

AC/II(23-24).2.RUS3

S. P. Mandali's Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for UG Biotechnology

Program: S.Y.BSc.

(As per the guidelines of National Education Policy 2020-Academic year 2024-25)

(Choice based Credit System)

	GRADUATE ATTRIBUTES		
	A student completing Bachelor's Degree in Science program will be able		
GA	to:		
GA 1	Recall and explain acquired scientific knowledge in a comprehensive manner		
	and apply the skills acquired in their chosen discipline. Interpret scientific		
	ideas and relate its interconnectedness to various fields in		
	science.		
GA 2	Evaluate scientific ideas critically, analyse problems, explore options for practical demonstrations, illustrate work plans and execute them, organise data and draw inferences.		
GA 3	Explore and evaluate digital information and use it for knowledge		
	upgradation. Apply relevant information so gathered for analysis and		
	communication using appropriate digital tools.		
GA 4	Ask relevant questions, understand scientific relevance, hypothesize a scientific problem, construct and execute a project plan and analyse results.		
GA 5	Take complex challenges, work responsibly and independently, as well as in cohesion with a team for completion of a task. Communicate effectively, convincingly and in an articulate manner.		
GA 6	Apply scientific information with sensitivity to values of different cultural		
	groups. Disseminate scientific knowledge effectively for upliftment of		
	the society.		
GA 7	Follow ethical practices at work place and be unbiased and critical in interpretation of scientific data. Understand the environmental issues and explore sustainable solutions for it.		
GA 8	Keep abreast with current scientific developments in the specific discipline		
	and adapt to technological advancements for better		
	application of scientific knowledge as a lifelong learner		

PROGRAM OUTCOMES

	Description
	Description
PO	A student completing Bachelor's Degree in Science program in the
	subject of Biotechnology will be able to:
PO 1	Adept in basic sciences along with a thorough understanding of
	biotechnology principles and chemical sciences to create a foundation
	for higher education with the insights into interdisciplinary approach.
	Co.
PO 2	Demonstrate the applications of fundamental biological processes from
	the molecular, cellular, industrial and environmental perspective.
70.4	
PO 3	Develop effective communication skills with improved individual and
	team work abilities in the domain of scientific research writing.
	Showcase their innovative ideas and research work efficiently.
PO 4	Reflect, analyse and interpret information or data for investigating the
	problem in fields of biotechnology. Acquire scientific and entrepreneur
	skills to furnish sustainable solutions to coeval problems
PO 5	Illustrate the relevance of ethical implications and standard laboratory
	practices in tissue culture techniques, forensic biology, developmental
4 Oll	biology and other fields of biotechnology.
PO 6	Apply the conceptual knowledge to develop coherent, efficacious and
	proficient practical, technical and analytical skills.

Credit Structure for SYBSc. Biotechnology 24-25

Semest er	Subject (Major DSC		Subjec t 2 (Mino r)	GE/ OE cour se	Vocational and Skill Enhanceme nt Course (VSC) & SEC	Ability Enhancement Course/ VEC/IKS	OJT/FP/CEP CC, RP	Total Credi ts
3	Major 8 4*2/ (3T+1P) *2	E	Minor 4 (3T+1 P)	2	VSC-2-Maj or	AEC-2 MIL (Marathi/Hin di)	FP -2, CC-2	22
4	Major 8 4*2/ (3T+1P) *2		Minor 4 (3T+1 P)	2	SEC-2	AEC-2 MIL (Marathi/ Hindi)	CEP-2, CC-2	22
Total	16		8	4	4	4	8	44

course/ Internship or Continue with Major and Minor

PROGRAMME OUTLINE

YEAR	SEMESTER	PAPER	COURSE CODE	COURSE TITLE	CREDITS
		DSC-I	RUSBTKMJO201	IMMUNOLOGY	3
	Si.o.	DSC-I	RUSBTKMJPO2 01	PRACTICAL BASED ON IMMUNOLOGY	1
SYBSc	ш	DSC-II	RUSMJBTKO202	PLANT AND ANIMAL PHYSIOLOGY	3
0.		DSC-II	RUSMJBTKPO2 02	PRACTICAL OF PLANT AND ANIMAL PHYSIOLOGY	1
		MINOR	RUSMIBTKO203	BIOCHEMISTRY	3
		MINOR	RUSMIBTKPO20 2	PRACTICAL BASED ON BIOCHEMISTRY	1
		VSC	RUSVSCBTKPO 201	ANALYTICAL TECHNIQUES IN BIOTECHNOLOGY	2

<u> </u>	IV			<u> </u>	
	1,	DSC-I	RUSMJBTKE211	AIR WATER AND SOIL MICROBIOLOGY	3
SYBSc		DSC-I	RUSMJBTKPE211	PRACTICAL BASED ON AIR WATER AND SOIL MICROBIOLOGY	1
		DSC-II	RUSMJBTKE212	MOLECULAR BIOLOGY	3
		DSC-II	RUSMJBTKPE21 2	PRACTICAL BASED ON MOLECULAR BIOLOGY	1
		MINOR	RUSMIBTKE213	BIOPHYSICAL CHEMISTRY	3
		MINOR	RUSMIBTKPE21 3	PRACTICAL BASED ON BIOPHYSICAL CHEMISTRY	1
		SEC	RUSSECBTKE21 1	BIOINFORMATI CS AND BIOSTATISTICS	2

SEMESTER III

Course Code: RUSVSCBTKPO201

Course Title: Analytical Techniques In Biotechnology

Type of Course: Vocational Skill Course

Academic year 2024-25

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION A student completing this course will be able to:
CO 1	Explain the optical properties and principles of different microscopic technique/s
CO2	Illustrate the applications of microscopic technique/s in analysis and identification of different biological samples
CO 2	Differentiate between different types of electrophoresis
CO 3	Elaborate on the principle of electrophoresis and demonstrate separation of different biomolecules using suitable electrophoretic technique/s.
CO4	Explain the principle, working and application of different centrifugal technique/s
CO5	Determine suitable centrifugal technique/s for separation of different biomolecules
CO6	Use theoretical principles of chromatography to separate and quantify different components present in a sample.
CO7	Characterize different biomolecules on the basis of their partition coefficient using suitable chromatographic technique/s

DETAILED SYLLABUS

Practical

	Course Code: RUSVSCBTK0201		
Sr. No.	Practical Title		
1	Study of scanning electron microscope		
2.	Study of transmission electron microscope		
3.	Extraction of protein from bacteria and fungi		
4	Extraction of protein from animal cells		
5	Extraction of protein from plant cells		
6	Visualisation and profiling and extracted protein from bacteria, fungal, plant and animal cells by native page		
7	Visualisation and profiling and extracted protein from bacteria, fungal, plant and animal cells by SDS PAGE		
8	Study of proteins by 2D electrophoresis / IEF		
9 0	Study of nucleic acids using agarose gel electrophoresis		
10	Study of nucleic acids using capillary electrophoresis		
11	Density gradient centrifugation		
12	Isopycnic centrifugation		

RA	MNARAIN RUIA AUTONOMOUS COLLEGE, SYLLABUS FOR B. Sc. Biotechnology 2024-2025	lights of speries
13	TLC of lipids	
14	TLC of steroids	
15	TLC of alkaloids	
16	Separation of sugars using paper chromatography	
17	Separation and estimation of secondary metabolites	
18	Calibration of micropipette	_
19	Pka estimation of amino acids using ph meter	

References

- Wilson And Walkers Principles And Techniques Of Biochemistry And Molecular Biology 8Th South Asia Edition 2018 by HOFMANN A, CAMBRIDGE UNIVERSITY PRESS
- 2. Biophysical chemistry by Upadhyay and Upadhyay nath

MODALITY OF ASSESSMENT

VSC

Practical Examination Pattern:

(Semester end practical examination):

PARTICULARS	PRACTICAL COMPONENTS
Experimental Tasks Major Minor 1 Minor 2	20 10 10
Journal	05
Viva/spots	05
TOTAL	50