the production of flavours	3L
	2.3.1	Enzyme-aided extraction of plant materials for	
	0.0.0	production of flavours	
	2.3.2	Production of flavour enhancers such as	
		nucleotides, MSG; flavours from hydrolyzed	
	-	vegetable/animal protein	451
	3	Fundamentals of Environmental Chemistry	15L
	3.1	Air and Atmosphere	3L
	3.1.1	Particles, ions and radicals in the atmosphere	
	3.1.2	Chemical processes for formation of inorganic and	
		organic particulate matter	
	3.1.3	Thermochemical and photochemical reactions in	2L
		the atmosphere	
	3.1.4	Oxygen and ozone chemistry – Formation of ozone	
		layer, sources and effects of ozone depletion on	
		environment	
	3.1.5	Chemistry of air pollutants	2L
	3.1.6	Photochemical smog, Carcinogens in the air	
	3.1.7	Effects of air pollution on health	
	3.2	Water and aquatic system	2L
	3.2.1	Organic pollutants [pesticides, insecticides,	
		detergents, oil spills, toxic organic chemicals]	
	3.2.2	Inorganic pollutants [heavy metals – Hg, Pb, As,	
DX [°]		Cd]	
	3.2.3	Thermal pollution of water	3L
	3.2.3 3.2.4		3L
		Thermal pollution of water	3L

	3.3	Soil	3L
		Soil properties, Types of soil pollution –	-
		acidification, agrochemical pollution, salinization,	
		and contamination by metalliferous wastes	
	4	Environmental pollution management and	15L
		environmental monitoring	
	4.1	Air Pollution Management	3L
	4.1.1	Control methods for particulates - Gravitational	/ / ·
		Settling Chambers, Centrifugal collectors, Wet	CX.
		collectors, Fabric Filters, Electro Static	
		Precipitators	
	4.1.2	Control methods for gaseous pollutants -	
		Adsorption, Absorption, Condensation, Combustion	
	4.2	Water analysis & Waste water management	5L
	4.2.1	Physico – chemical and Bacteriological sampling	
		and analysis of water quality	
	4.2.2	Primary treatment methods – screening, grit	
		removal, primary sedimentation	
	4.2.3	Secondary treatment methods - Activated sludge	
IV		process, Trickling filters, Rotating biological	
		contactors, Oxidation ponds and Lagoons	
	4.2.4	Tertiary treatment methods - Chlorination, Ion	
		Exchange	
	4.3	Solid Waste Management	2L
		Sanitary Landfill, Recycling, Composting,	
		Incineration, Energy recovery options from organic	
		wastes	
	4.4	Environmental monitoring and remote sensing	4L
	4.4.1	Introduction & Objective	
	4.4.2	Types of Monitoring- Source Monitoring & Ambient	
	as	environment monitoring	
	4.4.3	Importance of remote sensing in environmental	
		monitoring	
	4.4.4	Approaches used to monitor the environment-air,	1L
		water and soil (Principles and Significance)	
01		Practicals – RUSBCHP602	1.5 Credits
	1	Determination of salinity / chlorides in water by	
	2	Silver nitrate method	
	2	Determination of the Chemical Oxygen Demand of	
		water/ Effluent by the Potassium Dichromate	
	3	method	
		Determination of potability of water by conducting a	
1		coliform count	

	Determination of the Dissolved Oxygen content of	
5	water/ Effluent by the Winkler's lodometric method	
	Determination of the Biological Oxygen Demand of	
6	water/ Effluent	
7	Determination of the Alkalinity of water/ Effluent	
8	Determination of the Acidity of water/ Effluent	
9	Estimation of lead by the EDTA method	
	Estimation of Organic content of soil by	
10	Diphenylamine method	c
	Estimation of CaCO3 of soil by Bromothymol Blue	
11	Method	
	Visit to a Food processing industry and report	
	writing	

References:

- 1. Total Quality Assurance for the Food Industries WA Gould & RW Gould. CTI Publications Inc., USA 1988
- Current Good Manufacturing Practices for Food Plan Sanitation WA Gould, CTI Publications Inc. USA 1980
- 3. Fundamental Concepts of Environmental Chemistry Sodhi, Narosa Publishing House, 2002
- 4. Principles of Environmental Chemistry Kothandaram & Swaminathan, B I Publishers, Chennai
- 5. Environmental Chemistry AK De, New Age International Publishers
- 6. Biochemical methods by S Sadashivam & A Minackam, New Age International publisher.

Course Code: RUSBCH603

Course Title: Biochemistry of Metabolism

Academic year 2020-21

COURSE OUTCOMES:

After successful completion of this course, the students would be able to:

COURSE OUTCOME	DESCRIPTION
CO 1	Comprehend the reactions of catabolism and anabolism of
	biomolecules -carbohydrates, amino acids and lipids.
CO 2	Illustrate the pathways and cycles of nucleic acid metabolism
CO 3	Recognize the involvement of biomolecules in energy metabolism
	and storage of energy through anabolic pathways
CO 4	Recognize the involvement of biomolecules in energy metabolism
	and outflow of energy through catabolic pathways.
CO 5	Learn various experiments carried out by scientists to enable
	understanding of the pathways and cycles of metabolism.
CO 6	Understand simple concepts related to metabolism and to be
	familiar with the various metabolic pathways.
CO 7	Describe the interrelationship between metabolic pathways of
	different biomolecules and their interdependence.

RAMMARAM

DETAILED SYLLABUS

Course	Unit	Course/ Unit Title	Credits/
Code/		Biochemistry of Metabolism	Lectures
Unit		RUSBCH603	2.5 Credits
	1	Carbohydrate Metabolism	15L
	1.1	Overview of glucose metabolism	4L 🤇
	1.1.1	Glycolysis- Salient features, reactions,	
	1.1.2	Conversion of pyruvate to lactate & its significance	
	1.1.3	Irreversible reactions of glycolysis	
	1.1.4	Regulation of glycolysis	
	1.2	Conversion of pyruvate to Acetyl CoA- Role of	1L
		Pyruvate dehydrogenase complex & its regulation	
	1.3	Citric acid cycle- Pathway with reactions & its	3L
		regulation	
	1.4	Glycogenolysis – [schematic – no structures, but	1L
		with enzymes and coenzymes]	
	1.5	HMP shunt (Cellular location, sequence of	2L
		reactions, multifunctional nature)	
	1.6	Gluconeogenesis, Glycogenesis – [schematic – no	3L
		structures, but with enzymes and coenzymes]	
	1.7	Glyoxylate pathway	1L
	2	Amino acid metabolism	15L
	2.1.1	Chemical nature, functional groups and reactivity of	4L
		amino acids	
	2.1.2	Reactions of amino acids: Deamination,	
		Transamination, Decarboxylation,	
		Transmethylation, Transdeamination	
	2.2	Ammonia formation, transport and detoxification in	3L
II	X	brain and liver.	
	2.3	Urea cycle & its regulation	2L
	2.4	Metabolism of significant amino acids– Glycine,	2L
		Phenylalanine, Tyrosine, Tryptophan	
05	2.5	Formation of specialized products from amino	4L
		acids and their functions-glutathione, creatine,	
		creatinine, biogenic amines (dopamine,	
		norepinephrine, GABA, Histamine)	
	3	Lipid metabolism	15L
III	3.1	Introduction to lipid metabolism	5L
	3.1.1	Lipid Digestion, Absorption, and Transport	
	3.1.2	Fatty Acid Oxidation-Fatty Acid Activation,	

			1
		Transport Across the Mitochondrial Membrane,	
		Beta-Oxidation	
ļ	3.1.3	Oxidation of Unsaturated Fatty Acids	
	3.1.4	Oxidation of Odd-Chain Fatty Acids	
	3.2	Ketone Bodies	2L
	3.3	Fatty Acid Biosynthesis- Pathway Overview, Acetyl	3L
		CoA Carboxylase, Fatty Acid Synthase, Transport	
		of Mitochondrial Acetyl-CoA Into the Cytosol,	
		Elongases and Desaturases	
	3.4	Synthesis of Triacylglycerols	1L
	3.5	Regulation of Fatty Acid Metabolism	1L
	3.6	Cholesterol Metabolism- Cholesterol Biosynthesis,	3L
		Control of Cholesterol Biosynthesis and Transport,)
		Cholesterol Utilization	
	4	Nucleic Acid Metabolism & Integration of	15L
		Metabolism	
	4.1	Metabolism of Purine and pyrimidine	6L
	4.1.1	Biosynthesis and degradation	
	4.1.2	Salvage pathway	
	4.1.3	Inhibitors	
IV	4.2	Integration of metabolism	1L
	4.2.1	Integration of major metabolic pathways of energy	1L
		metabolism	
	4.2.2	Organ specialization and metabolic integration –	4L
		Liver, Adipose tissues, Skeletal muscle, Brain,	
		Kidney	
	4.2.3	Metabolism of starvation - Liver, Adipose tissues,	3L
		Skeletal muscle, Brain	
		Practicals – RUSBCHP603	1.5 Credits
	1	Estimation of glucose by the Folin-Wu method	
	2	Estimation of glucose by the GOD-POD method	
	3	Demonstration of glucose metabolism using	
	7	handheld glucometer	
	4	Assay of serum transaminases – SGOT and SGPT	
	5	Estimation of serum urea.	
Q.V	6	Estimation of serum creatinine.	
	7	Estimation of serum uric acid by phosphotungstic	
		acid method (Caraways method)	
	8	Assay of glutamate dehydrogenase	
	9	Lipid Profile –	
	a	Estimation of total cholesterol and HDL	
	b	Estimation of Triglycerides	
	С	Estimation of LDL by calculation	

10 Use of softwares to understand metabolism – KEGG, Ecocyc, Metacyc, Biocyc	10		
---	----	--	--

References:

- 1. Biochemistry U. Sathyanarayana Books and Allied (P) Ltd. Kolkata.
- 2. Biochemistry Voet, D. and Voet, J.G. John Wiley & Sons, Inc. USA.
- 3. Biochemistry by L. Stryer W.H. Freeman Press, San Francisco, USA.
- 4. Outlines of Biochemistry E.E. Conn and P.K. Stumpf Wiley Eastern, New Delhi.
- 5. Text book of Biochemistry J.L Jain
- 6. Text Book of Biochemistry D.M. Vasudevan
- 7. Text Book of Biochemistry A.C. Deb, 9th revised edition (2017)
- 8. Biochemistry Garret, R.H. and Grisham, C.M. (2005) Thomson Learning INC.
- 9. Biochemical methods S Sadashivam and A Manickam New Age International publishers
- 10. Laboratory Manual in Biochemistry J. Jayaraman New Age International
- 11. An Introduction to Practical Biochemistry Plummer David

Course Code: RUSBCH604

Course Title: Nutritional Biochemistry

Academic year 2020-21

COURSE OUTCOMES:

After successful completion of this course, the students would be able to:

COURSE OUTCOME	DESCRIPTION
CO 1	Realize the importance of balanced diet and other parameters in maintaining it.
CO 2	Explore the functions of macronutrients & micronutrients and to examine the clinical and biochemical effects of its depletion.
CO 3	Examine the biochemical, physiological and clinical impact of inadequate intakes of specific nutrients.
CO 4	Develop a keen insight into interrelationship between genes and nutrients.
CO 5	Acquaint the importance of nutrition in health and study the main features of carbohydrates, proteins, lipids and minerals.
CO 6	Familiarize newer concepts of dietary management of various disorders and disease.
CO 7	Select biochemical techniques relevant in nutritional biochemical research
CO 8	Provide an understanding of biochemistry and explore the biochemical activity in the human body of nutrients and food constituents.

DETAILED SYLLABUS

Course	Unit	Course/ Unit Title	Credits/
Code/		Nutritional Biochemistry	Lectures
Unit		RUSBCH604	2.5 Credits
	1	Introduction to Nutrition	15L
	1.1.1	Introduction to Human nutrition & energy supply	2L
	1.1.2	Measurement of energy content of food-	
		Calorific value of different biomolecules & mixed	
		diet,	
		Determination of calorific value using bomb	
		Calorimeter (Principle & Working)	
	1.2	Respiratory quotient of food	2L
	1.3	Measurement of energy expenditure	
		Basal metabolic rate- Definition, Measurement,	
		factors affecting BMR & its significance	
	1.4	Specific dynamic action of food- Definition,	1L
		Mechanism & its significance	
	1.5	Sources, Daily requirement & Nutritional	4L
		importance of biomolecules	
	1.5.1	Carbohydrates- Concept of Glycemic Index of food	
		(Graph), Importance of fiber (Complex	
•		carbohydrate) in nutrition	
	1.5.2	Lipids-Role of essential fatty acids	
	4 5 0	Proteins- Essential amino acids, Nitrogen Balance	
	1.5.3	(Positive, Negative Nitrogen balance & factors	
		affecting)	
	1.6	Assessment of nutritive value of protein	3L
	1.6.1	Protein efficiency ratio	
	1.6.2	Biological value of protein	
	1.6.3	Net protein utilization	
	1.6.4	Chemical score	
"U.	1.6.5	Mutual supplementation of protein	
5	1.7	Recommended Dietary allowances (RDA)-	1L
		Definition, Factors affecting RDA, RDA for adult	
	1.8	Balance diet – Concept & significance, Designing	2L
		diet for different subjects (infants, toddlers,	
		adolescents, adults, geriatric, diseased state)	
	1.9	Numericals based on above concepts	
	2	Macroelements	15L
II	2.1	Biochemistry of macroelements	3L
	2.2	Sources, Recommended daily allowances,	3L

RAMNARAIN RUIA AUTONOMOUS COLLEGE, SYLLABUS FOR BIOCHEMISTRY 2020-2021

		Absorption, transport, excretion, Biochemical	
		significance & Disorders related to:	
	2.2.1	Calcium	3L
	2.2.2	Phosphorous	
	2.2.3	Magnesium	3L
	2.2.4	Sodium	
	2.2.5	Potassium	3L
	2.2.6	Chlorine	
	2.2.7	Sulphur	
	3	Microelements	15L
	3.1	Biochemistry of microelements	2L
	3.2	Sources, Recommended daily allowances,	3L
		Biochemical significance & Disorders related to:)`
	3.2.1	Copper	3L
Ш	3.2.2	Iodine	
111	3.2.3	Manganese	3L
	3.2.4	Zinc	
	3.2.5	Molybdenum	3L
	3.2.6	Cobalt	
	3.2.7	Fluorine	
	3.2.8	Selenium	1L
	4	Nutrigenomics, Nutritional disorders and	15L
		Antinutritional Factors	
	4.1	Nutrient-Gene Interaction	2L
	4.2	Drug-Nutrient Interaction	
	4.3	Obesity, Brown and White Adipose Tissue, Specific	2L
		dynamic action factors affecting thermic effect of	
		food	
	4.4	food. Role of Leptin, Ghrenin, Adiponectin in food intake.	2L
N /	4.4	Role of Leptin, Ghrenin, Adiponectin in food intake.	2L 2L
IV	-		
IV	4.5	Role of Leptin, Ghrenin, Adiponectin in food intake. Pathophysiology of Nutritional disorders	
IV	4.5	Role of Leptin, Ghrenin, Adiponectin in food intake. Pathophysiology of Nutritional disorders Nutritional disorders of carbohydrate- Obesity, Non-Insulin dependent diabetes mellitus, Lactose	
IV	4.5	Role of Leptin, Ghrenin, Adiponectin in food intake. Pathophysiology of Nutritional disorders Nutritional disorders of carbohydrate- Obesity, Non-Insulin dependent diabetes mellitus, Lactose intolerance, Celiac disease, Dental carries	
IV	4.5 4.5.1	Role of Leptin, Ghrenin, Adiponectin in food intake. Pathophysiology of Nutritional disorders Nutritional disorders of carbohydrate- Obesity, Non-Insulin dependent diabetes mellitus, Lactose intolerance, Celiac disease, Dental carries Nutritional disorders of proteins- Protein energy	2L
	4.5 4.5.1	Role of Leptin, Ghrenin, Adiponectin in food intake. Pathophysiology of Nutritional disorders Nutritional disorders of carbohydrate- Obesity, Non-Insulin dependent diabetes mellitus, Lactose intolerance, Celiac disease, Dental carries	2L
IV RAMA	4.5 4.5.1 4.5.2	Role of Leptin, Ghrenin, Adiponectin in food intake. Pathophysiology of Nutritional disorders Nutritional disorders of carbohydrate- Obesity, Non-Insulin dependent diabetes mellitus, Lactose intolerance, Celiac disease, Dental carries Nutritional disorders of proteins- Protein energy Malnutrition (Kwashiorker, Marasmus & Marasmic kwashiorkor)	2L 2L
IV RAM	4.5 4.5.1	Role of Leptin, Ghrenin, Adiponectin in food intake. Pathophysiology of Nutritional disorders Nutritional disorders of carbohydrate- Obesity, Non-Insulin dependent diabetes mellitus, Lactose intolerance, Celiac disease, Dental carries Nutritional disorders of proteins- Protein energy Malnutrition (Kwashiorker, Marasmus & Marasmic kwashiorkor) Nutritional disorders related to lipids – Essential	2L
IV RAM	4.5 4.5.1 4.5.2	Role of Leptin, Ghrenin, Adiponectin in food intake. Pathophysiology of Nutritional disorders Nutritional disorders of carbohydrate- Obesity, Non-Insulin dependent diabetes mellitus, Lactose intolerance, Celiac disease, Dental carries Nutritional disorders of proteins- Protein energy Malnutrition (Kwashiorker, Marasmus & Marasmic kwashiorkor)	2L 2L
IV RAMA	4.5 4.5.1 4.5.2 4.5.3	Role of Leptin, Ghrenin, Adiponectin in food intake. Pathophysiology of Nutritional disorders Nutritional disorders of carbohydrate- Obesity, Non-Insulin dependent diabetes mellitus, Lactose intolerance, Celiac disease, Dental carries Nutritional disorders of proteins- Protein energy Malnutrition (Kwashiorker, Marasmus & Marasmic kwashiorkor) Nutritional disorders related to lipids – Essential fatty acid deficiency, cholesterol (Good vs Bad), Atherosclerosis & Arteriosclerosis	2L 2L
IV RAMA	4.5 4.5.1 4.5.2	Role of Leptin, Ghrenin, Adiponectin in food intake. Pathophysiology of Nutritional disorders Nutritional disorders of carbohydrate- Obesity, Non-Insulin dependent diabetes mellitus, Lactose intolerance, Celiac disease, Dental carries Nutritional disorders of proteins- Protein energy Malnutrition (Kwashiorker, Marasmus & Marasmic kwashiorkor) Nutritional disorders related to lipids – Essential fatty acid deficiency, cholesterol (Good vs Bad),	2L 2L 2L
IV RAMA	4.5 4.5.1 4.5.2 4.5.3	Role of Leptin, Ghrenin, Adiponectin in food intake. Pathophysiology of Nutritional disorders Nutritional disorders of carbohydrate- Obesity, Non-Insulin dependent diabetes mellitus, Lactose intolerance, Celiac disease, Dental carries Nutritional disorders of proteins- Protein energy Malnutrition (Kwashiorker, Marasmus & Marasmic kwashiorkor) Nutritional disorders related to lipids – Essential fatty acid deficiency, cholesterol (Good vs Bad), Atherosclerosis & Arteriosclerosis Eating disorders – Bulimia nervosa, Anorexia	2L 2L 2L

	Practicals – RUSBCHP604	1.5 Credits
1	Anthropometric measurements	
2	Isolation of casein from milk	
3	Extraction of albumins and globulins from egg white	
4	Isolation of lipids from egg yolk and separation by TLC.	
5	Estimation of Cholesterol	
6	Estimation of Calcium by EDTA method	\sim
7	Estimation of phosphorus by Fiske Subarrow method	
8	Estimation of copper by the Isoamyl alcohol method	
9	Survey on nutritional disorders and its statistical analysis	

References:

22000

- 1. Textbook of Biochemistry with Clinical Correlations (2011) Devlin, T.M. John Wiley & Sons, Inc. (New York)
- 2. Human nutrition and dietetics by Davidson, S. etal.; Churchill Livingstone Publishers.
- 3. Nutrition and dietetics by Joshi, Shubhangini A.; Tata McGraw and Hill publishers
- 4. Nutrition Science by Srilakshmi, B.; New Age International publishers
- 5. Krause's Food and Nutrition Care process.(2012); Mahan, L.K Strings, S.E, Raymond, J. Elsevier's Publications.
- 6. The vitamins, Fundamental aspects in Nutrition and Health (2008); G.F. Coombs Jr. Elsevier's Publications..
- 7. Principles of Nutritional Assessment (2005) Rosalind Gibson. Oxford University Press.
- 8. Nutritional Biochemistry: Tom Brody.
- 9. Textbook of medical laboratory technology: Dr. Praful Godkar, Bhalani Publishing House
- 10. Biochemical methods by S Sadashivam & A Minackam, New Age International publisher.

Modality of Assessment (SEMESTER VI)

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

1	One Assignment/poster presentation/Model making/Quiz	20
2	One class Test (multiple choice questions / subjective)	20
	TOTAL	40

B) External Examination- 60%- 60 Marks Semester End Theory Examination:

- 1. Duration These examinations shall be of 02 HOURS duration.
- 2. Theory question paper pattern:

Paper Pattern:

Question	Ontiona	Marks	Questions
Question	Options	Marks	Based on
Q1. A	Any 1 out of 2	03	
Q1. B	Any 2 out of 3	06	UNIT I
Q2. A	Any 1 out of 2	03	UNIT II
Q2. B	Any 2 out of 3	06	
Q3. A	Any 1 out of 2	03	UNIT III
Q3. B	Any 2 out of 3	06	
Q4. A	Any 1 out of 2	03	
Q4. B	Any 2 out of 3	06	UNIT IV
	TOTAL	60	

Practical Examination Pattern:

A) Internal Examination: 40%- 40 Marks

Particulars	Practical I, II, III & IV
Journal	05
Experimental tasks	15
Total	20

B) External Examination: 60%- 60 Marks

Semester End Practical Examination:

Particulars	Practical I, II, III & IV	
Laboratory work	25	
Viva	5	
Total	30	
Overall Examination &	Marks Distribution Pattern	

Overall Examination & Marks Distribution Pattern

Semester VI

Course	6	01		6	02		Grand Total
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practicals	20	30	50	20	30	50	100

Course	603		6		04		Grand Total
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practicals	20	30	50	20	30	50	100
	24						
AL,	S.L.						
MMA	34						