

AC/I(21-22).2(II).RPS3

S. P. Mandali's

RamnarainRuia AutonomousCollege

(Affiliated to University of Mumbai)

Syllabus for M.Sc Part II

Program: M.Sc

Program Code: Biotechnology(RPSBTK)

(Credit Based Semester and Grading System for academic year 2022–2023)

GRADUATE ATTRIBUTES

GA Description A student completing Bachelor's Degree in	
	n Science program will bel
GA able to:	
GA1 Demonstrate in depth understanding in the	·
Recall, explain, extrapolate and organ	•
knowledge for execution and application	and also to evaluate its
relevance.	70
GA 2 Critically evaluate, analyze and comprehend a	
Think creatively, experiment and generate a s	
check and validate it and modify if necessary	
GA 3 Access, evaluate, understand and compare dig	
various sources and apply it for scientific know	
well as scientific data analysis and presentat	
GA 4 Articulate scientific ideas, put forth a hypot	
testing tools and draw relevant inferences.	Communicate the research
work in appropriate scientific language.	
GA 5 Demonstrate initiative, competence and tena Successfully plan and execute tasks independ	,
members. Effectively communicate and pres	-
	•
information accurately and appropriately to di Use an objective, unbiased and non-manipula	tive approach in collection
GA 6 and interpretation of scientific data and avoid	
Ibnetellectual Property Rights. Appreciate	and sensitive to
environmental and sustainability issues and	
its scientific significance and global relevance.	
GA 7 Translate academic research into innovation a	
scientific solutions to problems. Exemplify	, .
management skills and lead a team for planni	ng and execution of a
task.	
GA 8 Understand cross disciplinary relevance of sci	entific developments
and relearn and reskill so as to ada	pt to technological
advancements.	

PROGRAM OUTCOMES

	Description A student completing Bachelor's Degree in Science	
PO	program	
	in the subject of Biotechnology will be able to:	
PO 1	Perceive the fundamental and advanced concepts in depth in the areas of biochemistry, molecular biology, immunology, medical microbiology and applying the conceptual knowledge to address thereal time problems and exploring plausible solutions.	
DO 3	Annotate the vast amount of biological data by retrieving,	
PO 2	processing andanalyzing through various tools of bioinformatics and biostatistics.	
PO 3	Criticize and assess the phases encountered from laboratory to premarketing stages in clinical research along with reviewing case studies.	
PO 4	Identify local and global environmental issues and establish scientific strategies to devise economical solutions converging towards	
	sustainable development	
PO 5	Comprehend the process of patent documentation .Employ the relevance of legal and ethical implications in intellectual property rights, GMO ,developmental biology and other fields of biotechnology.	
PO 6	Outline, execute ,Analyze experimental procedures and research proposal thus ameliorate their scientific writing temperament and soft skills consequently refining their abilities to troubleshoot any research problems.	
PO 7	Deduce the underlying principle of nanotechnological and biotechnological processes and develop the skills to offer contemporary solutions.	

PROGRAM OUTLINE

Msc Part -II

MSc		RPSBTK301	ATC and PTC	4
		RPSBTK302	Medical Microbiology	4
		RPSBTK303	GMO and Environment	4
	III	RPSBTK304	Developmental Biology	4
		RPSBTKP301	Practicals based on RPSBTK301	2
		RPSBTKP302	Practicals based on RPSBTK302	2
		RPSBTKP303	Practicals based on RPSBTK303	2
		RPSBTKP304	Practicals based on RPSBTK304	2
MSC	IV	RPSBTK401	Nanotechnology	4
		RPSBTK402	IPR & protection of inventions	4
	3	RPSBTK403	Clinical Studies	4
5	111	RPSBTK404	Biostatistics	4
531		RPSBTKP401 to RPSBTKP404	Project	2 credits each

Msc Part II

(Credit based Semester and Grading system)

SEMESTER III

Course Code: RPSBTK301

Course Title: PTC and ATC

Academic year 2022-23

COURSE OUTCOMES: On course completion, the student should be able to:

COURSE OUTCOME	DESCRIPTION
CO 1	Discuss the basic requirements of a tissue culture laboratory
CO 2	Design and carry out minor experiments in PTC, ATC following the required norms and protocols
CO 3	Make use of the safety and precaution controls in these labs
CO 4	Formulate and conduct simple experiments in ATC, PTC labs
CO 5	Apply different preservation techniques in ATC and PTC
CO 6	Formulate and illustrate the essential methodologies in ATC and PTC

Course Code U	nit	Course/ Unit Title	Lecture s
RPSBTK301	I	Plant tissue culture Introduction to primary and secondary metabolism, important pathways leading to biosynthesis of secondary metabolites in plants, Metabolic products produced from invitro culturing of plant	

	cells, selection of plant cells/ tissues for production of a specific products, culture system in secondary plant product. Biotransformation of precursors by cell culturing, metabolic engineering for production of secondary metabolites, Hairy root culture, elicitation	
II	Plant tissue culture-II 15 Cryopreservation -Principle and types. Germplasm conservation, Transgenic plants- Edible vaccine, Golden rice	000
III	Animal tissue culture–I Biology of cultured cells, Culture vessels, Culture Media, Microbial contamination, cross contamination. Cryopreservation, Primary culture: Types, isolation of tissues, culturing of different cells. Cell lines: Development, Subculture and propagation	15
	Animal tissue culture-II Immortalization of cell line, cell line designation, selection of cell lines, routine maintenance, Cytotoxicity, Transformation, Culture of tumor cells, Scaffolds for Tissue Engineering: Classification of scaffold materials - examples, criteria for ideal scaffold, control of architecture, Scaffold design and fabrication techniques. Bioartificial organs: Artificial tissue and artificial skeleton. Three dimensional cell culture and tissue growth, 3D printing of tissue, cells and organs. Bioartificial heart, Bioartificial kidney. Tissue regeneration: Tissue regeneration driven by growth hormones, Stem Cells as source in regeneration of tissues, Therapeutic applications: Tissue therapy, Drug-vaccine-viral delivery in RM Bioethical Issues.	15

- 1. Plant Cells in liquid culture (1991) Author: Payne Shuler, Hanser Publishers
- 2. BiochemistryandmolecularbiologyofplantsbyBuchanan,Gruissem,Jones;1st Edi;
- I.K International publishers
- 3. Textbook of Plant Pharmaceuticals by Chandrakant Kokate; 1 st edition; Elsevier
- 4. Plant Biotechnology by K.G. Ramawat , 1 st Ed. S.Chand and Company
- 5. Culture of Animal Cells: A Manual of Basic Techniques by Ian Freshney

Course Code: RPSBTKP301

Course Title: Practicals based on RPSBTK301

Course Code	Course/ Unit Title	Credit s
RPSBTKP301	1. Media preparation (MS, B5 and coconutwater) 2. Seed sterilization: Physical & Chemical methods. Check the efficiency of seed sterilization using both The methods. 3. Explant preparation ,inoculation &;initiation of Tissue culture. 4. Callus induction and characterisation 5. Subculture of callus and plantlet establishment 6. Synthetic seed 7. Somatic embryogenesis 8. Establishment of suspension cultures. (Periodic subculture of callus can be done on solid media/ semisolid media / liquid media) 9. Dissection of chick embryo 10. Monolayer formation (fibroblast) and passaging. 11. To assay the radical scavenging activity of tissue hydrolysate- DPPH method 12. Techniques for cell preservation 13. Karyotyping with Giemsa staining 14. Observation of Normal and transformed cell line 15. Toxicology MTT Assay	2

Course Code: RPSBTK302

Course Title: Medical Microbiology

Academic year 2022-23

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
CO 1	Explain the basics of medical microbiology
CO 2	Comment and appreciate the significance of this field
	Develop an understanding of various disease related issues of medical
CO 3	microbiology
	Analyse and interpret the molecular techniques involved in medical
CO 4	microbiology
	Formulate and develop molecular diagnostic techniques for various
CO 5	infections
	Determine the role of biofilms in the field of medicine
CO 6	. 0.

Course Code U	nit	Course/ Unit Title	Lecture s
RPSBTK302	I	Cytogenetics Chromosomal disorders, Karyotyping, G-banding, Chromosome analysis, variations, Chromosome painting, Molecular Cytogenetics, FISH,CGH	
	II	Medical microbiology Infections of Respiratory tract- Pneumonia, GI tract infection-, Shigella, Vibrio, Salmonella, Nosocomial- S.pyogenes, Klebsiella. Viral infections-	15

	HIV, Hepatitis (ELISA). Fungal- Candidiasis. Parasitic: Malaria, Leishmania and Dengue, Ebola, SARS, Nipah, CoronaVirus	
Ш	Molecular diagnostics 15 Introduction to molecular diagnostics, pros and cons, importance, molecular techniques,	15
	amplification based techniques (probe, signal and target amplification). Molecular diagnostics for Pneumonia, Tuberculosis, Pseudomonas, HIV, Hepatitis. Candidiasis	le OS
IV	Biofilms Biofilms in medicine: Outline specifications: Stages in biofilm formation, Quorum sensing, biofilm in medical devices- implants & treatments,	15
	biofilms in pathogenesis, biofilm forming organisms- <i>E.coli</i> , <i>Pseudomonas spp</i> , <i>S.aureus</i>	

- 1. Industrial Microbiology an Introduction Michael, Neil, John & ;Gary
- 2. DiagnosticMicrobiology 5thedition Elmer Koneman, StephenAllen Lippincott
- 3. Molecular Microbiology: Diagnostic Persing, Tenover, ASM press Washington
- 4. Principles & Practice (2004) Versalone DC
- 5. Pharmaceuticalmicrobiology7thed.,(2004)HugoRussell'sEditedbyStephenP.Denyer, Hodges and Sean P.Gorman

Course Code: RPSBTKP302

Course Title: Practicals based on RPSBTK302

Course Code	Course/ Unit Title	Credit s
RPSBTKP302	Medical diagnostic – Identification of organisms from specimens (Salmonella, Shigella, Klebsiella pneumonia,). Staining of Biofilms 3. ELISA for Hepatitis, 4. PCR based diagnosis for Malaria	2
	ilg Krifolool,	
	Sill Pro	
Pall.		

Course Code: RPSBTK303

Course Title: GMO and Environment

Academic year 2022-23

COURSE OUTCOMES: On course completion, the student should be able to:

COURSE OUTCOME	DESCRIPTION
CO 1	Explain the importance GMOs and GM crops
CO 2	Elaborate on the development of GMOs to date
CO 3	Describe the use of genetic modification in agriculture
CO 4	Discuss the potential risks & benefits of human activities on the environment
CO 5	Discuss the potential risks & benefits associated with GMO crop consumption
CO 6	Articulate the concept of bioremediation of waste from different industries

Course Code U	nit	Course/ Unit Title	Lecture s
RPSBTK303	I	Introduction to GMOs Genetically modified microorganisms, examples and methods, Humulin, ice minus bacteria, GM bacteria in bioremediation, use of PCR as a GMO identification tool, risks and controversies related to use genetically modified microorganisms. Proteins based assay methods, Toxicological evaluation	
	Ш	GMO crops	15

	GE crops' Arabidopsis as a model plant for studies in genetic engineering; Protocols on food and feed safety assessments, acute oral safety study in rats and mice, sub chronic feeding study in rodents, protein thermal stability, pepsin digestibility, livestock feeding	
≡	Solid waste management Solid waste treatment, pollution indicators & biosensors, biodegradation of xenobiotics, pesticides, phytoremediation	
IV	Biodegradation Biodegradation of waste from food, textile, petrochemicals, paper industries, biological detoxification, Removal of oil spillage & Dilution measurement by MHRD guidelines.	15

- 1. Environmental Biotechnology (2nd Edition, 2005) Alan Scragg Oxford University Press
- 2. Environmental Biotechnology- Basic Concepts and Applications (2006)Indu Shekhar Thakur I. K. International Pvt.Ltd.
- 3. Environmental Biotechnology M. H. Fulekar Oxford & IBH Publishing

Course Code: RPSBTKP303

Course Title: Practicals based on RPSBTK303

Course Code	Course/ Unit Title	Credit
		S
RPSBTKP303	Bioremediation- isolation of metal tolerant organisms & study their growth characteristics	2
	andpattern. 2. GMO validation – kit based/demo	
	3. Isolation of pesticidesdegraders	
	4. Pollution indicators- Detection and	
	Identification.	

Course Code: RPSBTK304

Course Title: DEVELOPMENTAL BIOLOGY

Academic year 2022-23

COURSE OUTCOMES: On course completion, the student should be able to:

COURSE OUTCOME	DESCRIPTION
CO 1	Apply the key principles of developmental biology toward evaluating and analyzing primary literature in the field.
CO 2	Explain significant concepts including mechanisms by which differential gene activity controls development, mechanisms that determine cell fate and mechanisms that ensure consistency and reliability of development.
CO 3	Summarize the post fertilization events.
CO 4	Explain the molecular mechanisms of sex hormone.
CO 5	Discuss the immunology of pregnancy.
CO 6	Appraise and criticize the ethical issues in embryo research.

Course Code U	nit	Course/ Unit Title	Lecture s
RPSBTK304	I	Human Embryonic development 15 Human Embryonic development: Events during fertilization, in-vitro fertilization, Zona pellucida, glycoprotein, Oelemma protein and their role in fertilization, sperm, antigens and their functional	

	significance. Molecular and biochemical events during sperm function	
II	Post fertilization events 15 Post fertilization events: early embryonic development, establishing multi cellularity, formation of blastula, embryonic germ layer, tracking of migrating cells.	15
III	Sex hormones and Implantation 15 Molecular mechanism of sex hormone action and regulation of gene expression. Implantation and endometrium antigens involved in implantation Immunology of pregnancy. Superovulation, embryo culture and embryo transfer technology	
IV	Infertility and reproductive vaccines 15 Infertility and reproductive vaccines. Frontiers in contraceptive research. Cryopreservation of sex gametes and embryos. Ethical issues related to embryo research	15

- 1. Langman's Medical Embryology (9th Edition 2004) T. W.Sadler. Lippincott Williams & Wilkins
- 2. Essential Developemental Biology (2nd Edition 2006) J. M. W. SlackBlackwell Publishing
- 3. Developemental Biology (8th Edition 2006) Scott F. Gilbert SinauerAssociates, Inc

Course Code: RPSBTKP304

Course Title: Practicals based on RPSBTK304

Course Code	Course/ Unit Title	Credit
		S
RPSBTKP304	Candling, Observing Chick embryo- stages of development, prepared slides/ Preserved specimen	2
	2. Developmental biology- Visit to laboratory/video lectures for latest development in the field. To be documented	

Modality of Assessment

Semester III

Theory Examination Pattern

A. Internal assessment -40%-40 Marks

Sr.No Evaluation Type		Marks
1	One Assignment /case study/project based/Written	20
	assignment/Presentations	()29
2	One class test (Multiple choice questions)	20

B. External Examination- 60%-60 Marks Semester End Theory Examination:

- 1. Duration: These examination shall be of 2.5 hrs
- 2. Theory question paper pattern
 - There shall be 4 questions each of 15 Marks. On each unit there will be one question
 - All questions shall be compulsory with internal choice within the questions

Paper Pattern:

Questions attern		Marks	Question based on
Q.1 A)	Any 1 out of 2	8	Unit I
Q.1 B)	compulsory	7	
Q.2 A)	Any 1 out of 2	7	Unit II
Q.2 B)	compulsory	8	
Q.3 A)	Any 1 out of 2	8	Unit III
Q.3 B)	compulsory	7	
Q.4 A)	Any 1 out of 2	7	Unit IV
Q.4 B)	compulsory	8	
	TOTAL	60M	

Practical Examination Pattern:

A. External Examination - 50 Marks
Semester End Practical Examination

Particulars	Paper
Laboratory Work 4	0
Journal	05
Viva	05
Total	50

Overall Examination and Marks Distribution Pattern Semester III

Course	RPSBTK301/302/303/304			Grand Total
	Interna	l External	Γotal	
Theory	40	60	100	400
Practicals	-	50	50	200

SEMESTER IV

Course Code: RPSBTK401

Course Title: Nanotechnology

Academic year 2022-23

COURSE OUTCOMES: On course completion, the student should be able to:

COURSE OUTCOME	DESCRIPTION
CO 1	Discuss the basics of nanotechnology, tools used for characterizing nanomaterials and specific applications of nanotechnology
CO 2	Examine the nanorobotics devices of nature
CO 3	Analyse and interpret the latest developments in nanotechnology in the field of medical sciences
CO 4	Explain drug delivery system using nanotechnology.
CO 5	Apply nanomaterials in food, cosmetics, agriculture, environment Management.
CO 6	Assess and appreciate the thrust in this science and feel encouraged to take it ahead in research

Course Code U	nit	Course/ Unit Title	Lecture s
RPSBTK401	I	Introduction, synthesis of nanomaterials Introduction, synthesis of nanomaterials, biological methods, use of microbial systems & plant extracts, use of proteins & templates like DNA. Characterization of nanomaterials, analysis techniques, properties of nanomechanical, optical, magnetic properties, electrical conductivity, thermal conductivity.	

=	CNTs and nanomotors Carbon nanotubes, Nanorobotics devices of nature: ATP synthase, the kinen, myosin, dynein, flagella modulated motion	15
III	Nanomedicine 15 Nanomedicine: biopharmaceutics, implantable materials, implantable chemicals, surgical aids, diagnostictools, nanosensors, nanoscanning,nano enabled drug delivery system, nanorobotics in medicine.	15
IV	Applications of nanotechnology Application of nanomaterials in food, cosmetics, agriculture, environment management	15

- 1. The Nanoscope encyclopedia of nanoscience and nanochehnology, VolI, V and VI (2005) Dr. Parag Diwan and Ashish Bharadwaj Pentagon Press NewDelhi
- 2. Nano forms of carbon and its applications (2007) Prof. Maheshwar Sharon and Dr. Madhuri Sharon Manad Nanotech Pvt.Ltd.
- 3. Biotech nanotechnology lessons from Nature (2004) David Goodsell Wiley-Liss A John Wiley and sons
- 4. Nanotechnology- Basic science and emerging technologies (2005) Willson Kannangava, Smith, Simmons, Raguse Oversease Press 5. Texbook of Biotechnology (2005) R. C. Dubey S. Chand and Co.
- 6. Nanotechnology- Principles and practices S. K. Kulkarni Capital Publishing Co.

Course Code: RPSBTK402 Course Title: IPR & PROTECTION OF INVENTIONS

Academic year 2022-23

COURSE OUTCOMES: On course completion, the student should be able to:

COURSE OUTCOME	DESCRIPTION
CO 1	Elaborate on the rules and regulations for patenting
CO 2	Distinguish between copyright, Trademark, GI and Industrial designs
CO 3	Interpret different case laws in biotechnology
CO 4	Discuss the roles and responsibilities of the patent officer and the institution
CO 5	Examine various patent applications
CO 6	Summarize the various case studies associated

Course Code U	nit	Course/ Unit Title	Lecture s
RPSBTK402	I	Introduction to Intellectual Property Introduction to IPR; Globalization & development of GATT, WTO, TRIPS agreement; Importantprovisions under TRIPS (Article/s 3, 4, 31/31f) agreement; Important provisions under Geographical indications act, PVPFRA; Traditional knowledge and Bio- piracy; Differences among copyright, Trademark, GI and Industrial designs; Classification oftrademark;	15

	conventional v/s non-conventional	
II	Concept of 'prior art' Indianpatentsact1970andrightsofpatentee(section 48),Principles of patent protection(sec83);Patenting biotech inventions: objectives, concept of novelty, concept of inventive step, non-patentable objects (sec 3/4), Budapest treaty and protection of microorganisms, moral issues in patenting biotech	15
	Patent filing and Infringement. 15 Patent application- forms and guidelines, fee structure, time frames; Types of patent applications: ordinary patent application (provisional and complete specifications, timeline); PCT (timeline) and conventional patent applications; Patent-of-addition v/s divisional patent, publication of patents-gazette of India, status in Europe and US .Parts of a patent; How to write a claim ,types of claims (independent v/s dependent claims, Markush claims, Omnibus claims, biotechnology claims, etc.), Patenting by research students, lecturers and scientists- University/organizational rules in India and abroad, credit/royalty sharing by workers and financial incentives. Patent infringement meaning, scope, litigation, case studies and examples. Important case studies: Glivec case (section 3d), Natco v/sBayer	15
	case of compulsory licensing	
	Important aspects of IP protection 15 IP transfer, patent filing, types of patent, types of claim, claim drafting, patent search. Exhaustion doctrine and article 6 of TRIPS agreement in conjunction with sec 48 of Indian patents act 1970; case studies; fair dealing and de minimis principle. IP enforcement (proactive vs reactive measures):-civil, criminal and custom remedies. Article 34 of TRIPS agreement. Legislative structure and IP protection in India, role of IPAB. Copyright protection: Rights of copyright owner (sec14, economic rights; sec 57, moral rights), Contract of service v/s Contract for service(sec17) and idea-expressiondichotomyunder Indian copyright act 1957; spring-board doctrine, doctrine of first-sale and Creative	15

commons (CC). Levels of trademark protection (based on trade name). Passing off v/s trademarks	
infringement	

- 1. https://www.wipo.it/wipo_magazine/en/2011/03/article_0002.html
- 2. https://www.wipo.int/edocs/mdocs/africa/en/wipo_tiscs_znz_16/wipo_tiscs_znz_1 6 t 6.pdf
- 3. https://www.lexisnexisip.com/knowledge-center/totalpatent-one-and-the-usptosseven-step-patent-search-strategy/
- 4. https://www.khuranaandkhurana.com/wp-content/uploads/2017/01/ANATOMYOF PATENT-SPECIFICATION.pdf
- 5. https://www.wipo.int/edocs/mdocs/aspac/en/wipo_ip_phl_16/wipo_ip_phl_16_t5.pdf
- 6. http://www.mondag.com/india/x/667450/Patent/Patent+Claims+And+Their+Type

Course Code: RPSBTK403

Course Title: Clinical Studies

Academic year 2022-23

COURSE OUTCOMES: On course completion, the student should be able to:

COURSE OUTCOME	DESCRIPTION
	Discuss the athiest issues in human subjects receased
CO 1	Discuss the ethical issues in human subjects research
	Imagine and understand the different phases of clinical trials
CO 2	
	Analyse the roles and responsibilities of the investigator and the
CO 3	institution
	Examine various regulatory issues related to clinical studies
CO 4	
	Recall the companies and organizations associated in this field
CO 5	
	Develop interest on medical writing and design a clinical study
CO 6	report

Course Code U	nit	Course/ Unit Title	Lecture s
RPSBTK403	I	Drug discovery and Preclinical toxicology Pre-Clinical toxicology: General Principals, Systemic toxicology, (Single dose and repeat dose toxicity studies), Carcinogenicity, Mutagenicity, Teratogenicity, Reproductive toxicity, Local toxicity, Genotoxicity, animal toxicity requirements	15
	II	Introduction to Clinical trials Introduction to clinical trials, Historical guidelines in clinical research (Nuremberg code, Declaration of Helsinki and Belmonte report), ICH-GCP guidelines (E6-R1), Phases of clinical trials	15

Ш	Clinical study design Clinical study methodology and regulations: Principles, types (single blinding, double blinding, open access, randomized trials and their examples), Design of protocol, CRF, e-CRF, IB, ICF and preparation of trial reports, Regulations involved (ICMR guidelines) and ethics.	15
IV	Medical Writing Medical Writing: Literature search and medical articles, contract writing, publication, abstracts, bibliography, clinical study reports, principles and softwares in CDM (Clinical Data Management)	9

- 1. EC R1 quidelines
- 2. ICMR ethical guidelines
- 3. D & C Rules ScheduleY
- 4. Law Of Intellectual Property Rights Shiv Sahai Singh Deep & Deep Publications (p) Ltd
- 5. WTO And Intellectual Property Rights By Talwar Sabanna (2007) Serials Publications
- 6. IPR:Unleashing the Knowledge Economy (2003) Prabuddha Ganguli Tata Mc grow Hill publication

Course Code: RPSBTK404

Course Title: Biostatistics

Academic year 2022-23

COURSE OUTCOMES: On course completion, the student should be able to:

COURSE OUTCOME	DESCRIPTION
CO 1	Calculate standard normal scores and resulting probabilities
CO 2	Interpret and explain a p-value
CO 3	Perform a two-sample t-test and interpret the results; calculate a 95% confidence interval for the difference in population means
CO 4	Discuss and interpret results from Analysis of Variance (ANOVA), a technique used to compare means amongst more than two independent populations
CO 5	Analyse and interpret relative risks and odds ratios when comparing two populations
CO 6	Evaluate correlation and regression

Course Code U	nit	Course/ Unit Title	Lecture s
RPSBTK404	I	Introduction to Statistics Statistical population, sample from population, Random sample. Central Tendency: Mean, Median and Mode, Standard Deviation Confidence intervals	
	=	Gaussian distribution and normality Gaussian Distribution and testing for normality, Nonparametric tests (Sign test, Wilcoxon test, Mann- Whitney Test, Krushkal- Whllis test,), transforming data to create Gaussian Distribution	15

Ш	Hypothesis testing Test of Significance. Hypothesis testing:- Theory o errors - Type I and Type II errors, Null hypothesis, P values-one v/s two tail P values, t test(paired & unpaired), z-test, Chi square test, contingency table	15
IV	ANOVA Comparing three or more groups- Introduction to ANOVA, One way ANOVA, repeated measures ANOVA, Friedman Test. Correlation and Regression: Linear and multiple Correlation and Regression	

- Introduction to Biostatistics (Second Edition-2005) N. Gurumani M J P Publishers
 Basic Biostatistics (2008) B. Burt Gerstman Jones and Bartlet Publishers
- 3. Biostatistics: A foundation For Analysis In Health Sciences (7th Edition 1999) Wayne W. Daniel John Wiley &; Sons Inc.
- 4. Fundamentals of Biostatistics (2006) Veer Bala Rastogi Ane Books India
- 5. Biostatistics- The Bare Essentials (Second Edition 2000) Nosman Streiner B.C. Decker Inc.

Modality of Assessment

Semester IV

Theory Examination Pattern

A. Internal assessment -40%-40 Marks

Sr.No Evaluation Type		
1	One Assignment /case study/project based/Written	20 20
	assignment/Presentations	20 20
2	One class test (Multiple choice questions)	

B. External Examination- 60%-60 Marks

Semester End Theory Examination:
1. Duration: These examination shall be of 2.5 hrs

2. Theory question paper pattern

- There shall be 4 questions each of 15 Marks. On each unit there will be one question
- All questions shall be compulsory with internal choice within the questions

Paper Pattern:

Questions I	attern	Marks Question based on		
Q.1 A)	Any 1 out of 2	8	Unit I	
Q.1 B)	compulsory	7	Unit II	
Q.2 A)	Any 1 out of 2	7	2,	
Q.2 B)	compulsory	8	0.	
Q.3 A)	Any 1 out of 2	8	Unit III	
Q.3 B)	compulsory	7	Unit IV	
Q.4 A)	Any 1 out of 2	7		
Q.4 B)	compulsory	8		
	TOTAL	60M		

OMOUS

Practical Examination Pattern: students will have to undergo mandatory hands on project for 200M in an established laboratory /college laboratory for 4-6 months

A. Semester End Examination: (200 marks)

M eart kesulars	
60 illenel departmental teache	rs 50
Internal examiner	50
External examiner	50
TOTAL	200

Overall Examination and Marks Distribution Pattern Semester IV

Course	RPSBTK401/402/403/404			Grand Total
	Interna			
Theory	40	60	100	400
Practicals	(50	50	200
