AC/II (20-21).2.RPS3

S. P. Mandali's RamnarainRuia AutonomousCollege

(Affiliated to University of Mumbai)

Syllabusfor M.Sc Part I-II

Program: M.Sc

Program Code: Biotechnology(RPSBTK)

(Credit Based Semester and Grading System for academic year 2020-2021)

PROGRAM OUTCOMES

РО	PO Description		
	A student completing Master's Degree in Science program will		
	be able to:		
PO 1	Demonstrate in depth understanding in the relevant science		
	discipline. Recall, explain, extrapolate and organize conceptual		
	scientific knowledge for execution and application and also to		
	evaluate its relevance.		
PO 2	Critically evaluate, analyze and comprehend a scientific problem.		
	Think creatively, experiment and generate a solution		
	independently, check and validate it and modify if necessary.		
PO 3	Access, evaluate, understand and compare digital information from		
	various sources and apply it for scientific knowledge acquisition as		
	well as scientific data analysis and presentation.		
PO 4	Articulate scientific ideas, put forth a hypothesis, design and		
	execute testing tools and draw relevant inferences. Communicate		
	the		
DO 5	research work in appropriate scientific language.		
PO 5	Demonstrate initiative, competence and tenacity at the workplace.		
	Successfully plan and execute tasks independently as well as with		
	team members. Effectively communicate and present complex		
PO 6	information accurately and appropriately to different groups.		
PO 6	Use an objective, unbiased and non-manipulative approach in collection and interpretation of scientific data and avoid plagiarism		
	and violation of Intellectual Property Rights. Appreciate and be		
	sensitive to environmental and sustainability issues and		
	understand		
	its scientific significance and global relevance.		
PO 7	Translate academic research into innovation and creatively design		
	scientific solutions to problems. Exemplify project plans, use		
	management skills and lead a team for planning and execution of		
	a		
$O \wedge .$	task.		
PO 8	Understand cross disciplinary relevance of scientific developments		
	and relearn and reskill so as to adapt to		
	technological advancements.		

PROGRAM SPECIFIC OUTCOMES

PSO	Description		
	A student completing Master's Degree in Science program in the subject of Biotechnology will be able to:		
PSO 1	Perceive the fundamental and advanced concepts in depth in the areas of biochemistry, molecular biology, immunology, medical microbiology and applying the conceptual knowledge to address the real time problems and exploring plausible solutions.		
PSO 2	Annotate the vast amount of biological data by retrieving, processing and analyzing through various tools of bioinformatics and biostatistics.		
PSO 3	Criticize and assess the phases encountered from laboratory to premarketing stages in clinical research along with reviewing case studies.		
PSO 4	Identify local and global environmental issues and establish scientific strategies to devise economical solutions converging towards sustainable development		
PSO 5	Comprehend the process of patent documentation .Employ the relevance of legal and ethical implications in intellectual property rights, GMO ,developmental biology and other fields of biotechnology.		
PSO 6	Outline, execute ,Analyze experimental procedures and research proposal thus ameliorate their scientific writing temperament and soft skillsconsequentlyrefiningtheirabilitiestotroubleshootanyresearch problems.		
PSO 7	Deduce the underlying principle of nanotechnological and biotechnological processes and develop the skills to offer contemporary solutions.		

PROGRAM OUTLINE

YEAR	SEM	COURSE CODE	COURSE TITLE	CREDITS
I	I	RPSBTK101	Biochemistry	4
		RPSBTK102	Immunology	4
		RPSBTK103	Molecular Biology	4
		RPSBTK104	Biophysical and biochemical techniques	4
		RPSBTKP101,102,103,104	Practicals based on all four papers	2 credits each
	II	RPSBTK201	Metabolism	4
		RPSBTK202	Immunology	4
		RPSBTK203	Bioprocess Technology	4
		RPSBTK204	Bioinformatics,phylo genetics and vitamins	4
	188	RPSBTKP201 and RPSBTKP204	Practicals based on all four papers Research project(inhouse)	2 credits each
II	Ü	RPSBTK302	Medical Microbiology	4
Bh.		RPSBTK303	GMO and Environment	4
		RPSBTK304	Developmental Biology	4
		RPSBTKP301	Practicals based on RPSBTK301	2

	RPSBTKP302	Practicals based on RPSBTK302	2
	RPSBTKP303	Practicals based on RPSBTK303	2
	RPSBTKP304	Practicals based on RPSBTK304	2
IV	RPSBTK401	Nanotechnology	4
	RPSBTK402	IPR & protection of inventions	4
	RPSBTK403	Clinical Studies	4
	RPSBTK404	Biostatistics	4
	RPSBTKP401 to RPSBTKP404	Project	2 credits each

DETAILED SYLLABUS

SEMESTER III

Course Code: RPSBTK301

Course Title: PTC and ATC Academic year 2020-21

COURSE OUTCOMES: On course completion, the student should be able to:

COURSE OUTCOME	CO DESCRIPTION
CO 1	Discuss the basic requirements of a tissue culture laboratory
CO 2	Design and carry out minor experiments in PTC, ATC following the required norms and protocols
CO 3	Make use of the safety and precaution controls in these labs
CO 4	Formulate and conduct simple experiments in ATC, PTC labs
CO 5	Apply different preservation techniques in ATC and PTC
CO 6	Formulate and illustrate the essential methodologies in ATC and PTC

Course Code/ Unit	Unit	Course/ Unit Title	Lectures
RPSBTK301		Plant tissue culture- Introduction to primary and secondary metabolism important pathways leading to biosynthesis of secondary metabolites in plants, Metabolic products producedfrominvitroculturingofplantcells, selection of plant cells/ tissues for production of a specific products, culture system in secondary plant product. Biotransformation of precursors by cel culturing, metabolic engineering for production of secondary metabolites, Hairy root culture, elicitation	
	II	Plant tissue culture-II Cryopreservation -Principle and types. Germplasm conservation, Transgenic plants- Edible vaccine, Golden rice	15

III	Animal tissue culture-I	15
	Biology of cultured cells, Culture vessels, Culture	
	Media, Microbial contamination, cross contamination.	
	Cryopreservation, Primary culture: Types, isolation of	
	tissues, culturing of different cells. Cell lines:	
	Development, Subculture and propagation	
IV	Animal tissue culture-II	15
	Immortalization of cell line, cell line designation,	
	selection of cell lines, routine maintenance,	CX_{\bullet}
	Cytotoxicity, Transformation, Culture of tumor cells,	
	Scaffolds for Tissue Engineering: Classification of	
	scaffold materials - examples, criteria for ideal	
	scaffold, control of architecture, Scaffold design and	
	fabrication techniques. Bioartificial organs: Artificial	
	tissue and artificial skeleton. Three dimensional cell	
	culture and tissue growth, 3D printing of tissue, cells	
	and organs. Bioartificial heart, Bioartificialkidney.	
	Tissue regeneration: Tissue regeneration driven by	
	growth hormones, Stem Cells as source in	
	regeneration of tissues, Therapeutic applications:	
	Tissue therapy, Drug-vaccine-viral delivery inRM.	
	Bioethical Issues.	

- 1. Plant Cells in liquid culture (1991) Author: Payne Shuler, HanserPublishers
- 2. BiochemistryandmolecularbiologyofplantsbyBuchanan,Gruissem,Jones;1st Edi ; I.K Internationalpublishers
- 3. Textbook of Plant Pharmaceuticals by Chandrakant Kokate; 1 st edition; Elsevier
- 4. Plant Biotechnology by K.G. Ramawat , 1 st Ed. S.Chand andCompany
- 5. Culture of Animal Cells: A Manual of Basic Techniques by IanFreshney

Practicals

RPSBTKP301

Course code	Title	Credits
RPSBTKP301	 Media preparation (MS, B5 and coconutwater) Seed sterilization: Physical & Chemical methods. Checktheefficiencyofseedsterilizationusingboth themethods. Explantpreparation,inoculation&initiationof tissueculture. Callus induction andcharacterisation Subculture of callus and plantletestablishment Syntheticseed Somatic embryogenesis Establishment of suspension cultures. (Periodic subculture of callus can be done on solid media/ semisolid media / liquidmedia) Dissection of chickembryo Monolayer formation (fibroblast) andpassaging. To assay the radical scavenging activity oftissue hydrolysate- DPPHmethod Techniques for cellpreservation Karyotyping with Giemsastaining Observation of Normal and transformed cellline Toxicology MTTAssay 	2

Course Code: RPSBTK302

Course Title: MEDICAL MICROBIOLOGY Academic year 2020-21

COURSE OUTCOMES: On course completion, the student should be able to:

COURSE OUTCOME	CO DESCRIPTION
CO 1	Explain the basics of medical microbiology
CO 2	Comment and appreciate the significance of this field
CO 3	Developanunderstandingofvariousdiseaserelatedissuesofmedical microbiology
CO 4	Analyse and interpret the molecular techniques involved in medical microbiology
CO 5	Formulate and develop molecular diagnostic techniques for various infections
CO 6	Determine the role of biofilms in the field of medicine

Course Code/	Unit	Course/ Unit Title	Lectures
Unit	4		
RPSBTK302		Cytogenetics	15
		Chromosomal disorders, Karyotyping, G-banding,	
		Chromosome analysis, variations, Chromosome	
		painting, Molecular Cytogenetics, FISH,CGH	
) II	Medical microbiology	15
		Infections of Respiratory tract- Pneumonia, GI trac	
		infection-, Shigella, Vibrio, Salmonella, Nosocomial-	
		S.pyogenes, Klebsiella. Viral infections-HIV, Hepatitis	
		(ELISA). Fungal- Candidiasis. Parasitic: Malaria	
		Leishmania and Dengue, Ebola, SARS, Nipah,	
		CoronaVirus	
	Ш	Molecular diagnostics	15
		Introduction to molecular diagnostics, pros and cons,	
		importance, molecular techniques, amplification	
		based techniques (probe, signal and target	

	amplification). Molecular diagnostics forPneumonia,	
	Tuberculosis, Pseudomonas, HIV, Hepatitis.	
	Candidiasis	
IV	Biofilms	15
	Biofilms in medicine:Outline specifications: Stages in biofilm formation, Quorum sensing, biofilm in medical devices- implants & treatments, biofilms in	
	pathogenesis, biofilm forming organisms- <i>E.coli, Pseudomonas spp, S.aureus</i>	

- 1. Industrial Microbiology an Introduction Michael, Neil, John & Day, Gary
- $2. \quad Diagnostic Microbiology 5 the dition Elmer Koneman, Stephen Allen Lippin cott$
- 3. Molecular Microbiology: Diagnostic Persing, Tenover, ASM pressWashington
- 4. Principles & Pr
- 5. Pharmaceuticalmicrobiology7thed.,(2004)HugoRussell'sEditedbyStephenP.Denyer, Hodges and Sean P.Gorman

Practicals

RPSBTKP302

Course code	Title	Credits
RPSBTKP302	 Medical diagnostic – Identification of organisms from specimens (Salmonella, Shigella, Klebsiella pneumoniae,). Staining ofBiofilms 	2
Alessa .	3. ELISA forHepatitis,4. PCR based diagnosis forMalaria	

Course Code: RPSBTK303

Course Title: GMO AND ENVIRONMENT Academic year 2020-21

COURSE OUTCOMES: On course completion, the student must be able to:

COURSE OUTCOME	CO DESCRIPTION
CO 1	Explain the importance GMOs and GM crops
CO 2	Elaborate on the development of GMOs to date
CO 3	Describe the use of genetic modification in agriculture
CO 4	Discuss the potential risks & benefits of human activities on the environment
CO 5	Discuss the potential risks & benefits associated with GMO crop consumption
CO 6	Articulate the concept of bioremediation of waste from different industries

Course Code/ Unit	Unit	Course/ Unit Title	Lectures
RPSBTK303	I	Introduction to GMOs Genetically modified microorganisms, examples and methods, Humulin, ice minus bacteria, GM bacteria in bioremediation, use of PCR as a GMO identification tool, risks and controversies related to use genetically modified microorganisms. Proteins based assay methods, Toxicological evaluation.	15
	II	GMO crops	15

	GE crops' Arabidopsis as a model plant for studies in					
	genetic engineering; Protocols on food and feed					
	safety assessments, acute oral safety study in rats					
	and mice, sub chronic feeding study in rodents,					
	protein thermal stability, pepsin					
	digestibility, livestock feeding					
III	Solid waste management	15				
	Solid waste treatment, pollution indicators					
	& biosensors, biodegradation of					
	xenobiotics, pesticides, phytoremediation					
IV	Biodegradation	15				
	Biodegradation of waste from food, textile,					
	petrochemicals, paper industries, biological					
	detoxification, Removal of oil spillage & amp; grease					
	deposits, Valerization, Radioactive waste, pollution					

- 1. Environmental Biotechnology (2nd Edition, 2005) Alan Scragg Oxford UniversityPress
- 2. Environmental Biotechnology- Basic Concepts and Applications (2006)InduShekhar Thakur I. K. International Pvt.Ltd.
- 3. Environmental Biotechnology M. H. Fulekar Oxford & IBHPublishing

Practicals RPSBTK303

Course code	Title	Credits			
RPSBTKP303	RPSBTKP303 1. Bioremediation- isolation of metal tolerant organisms & study their growth characteristics andpattern. 2. GMO validation - kit based/demo				
O'Blilling.	3. Isolation of pesticidesdegraders4. Pollution indicators- Detection and Identification.				

Course Code: RPSBTK304

Course Title: DEVELOPMENTAL BIOLOGY

Academic year 2020-21

COURSE OUTCOMES: On course completion, the student should be able to:

COURSE OUTCOME	CO DESCRIPTION
CO 1	Apply the key principles of developmental biology toward evaluating and analyzing primary literature in the field.
CO 2	Explain significant concepts including mechanisms by which differential gene activity controls development, mechanisms that determine cell fate and mechanisms that ensure consistency and reliability of development.
CO 3	Summarize the post fertilization events.
CO 4	Explain the molecular mechanisms of sex hormone.
CO 5	Discuss the immunology of pregnancy.
CO 6	Appraise and criticize the ethical issues in embryo research.

Course Code/	Unit	Course/ Unit Title	Lectures				
Unit	Unit						
RPSBTK304	R	Human Embryonic development Human Embryonic development: Events during fertilization, in-vitro fertilization, Zona pellucida, glycoprotein, Oelemma protein and their role in fertilization, sperm, antigens and their functional significance. Molecular and biochemical events during sperm function	15				
Oller.	II	Post fertilization events Post fertilization events: early embryonic development, establishing multicellularity, formation of blastula, embryonic germ layer, tracking of migrating cells.					
	III	Sex hormones and Implantation Molecular mechanism of sex hormone action and regulation of gene expression. Implantation and endometrium antigens involved in implantation.	15				

Immunology of pregnancy. Superovulation, embryo culture and embryo transfer technology			
	Infertility and reproductive vaccines	15	
	Infertility and reproductive vaccines. Frontiers in contraceptive research. Cryopreservation of sex		
	gametes and embryos. Ethical issues		
	related to embryo research		

- Langman's Medical Embryology (9th Edition 2004) T. W.Sadler. Lippincott Williams & Wilkins
- 2. Essential Developemental Biology (2nd Edition 2006) J. M. W. SlackBlackwell Publishing
- 3. Developemental Biology (8th Edition 2006) Scott F. Gilbert SinauerAssociates, Inc

Practicals RPSBTKP304

Course code	Title	Credits
RPSBTKP304	 Candling, Observing Chick embryo- stages of development, prepared slides/ Preserved specimen Developmental biology- Visit to laboratory/video lectures for latest development in the field. To be documented 	2

MSC PART II

Modality of Assessment (SEMESTER III)

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1.	One Assignment/Case study/Project based / written assignment/ Presentations	20
2.	One Class Test (multiple choice questions/objectives/ match the column)	20
	TOTAL	40

B) External Examination- 60%- 60Marks Semester End TheoryExamination:

- 1. Duration These examinations shall be of **2.5 hours**duration.
- 2. Theory question paperpattern:
 - There shall be 4 questions each of 15 marks. On each unit there will be one question.
 - All questions shall be compulsory with internal choice within thequestions.

Paper Pattern:

Question	Options	Marks	Questions Based on	
Q.1)A)	Any 1 out of 2			
Q.1)B)	Compulsory		Unit I	
Q.2)A)	Any 1 out of 2			
Q.2)B)	Compulsory		Unit II	
Q.3)A)	Any 1 out of 2			
Q.3)B)	Compulsory		Unit III	
Q.4)A)	Any 1 out of 2			
Q.4)B)	Compulsory		Unit IV	
	TOTAL	60		

Practical Examination Pattern:

B) External Examination: - 50Marks

Semester End PracticalExamination:

Particulars	Paper
Laboratory work	40
Journal	05
Viva	05
Total	50

Overall Examination & Marks Distribution Pattern

Semester III

Course	RPS	RPSBTK301/302/303/304		Grand total
	Internal	External	Total	
Theory	40	60	100	400
Practical		50	50	200

SEMESTER IV

Course Code: RPSBTK401

Course Title: NANOTECHNOLOGY Academic year 2020-21

COURSE OUTCOMES: On course completion, the students should be able to:

COURSE OUTCOME	CO DESCRIPTION
CO 1	Discuss the basics of nanotechnology, tools used for characterizing nanomaterials and specific applications of nanotechnology
CO 2	Examine the nanorobotics devices of nature
CO 3	Analyseandinterpretthelatestdevelopmentsinnanotechnologyinthe field of medicalsciences
CO 4	Explain drug delivery system using nanotechnology
CO 5	Apply nanomaterials in food, cosmetics, agriculture, environment management
CO 6	Assess and appreciate the thrust in this science and feel encouraged to take it ahead in research

Course Code/ Unit	Unit	Course/ Unit Title	Lectures
RPSBTK401		Introduction, synthesis of nanomaterials Introduction, synthesis of nanomaterials, biological methods, use of microbial systems & plant extracts, useofproteins&templateslikeDNA.Characterization of nanomaterials, analysis techniques, properties of nanomechanical, optical, magnetic properties, electrical conductivity, thermal conductivity.	15
	II	CNTs and nanomotors	15

	Carbon nanotubes, Nanorobotics devices of nature: ATP synthase, the kinen, myosin, dynein, flagella modulated motion	
III	Nanomedicine Nanomedicine: biopharmaceutics, implantable materials, implantable chemicals, surgical aids, diagnostictools,nanosensors,nanoscanning,nano enabled drug delivery system, nanorobotics in medicine.	
IV	Applications of nanotechnology Application of nanomaterials in food, cosmetics, agriculture, environment management	15

- TheNanoscopeencyclopediaofnanoscienceandnanochehnology, Voll, VandVI (2005) Dr. Parag Diwan and Ashish Bharadwaj Pentagon Press New Delhi
- 2. Nano forms of carbon and its applications (2007) Prof.Maheshwar Sharon and Dr.Madhuri Sharon Manad Nanotech Pvt.Ltd.
- 3. Biotechnanotechnology lessons from Nature (2004) David Goodsell Wiley-Liss A John Wiley andsons
- 4. Nanotechnology- Basic science and emerging technologies (2005) WillsonKannangava, Smith, Simmons, RaguseOverseasePress
- 5. Texbook of Biotechnology (2005) R. C. Dubey S. Chand and Co.
- 6. Nanotechnology- Principles and practices S. K. Kulkarni Capital PublishingCo.

Course Code: RPSBTK402

Course Title: IPR & PROTECTION OF INVENTIONS Academic year 2020-21

COURSE OUTCOMES: On course completion, the student should be able to:

COURSE OUTCOME	CO DESCRIPTION
CO 1	Elaborate on the rules and regulations for patenting
CO 2	Distinguish between copyright, Trademark, GI and Industrial designs
CO 3	Interpret different case laws in biotechnology
CO 4	Discuss the roles and responsibilities of the patent officer and the institution
CO 5	Examine various patent applications
CO 6	Summarize the various case studies associated

Course Code/	Unit	Course/ Unit Title	Lectures
Unit			
RPSBTK402		Introduction to Intellectual Property Introduction to IPR; Globalization & development of GATT, WTO, TRIPS agreement; Important provisions under TRIPS (Article/s 3, 4, 31/31f) agreement; Important provisions under Geographical indications act, PVPFRA; Traditional knowledge and Bio-piracy; Differences among copyright, Trademark, GI and Industrial designs; Classification oftrademark; conventional v/s non-conventional.	15
	II	Concept of 'prior art' Indianpatentsact1970andrightsofpatentee(section 48),Principlesofpatentprotection(sec83);Patenting biotech inventions: objectives, concept of novelty, concept of inventive step, non-patentableobjects (sec 3/4), Budapest treaty and protection of microorganisms, moral issues in patenting biotech	15

	inventions; Important case laws under Biotechnology;	
	Harvard onco-mouse case, Diamond vs Chakrabarty	
	case, Turmeric case, Hoodia cactus case, Patent	
	databases and patent search. International patent	
	classification	
	(https://www.wipo.int/classifications/ipc/en/)	
	Analysis and report formation	45
	Patent filing and Infringement.	15
	Patent application- forms and guidelines, fee	. (
	structure, time frames; Types of patent applications:	
	ordinary patent application (provisional and complete	
	specifications, timeline); PCT (timeline) and	
	conventional patent applications; Patent-of-addition	
	v/s divisional patent, publication of patents-gazette of	
	India,statusinEuropeandUS.Partsofapatent;How to	
	write a claim, types of claims (independent v/s	
	dependent claims, Markush claims, Omnibus claims,	
	biotechnology claims, etc.), Patenting by research	
	students, lecturers and scientists-	
	University/organizational rules in India and abroad,	
	credit/royalty sharing by workers and financial	
	incentives. Patent infringement- meaning, scope,	
	litigation, case studies and examples. Important case	
	studies: Glivec case (section 3d), Natco v/sBayer	
	case of compulsory licensing	
	IV Important aspects of IP protection	15
	IP transfer, patent filing, types of patent, types of	
	claim, claim drafting, patent search. Exhaustion	
	doctrine and article 6 of TRIPS agreement in	
	conjunction with sec 48 of Indian patents act 1970	
	case studies; fair dealing and de minimis principle. IF	
	enforcement (proactive vs reactive measures):-civil	
	criminal and custom remedies. Article 34 of TRIPS	
	agreement. Legislative structure and IP protection in	
	India, role of IPAB. Copyright protection: Rights of	
01/2.	copyright owner (sec14, economic rights; sec 57,	
	moral rights),Contract of service v/s Contract for	
	service(sec17)andidea-expressiondichotomyunder	
	Indian copyright act 1957; spring-board doctrine,	
	doctrine of first-sale andCreative	
	commons (CC). Levels of trademark protection	
	(based on trade name). Passing off v/s trademarks	
	infringement	
	mingenent	

- 1. https://www.wipo.it/wipo magazine/en/2011/03/article 0002.html
- 2. https://www.wipo.int/edocs/mdocs/africa/en/wipo_tiscs_znz_16/wipo_tiscs_znz_1 6 t 6.pdf
- 3. https://www.lexisnexisip.com/knowledge-center/totalpatent-one-and-the-usptos-seven-step-patent-search-strategy/
- 4. https://www.khuranaandkhurana.com/wp-content/uploads/2017/01/ANATOMY-OF-PATENT-SPECIFICATION.pdf
- 5. https://www.wipo.int/edocs/mdocs/aspac/en/wipo ip phl 16/wipo ip phl 16 t5. pdf
- 6. http://www.mondaq.com/india/x/667450/Patent/Patent+Claims+And+Their+Type s

Course Code: RPSBTK403

Course Title: CLINICAL STUDIES
Academic year 2020-21

COURSE OUTCOMES: On course completion, the student should be able to:

COURSE OUTCOME	CO DESCRIPTION
CO 1	Discuss the ethical issues in human subjects research
CO 2	Imagine and understand the different phases of clinical trials
CO 3	Analyse the roles and responsibilities of the investigator and the institution
CO 4	Examine various regulatory issues related to clinical studies
CO 5	Recall the companies and organizations associated in this field
CO 6	Develop interest on medical writing and design a clinical study report

Course Code/	Unit	Course/ Unit Title	Lectures
Unit			
RPSBTK403	I	Drug discovery and Preclinical toxicology	15
		Pre-Clinical toxicology: General Principals,	

	Systemic toxicology, (Single dose and repeat dose	
	toxicity studies), Carcinogenicity, Mutagenicity,	
	Teratogenicity, Reproductive toxicity, Local toxicity,	
	Genotoxicity, animal toxicity requirements	
II	Introduction to Clinical trials	15
	Introduction to clinical trials, Historical guidelines	
	in clinical research (Nuremberg code, Declaration of	
	Helsinki and Belmonte report), ICH-GCP guidelines	
	(E6-R1), Phases of clinical trials	
III	Clinical study design	15
	Clinical study methodology and regulations:	
	Principles, types (single blinding, double blinding,	
	open access, randomized trials and their examples),	
	Design of protocol, CRF, e-CRF, IB, ICF and	
	preparation of trial reports, Regulations involved	
	(ICMR guidelines) and ethics.	
IV	Medical Writing	15
	Medical Writing: Literature search and medical	
	articles, contract writing, publication, abstracts,	
	bibliography, clinical study reports, principles and	
	softwares in CDM (Clinical Data Management)	

- 1. EC R1 guidelines
- 2. ICMR ethicalguidelines
- 3. D & C Rules ScheduleY
- 4. LawOfIntellectualPropertyRightsShivSahaiSinghDeep&DeepPublications (p) Ltd
- 5. WTO And Intellectual Property Rights By TalwarSabanna (2007)Serials Publications
- 6. IPR:UnleashingtheKnowledgeEconomy(2003)PrabuddhaGanguliTataMcgrow Hillpublication

Course Code: RPSBTK404 Course Title:BIOSTATISTICS Academic year2020-21

COURSE OUTCOMES: On course completion, the student should be able to:

COURSE	CO DESCRIPTION
OUTCOME	
CO 1	Calculate standard normal scores and resulting probabilities
CO 2	Interpret and explain a p-value
CO 3	Perform a two-sample t-test and interpret the results; calculate a 95% confidence interval for the difference in population means
CO 4	Discuss and interpret results from Analysis of Variance (ANOVA), a technique used to compare means amongst more than two independent populations
CO 5	Analyse and interpret relative risks and odds ratios when comparing two populations
CO 6	Evaluate correlation and regression

Course Code/ Unit	Unit	Course/ Unit Title	Lectures
RPSBTK404		Introduction to Statistics Statistical population, sample from population, Random sample. Central Tendency: Mean,Median and Mode, Standard Deviation Confidenceintervals Gaussian distribution and normality Gaussian Distribution and testing for normality, Non- parametric tests (Sign test, Wilcoxon test, Mann- Whitney Test, Krushkal- Whllis test,), transforming data to create Gaussian Distribution	15 15
	III	Hypothesis testing	15

IV	unpaired), z-test, Chi square test, contingencytable. ANOVA Comparing three or more groups- Introduction to ANOVA One way ANOVA repeated measures	15
	ANOVA, One way ANOVA, repeated measures ANOVA, Friedman Test. Correlation and Regression:	

- 1. Introduction to Biostatistics (Second Edition-2005) N. Gurumani M J PPublishers
- 2. Basic Biostatistics (2008) B. Burt GerstmanJones and BartlettPublishers
- 3. Biostatistics: A foundation For Analysis In Health Sciences (7th Edition 1999) Wayne W.

Daniel John Wiley & Daniel Wiley & Daniel Wiley & Daniel Wiley & Daniel Wiley & Daniel

- 4. Fundamentals of Biostatistics (2006) Veer BalaRastogiAne BooksIndia
- 5. Biostatistics- The Bare Essentials (Second Edition 2000) NosmanStreiner B.C. DeckerInc.

Practicals RPSBTKP401 to RPSBTKP404

Students will have to undergo mandatory hands on project for 200M in an established lab/institute/industry/Parent institute for 4-6 months. Submit dissertation thesis and present it to the examiners during final exam.

MSC PART II Modality of Assessment (SEMESTER IV)

Theory Examination Pattern:

A) Internal Assessment- 40%- 40Marks

Sr No	Evaluation type	Marks
1.	One Assignment/Case study/Project based / written assignment/ Presentations	20
2.	One Class Test (multiple choice questions/objectives/ match the column)	20
	TOTAL	40

B) External Examination- 60%- 60Marks Semester End TheoryExamination:

- 1. Duration These examinations shall be of **2.5 hours**duration.
- 2. Theory question paperpattern:
 - There shall be 4 questions each of 15 marks. On each unit there will be one question.
 - All questions shall be compulsory with internal choice within thequestions.

Paper Pattern:

Question	Options	Marks	S Questions Based on	
Q.1)A)	Any 1 out of 2			
Q.1)B)	Compulsory		Unit I	
Q.2)A)	Any 1 out of 2		Unit II	
Q.2)B)	Compulsory			
Q.3)A)	Any 1 out of 2			
Q.3)B)	Compulsory		- Unit III	
Q.4)A)	Any 1 out of 2			
Q.4)B)	Compulsory		Unit IV	
	TOTAL	60		

Practical Examination Pattern:

Students will have to undergo mandatory hands on project for 200M in an established laboratory /college laboratory for 4-6 months

Semester End Examination: (200 marks)

Particulars	Marks		
Guide	50		
Panel of Departmental Teachers (except the guide)	50		
Internal examiner	50		
External examiner	50		
Total	200		

Overall Examination & Marks Distribution Pattern

Semester IV

Course	RPSBTK401/ 402/ 403/404			Grand Total
	Internal	External	Total	
Theory	40	60	100	400
Semester end examination		50	50	200
