Resolution No.: AC/II (21-22).2.RPS11

S. P. Mandali's

Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for: PG

Program: M.Sc.

Program Code: Zoology (RPSZOO)

(Credit Based Semester and Grading System for the academic year 2021–2022)

PROGRAM OUTCOMES

In the post graduate courses, S.P.Mandali's Ramnarain Ruia Autonomous College is committed to impart conceptual and procedural knowledge in specific subject areas that would build diverse creative abilities in the learner. The College also thrives to make its science post graduates research/ job ready as well as adaptable to revolutionary changes happening in this era of Industry 4.0.

РО	PO Description
	A student completing Master's in Science program will be able to:
PO 1	Demonstrate in depth understanding in the relevant science discipline. Recall,
	explain, extrapolate and organize conceptual scientific knowledge for execution
	and application and to evaluate its relevance.
PO 2	Critically evaluate, analyze and comprehend a scientific problem. Think
	creatively, experiment and generate a solution independently, check and validate
	it and modify if necessary.
PO 3	Access, evaluate, understand and compare digital information from various
	sources and apply it for scientific knowledge acquisition as well as scientific data
	analysis and presentation.
PO 4	Articulate scientific ideas, put forth a hypothesis, design and execute testing tools
	and draw relevant inferences. Communicate the research work in appropriate
	scientific language.
PO 5	Demonstrate initiative, competence and tenacity at the workplace. Successfully
	plan and execute tasks independently as well as with team members. Effectively
	communicate and present complex information accurately and appropriately to
	different groups.
PO 6	Use an objective, unbiased and non-manipulative approach in collection and
	interpretation of scientific data and avoid plagiarism and violation of Intellectual
	Property Rights. Appreciate and be sensitive to environmental and sustainability
	issues and understand its scientific significance and global relevance.
PO 7	Translate academic research into innovation and creatively design scientific
	solutions to problems. Exemplify project plans, use management skills and lead a
	team for planning and execution of a task.
PO 8	Understand cross disciplinary relevance of scientific developments and relearn
	and reskill so as to adapt to technological advancements.

PROGRAM SPECIFIC OUTCOMES

A student completing Master's in Science program in the subject of Zoology will be able to: Identify, explore, understand the classification of invertebrates and vertebrates
Identify, explore, understand the classification of invertebrates and vertebrates
and compare between the anatomy and physiology of different phylum.
Gain comprehensive knowledge about different animal species and appreciate
the differences and similarities, thereby achieving proficiency in handling them
experimentally or for research purposes.
Understand and learn various behavioural patterns displayed by animals and
interrelate to evolutionary pattern.
Evaluate and analyse basics of chemical thermodynamics and various
biochemical pathways with respect to metabolism.
Analyse the various communication pathways taking place inside the cell and
interrelate it with genetics.
Compare and contrast between Mendelian inheritance, Extension of Mendelian
genetics and non-Mendelian genetics
Interpret and analyse how morphological change due to change in environment
helps drive evolution over a period of time.
Compare the different developmental stages of all the animals and connect it to
the evolutionary link.
Apply the fundamentals and techniques of molecular biology in various fields.
Develop an ability to analyse present and interpret various concepts of Immune
and Cancer Biology.
Understand the broad concepts of Life processes, Endocrinology, Assisted
reproductive techniques, Animal biotechnology and develop employable skills.
Explore some of the unique migratory patterns of animals and understand their
biological rhythms.
Apply their knowledge in problem solving and future course of their career
development in higher education and research.
Develop critical thinking, planning and executing research projects and develop
employable skills in the field of Animal Physiology.

59,

Important Note:

In the context of UGC circular of 2006 and the need to understand animal systems better at specialization stages in Zoology, limited anatomical studies of the animals has been introduced at the level of specialization in M.Sc. Zoology. These anatomical studies have been introduced keeping in focus that all aspects of ethics of animal experimentation is informed to the students and that it will be ensured that students are made to understand the ethical use of animals in Biology. In this context, anatomical studies in a limited manner will be used for training with the following conditions:

- The college is agreed to the inclusion of anatomical studies provided, that the students are not asked to kill and cut open live animals.
- The animal specimen if used for anatomical studies will be procured dead from local food market and are items of regular consumption by people.
- The sessions of anatomical studies are arranged in a planned manner to minimize the number of animal specimens used and to reuse the same animal specimen for multiple sessions.
- Further, College will constitute an Anatomical Study monitoring board which will be informed about the use of animals and that the usage will comply to the guidelines of ethical use and handling of animals.
- Students opting for specialization in Zoology M.Sc. will be informed in advance about the inclusion of anatomical studies in the course work.

PROGRAM OUTLINE

YEAR	SEM	COURSE CODE	COURSE TITLE	CREDITS
		RPSZOO101	Animal Systematics, Ethology and Ecology-I	4
		RPSZOO102	Biochemistry and Metabolism – I	4
		RPSZOO103	Genetics-I and Developmental Biology	4
		RPSZOO104	Applied Zoology- I	4
			Practical	\mathbf{O}
	Ι	RPSZOOP101	Animal Systematics, Ethology and Ecology-I	2
		RPSZOOP102	Biochemistry and Metabolism – I	2
÷		RPSZOOP103	Genetics and Developmental Biology	2
<u>.</u>		RPSZOOP104	Applied Zoology- I	2
M.ScI		RPSZOO201	Animal Systematics and Ethology – II	4
\geq		RPSZOO202	Biochemistry and Metabolism- II	4
		RPSZOO203	Molecular Biology, Syndromes and Evolution	4
		RPSZOO204	Applied Zoology-II	4
	II		Practical	
		RPSZOOP201	Animal Systematics and Ethology – II	2
		RPSZOOP202	Biochemistry and Metabolism- II	2
		RPSZOOP203	Molecular Biology, Syndromes and Evolution	2
		RPSZOOP204	Applied Zoology-II	2
		RPSZOP301	Life Processes-I	4
		RPSZOP302	Immunology and Cancer Biology	4
		RPSZOP303	Reproduction Biology	4
		RPSZOP304	Internship/Project	4
	III		Practical	
		RPSZOPP301	Life Processes-I	2
		RPSZOPP302	Immunology and Cancer Biology	2
Π		RPSZOPP303	Internship/Project	2
M.ScII		RPSZOPP304	Internship/Project	2
Ň		RPSZOP401	Animal Biotechnology	4
Ν		RPSZOP402	Life Processes-II	4
		RPSZOP403	Endocrinology	4
		RPSZOP404	Biological rhythm and Ecophysiology	4
	ĪV		Practical	
		RPSZOPP401	Animal Biotechnology	2
		RPSZOPP402	Life Processes-II	2
$\langle \rangle$		RPSZOPP403	Endocrinology	2
λ		RPSZOPP404	Biological rhythm and Ecophysiology	2
V.				

Resolution No.: AC/II (21-22).2.RPS11

S. P. Mandali's

Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for: Semester- I& II

Program: M.Sc.

Program Code: Zoology (RPSZOO)

(Credit Based Semester and Grading System for the academic year 2021–2022)

Semester-I Academic year 2021-2022

Paper Code	Unit	Торіс	Credit
		Animal Systematics, Ethology and Ecology-I	
	Ι	Animal Taxonomy and Systematics	
	II	Phylogeny, Systematics of non-chordates, Hemichordate	
Paper I		and assorted topics	4
RPSZOO101	III	Ecological Principles	
	IV	Study of Animal Behavior	\mathbf{V}
		Biochemistry and Metabolism – I	
	Ι	Biomolecules- a structural and functional approach-I	_
	II	Biochemical Thermodynamics	4
Paper II	III	Metabolic pathways and Integration of metabolism-I	
RPSZOO102	IV	Regulation of metabolism & Cell Communication	
		Genetics and Developmental Biology	
	Ι	Genetics Chromosome theory of inheritance and	
		Mendelism -I	4
Paper III	II	Genetics- Extension of Mendelian genetics and non-	
RPSZOO103		Mendelian inheritance –I	
	III	Evolution –I	
	IV	Developmental Biology	
		Applied Zoology- I	
	Ι	Instrumentation-Microtomy, microscopy,	
Paper IV		centrifugation-I	4
RPSZOO104	II	Biostatistics	
	III	Research Methodology-I	
	IV	IPR	
		Practical	
RPSZOOP101		Animal Systematics, Ethology and Ecology-I	2
RPSZOOP102		Biochemistry and Metabolism – I	2
RPSZOOP103		Genetics and Developmental Biology	2
RPSZOOP104		Applied Zoology-I.	2
Grand Total			24

Course Title: Animal Systematics, Ethology and Ecology-I

Academic year 2021-22

COURSE OUTCOMES:

COU	URSE	DESCRIPTION
OUT	COME	Upon successful completion of this course, learners will be able to;
C	01	Enumerate& classify the characteristics of different phyla.
C	0 2	Compare and contrast between taxonomic procedures of animal classification.
C	03	Interrelate the working and different systems of non-chordates and link it with their evolutionary process
C	04	Understand and comprehend the broad concepts of animal behaviour and its applications in various fields of research.
C	05	Analyze the different concepts in the field of population ecology, identify
		different population growth curves and correlate it with life strategies of different
		animals.
Ratu		tink

RPSZOO101	Title: Animal Systematics, Ethology and Ecology-I	Credits
		4
UNIT–I	Animal Taxonomy and Systematic	15
	• *Introduction to taxonomy – Principles, stages, importance	Lectures
	and rise of taxonomy.	~ 0
	• *Taxonomic Procedures – Traditional or evolutionary method,	\sim
	Phonetic and Cladistic Methods.	
	• *ICZN regulations and Zoological Nomenclature including use	\mathbf{O}
	of suffixes 'i', 'orum', 'ae', 'arum', 'ensis' and 'iensis'. oidea, idea, inae; Tautonyms, synonyms and Homonyms.	
	 Concept of species- Different Species concepts, sub-species 	
	and other intra-specific categories.	
	• New trends in taxonomy: Ecological, Ethological, Cytological	
	and Biochemical approaches and Numerical taxonomy	
	• Molecular basis of animal taxonomy- DNA hybridization,	
	Restriction analysis and sequencing of nucleotides.	
	• Systematics of Porifera up to classes.	
	• Systematics of Coelenterate up to classes.	
	• Systematics of Ctenophora up to classes	
UNIT–II	Phylogeny, Systematics of non-chordates,	15
	Hemichordata & assorted topics	Lectures
	• Phylogeny, salient features, classification (wherever	
	applicable) up to classes of the following phyla-	
	Mollusca, Bryozoa, Brachiopoda, Echinodermata, Chaetognatha	
	• Systematic position and affinities of Hemichordata.	
	*Economic importance of Protozoa.	
	Mesenteries in Coelenterata.	
	Soneo organe in Arthropodo	
	 Sense organs in Arthropoda. Spines and Pedicellariae in Echinodermata 	
.0	• Spines and Pedicellariae in Echinodermata.	
~	• Spines and Pedicellariae in Echinodermata. Invertebrate larvae- larval forms of free-living invertebrates,	
- A	• Spines and Pedicellariae in Echinodermata.	
ari	• Spines and Pedicellariae in Echinodermata. Invertebrate larvae- larval forms of free-living invertebrates, larval forms of parasites, Strategies and evolutionary	
ari	• Spines and Pedicellariae in Echinodermata. Invertebrate larvae- larval forms of free-living invertebrates, larval forms of parasites, Strategies and evolutionary	
anar	• Spines and Pedicellariae in Echinodermata. Invertebrate larvae- larval forms of free-living invertebrates, larval forms of parasites, Strategies and evolutionary	
mar	• Spines and Pedicellariae in Echinodermata. Invertebrate larvae- larval forms of free-living invertebrates, larval forms of parasites, Strategies and evolutionary	
	• Spines and Pedicellariae in Echinodermata. Invertebrate larvae- larval forms of free-living invertebrates, larval forms of parasites, Strategies and evolutionary	

UNIT-III	Study of Animal Behavior	15
	 Reflexes and complex behaviour-Latency, after discharge, summation, warm up, fatigue inhibition and feedback control. Instinctive Behaviour - Fixed action pattern, Types of sign stimuli and releasers as triggers, Genetic basis of instinctive behavior. Learning- Classical conditioning experiment, latent and insight learning. Social learning; Altruism. *Anti predator behaviour- Avoiding detection through colour and Markings (Mullerian mimicry), Warning coloration, Batesian mimicry. Biological communication- *Forms of signals, vision, audition and chemicals; Role of pheromone-Insects social organization; pheromone effects in mammals- Lee Boot, Whitten, Bruce, Collidge and Castro-Vandenberg effects. 	Lectures
UNIT –IV	Ecological Principles	15
	 *The Environment: Physical environment; biotic environment; biotic and abiotic interactions Habitat and Niche: Concept of habitat and niche; niche width and overlap; fundamental and realized niche; resource partitioning; character displacement. Population Ecology: Characteristics of a population; population growth curves; population regulation; life history strategies (<i>r</i> and <i>k</i> selection); concept of meta population – demes and dispersal, interdemic extinctions, age structured populations Species Interactions: Types of interactions, interspecific competition, herbivory, carnivory, pollination, symbiosis Community Ecology: Nature of communities; community structure and attributes; levels of species diversity and its measurement; edges and ecotones. Ecological Succession: Types; mechanisms; changes involved in succession; concept of climax stage, Succession after Fire. *Ecosystem Ecology: Ecosystem structure; primary production and decomposition; structure and function of some Indian ecosystems: terrestrial (forest, grassland) and aquatic (fresh water, marine, estuarine). *Biogeography: Major terrestrial biomes; theory of island biogeography; biogeographical zones of India. 	Lectures

	Practical Title	
RPSZOOP101	Animal Systematics, Ethology and Ecology-I	Credits 2
	 Study of anatomy: Sepia: Morphology, digestive system, nervous system, reproductive system. Mounting of jaws, radula, statocyst and spermatophore Study of systematic and major features of: Protozoa - Amoeba, Paramoecium, Porifera - Grantia, Euplectella Coelenterata- Porpita, Sea-anemone Mollusca- Chiton, Mytilus Echinodermata- Starfish, Sea urchin, Sea cucumber Hemichordata (Balanoglossus) Cephalochordata (Amphioxus) Agnatha- Petromyzon. Pisces- Hippocampus, Eel Amphibia- Caecilian, Toad Reptilia -Viper, Rattle snake, Crocodile/Alligator/Gharial Study of invertebrate (earthworm /crab) heart. Grooming behaviour in cockroaches/house flies Social organization in insects: Termite nest and caste system. Nest construction behaviour and altruism in red ants. Culture of Daphnia/ Rotifers as fish food animals. Behavioural interaction between individuals of Siamese Fighter fishes (<i>Betta splendens</i>) Planting and maintaining of larval host plants of different butterfly species. Field activities; field visits- zoos/sanctuaries/national parks. 	

References:

- 1. K.V. Kardong, Vertebrate comparative anatomy, Function, Evolution, 3rd Ed. Tata McGraw Hill Publication.
- 2. F.H.Pough, C.M.Janis, J.B.Heiser: Vertebrate Life: 6th Ed. Pearson Education.
- 3. K.F.Liem, W.E.Bemis, W, F.Walker, L. Grande: Functional Anatomy of Vertebrates. An evolutionary perspective. 3rd Ed. Harcourt College Publishers.
- 4. J.Z.Young : The Life of Vertebrates, ELBS-Oxford Univ. Press.
- 5. T.J.Parkar and W.A.Haswell, McMillan: A Text Book of Zoology.
- 6. E.L.Jordan and P.S.Verma, S. Chand & Company: Chordate Zoology.
- 7. J.A.Pechenik: Biology of Invertebrates; 4th Ed, Tata McGraw Hill Publication.
- 8. Milton Hildebrand Wiley: International Analysis of Vertebrate Structure.
- 9. Russell, W.D. Hunter, McMillan: Life of Invertebrates.
- 10. Bares, R.D: Invertebrate Zoology, Saunders Publication.
- 11. Barrington, E J W, (1976): Structure and Functions of Invertebrates.
- 12. Hyman, L.H: The invertebrates (all volumes), McGraw Hill, Philadelphia, USA
- 13. Huston, AM: Biological Diversity, Cambridge University Press, Cambridge

- 14. Kapoor V.C: Theory and Practice of Animal Taxonomy, Oxford and IBH Publ., Delhi
- 15. McNeely, JA: Economics and Biological Diversity, IUCN, Gland, Switzerland
- 16. Miller, S.A. and Harley, J.P. (2005) : Zoology. 6th Ed. McGraw Hill Higher Education, Boston, Toronto, Sydney
- 17. Prasad S.N: Life of Invertebrates, Vikas Publ. New Delhi
- 18. Sinha, A.K, Adhikari S and Ganguly BB: Biology of Animals (vol. I & II), Central Book Agency, Kolkata
- 19. Young, J.Z: Life of Vertebrates, Clarendon Press, Oxford.
- 20. Alcock, J. (2001): Animal Behaviour, an Evolutionary Approach. Sinauer associates, INC. Sunderland, Massachusetts. USA
- 21. Bernard, C. (2004): Animal Behaviour, Mechanism, Development function and evolution. Pearson and Prentice Hall Publication. New York
- 22. Dunlap, J. C., Loros J. J. and Decoursey P. J. (2004): Chronobiology Biological Timekeeping. Sinuaer Associates, Inc. publishers, Sunderland, Massachusetts, USA
- 23. Goodenough, J.E., Mc Guire, B. and Wallace, R. A. (1993): Perspectives on Animal Behaviour. John Wiley and Sons, New York.
- 24. Mandal, F. B. (2010): Textbook of Animal Behaviour. PHI Learning Private Limited, Estern Economy Edition. New Delhi -110001
- 25. Manning, A. and Dawkins M.S. (1997): Introduction to Animal Behaviour, 5th edition, Cambridge University Press. UK.
- 26. Scott, G. (2005): Essential Animal Behaviour. Black Well Publishing, University of Hull, UK.
- 27. Stumpter, T. J. D. (2010): Collective Animal Behaviour; Princeton University Press. Oxford.
- Star marked (*) topics should be considered as Class Assignment topics for Internal Assessment.

Course Title: Biochemistry and Metabolism – I

Academic year 2021-22

COURSE OUTCOMES:

	COURSE	DESCRIPTION
	OUTCOME	Upon successful completion of this course, learners will be able to;
	CO 1	Understand and analyse the classification, structures, and functions of
		Carbohydrates, Lipids and Nucleic acids.
	CO 2	Enumerate the law of Biochemical thermodynamics, ETS chain reaction and
		oxidative phosphorylation concepts.
	CO 3	Apply the knowledge of antioxidants and free radicals quenching to cancer
		research and anticancer activity.
	CO 4	Compare and contrast between different metabolic pathways and understand
		its significance.
	CO 5	Analyse and understand the different cell signalling pathways and apply it in
		the field of cancer genetics.
	CO 6	Calculate Normality, Molarity and prepare solutions of different strengths.
R		

RPSZOO102	Biochemistry and Metabolism – I	Credits
		4
UNIT-I	Biomolecules- a structural and functional	15
	approach-I	Lectures
	 Concepts: Biological Macromolecules, Polymerization and macromolecules, Central role of carbon, Common functional groups, Common ring structure and isomerization in biological molecules. Carbohydrates: Classification: mono-, oligo- and polysaccharides. Monosaccharides- structure, classification, D- and L- isomers, Anomers and mutarotation, open chain and ring forms, pyranose and furanose forms, reactions of monosaccharides, glycocydic bonds and nomenclature. Oligosaccharides. *Biological functions of carbohydrates. Lipids: Classification: simple and complex lipids, Fatty acids- Even and odd carbon fatty acids, numbering the carbon atoms, saturated and unsaturated fatty acids, cis- and trans-configuration, nomenclature and shorthand representation of fatty acids. Acylglycerols- Mono-, di- and triglycerides, stereospecific numbering of glycerols in glycerides, properties of triacylglycerol. Complex lipids- Phospholipids, Sphingolipids, Sterols and waxes, Amphipathic lipids Membrane lipid bilayers. *Biological functions of lipids. Nucleic acids: Types- RNA and DNA- Components: Pentose, Nitrogenous bases, Nucleosides, tautomeric forms of purines and pyrimidines. *Structure of DNA: Watson and Crick model; *different forms of DNA double helix. Structure, *types and functions of RNA. Complex biomolecules 	Lectures
~° 0	Glycoproteins: Blood group substances	
	 Glycolipids: Gangliosides Lipoproteins: Classification and functions, chilomicrons 	
	• Lipoproteins: Classification and functions- chilomicrons, VLDL, LDL, HDL, and free fatty acid-albumin complex.	

Unit-II	Biochemical Thermodynamics	15
	Biochemical Thermodynamics:	Lectures
	*Laws of thermodynamics, free energy, entropy, enthalpy,	
	exergonic and endergonic reactions	
	• High energy compounds: ATP, ADP, ATP-ADP cycle, ATP-AMP ratio.	
	• Biological oxidation: Electron transport chain and	
	mitochondria; Oxidative phosphorylation- mechanism, uncoupling of oxidative phosphorylation and its	
	significance.	SY -
	 Free radicals, antioxidants and antioxidant system. 	
Unit-III	Metabolic pathways and Integration of metabolism-I	15
	• *Metabolism: Concept; Definitions; Catabolism; Anabolism.	Lectures
	• Carbohydrate Metabolism- Glycolysis: Reaction sequence,	
	flow of carbon, conversion of pyruvate to lactate and Acetyl	
	coenzyme-A, significance of pyruvate-lactate	
	interconversion, aerobic and anaerobic glycolysis and	
	energetic of glycolysis. Regulation of glycolysis.	
	Gluconeogenesis: Reaction sequence from pyruvate, gluconeogenesis from amino acids, glycerol, propionate,	
	lactate. Regulation of gluconeogenesis.	
	Glycogen metabolism: Glycogenesis, Glycogenolysis.	
	Regulation of the two pathways.	
	*Significance of following pathways: Hexose	
	monophosphate shunt as a multifunctional pathway, Uronic	
	Acid Pathway; Glyoxalate cycle.	
	• Lipid Metabolism- Dynamics of body lipids, mobilization	
	of fats, regulation of hormone sensitive TG- lipase, fate of glycerol and free fatty acids. Fatty acid metabolism:	
	Oxidation of even-carbon and odd-carbon atom fatty acid,	
	oxidation of unsaturated fatty acids, biosynthesis of fatty	
AC 0	acids including desaturation, metabolism of phospholipids,	
	cholesterol and alcohol.	
Unit-IV	Regulation of metabolism & Cell Communication	15
	Regulation of metabolism- *Concept of homeostasis	Lectures
	Regulation of metabolic flux by genetic mechanisms:	
	Control of enzyme synthesis, constitutive and inducible	
	enzymes; induction and repression of enzymes (lac operon	
	and trp operon); regulatory proteins- Helix turn Helix, Zinc	
	Fingers, Leucine Zippers.	
	• *Regulation of metabolism by extracellular signals: nutrient	

	 supply, nutrient transport, endocrine control, neural control. Cell signaling- Hormones and their receptors, Cell surface receptor, Signaling through G-protein coupled receptors, Signal transduction pathways, Second messengers, Regulation of 		.0
	signaling pathways, Bacterial and plant two-component systems, Light signaling in plants, Bacterial chemotaxis and quorum sensing, G Proteins in cell signaling.	100	20
	Practical Title	<u> </u>	
RPSZOOP102	Biochemistry and Metabolism – I	Credits	
	C C	2	
	1. Determination of reducing sugars by 3,5-dinitrosalicylic acid		
	(colorimetric) method.		
	2. Determination of glycogen in the given tissue (liver/ skeletal		
	muscle/ kidney/ brain).		
	3. Acid and enzyme hydrolysis of glycogen and colorimetric		
	estimation of the products by 3,5-DNSA method. 4. Determination of acid value of fats/ oils.		
	5. Determination of saponification value of fats/ oils.		
	6. Agarose gel electrophoresis of DNA separated from suitable		
	samples.		
	7. Solutions and Buffers: Mode of expressing concentration of		
	solutions- Molarity (M), Molality (M), normality (N), Mass		
	concentration, mass fraction, mass percentage or $%(w/w)$, % by		
	volume (v/v) , parts per million (ppm) with practical exercises.		
	8. Types of solutions- Stock solutions practical exercises.		
	9. Preparation of buffers of different pH using Henderson-		
	Hasselbalch equation and its verification using pH meter.		
•	References		
1 II Satvanaravan	: Biochemistry- 2nd Ed. 2002, Books and Allied Publ.		
	ochemistry- 2nd Ed., Tata McGraw Hill.		
	d and Co. Publ : Fundamentals of Biochemistry- 3rd Ed. 1988.		
	., Nelson, D. L. and Cox, M. M., 2nd Edn.: Principles of Biochemi	stry, CBS	

- Publishers and Distributors, New Delhi.
 5. Conn, E. E., Stumpt, P. K., Bruencing, G. and Dol, R. G. (1995): Outlines of Biochemistry. John Wiley, Singapore.
- 6. Murray, RK., Garner, D.K., Mayes P.A. and Rodwell, V.W. (2003): Harper's Illustrated
- Biochemistry, 26th Edn. Lange Medical Books, McGraw Hill, New York.
- 7. <u>www.enzymesIndia.com</u>

• Star marked (*) topics should be considered as Class Assignment topics for Internal Assessment.

Course Title: Genetics and Developmental Biology

Academic year 2021-22

COURSE OUTCOMES:

amarar

COURSE	DESCRIPTION
OUTCOME	Upon successful completion of this course, learners will be able to;
CO 1	Understand in detail the principles of Mendelian and Non-Mendelian
	genetics.
CO 2	Correlate the concept of non-disjunction as a genetic anomaly with different
	genetic disorders and maternal age.
CO 3	Identify different cell cycle checkpoints and correlate them with cancer.
CO 4	Solve genetic problems based on three-point cross over, epistasis,
	complementation and multipleallelism.
CO 5	Understand and analyse different concepts in developmental biology and
	correlate it with evolution.

RPSZOO103	Genetics and Developmental Biology	Credits
		4
UNIT-I	Genetics Chromosome theory of inheritance and	15
	Mendelism –I	Lectures
	 Mendelism –I Mitosis- Interphase and cell cycle, genetic control of cell cycle, stages of mitosis. Meiosis: An overview of meiosis, the first meiotic division, the second meiotic division, comparison of spermatogenesis and oogenesis in animal cells. Non-disjunction and its implications *Organization of genetic material- Structure of chromosomes, Chromosome number, shape and types, Structural features of eukaryotic chromosomes (chromatids, centromeres and telomeres; significance of telomeres; telomeres and cancer) Heterochromatin and euchromatin In situ hybridization Giant chromosomes: lamp brush and polytene chromosomes and salivary gland chromosomes *Chromosome banding Variations in chromosome structure and chromosome number. *Principles of Mendelian Genetics: Mendel's first law- segregation of allele Mendel's second law- independent assortment iii. Monohybrid and dihybrid crosses 	Lectures
	• Molecular basis of dominance (genotype, phenotype, dominance, alleles)	
	chomous and radiations as earomogons.	
UNIT-II	Genetics- Extension of Mendelian genetics and non-	15
CY.	Mendelian inheritance –I	Lectures
Y	Alleles and phenotypes:	
	i. Incomplete or partial dominance and co-dominance	
	ii. Epistasis – Dominant and Recessive	
	-	
	iii Complementation analysis	
	iii. Complementation analysisiv. Multiple alleles	

RAMNARAIN RUIA AUTONOMOUS COLLEGE, SYLLABUS FOR M.Sc. ZOOLOGY 2021-22

	vi. Penetrance and expressivity	
	• Quantitative inheritance:	
	i. Traits controlled by many loci.	
	ii. Location of polygenes	
	iii. Heritability: measurement of heritability	
	• Linkage, crossing over and gene mapping:	
	Chromosomal theory of linkage, Mechanism and types of	
	crossing over, Mapping in prokaryotes and bacterial viruses,	
	Gene mapping in eukaryotes (three-point cross)	\mathbf{O}
	Genetic mapping in humans-	
	Physical chromosome mapping: deletion mapping, somatic	
	cell hybridization mapping, mapping by in situ hybridization;	
	correspondence of genetic and physical maps.	
	Practical application of chromosome mapping- tracking the	
	inheritance of an allele with coupled DNA markers.	
		1.5
UNIT-III	Evolution –I	15
	 *Concept of evolution & theories of organic evolution 	Lectures
	(Lamarckism, Darwinism, De Vries mutation theory, Neo-	
	Darwinism)	
	• Evolution of horse	
	Human evolution	
	Evolution of Elephant	
	Human Migration and dispersal	
	Molecular Evolution	
	Molecular clock	
	Circadian Rhythm	
	• Population and Evolutionary genetics: Gene pool,	
	Calculating allelic frequencies.	
	• The Hardy-Weinberg equilibrium and mating systems (non-	
	random mating, assortative mating, inbreeding, dis-	
	assortative mating's)	
())		

UNIT -IV	Developmental Biology	15
	• Basic concepts of Developmental Biology- cell fate,	Lectures
	competence, commitment, *trans- dedifferentiation, Cell	
	specification, Potency, induction, determination and	
	differentiation; *morphogenetic gradients; *cell fate and cell	
	lineages, Apoptosis, Stem cells, genomic equivalence and	
	the *cytoplasmic determinants; imprinting; mutants and	\sqrt{K}
	transgenic in analysis of development.	
	 Cell aggregation and differentiation in <i>Dictyostelium</i> 	
	 *Morphogenesis and cell adhesion- Differential cell affinity, 	
	• Morphogenesis and cell adhesion- Differential cell armity, cadherins and cell adhesion.	
	 Axis formation and pattern formation: Drosophila 	
	and* <i>Xenopus</i>	
	 Organogenesis Mulus formation in Convertent ditional data 	
	 Vulva formation in <i>Caenorhabditis elegans</i> Decomposition on a number of development stores (intro brief) 	
	• Regeneration as a replay of development stages (intro, brief	
	account of epimorphogenesis, morphylaxis & compensatory	
	regeneration)	
	• New theories of Aging.	
	Practical Title	
RPSZOOP103	Genetics and Developmental Biology	Credits
		2
	1. Culturing of Drosphila.	
	2. Culturing of <i>Caenorhabditis elegans</i>	
	3. Temporary squash preparation of onion/garlic root tip cells to	
	study stages of mitosis.	
•	4. Temporary squash preparation of testis of cockroach/	
	Tradescantia pollen to study stages of meiosis.	
5	5. Temporary preparation of polytene chromosomes from	
52	5. Temporary preparation of polytene chromosomes from salivary gland cells of Chironomus larva	
A C		
ard	salivary gland cells of Chironomus larva 6. Study of chromosome structures in human karyotype.	
anar o	salivary gland cells of Chironomus larva	

References:

- 1. Robert H. Tamarin: Prin. Of Genetics; 7th Ed. Tata McGraw Hill
- 2. Elaine Johansen Mange and Arthur Mange: Basic Human Genetics; Indian Reprint; 1997; Rastogi Publ.
- 3. A.P. Jha: Genes and Evolution; MacMillon India
- 4. William S. Kluge: Concepts of Genetics; M.R.Cummings, Pearson Edu
- 5. F Scott. Gilbert, Sinauer Associates Inc: Developmental Biology.
- 6. T. Subramanian: Developmental Biology; Narosa Publ.
- 7. Philip Grant: Biology of Developing System; Holt Saunders International Ed.
- 8. M. W. Strikberger: Evolution; CBS Publ.
- 9. Sumitra Sen and Dipak Kumar Kar: Cytology and Genetics; Narosa Publ.
- 10. R.M. Twyman, Bios: Instant Notes- Developmental Biology; Scientific Pub. Ltd.
- 11. Epstein, R. J. (2003): Human Molecular Biology. Cambridge Univ. Press, Cambridge
- 12. Watson, J. D., T. A. Baker S. P. Bell, A Cann, M. Levine and R. Losick, (2004). Molecular Biology of Gene V Edition, Pearson Education RH Ltd. India.
- 13. Alberts, B, Johnson, J Lewis, M. Raff, K Roberts and P. Watter. (2014): Molecular Biology of the cell. 6th edition. Garland Science, New York.
- 14. Lodish, H., A. Berk, C.A Kaiser, M.P. Scott, A Bretscher, H. Ploegh, P. Matsudaira. (2016): 8th Edition, Molecular Cell Biology. W. H. Freeman and Co., N. Y.
- 15. Brachet, J. (1985) Molecular Cytology, Academic Press, N. Y.
- 16. Pollard, T. D. and W. C. Earnshaw. (2002): Cell Biology. Saunders
- 17. Daniel J. Fairbanks and W.R. Anderson: Genetics; Wadsworth Publ.
- 18. Elaine Johansen Mange and Arthur Mange: Basic Human Genetics; Indian Reprint; 1997; Rastogi Publ.
- 19. A.P. Jha: Genes and Evolution; MacMillon India.
- Star marked (*) topics should be considered as Class Assignment topics for Internal Assessment.

Course Title: Applied Zoology-I

Academic year 2021-22

COURSE OUTCOMES:

amarain

COURSE	DESCRIPTION
OUTCOME	Upon successful completion of this course, learners will be able to;
CO 1	Understand and comprehend the principle, working and applications of
	Microtomy, Microscopy and centrifugation.
CO 2	Compare and contrast between different types of microscopes and
	centrifuges.
CO 3	Develop skills with regards to computer applications like data analysis and
	SPSS in biostats and solve problems based on t test, z test, chi square test,
	ANOVA etc.
CO 4	Develop skills to write research papers and literature reviews.

RPSZOO104	Applied Zoology-I	Credits
		4
UNIT-I	Instrumentation- Microtomy, microscopy,	15
	centrifugation-I	Lectures
	 Microtomy: Tissue fixation, dehydration, clearing, infiltration, embedding for paraffin method, sectioning, mounting, staining- differential and specific. Cryopreservation Principles and applications of microscopy: Light microscopy, phase contrast microscopy, fluorescence microscopy, polarization microscopy, confocal scanning microscopy, transmission electron microscopy, specimen preparation for electron microscopy, scanning electron microscopy. Principles and applications of centrifugation: Basic principles of centrifugation, Low speed and high-speed centrifuges, ultracentrifuge, application of centrifugation-preparative techniques, analytical measurements; care of centrifuges and rotors 	016
UNIT -II	Biostatistics and computer application	15
	 Arithmetic mean, mode, median, range, variance, standard deviation and standard error, coefficient of variation. Testing of hypothesis: Statement for testing the hypothesis, statistical validation using student's "t" test, 'z' test, chi square test, simple and multiple correlation, regression analysis, ANOVA, Meaning of level of significance. Computer applications: MS word, EXCEL, Power point, SPSS uses. 	Lectures
Unit- III	Good Laboratory Practices and Research	15
	Methodology- I	Lectures
mar	 Bio safety Levels- I, II and III (DBT guidelines has to be included) Research methodology: Meaning of research; objective of research; motivation in research; types of research; research approaches; significance of research; research methods versus methodology; Research and scientific methods; Importance of knowing how research is done; Research process; Criteria for good research. Research problem and research design: Selecting research problem; necessity of defining a problem; techniques involved in defining the problem; meaning of research design; need for research design; important concepts related to research design; different research designs; basic 	

A.	 Determination of pKa of weak acid. Colorimeter: Selection of best filter. Colorimeter: Determination of unknown concentration of 	
A C	fixation, dehydration, infiltration, paraffin embedding and block preparation, sectioning, staining	
	2. Microtomy: Tissue preservation and	
	1. Identification of pictograms, symbols and signs of safety in laboratory practice.	
RSZOOP104	Practical Title Applied Zoology-I	Credits 2
		ļ
	• Patent databases - country-wise patent searches (USPTO, EPO, India); analysis and report formation.	
	• Concept of 'prior art': invention in context of "prior art".	
	few case studies.Introduction to history of GATT, WTO, WIPO and TRIPS.	
	 IP as a factor in R&D IPs of relevance to biotechnology and 	
	of new GMOs.International framework for the protection of IP.	
	trademarks, copyright & related rights, industrial design, traditional knowledge, geographical indications, protection	
	• Introduction to intellectual property; types of IP: patents,	Lectures
Unit- IV	Intellectual Property Rights	15
	Open source, bibliography management system.	
	• Preparation of index cards: Author index and subject index;	>
	• Reprints, Secondary storage devices, Internet, open access initiative, INFLIBNET, INSDOC. Google Scholar	OY.
	 Impact factor of journals, NCBI-Pub Med. Reprints, Secondary storage devices, Internet, open access 	
	research journals, review journals, e-journals.	.~ 0
	System).Journals: Indexing journals, H-index, abstracting journals,	
	Catalogue: Classification of books (Universal Decimal	
	• Library: Structure of a scientific library, journals, books, Digital library and E books	

- 6. Biostatistics problems- Z-Test. T-Test, Chi Square.
- 7. Determination of length-weight analysis in fishes.
- 8. Data analysis using MS Excel/ SPSS
- 9. Bio safety Cabinets pictures
- 10. Demonstration of free Plagiarism app/software.
- 11. Writing a Review Research Paper.

References

- 1. Biological Science; 3rd Ed. D.J.Taylor, N.P.O.Green, G.W.Stou, Cambridge Univ. Press
- 2. Cell and Molecular Biology- Concepts and Experiments, Gerald Karp. John Wiley & Co.
- 3. Introductory Practical Biochemistry; S.K.Swahney, Randhir Sing. Narosa Publ.
- 4. An Introduction to Practical Biochemistry; 3rd Ed. David Plummer. Tata McGraw Hill
- 5. Practical Research Planning and Design; 2nd Ed. Paul D. Leedy. Macmillan Publ.
- 6. Elementary Practical Organic Chemistry Part I: Small Scale Preparations. 2nd Ed. Arthur I. Vogel. CBS Publ. and Distributors.
- 7. Research Methodology. Methods and Techniques; C.R.Kothari. Wiley Eastern Ltd. Mumbai.
- 8. Biosafety and bioethics (2006) Rajmohan Joshi. Gyan Publishing House.
- 9. Biotechnology and Patent laws: patenting living beings (2008) Sreenivasulu, N.S. and Raju C.B. Manupatra Publishers
- 10. Complete Reference to Intellectual Property Rights Laws. (2007). Snow White Publication Oct. Craig, W., Tepfer, M., Degrassi, G., & Ripandelli, D. (2008).
- 11. An Overview of General divisions/csurv/geac/annex-5.pdf
- 12. Intellectual property law (2008) Lionel Bently, Brad Sherman. Oxford University Press.
- 13. International Union for the Protection of New Varieties of Plants. http://www.upov.int
- 14. Karen F. Greif and Jon F. Merz, Current Controversies in the Biological Sciences Case Studies of Policy Challenges from New Technologies, MIT Press
- 15. Kuhse, H. (2010). Bioethics: An Anthology. Malden, MA: Blackwell.
- 16. National Biodiversity Authority. http://www.nbaindia.org
- 17. Bailey, N.T.J., 1994. Statistical Methods in Biology-II Ed., Cambridge University Press
- 18. Samuel, M.L., 1991. Statistics for Life Sciences, Dellen Publishing Co, San Francisco.
- 19. Arthur M. Lesk, 2002. Introduction to Bioinformatics, Oxford University Press, New York
- 20. Satish Jain, O level made simple: information Technology, BPB publications
- 21. Modern Experimental Biochemistry; 3rd Ed. Rodney Boyer, Pearson Education.
- 22. Principles and Techniques of Practical Biochemistry. Wilson and Walker, Cambridge Univ. Press.
- Star marked (*) topics should be considered as Class Assignment topics for Internal Assessment.

Modality of Assessment

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr. No.	Evaluation type	Marks	0.
1.	Two Assignments/Case study/Project/Research paper review	20	
2.	One class Test (multiple choice objective question)		0

B) External Examination- 60%- 60 Marks

Semester End Theory Examination:

- 1. Duration These examinations shall be of **2hours 30 mins** duration.
- 2. Theory question paper pattern:

Paper Pattern:

Questions	Options	Marks	Questions on
Q.1	Any 1 out of 2	12	Unit- I
Q.2	Any 1 out of 2	12	Unit- II
Q.3	Any 1 out of 2	12	Unit- III
Q.4	Any 1 out of 2	12	Unit- IV
Q.5	3 short notes out of 5	12	All Units

Practical Examination Pattern:

C) External Examination: 50 Marks

Particulars	Marks
Journal	05
Experimental tasks/ Viva	45
Total	50

Overall Examination & Marks Distribution Pattern

Semester-1									
Course	rse RPSZOO101		RPSZOO102		RPSZOO103		RPSZOO104		Grand
									Total
	Internal	External	Internal	External	Internal	External	Internal	External	
Theory	40	60	40	60	40	60	40	60	400
Practical 50				50	5	50	4	50	200

External Examination- 60%- 60 Marks

Semester End Theory Examination: (Deviation from the usual modality) Owing to the pandemic situation prevailing in 2020 and continuing in 2021, the external examinations (Semester End) may be conducted online as per the instructions/circulars received from the University of Mumbai and Maharashtra State notifications from time to time. The conventional mode of external examination will commence again only after the declaration of normalcy by the Government authorities.

Paper Code	Unit	Торіс	Credits
		Animal Systematics and Ethology – II	
	Ι	Phylogeny, Systematics of non-chordates and assorted	
Paper I		topic-II	
RPSZOO201	II	Phylogeny of Protochordates, Agnatha and assorted	4
		topics- II	
	III	Phylogeny, Systematics of Chordates and Assorted	
		topics- II	
	IV	Animal behavior-II	
		Biochemistry and Metabolism- II	
	Ι	Biomolecules- a structural and functional approach-II	
	II	Enzymes and Enzyme kinetics	4
Paper II	III	Metabolic pathways and Integration of metabolism	
RPSZOO202	IV	Regulation of metabolism and inborn errors of	
		metabolism	
		Molecular Biology, Syndromes and Evolution	
	Ι	Molecular Biology- I	
Paper III	II	Molecular Biology- II	4
RPSZOO203	III	Genetic basis of syndromes and disorders	
	IV	Evolution-II	
		Applied Zoology-II	
	Ι	Instrumentation-Principles and application of	
		chromatography - II	4
Paper IV	II	Instrumentation-Principles and application of	
RPSZOO204		chromatography and Electrophoresis- III	
	III	Research Methodology-II	
	IV	Bioinformatics	
RPSZOOP201		Animal Systematics and Ethology – II	2
RPSZOOP202		Biochemistry and Metabolism- II	2
RPSZOOP203		Molecular Biology, Syndromes and Evolution	2
RPSZOOP204		Applied Zoology-II	2
Grand Total			24

Semester II Academic year 2021-2022

Batt

Course Title: Animal Systematics and Ethology- II

Academic year 2021-22

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	Upon successful completion of this course, learners will be able to;
CO 1	Enumerate& classify the characteristics of different non-chordates and
	chordates.
CO 2	Compare and contrast between phylogeny of different protochordates.
CO 3	Interrelate the working and different systems of non-chordates and link it
	with their evolutionary process.
CO 4	Understand and comprehend the broad concepts of animal behaviour and its
	applications in various fields of research.
CO 5	Correlate the different aspects of animal behaviour, social behaviour and
	learning or memory to evolutionary aspect.

Cantracture

RPSZOO201	Animal Systematics and Ethology – II	Credits
		4
UNIT-I	Phylogeny, Systematics of non-chordates and	15
	assorted topic-II	Lectures
	Platyhelminthes and Nemethelminthes	
	Acanthocephala	~ 0
	• Annelida	
	Sipunculoidea	
	Arthropoda	
	*Onychophora - Peripatus, A connecting link between	
	Annelida and Arthropoda.	
UNIT- II	Phylogeny of Protochordates, Agnatha and assorted	15
	topics- II	Lectures
	• Urochordates and its similarities with other subphyla.	
	• Cephalochordates and its similarities with other subphyla	
	• Vertebrate ancestry and origin of Vertebrates.	
	• *Changes leading to first vertebrates.	
	• Salient features and phylogeny of Ostracoderms.	
	Affinities of Cyclostomes-	
	i. resemblance with Cephalochordates	
	ii. differences from fishesiii. vertebrate characters specialized characters.	
	iii. vertebrate characters specialized characters.	
UNIT-III	Phylogeny, Systematics of Chordates and Assorted	15
	topics- II	Lectures
	• *Warm blooded reptiles. Archaeopteryx- a connecting link between Reptiles and Aves.	
•	• Salient features of class Aves and classification up to	
	subclass.	
	• Origin of flight (theory of cursorial & arboreal origin).	
	• *Birds as glorified reptiles.	
	• Egg laying mammals- connecting link between reptiles and	
	mammals.	
	• Classification of mammals up to orders.	
	• Dentition in mammals.	
	• Walking gait (Plantigrade, Digitigrade, and Unguligrade)	1

UNIT- IV	Animal behavior-II	15
	Development of behaviour:	Lectures
	Significance of animal behaviour, influence of environment,	
	hormones and genes. Cognition, neural control of	
	behaviour, adaptiveness of behaviour.	
	• Learning and memory:	
	*Innate behaviour (orientation, kineses, taxes, motivation,	$\sim O$
	tropism, reflex and nest building), learned behaviour	\sim
	(sensitization and habituation, associative learning,	
	imprinting, reasoning, trial-and-error, discrimination, biased	\mathbf{O}^{\prime}
	and language learning), neural mechanism of learning.	
	Memory- nature, types and anatomy of memory, and	
	memory storage.	
	• Evolution and Genetics of behaviour: *Genes and	
	behavioral evolution, Hamilton's rule, kin selection, cost	
	and benefits of sex and sexual selection, phylogeny of	
	behaviour, genetic control of behaviour (single and multiple	
	gene effect). Genetics of burrow shape in Oldfield mouse	
	and Deer mouse.	
	• Social behaviour: Types of social groups, advantages of	
	grouping, *origin and roots to sociality, social organization-	
	primates. Cost and benefits of sociality, and *evolution of eusocial behavior.	
	eusocial benaviol.	
	Practical Title	
RPSZOOP201	Animal Systematics and Ethology – II	Credits
		2
	1. Study of animal type*: <i>Periplanata americana:</i> Morphology,	
	digestive system, nervous system, reproductive system and life	
•	history. Mountings of- cornea, salivary glands, gonapophyses,	
	history. Mountings of- cornea, salivary glands, gonapophyses, spermatheca	
	history. Mountings of- cornea, salivary glands, gonapophyses, spermatheca2. Study of systematics and major features of:	
2	 history. Mountings of- cornea, salivary glands, gonapophyses, spermatheca 2. Study of systematics and major features of: Helminthes (Planaria, Liverfluke, Tapeworm, Ascaris, 	
S.S.	 history. Mountings of- cornea, salivary glands, gonapophyses, spermatheca 2. Study of systematics and major features of: Helminthes (Planaria, Liverfluke, Tapeworm, Ascaris, Trichinella) 	
ard	 history. Mountings of- cornea, salivary glands, gonapophyses, spermatheca 2. Study of systematics and major features of: Helminthes (Planaria, Liverfluke, Tapeworm, Ascaris, Trichinella) Annelida (Nereis, Earthworm, Leech). 	
narð	 history. Mountings of- cornea, salivary glands, gonapophyses, spermatheca 2. Study of systematics and major features of: Helminthes (Planaria, Liverfluke, Tapeworm, Ascaris, Trichinella) Annelida (Nereis, Earthworm, Leech). Sipunculoidea: (Sipunculus), 	
anara	 history. Mountings of- cornea, salivary glands, gonapophyses, spermatheca 2. Study of systematics and major features of: Helminthes (Planaria, Liverfluke, Tapeworm, Ascaris, Trichinella) Annelida (Nereis, Earthworm, Leech). Sipunculoidea: (Sipunculus), Arthropoda (Lobster, Balanus, Crab, Lepas, Scorpion, 	
mara	 history. Mountings of- cornea, salivary glands, gonapophyses, spermatheca 2. Study of systematics and major features of: Helminthes (Planaria, Liverfluke, Tapeworm, Ascaris, Trichinella) Annelida (Nereis, Earthworm, Leech). Sipunculoidea: (Sipunculus), Arthropoda (Lobster, Balanus, Crab, Lepas, Scorpion, Spider, Limulus, Centipede, Millipede, Beetle) 	
mara	 history. Mountings of- cornea, salivary glands, gonapophyses, spermatheca 2. Study of systematics and major features of: Helminthes (Planaria, Liverfluke, Tapeworm, Ascaris, Trichinella) Annelida (Nereis, Earthworm, Leech). Sipunculoidea: (Sipunculus), Arthropoda (Lobster, Balanus, Crab, Lepas, Scorpion, Spider, Limulus, Centipede, Millipede, Beetle) Urochordata (Simple Ascidian, Salpa/ Doliolum). 	
mara	 history. Mountings of- cornea, salivary glands, gonapophyses, spermatheca 2. Study of systematics and major features of: Helminthes (Planaria, Liverfluke, Tapeworm, Ascaris, Trichinella) Annelida (Nereis, Earthworm, Leech). Sipunculoidea: (Sipunculus), Arthropoda (Lobster, Balanus, Crab, Lepas, Scorpion, Spider, Limulus, Centipede, Millipede, Beetle) Urochordata (Simple Ascidian, Salpa/ Doliolum). Cephalochordata (Amphioxus). 	
mard	 history. Mountings of- cornea, salivary glands, gonapophyses, spermatheca 2. Study of systematics and major features of: Helminthes (Planaria, Liverfluke, Tapeworm, Ascaris, Trichinella) Annelida (Nereis, Earthworm, Leech). Sipunculoidea: (Sipunculus), Arthropoda (Lobster, Balanus, Crab, Lepas, Scorpion, Spider, Limulus, Centipede, Millipede, Beetle) Urochordata (Simple Ascidian, Salpa/ Doliolum). Cephalochordata (Amphioxus). Study of Larval forms: Larvae of Helminthes- Miracidium, 	
mara	 history. Mountings of- cornea, salivary glands, gonapophyses, spermatheca 2. Study of systematics and major features of: Helminthes (Planaria, Liverfluke, Tapeworm, Ascaris, Trichinella) Annelida (Nereis, Earthworm, Leech). Sipunculoidea: (Sipunculus), Arthropoda (Lobster, Balanus, Crab, Lepas, Scorpion, Spider, Limulus, Centipede, Millipede, Beetle) Urochordata (Simple Ascidian, Salpa/ Doliolum). Cephalochordata (Amphioxus). Study of Larval forms: Larvae of Helminthes- Miracidium, Sporocyst, Redia, Cercaria, Metacercaria; Trochophore, 	
mara	 history. Mountings of- cornea, salivary glands, gonapophyses, spermatheca 2. Study of systematics and major features of: Helminthes (Planaria, Liverfluke, Tapeworm, Ascaris, Trichinella) Annelida (Nereis, Earthworm, Leech). Sipunculoidea: (Sipunculus), Arthropoda (Lobster, Balanus, Crab, Lepas, Scorpion, Spider, Limulus, Centipede, Millipede, Beetle) Urochordata (Simple Ascidian, Salpa/ Doliolum). Cephalochordata (Amphioxus). Study of Larval forms: Larvae of Helminthes- Miracidium, 	

	6. To study the repellent activity of lemon extract against the cockroach (<i>Periplaneta americana</i>).
	References:
1.	K.V. Kardong, Vertebrate comparative anatomy, Function, Evolution, 3rd Ed. Tata McGraw
	Hill Publication.
2.	F.H.Pough, C.M.Janis, J.B.Heiser: Vertebrate Life: 6th Ed. Pearson Education.
3.	K.F.Liem, W.E.Bemis, W, F.Walker, L. Grande : Functional Anatomy of Vertebrates. An
	evolutionary perspective. 3rd Ed. Harcourt College Publishers.
	J.Z. Young: The Life of Vertebrates, ELBS-Oxford Univ. Press.
	T.J. Parkar and W.A.Haswell, McMillan: A Text Book of Zoology.
	E.L.Jordan and P.S.Verma, S. Chand & Company: Chordate Zoology.
	J.A.Pechenik: Biology of Invertebrates; 4th Ed, Tata McGraw Hill Publication.
	Milton Hildebrand Wiley: International Analysis of Vertebrate Structure.
	Russell, W.D. Hunter, McMillan: Life of Invertebrates.
	Bares, R.D: Invertebrate Zoology, Saunders Publication.
	Barrington, E J W, (1976): Structure and Functions of Invertebrates.
	Hyman, L.H: The invertebrates (all volumes), McGraw Hill, Philadelphia, USA
	Huston, AM: Biological Diversity, Cambridge University Press, Cambridge
	Kapoor V.C: Theory and Practice of Animal Taxonomy, Oxford and IBH Publ., Delhi
	McNeely, JA: Economics and Biological Diversity, IUCN, Gland, Switzerland
	Miller,S.A. and Harley,J.P. (2005) : Zoology. 6th Ed. McGraw Hill Higher Education,
	Boston, Toronto, Sydney Prasad S.N: Life of Invertebrates, Vikas Publ. New Delhi
	Sinha, A.K, Adhikari S and Ganguly BB: Biology of Animals (vol. I & II), Central Book
	Agency, Kolkata
	Young, J.Z: Life of Vertebrates, Clarendon Press, Oxford.
	Alcock, J. (2001): Animal Behaviour, an Evolutionary Approach. Sinauer associates, INC.
	Sunderland, Massachusetts. USA
21.	Bernard, C. (2004): Animal Behaviour, Mechanism, Development function and evolution.
	Pearson and Prentice Hall Publication. New York
22.	Dunlap, J. C., Loros J. J. and Decoursey P. J. (2004): Chronobiology Biological
	Timekeeping. Sinuaer Associates, Inc. publishers, Sunderland, Massachusetts, USA
23.	Goodenough, J.E., Mc Guire, B. and Wallace, R. A. (1993): Perspectives on Animal
	Behaviour. John Wiley and Sons, New York.
	Mandal, F. B. (2010): Textbook of Animal Behaviour. PHI Learning Private Limited, Estern
	Economy Edition. New Delhi -110001
25.	Manning, A. and Dawkins M.S. (1997): Introduction to Animal Behaviour, 5th edition,
	Cambridge University Press. UK.
	Scott, G. (2005): Essential Animal Behaviour. Black Well Publishing, University of Hull,
/	UK.
27.	Stumpter, T. J. D. (2010): Collective Animal Behaviour; Princeton University Press. Oxford

• Star marked (*) topics should be considered as Class Assignment topics for Internal Assessment.

Course Title: Biochemistry and Metabolism- II

Academic year 2021-22

COURSE OUTCOMES:

annalli

COURSE	DESCRIPTION
OUTCOME	Upon successful completion of this course, learners will be able to;
CO 1	Understand and analyse the classification, structures, and functions of
	Proteins and enzymes.
CO 2	Enumerate and understand the concept of enzyme kinetics.
CO 3	Compare and contrast between competitive, non-competitive, and
	uncompetitive mechanism of enzyme kinetics and correlate it with Vmax and
	Km.
CO 4	Compare and contrast between different metabolic pathways and understand
	its significance.
CO 5	Analyse and understand the different inborn errors of metabolism.

RPSZOO202	Biochemistry and Metabolism- II	Credits
		4
UNIT –I	Biomolecules- a structural and functional approach-	15
		Lectures
	Proteins as polymers of amino acids A mino acids	
	Amino acids: structure, classification based on structure, polarity, nutritional requirement and metabolic fate;	$\langle \langle \langle \langle \rangle \rangle \rangle$
	properties of amino acids; derivatives of amino acids, non-	
	transcribed amino acids as protein constituents, D-amino	
	acids.	
	Organization of protein structure:	
	Primary structure and peptide bond, secondary, tertiary and	
	quaternary structure; conjugate proteins- haemoglobin,	
	cytochromes, myoglobin; bonds involved in protein	
	organization.	
	• Properties of proteins: classification, denaturation and	
	protein folding.	
	Biological functions of proteins. Biologically important particles: alutathions, and does norticles:	
	peptides: glutathione, octa-, nona-, and deca-peptides.	
	Ramachandran plot.	
UNIT – II	Enzymes and Enzyme kinetics	15
	• Enzyme kinetics:	Lectures
	i. Mechanism of enzyme catalysis.	
	ii. enzyme activation and inhibition.	
	iii. factors affecting enzyme activity.	
	iv. Michaelis Menton equation.	
	v. Lineweaver-Burk plot.	
	vi. significance of Vmax and Km (including non-	
•	competitive, Uncompetitive and competitive inhibitions);	
	• Regulatory enzymes: covalently modulated, allosteric	
~ ~ ~	regulation, Isoenzymes (LDH, CK, ALP, ADH)	
	• Non-protein enzymes- Ribozymes, Ribonucleas & Peptidyl transferase.	
UNIT – III	Metabolic pathways and Integration of metabolism	15
	• Protein Metabolism: Metabolism of amino acids: Amino	Lectures
F	acid pool, transamination; oxidative and non- oxidative	

UNIT -IV	 deamination; metabolism of branched chain amino acids; fate of carbon skeleton of amino acids. Metabolism of ammonia: Urea cycle. Metabolism of nucleic acids: Synthesis of ribo nucleotides- a brief idea of <i>de novo</i> pathway and salvation pathway. Conversion of ribo nucleotides to deoxyribo nucleotides. Degradation of Metabolism, Energy demand and supply. Integration of Metabolism, Energy demand and supply. Integration of major metabolic pathways of energy metabolism; Intermediary metabolism; Organ specialization and metabolic integration. Metabolism in starvation <i>Regulation of metabolism and inborn errors of</i> <i>metabolism</i> Carbohydrate metabolism: Glycogen storage disease, G-6- PD deficiency Lipid metabolism: Metabolic disorders of cerebrosides. Protein metabolism: PKU, Albinism, Cysteinurea Purine metabolism: Primary Gout Mineral metabolism and diseases: Hypocalcimia, Hypercalcimia, Osteoporosis Teratology Teratogens and their effects Sensitive period of teratogen *Specificity of teratogen ty Thalidomide syndrome *Teratocarcinoma and Teratoma Environmental teratogens 	15 Lectures	
RPSZOOP202	vii. Evaluation of teratogenicity of chemicals Practical Title Biochemistry and Metabolism- II	Credits 2	
Ranna	 Determination of total cholesterol and HDL cholesterol from serum. Colorimetric estimation of protein by Peterson-Lowry method Detection of conformation of BSA by viscosity measurement and effect of varying concentration of urea on viscosity of BSA Determination of creatinine in serum. Determination of urea in serum. SDH specific activity Enzyme kinetics - pH variation & Temperature-fungal amylase. 		

8.	SDS PAGE of milk protein or blood plasma.	

References:

- 1. U. Satyanarayan: Biochemistry- 2nd Ed. 2002, Books and Allied Publ.
- 2. S.C. Rastogi: Biochemistry- 2nd Ed., Tata McGraw Hill.
- 3. J.I.Jain, S. Chand and Co. Publ : Fundamentals of Biochemistry- 3rd Ed. 1988.
- 4. Lehninger, A. L., Nelson, D. L. and Cox, M. M., 2nd Edn.: Principles of Biochemistry, CBS Publishers and Distributors, New Delhi.
- 5. Conn, E. E., Stumpt, P. K., Bruencing, G. and Dol, R. G. (1995): Outlines of Biochemistry. John Wiley, Singapore.
- 6. Murray, RK.Garner, D.K., Mayes P.A. and Rodwell, V.W. (2003): Harper's Illustrated Biochemistry, 26th Edn. Lange Medical Books, McGraw Hill, New York.
- 7. <u>www.enzymesIndia.com</u>
- Star marked (*) topics should be considered as Class Assignment topics for Internal Assessment.

Course Title: Molecular Biology, Syndromes and Evolution

Academic year 2021-22

COURSE OUTCOMES:

Malar

COURSE	DESCRIPTION
OUTCOME	Upon successful completion of this course, learners will be able to;
CO 1	Understand and comprehend the concepts of DNA replication, DNA repair and protein synthesis.
CO 2	Correlate the concept of genetic disorders and chromosomal variations.
CO 3	Understand and analyse the concepts of allelic frequencies, natural selection and heterosis.
CO 4	Apply the principle of genetics to calculate gene frequencies and allelic frequencies.

RPSZOO203	Molecular Biology, Syndromes and Evolution	Credits
		4
UNIT –I	Molecular Biology- I	15
	• DNA replication, repair and recombination- Unit of	Lectures
	replication, enzymes involved, replication origin and	
	replication fork, fidelity of replication, extra chromosomal	~ 0
	replicons, DNA damage and repair mechanisms,	\sim
	homologous and site-specific recombination.Ribosome- formation of initiation complex, initiation factors	
	and their regulation	\mathbf{S}
UNIT –II		15
UNII –11	Molecular Biology- II	
	• RNA synthesis and processing- transcription factors and	Lectures
	machinery, formation of initiation complex transcription activator and repressor, RNA polymerases, capping,	
	elongation, and termination, RNA processing, RNA editing,	
	splicing, and polyadenylation, structure and function of	
	different types of RNA, RNA transport	
	• Protein synthesis and processing- Ribosome, Formation of	
	initiation complex, Initiation factors & their regulation,	
	elongation and elongation factors, termination, genetic code,	
	Aminoacylation of tRNA, t-RNA identity, Aminoacyl of tRNA synthetase, Translational proof reading	
	 Post translational modifications. 	
UNIT –III	Genetic basis of syndromes and disorders	15
		Lectures
	 Autosomal dominant -Huntington diaease Autosomal recessive -Cystic fibrosis 	
	 Genetic disorders of Haemopoietic systems - Sickle cell 	
	anemia	
*	• X linked disorders- Genetic disorders of eye colour	
	blindness.	
AC (Muscle genetic disorders (Duchenne Muscular Dystrophy,	
	Myasthenia gravis)	
	Genome imprinting syndromes (Prader-Willi & Angelman	
	syndromes	
	 *Chromosomal disorders -aneuploidy, structural variations *Mitochondrial disorders 	
Y	 *Mitochondrial disorders *Multifactorial disorders – diabetes (detailed study), Obesity 	
	 Polygeneic congenital heart diseases 	
	*Cognitive disabilities- Schizophrenia	

	Evolution-II	15
	Additive gene action and continuous variation	Lectures
	• Heterosis and inbreeding depression: measuring inbreeding,	
	the effects of inbreeding.	
	• Processes that change allelic frequencies:	
	mutation, migration, natural selection, directional selection,	
	stabilizing and disruptive selection, heterozygote advantage,	
	balance between selection and mutation; genetic drift- random	
	genetic drift.Environmental variation: causes of environmental variation;	
	genotype by environmental interaction.	
	 Broad sense heritability: 	
	i. Effect of dominance, epistasis and environmental	
	variations on selection.	
	ii. Quantitative trait loci and DNA markers.	
	iii. Realized heritability.	
	Limits on natural selection	
	Concepts of evolutionary ecology	
	Practical Title	Credits
RPSZOOP203	Molecular Biology and Genetics–II	2
	inforceation Diology and Schedes II	
	1. Quantitative estimation of DNA in a suitable tissue-	
	comparative study- by diphenyl amine method.	
	2. Quantitative estimation of RNA in a suitable tissue-	
	comparative study by orcinol method.	
	3. Extraction of Genomic DNA from <i>Drosophila</i> .	
	4. Temporary preparation of buccal smear to study sex	
•	chromatin in human.	
	chromatin in human.5. Squash preparation from mutagen treated onion root tips for	
	chromatin in human.5. Squash preparation from mutagen treated onion root tips for study of aberrations.	
	chromatin in human.5. Squash preparation from mutagen treated onion root tips for study of aberrations.6. Pedigree analysis	
ard	chromatin in human.5. Squash preparation from mutagen treated onion root tips for study of aberrations.	
ard	 chromatin in human. 5. Squash preparation from mutagen treated onion root tips for study of aberrations. 6. Pedigree analysis 7. Analysis of proteins by two-dimensional gel electrophoresis. 	
nar	 chromatin in human. 5. Squash preparation from mutagen treated onion root tips for study of aberrations. 6. Pedigree analysis 7. Analysis of proteins by two-dimensional gel electrophoresis. (Demonstration) 8. Preparation of LB agar plate, slant and butt method. 	
nar	 chromatin in human. 5. Squash preparation from mutagen treated onion root tips for study of aberrations. 6. Pedigree analysis 7. Analysis of proteins by two-dimensional gel electrophoresis. (Demonstration) 	

- 2. Elaine Johansen Mange and Arthur Mange: Basic Human Genetics; Indian Reprint; 1997; Rastogi Publ.
- 3. A.P. Jha: Genes and Evolution; MacMillon India
- 4. William S. Kluge: Concepts of Genetics; M.R.Cummings, Pearson Edu

- 5. F Scott. Gilbert, Sinauer Associates Inc: Developmental Biology.
- 6. T. Subramanian: Developmental Biology; Narosa Publ.
- 7. Philip Grant: Biology of Developing System; Holt Saunders International Ed.
- 8. M. W. Strikberger: Evolution; CBS Publ.
- 9. Sumitra Sen and Dipak Kumar Kar: Cytology and Genetics; Narosa Publ.
- 10. R.M. Twyman, Bios: Instant Notes- Developmental Biology; Scientific Pub. Ltd.
- 11. Epstein, R. J. (2003): Human Molecular Biology. Cambridge Univ. Press, Cambridge
- 12. Watson, J. D., T. A. Baker S. P. Bell, A Cann, M. Levine and R. Losick, (2004). Molecular Biology of Gene V Edition, Pearson Education RH Ltd. India.
- 13. Alberts, B, Johnson, J Lewis, M. Raff, K Roberts and P. Watter. (2014): Molecular Biology of the cell. 6th edition. Garland Science, New York.
- 14. Lodish, H., A. Berk, C.A Kaiser, M.P. Scott, A Bretscher, H. Ploegh, P. Matsudaira. (2016): 8th Edition, Molecular Cell Biology. W. H. Freeman and Co., N. Y.
- 15. Brachet, J. (1985) Molecular Cytology, Academic Press, N. Y.
- 16. Pollard, T. D. and W. C. Earnshaw. (2002): Cell Biology. Saunders
- 17. Daniel J. Fairbanks and W.R. Anderson: Genetics; Wadsworth Publ.
- 18. Elaine Johansen Mange and Arthur Mange: Basic Human Genetics; Indian Reprint; 1997; Rastogi Publ.
- 19. A.P. Jha: Genes and Evolution; MacMillon India.
 - Star marked (*) topics should be considered as Class Assignment topics for Internal Assessment.

Course Title: Applied Zoology- II

Academic year 2021-22

COURSE OUTCOMES:

annarah

COURSE	DESCRIPTION
OUTCOME	Upon successful completion of this course, learners will be able to;
CO 1	Understand and comprehend the principle, working and applications of
	Chromatography and electrophoresis techniques.
CO 2	Recognise the resources for accessing research papers and develop the skill
	of writing review articles.
CO 3	Evaluate and understand broad concepts of bioinformatics.
CO 4	Demonstrate efficacy studies in the experimental techniques for any
	biological project.
CO 5	Understand the ethical aspects of research.

RPSZOO204	Applied Zoology-II	Credits
TINIT		4
UNIT –I	Instrumentation-Principles and application of	15
	chromatography - II	Lectures
	• Planar chromatography (Paper and Thin layer): Preparation	~ 0
	of stationary support, solvent, detection and measurement	\sim
	of components, applications.	
	Column chromatography: Packing and operation of	
	column, loading the column, eluting the column, collection	
	of elluent, detection of elluent, application.	
	• Ion exchange chromatography: Ion exchange resins,	
	selection of ion-exchanger, choice of buffers, preparation	
	and use of ion-exchangers, storage of resins.Gel chromatography: Theory of gel filtration; physical	
	• Ger chromatography. Theory of ger initiation, physical characteristics of gel chromatography, chemical properties	
	of gel, selection of gel, gel preparation and storage,	
	operation of gel column, application	
	• Affinity chromatography: Chromatography media,	
	immobilized ligands, attachment of ligands to the matrix,	
	experimental procedures and application.	
	• Gas chromatography (GC): Instrumentation, selection of	
	operating conditions, analysis of data and application.	
	• HPLC	
	• HPTLC	
UNIT –II	Instrumentation-Principles and application of	15
	Electrophoresis- III	Lectures
	• Electrophoresis	
	• Theory of electrophoresis	
	 Horizontal agarose gel electrophoresis 	
	Vertical polyacrylamide gel electrophoresis	
~ · · ·	 Pulse field electrophoresis 	
\wedge	Capillary electrophoresis	
	 Isoelectric focusing of proteins 	
	Two-dimensional electrophoresis	
	t t	
		1

UNIT –III	Good Laboratory Practices and Research	15
	Methodology- II	Lectures
	 Interpretation and report writing: Meaning of interpretation; technique of interpretation; precautions in interpretation; significance of report writing, layout of research report; types of reports; Presentation of research work- oral, poster and writing research paper; Precautions for writing research report. Review of related literature: Understanding the role of review; how to begin a search for related literature- Library reference, recording and indexing, classification of references; downloading the information through internet; requests for reprints through e-mail and post; classification and filing of reprints. Writing research proposal: Characteristics of a proposal; content and organization of a proposal; weakness in 	
	proposal seeking funding.	
UNIT –IV	Bioinformatics	15
	 Specialized databases: EST, GSS, KEGG, OMIM Conserved regions in nucleotide and protein sequences Gene finding and motif finding. System biology and Bioinformatics, Biological pathway analysis System biology database and tools: Reactome, Pathway commons Bioinformatics and functional genomics and proteomics Introduction to Protein and DNA microarray Data analysis in Microarray using bioinformatics. GEO database: functional genomics data repository Bioinformatics and structural proteomics- Visualization and comparison of protein structure; Prediction of Secondary and tertiary structure of protein. 	Lectures
RPSZOOP204	Practical Title	Credits
	Applied Zoology-II	2
	 Identification of lipids in a given sample by TLC. Separation of pigments from leaves or flowers by adsorption Column chromatography. 	

References:

- 1. Modern Experimental Biochemistry; 3rd Ed. Rodney Boyer, Pearson Education.
- 2. Principles and Techniques of Practical Biochemistry. Wilson and Walker, Cambridge Univ. Press.
- 3. Biological Science; 3rd Ed. D.J.Taylor, N.P.O.Green, G.W.Stou, Cambridge Univ. Press
- 4. Cell and Molecular Biology- Concepts and Experiments, Gerald Karp. John Wiley & Co.
- 5. Introductory Practical Biochemistry; S.K.Swahney, Randhir Sing. Narosa Publ.
- 6. An Introduction to Practical Biochemistry; 3rd Ed. David Plummer. Tata McGraw Hill
- 7. Practical Research Planning and Design; 2nd Ed. Paul D. Leedy. Macmillan Publ.
- 8. Elementary Practical Organic Chemistry Part I: Small Scale Preparations. 2nd Ed. Arthur I. Vogel. CBS Publ. and Distributors.
- 9. Research Methodology. Methods and Techniques; C.R.Kothari. Wiley Eastern Ltd. Mumbai.
- 10. Bioinformatics: concepts skills and applications (2004). S.C. Rastogi, N. Mendiratta and P. Rastogi.
- 11. Bioinformatics: A modern approach. (2005) V.R. Srinivas.
- 12. Essential Bioinformatics (2006). J. Xiong.
- 13. Statistical methods in Bioinformatics: An introduction. (2005). W. Even and G. Grant
- 14. Bioinformatics: A Practical Approach 2007 Shui Qing (Chapman & Hall/CRC Mathematical and Computational Biology)
- Star marked (*) topics should be considered as Class Assignment topics for Internal Assessment.

Modality of Assessment

Theory Examination Pattern:

B) Internal Assessment- 40%- 40 Marks

\mathbf{D}		
Sr. No.	Evaluation type	Marks
1.	Two Assignments/Case study/Project/Research paper review	20
2.	One class Test (multiple choice objective question)	····· 0

B) External Examination- 60%- 60 Marks Semester End Theory Examination:

- 1. Duration These examinations shall be of **2hours 30 mins** duration.
- 2. Theory question paper pattern:

Paper Pattern:

Questions	Options	Marks	Questions on
Q.1	Any 1 out of 2	12	Unit- I
Q.2	Any 1 out of 2	12	Unit- II
Q.3	Any 1 out of 2	12	Unit- III
Q.4	Any 1 out of 2	12	Unit- IV
Q.5	3 short notes out of 5	12	All Units

Practical Examination Pattern:

D) External Examination: 50 Marks

Particulars	Marks
Journal	05
Experimental tasks/ Viva	45
Total	50

Overall Examination & Marks Distribution Pattern

Semester-II

Course	RPSZOO20 1		RPSZOO20 2		RPSZOO203		RPSZOO204		Grand Total
	Internal	Externa 1	Internal	Externa 1	Interna l	Externa 1	Internal	Extern al	
Theory	40	60	40	60	40	60	40	60	400
Practical	50		5	0	5	50	50		200

External Examination- 60%- 60 Marks

Semester End Theory Examination: (Deviation from the usual modality)

Owing to the pandemic situation prevailing in 2020 and continuing in 2021, the external examinations

(Semester End) may be conducted online as per the instructions/circulars received from the University of Mumbai and Maharashtra State notifications from time to time. The conventional mode of external

examination will commence again only after the declaration of normalcy by the Government authorities.

Semester-III Academic year 2021-2022

	Unit	Торіс	Credits
		Life Processes -I	
	Ι	Nutritive System	
	II	Physiology of Respiration	
RPSZOPP301	III	Circulation and fluid mechanics	4
	IV	Neurophysiology	
		Immunology and Cancer Biology	V
	Ι	Immunology-I	
	II	Immunology-II	4
RPSZOPP302	III	Cancer Cell Biology	
	IV	Vaccines	
		Reproduction Biology	
	Ι	Male reproductive physiology	
	II	Female Reproductive Physiology	4
RPSZOPP303	III	Assisted Reproductive Technique-I	
	IV	Assisted Reproductive Technique-II	
	Ι	XV	
RPSZOPP304	II		4
	III	INTERNSHIP/PROJECT WORK	
	IV		
		Practical	
RPSZOPP301		Life Processes -I	2
RPSZOPP302		Immunology and Cancer Biology	2
RPSZOPP303	4	INTERNSHIP/PROJECT WORK	2
RPSZOPP304			2
Grand Total		Y	24

Course Title: Life Processes-I

Academic year 2021-22

COURSE OUTCOMES:

	COURSE	DESCRIPTION
	OUTCOME	Upon successful completion of this course, learners will be able to;
	CO 1	Understand the nutritive system food processing, nutritive types and
		significance of Probiotics in therapeutic nutrition.
	CO 2	Discern chemistry of respiration, comparative study of respiratory system in
		vertebrates and to study the role of medulla in respiration process.
	CO 3	Understand about Rheology, comparative account of circulation in vertebrates
		and gaining knowledge about the common circulatory disorders in human.
	CO 4	Comprehend structural, functional dimensions of neurophysiology, physiology
		of addiction and Neurophysiological disorders.
	CO 5	Gain hands on experience operate the sphygmomanometer and apply their
		knowledge of blood pressure monitoring during various physiological
		conditions.
R		

RPSZOP301	Title: Life Processes-I	Credits 4
UNIT- I	Nutritive System	15
	-	Lectures
	• Filter feeding - Pisces, Flamingoes	(
	• *Reptiles (Jacobson's organ)	
	• Specialized compartmentalization of digestive system in	
	vertebrates-	
	i. Intestinal modification in herbivore and carnivore	
	ii. Intestine in fish, bird and mammal	
	Comparative study of mechanical or physiological digestion aill release Dentifiers in Pieces Arenthibians Dentifiers	
	– gill rakers, Dentition in Pisces, Amphibians, Reptiles,	
	Birds and Mammals(human)	
	• Absorptive adaptation of the Gut.	
	• *Micro-biome of human gut and its significance.	
	Metabolic transition between meals.	
	• *Probiotics and their role in therapeutic nutrition.	
UNIT- II	Physiology of Respiration	15
	• Comparative study of Respiratory system in vertebrates:	Lectures
	i. Aquatic, terrestrial, gas exchange in terrestrial eggs	
	ii. *Reparative adaptations in African lungfish	
	Chemistry of respiration	
	i. Composition of atmospheric and expired air	
	ii. Aerodynamic Sub-division of air in the lungs	
	iii. Regulation of lung breathing.	
	iv. Transport of gases in the blood	
	v. Diffusion of gases in the lungs	
	vi. Transport of CO2 in the blood	
	vii. Haldane effect- Partial pressure of gases	
	*Dissociation of Oxyhaemoglobin and factors affecting it	
	(temperature, electrolytes, CO2 & Carboxyhaemoglobin)	
	• *Bohr's effect	
	• *Role of medulla oblongata in respiration	
	i. Chemoreceptor	
	ii. Mechanoreceptor and Ventilation reflexes	
	iii. Oxygen equilibrium curve and its significance	
$\mathcal{A}\mathcal{Y}$	Manifestation of variation in hemoglobin saturation	
V	i. Oxygen toxicity	
	ii. *Carbon monoxide poisoning	
-	iii. Reparative distress during Fire hazards.	
UNIT- III	Circulation and fluid mechanics	15
	Rheology:	Lectures
	- INICOLOGY.	1

	 ii. Hagen flow formula iii. Laminar and turbulent flow Resistance iv. Pressure, velocity and gravity Comparative account of Circulation in Vertebrates Lung fish Amphibians Reptiles Reptiles Bird v. Special reference to Aortic arches, hepatic portal and renal portal circulations. *Introduction to Human circulatory system Heart structure, working and major blood vessels Cardiac cycle Stroke volume SV Cardiac output CO ECG Sphygmomanometer *The buffer system of the blood Haemoglobin buffer The Chloride shift Selective distribution of blood flow Circulatory disorders in humans – Varicose veins, PAD, *tachycardia, *bradycardia and Thrombosis Physiology of therapeutic control of blood pressure. Beta blockers ACE inhibitors	
UNIT: IV	iii. Calcium channel blockers Neurophysiology	15
	 Excitable membranes- Membrane potential, Ions as current carriers (Protons, Calcium, Potassium) Structure of Cation - Permeable channels, Chloride channels Primitive nervous system Quorum sensing in prokaryotes *Irritability in Paramecium Nerve nets Ladder like nervous system of Platyhelminthes Gangliolated nervous system of Annelida and Arthropods *Nervous tissue- Neurons, Glial cells and its type. Integrative neurophysiology: Interneuron's, Neural circuits *Neurotransmitters Excitatory Inhibitory 	Lectures

	 Neurophysiological disorders Alzheimer Parkinson Dementia Physiology of addiction. Alcohol addiction Addiction to psychotic drugs (Cocaine, Opioids, Ecstasy) 	110
RPSZOPP301	Practical Title Life Processes- I	Credits 2
	 Determination of activities of digestive enzymes viz. Amylase, Pepsin, Trypsin in suitable animals (e.g. prawn/ crab/ cockroach/ chicken, etc.) LDH isoenzymes isolation and detection using agarose gel electrophoresis in heart /skeletal muscle of any suitable animal (e.g., Chicken heart) Detection and measuring of heart beats (Manually) in Daphnia. Effect alpha blocker/ beta blockers on heart rate of 48 hours of chick. Effect of xenobiotics on digestive enzyme activity of any suitable animal (cockroach). Study of nerve cells and neurosecretory cells of cockroach. Study of irritability in <i>Paramaecium</i>. Problems related to Cardiac output. Hands on training sphygmomanometer and recording the pulse rate of the patient. (Compare supine, walking, sleeping and 5 mins jogging variations in BP) 	

Reference:

- 1. Biology of Animals --- Cleveland P. Hickman JR Larryds. Roberts
- 2. Darnell, Loddish, Baltimore: "Molecular Cell Biology" Scientific American Books.
- **3.** C. A. Keil, E. Neil & E.N. Joeb (1982): "Samson Wright, Applied Physiology" Oxford Univ. \ Press.
- 4. R. Eckert& D. Randall (1982): "Animal Physiology: 2nd Ed." W. H. Freeman & Co.
- 5. W. A. Hoar (1982): "General & Comparative Animal Physiology 3rd Ed." Prentice Hall Inc.
- 6. C. L. Prosser (1973): "Comparative Animal Physiology" W. B. Saunders.
- 7. C. Ladd Prosser Ed. (1991): "Neural & Integrative Animal Physiology" "Comparative Animal Physiology", 4th Ed. Wileg Liss Publ.
- **8.** C. Ladd Prosser Ed. (1991): "Environmental & Metabolic Animal Physiology" "Comparative Animal Physiology" 4th Ed. Wileg Liss Publ.
- 9. Withers, P.C. (1983): "Comparative Animal Physiology" International Ed. Saunders College

Publishing.

- **10.** K. Schmidt Niel (1983): "Animal Physiology: Adaptation & Environmental" 3rd Ed. Cambridge Univ. Press.
- **11.** R. W. Hill (1978): "Comparative Physiology of Animals An Environmental Approach" Harper & Row Publ.
- 12. Harold Harper: "Review of Physiology Chemistry" 4th Ed. Maruzen Asian Ed. Lang Medical Publ
- 13. OECD guideline for testing of chemicals https://www.oecd-ilibrary.org/environment/testno-425-acute-oral-toxicity-up-and-down-procedure_9789264071049-en
- 14. Animal Physiology ----- Samson & Writy
- 15. Animal Physiology ----- Nelsion & Nelsion
- 16. Animal Physiology ----- Medical Physiology-Guiton
- 17. Textbook of Animal Physiology ----- Nagbhushenen
- **18.** Textbook of Animal Physiology ----- Geise
- 19. Textbook of Animal Physiology ----- A.K. Berry
- **20.** Textbook of Endocrine Physiology -----James E. Griffin and Sergio R. Ojeda, Oxford University
- 21. Handbook of Neuroendocrinology --- Mandal A. (1994). EMKY Publication
- 22. Wilson and Walker Principles and Techniques of Practical Biochemistry. Cambridge Univ.Press
- Star marked (*) topics should be considered as Class Assignment topics for Internal Assessment.

Course Title: Immunology and Cancer Biology

Academic year 2021-22

COURSE OUTCOMES:

amaral

COURSE	DESCRIPTION
OUTCOME	Upon successful completion of this course, learners will be able to;
CO 1	Understand the immune response in human systems.
CO 2	Comprehend about the camel nanobodies and its significance in human
	healthcare.
CO 3	Understanding the monoclonal antibodies and its role in hybridoma technology
	and therapeutics.
CO 4	Explore various factors involved in development of Cancer.
CO 5	Compare and contrast between different types of vaccines and its application in
	human health care with special reference to various COVID-19 vaccines.

RPSZOP302	Title: Immunology and Cancer Biology	Credits 4
UNIT: I	Immunology-I	4 15
	*Overview of the immune systems	Lectures
	i. Components of the immune system,	$\sim C$
	ii. Principles of innate (non-specific) and	
	adaptive(acquired) immunity,	
	iii. Antigen and immunogenicity,	
	iv. Clonal selection theory.	
	v. Antibodies (vertebrates & invertebrates)	
	 Antigen recognition by immune cells: i. Innate Immunity- Pattern recognition in the innate 	
	immune system,	
	ii. TLRs and their role in innate immune response	
	iii. Adaptive immunity-Antibody structure	
	iv. Antigen recognition by B lymphocytes	
	v. Molecular mechanism behind BCR formation	
	vi. B lymphocyte development and survival.	
	• Structure and function of MHC complex:	
	i. Antigen processing cells,ii. Antigen processing and presentation to T	
	lymphocytes,	
	iii. MHC restriction.	
	• Camel nanobodies (Mini- antibodies) and their significance	
	in human healthcare	
	Monoclonal antibodies: Hybridoma technology, Commercial meduation, Clinical annliastions (avertion), Therementia	
	production, Clinical applications (overview), Therapeutic MABs, (e.g., Tacilizumab, Basiliximab, blinatumomab).	
	MADS, (e.g., Tacinzuniao, Dasinxiniao, ofinatumoniao).	
UNIT: II	Immunology-II	15
	• TCR structure and function:	Lectures
	i. T-cell receptor gene rearrangement.	
	ii. T-lymphocyte development and survival.	
	iii. Antigen recognition by T-cells,	
	iv. signalling through TCR and T-cell activation,v. co- receptors and their role in T –cell functioning.	
	vi. Co-stimulation.	
	 Effector mechanisms and regulation of immune responses: 	
Y	i. Induced innate response to infection,	
	ii. *Innate memory,	
	iii. *Complement system,	
	iv. *NK and NKT cell functions,	
	v. *Humoral immune response,	
	vi. Production of effector T- cells,	

	 vii. Cytotoxic T- cell effector mechanisms viii. *Interferons, cytokines, chemokines in immune response ix. Cytokine storm *Immunity in health and disease: Allergy and hypersensitivity, Autoimmunity, Immunodeficiency diseases, Immunity and Infection, Tumour-immunology, Transplantation. 	1000
UNIT: III	Cancer Cell Biology	15
	 Extracellular control of cell division Cell growth and apoptosis Morphological and biochemical features of apoptosis Necroptosis Caspases (effector molecules) Executioners of the apoptosis process Extrinsic and intrinsic apoptotic pathway Cell death effectors released from mitochondria. Poly – ADP –ribose Polymerase (PARP) proteolysis as an indicator of cell death Senescence and cancer Chemoresistance and cancer Immunogenicity of cancer cell death Autophagy and Role of autophagy in tumor survival, oncogenic genes that regulate Autophagy. Cancer diagnosis &treatment using antibodies radiolabeled MABs, Immunotherapy for cancer management. 	Lectures
UNIT: IV	Vaccines	15
	 Sub-unit Vaccine- Herpes simplex, Bovine foot &mouth disease virus Peptide vaccines-synthetic drugs (engineered proteins) Genetic immunization-DNA vaccines, Antisense DNA, Therapeutic ribozymes Live recombinant vaccines *Attenuated vaccines against Cholera, Salmonella sp. *Vector Vaccines-Vaccine directed against viruses-Rabies virus G-protein, Hepatitis B surface antigen. Anti-idiotypic vaccine for cancer treatment. Multivalent subunit vaccine. Microbiome 	Lectures

	Practical Title	~
RPSZOPP302	Immunology and Cancer Biology	Credits 2
	1. Performance of Ouchterlony technique to demonstrate	
	immune diffusion.	
	2. Demonstration of single radical immune-diffusion of antibody	
	and antigen.3. Study of counter-current immune-electrophoresis	ΛV
	4. Study of Agglutination Reaction:	
	i. Tube Agglutination Reaction	
	ii. Slide Agglutination Reaction	
	iii. Indirect Agglutination Inhibition Reaction	
	5. Separation of Lymphocytes.	
	7. Identification of histological slides of lymphoid tissue:	
	i. Spleen	
	ii. Thymus	
	iii. Lymph node iv. Bone marrow	
	v. Payers patches	
	vi. Bursa of Fibricus	
	8. Antibiotic Sensitivity test	
	9. Identification of tools used in Artificial Insemination in cows.	
	Reference:	
	- Introductory Textbook; Shetty, N.; New Age International; 2005	h a may 2005
	 Essential and Fundamental; Pathak, S., &Palan, U.; Science Publis A textbook; Rao, C. V.; Alpha Science Int'l Ltd.; 2005 	ners;2005
	an and Paniker's textbook of microbiology; C.J. Paniker (Ed.);	
	an, R.; Orient Blackswan; 2005	
	mmunology; Haleemkhan, Rajendra Sagar, Sadguna	
	crobiology;Ninth Edition; JoanneM.Willey,Linda M. Sherwood & C	hristopher
J.Woolverton	; McGraw-Hill Education; 2014	
	nolecular immunology; Abbas, A. K., Lichtman, A. H. &Pillai S.; Els	sevier
Health Science		-Doit
	al immunology (Vol. 20); Delves,P. J., Martin, S. J., Burton, D. R., & ey& Sons; 2011	croitt,
	of immunology; Khan, F. H.; Pearson Education, India; 2009	
	munobiology; Murphy,K., &Weaver, C.; Garland Science;2016	
	Immunology; Paul, W.E.; Philadelphia: Lippincott-Raven;1999	
	lick and Jack J. Pasternack, Molecular Biotechnology – Principles and	b
applications o	f recombinant DNA, ASM Press, Washington DC.	
	S. B. Primrose, Principles of Gene Manipulation, 5 th Edition, Wiley E	Blackwell
Pub		
• Star mar	ked (*) topics should be considered as Class Assignment topics for	r
Internal A	Assessment.	

Course Title: Reproduction Biology

Academic year 2021-22

COURSE OUTCOMES:

annarain

COURSE	DESCRIPTION
COURSE	
OUTCOME	Upon successful completion of this course, learners will be able to;
CO 1	Exploring the field of Reproductive Biology and Physiology.
CO 2	Gain the knowledge about the hormonal control of spermatogenesis, sperm
	maturation and about the potential male contraceptives.
CO 3	Understanding the various Molecular Events of fertilization, Implantation
	Process, Pregnancy, Parturition and Lactation.
CO 4	Compare and contrast between different IVF techniques, gamete collection
	process and sensitise regarding ethical issues involved in this field.
CO 5	Explore the skills required in the field of Assisted Reproductive technology.

RPSZOP303	Title: Reproduction Biology	Credits 4
UNIT: I	Male reproductive physiology	15
	• *Functional morphology of mammalian testis.	Lectures
	*Brief description of histomorphology and hormonal control	(
	of male accessory organs <i>viz.</i> , epididymis, vas deferens,	
	seminal vesicles, ventral prostate, bulbourethral gland and	$\langle \langle \langle \langle \langle \langle \rangle \rangle \rangle \rangle$
	preputial gland	
	• Sperm maturation – morphological and biochemical events,	\mathbf{S}^{\prime}
	influence of accessory organ secretions; capacitation	
	Biochemistry of semen	
	• Kinetics of spermatogenesis – wave and cycle, Stem cell	
	renewal	
	Hormonal control of spermatogenesis	
	Ultrastructure of spermatozoa	
	Abnormalities of sperm	
	• Potential Male contraceptives: E.g., Cyproterone acetate,	
	Cotton Seed, papaya seed extract etc.	
UNIT: II	Female Reproductive Physiology	15
	 Onset of puberty in human female, factors affecting onset of 	Lectures
	puberty.	
	 *Estrous cycle and it is hormonal regulation. 	
	• *Menstrual cycle and it is hormonal regulation.	
	• Fertilization – Molecular Events of fertilization	
	• Implantation – Process, Types and hormonal control	
	• Pregnancy – length of gestation, hormonal control	
	• Parturition – Process of birth and influence of hormones	
	Lactation – Hormonal control of mammary gland	
•	development and lactogenesis	
	• Female contraceptives: Pills, Spermicides, Copper T,	
	Mechanical barrier (diaphragm)	
UNIT: III	Assisted Reproductive Technique-I	15
	Maintaining an IVF laboratory.	Lectures
	i. Setting up an ART laboratory	
	ii. Quality Control	
	Gamete Collection & Analysis	
	i. Serum Analysis: - Sperm count, Motility, Morphology	
	and abnormality	
	ii. Physical parameters: - Coagulation/viscosity,	
	Liquification, appearance, odour, volume, pH, presence of other cell debris	
	iii. Semen preparation technique: Swim up, Density gradient.	
	56	

UNIT: IV	Assisted Reproductive Technique-II	15
	• Intrauterine Insemination (IUI)	Lectures
	 Oocyte Retrieval: - oocyte corona cumulus complex evaluation, Oocyte nuclear maturity evaluation. Intracytoplasmic sperm Injection (ICSI) Cryopreservation of ovum and cord blood 	
	 Preimplantation genetic screening- PGS Ethical issues Case Study- Designer baby (Ethical and legal aspects) 	1º
RPSZOPP303	Internship / Project Work	Credits 2
	Reference	

- 1. Martin H. Johnson, Essential Reproduction, Wiley-Blackwell Publication.
- 2. E. L. Marieb, Human Anatomy and Physiology, Pearson Education Low PriceEdition
- 3. Taylor, Green and Stout, Biological Science, Cambridge Publication
- 4. E. P. Solomon, L. R. Berg, D. W. Martin, Biology, Thompson Brooks/Cole
- 5. Daniel D Chiras Jones and Bartlett, Human Biology
- 6. E.K.Nobil and J. U. D.Neil, The Physiology of Reproduction Vol I & II, Raven Press, New York.
- 7. David Gardner, Ariel W and et.al, Textbook of Assisted Reproductive Technologies, Third Edition.
- 8. Examination and Processing of human semen, WHO laboratory manual.
- 9. Dr. Kamini A. Rao, Principles and Practice of Assisted Reproductive Technology
 - Star marked (*) topics should be considered as Class Assignment topics for Internal Assessment.

Course Title: Internship / Project Work

Academic year 2021-22

RPSZOP304	Internship / Project Work	Credits 4
RPSZOPP304	Internship / Project Work	Credits 2
	Total Credits- 8 Marks- 200	

MOL WAR

Modality of Assessment

Theory Examination Pattern:

C) Internal Assessment- 40%- 40 Marks

Sr. No.	Evaluation type	Marks	0,
1.	Two Assignments/Case study/Project/Research paper review	20	
2.	One class Test (multiple choice objective question)	~ 2	0

B) External Examination- 60%- 60 Marks

Semester End Theory Examination:

- 3. Duration These examinations shall be of **2hours 30 mins** duration.
- 4. Theory question paper pattern:

Paper Pattern:

Questions	Options	Marks	Questions on
Q.1	Any 1 out of 2	12	Unit- I
Q.2	Any 1 out of 2	12	Unit- II
Q.3	Any 1 out of 2	12	Unit- III
Q.4	Any 1 out of 2	12	Unit- IV
Q.5	3 short notes out of 5	12	All Units

Practical Examination Pattern:

E) External Examination: 50 Marks

Particulars	Marks
Journal	05
Experimental tasks/ Viva	45
Total	50

Overall Examination & Marks Distribution Pattern Semester-III

Course	RPSZOP3	01	RPSZOP3(02	RPSZOP3	03	RPSZOP304	Grand Total
	Internal	External	Internal	External	Internal	External	Internship / Project	
Theory	40	60	40	60	40	60	150	400
Practical	5	50	5	50	5	50		200

External Examination- 60%- 60 Marks

Semester End Theory Examination: (Deviation from the usual modality)

Owing to the pandemic situation prevailing in 2020 and continuing in 2021, the external examinations (Semester End) may be conducted online as per the instructions/circulars received from the University of

Mumbai and Maharashtra State notifications from time to time. The conventional mode of external examination will commence again only after the declaration of normalcy by the Government authorities.

Semester-IV Academic year 2021-2022

-	Unit	Торіс	Credits
		Animal Biotechnology	
	Ι	Laboratory Animals in Biotechnology	
RPSZOPP401	II	Testing for Endocrinological and Reproductive	
		Biological studies	4
	III	Animal Tissue Culture	
	IV	Animal Biotechnology & Human therapies	
		Life Processes-II	
	Ι	Thermoregulation	
	II	Muscle Physiology	4
RPSZOPP402	III	Osmoregulation and Excretion	
	IV	Sensory and Effector Physiology	
		Endocrinology	
	Ι	Introduction to invertebrate endocrinology	
	II	General Endocrinology	4
RPSZOPP403	III	Phylogeny and Ontogeny of endocrine glands	
	IV	Study of endocrine glands	
		Biological Rhythm and Ecophysiology	
	Ι	Physiology of Migration	
RPSZOPP404	II	Biological rhythms & sleep	4
	III	Environmental Radiation	
	IV	Temperature as environmental factor	
		Practical	
RPSZOPP401		Animal Biotechnology	2
RPSZOPP402		Life Processes-II	2
RPSZOPP403		Endocrinology	2
RPSZOPP404		Biological Rhythm and Ecophysiology	2
Grand Total		/	24

Course Title: Animal Biotechnology

Academic year 2021-22

COURSE OUTCOMES:

annarall

COURSE	DESCRIPTION
OUTCOME	Upon successful completion of this course, learners will be able to;
CO 1	Understand various animal models and instruments used for Animal tissue
	culture.
CO 2	Demonstrate an understanding of media preparations and passaging techniques
	for animal tissue culture.
CO 3	Explain and contrast the various animal models used in biotechnology and
	understand their applications.
CO 4	Gain an experience at handling laboratory animals and their maintenance and
	care.
CO 5	Develop a holistic appreciation on animal biotechnology and human therapies.
CO 6	Engage in various practical activities related to techniques involved in animal
	tissue culture.

RPSZOP401	Title: Animal Biotechnology	Credits 4
UNIT: I	Laboratory Animals in Biotechnology	15
UNIT: I	 Laboratory Animals in Biotechnology Animal Care and Management of Laboratory Animals Rat Mouse Rabbit Rabbit Guinea pig *Animal House – Necessities Design and maintenance: Infrastructure, Cages, Conditions and other requirements for Maintenance, Biology of four laboratory animals Breeding cycles and breeding and maintenance- Rat/ Mouse Nutritional requirements for normal breeding and maintenance. Modifications for nutritional experimental work (at least two examples viz protein deficient diet and supplementation) Animal ethics and associated laws and issues. Physiological models and their use in drug testing 	15 Lectures
TINITT. II	Animal ethics and CPCACA guidelines.	15
UNIT: II	Testing for Endocrinological and Reproductive	15 Lectures
	 Biological studies In vivo studies of estrous cycle, implantation, pregnancy Gonadectomy, Adrenalectomy, Hypophysectomy, and Sham operated rats *Drug induced liver toxicity- CCl4 model, paracetamol model, cirrhosis model Aging Models: Drug induced models (Galactosamine), Naturally aged animals Models for diabetes Hypercholesterolemia Models Thyroidectomized rat Models to study immunological phenomena 	
UNIT: III	Animal Tissue Culture	15
	 Equipment and Materials for animal Cell Culture Technology Basic Aseptic Techniques Design of Tissue Culture Laboratory Equipment: Laminar Flow Hoods, Bio safety cabinets, CO2 incubator, Open and closed cultures, Microscopes, centrifuge, Refrigerators and Freezers, pipetting aids, Miscellaneous small items of Equipment, Materials, filters, Miscellaneous Items, Cryopreservatives. Characters of cells: Cells in primary culture, Established Cell 	Lectures

UNIT: IV	 Nutritional Requirements of Cells and growth media- Basal salt solution (BSS), Minimum Essential Medium, Serum dependent defined media, Serum independent defined media, Natural and Artificial media, Cell specific media. Media preparation (anyone) Passaging of cell Lines- adherent and non-adherent <i>Animal Biotechnology & Human therapies</i> Transgenic animals and their applications: Mice as model system for human diseases and as test case model Cows, pigs, sheep, goats as biopharmaceuticals, iii. Transgenic insects and birds. Recombinant DNA technology to prevent animal diseases. Regulation of transgenic animals and patenting genetically engineered animals. Knockout mice (Cre- loxP system) Human therapies 	15 Lectures
	Human therapies i. Tissue engineering: Skin, liver, pancreas ii. Xenotransplantation Practical Title	
RPSZOPP401	Animal Biotechnology	Credits 2
	 Handling and feeding of the animals. To study Estrous cycle and breeding. Preparation of glass wares for cell culture Separation of cells by suitable methods- Trypsinization (Demonstration Practical) Viable cell count Paracetamol toxicity in fish in vitro. Passaging and Trypsinization techniques. (Hands on Demo) Animal house maintenance group project. Cage side observation of experimental animals 	
.0.	Reference:	
 Cell and Tissue Methods in enz 	al "Molecular Biology of the Cell"	

- 5. A manual of basic techniques by R.I. Freshney, Willy-Liss and Sons publication.
- 6. Animal cell culture technique by Martin Clynes, Springer publication.
- 7. Freshney, R.I: Culture of Animal cells, Wiley Publications, New York. Edi. Jhon R.W. Masters: Animal cell culture- practical approach, Oxford University press, Oxford. Ed.
- 8. R. Basega : Cell growth and division : A practical approach , IRL press Oxford University

press, Oxford.

- 9. Ed. Martin Clynes: Animal cell culture techniques, Springer- Verlag, New York. F.Grasveld, George V. Kallias: Transgenic Animals, Academic press, Sandiego, USA.
- 10. Asok Mukhopadhyay: Animal cell technology, IK International publishing House, New Delhi.
- 11. R. E. Speir, J. B. Griffiths, W. Berthold (Ed), Animal Cell Technology Products of today, prospects of tomorrow, Butterworth –Heinman Publishers
 - Star marked (*) topics should be considered as Class Assignment topics for Internal Assessment.

Course Title: Life Processes-II

Academic year 2021-22

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	Upon successful completion of this course, learners will be able to;
CO 1	Understand the process of thermoregulation and temperature compensation in
	homeotherms and poikilotherms.
CO 2	Compare and contrast between the physiology of skeletal, smooth and cardia
	muscle.
CO 3	Explain and contrast between the various physiologies of osmoregulation of
	freshwater, marine and terrestrial animals.
CO 4	Explore some of the exciting and curious questions on COVID 19 related los
	of sense of smell and taste.
CO 5	Analyse and understand the detailed process of Dialysis and Kidney care.
CO 6	Critically analyse, interpret and evaluate information relevant to animal
	physiology.

RPSZOP402	Title: Life Processes-II	Credits 4
UNIT: I	Thermoregulation	15
	• Comfort zone, body temperature – physical, chemical, neural regulation, acclimatization.	Lectures
	 Impact of temperature on the rate of biological functions. Arrhenius equilibrium, Q 10. 	20
	 Temperature compensation and temperature regulation in poikilotherms and homeotherms. 	0
	 *Adaptations for extreme environments, aestivation, hibernation, Diapause and Awakening. 	
UNIT: II	Muscle Physiology	15
	• Comparative physiology of skeletal, smooth and cardiac muscles.	Lectures
	• Skeletal muscle- ultra structure and molecular organization.	
	Red and white muscles, muscle proteins.	
	• *Mechanism of muscle contraction and relaxation.	
	• *Energetics of muscle contraction.	
	• Effect of exercise on muscles.	
	• Catch muscle and fibrillar muscle.	
	Physiology of muscle cramps and its management	
	Physiology of Sprinting and Marathon running.	
UNIT: III	Osmoregulation and Excretion	15
	• Osmoregulation in fresh water, marine and terrestrial animals.	Lectures
	• Excretion in vertebrates.	
•	• *Physiology and regulation of urine formation, Hormonal regulation of urine formation.	
	• Regulation of water balance, electrolyte balance and acid- base balance.	
- 1 ² ,	• Dialysis (artificial kidney), kidney transplantation, Dialysis water (requirements)	
UNIT: IV	Sensory and Effector Physiology	15
	• Classification of somatic senses and somatic receptors, exteroceptors, interoceptors, modality of sensation,	Lectures
	secondary sense cells, transduction, relationship between	
	stimulus, intensity and response, sensory coding.	
	• Chemical senses: taste, smell, mechanism of reception,	
	COVID 19 and loss of taste and smell.	
	• Mechanoreceptors: hair cell, organs of equilibrium,	
	vertebrate ear, mechanise of hearing, electro and	

		thermoreceptors.	
		 Vision: Structure of invertebrate and vertebrate eye. 	
		Physiology of vision.	
		Pain: pain receptors, headache and thermal senses, pain	
		suppression (analgesia).	6
		Tactile sensation: touch receptors, Physiological role of touch	
		and environment in premature infants- Kangaroo care.	
	DDC7000403	Practical Title	
	RPSZOPP402	Life Processes- II Credits 2	
		1. Observation of decreasing PO2 of water on the respiratory	
		rate of a fish.	
		2. Effect of decreasing PO2 of water on Lactic acid in the	
		muscle.3. Estimation of salt loss and gain in an aquatic animal when it	
		is transferred to a salt- free medium and to natural medium.	
		4. Preparation of glycerinated muscle fibre and study of its	
		properties.	
		5. Influence of sub lethal concentration (50-60ppm) ammonia	
		(as liquor ammonia / ammonium hydroxide / ammonium	
		chloride) on a suitable fish exposed to ammonia stress for 3 / 7 / 15 days with reference to the following parameters:	
		a. Level of excretory ammonia	
		b. Level of activity of hepatic glutamate dehydrogenase	
		6. Histology of Sense organs.	
		7. Histology of Striated and Non striated muscle fibre.	
		Reference:	
	-	98. Comparative Vertebrate Endocrinology (3rd edn). Cambridge University	
	Press	A Machinisht A.D. Mills D.S. and Taylor D.W 1096 Leasture Notes on	
		gg, P. A, Macknight, A.D, Mills, R.S and Taylor, D.W 1986. Lecture Notes on ogy. ELBS, New Delhi	
	5	nd J.A. Ramsay, 1977. Transport of Ions and Water in Animals. Academic	
	Press, New Yor		
	4. Chatterjee, C.C	C. 1997. Human Physiology. Medical allied agency, Calcutta.	
		1987. Review of Medical physiology. Appleton and lang, Norwalk.	
	-	vse, G.A and Anderson, M. 2007. Animal Physiology (2nd edn). Sinauer	
		. Publishers, MA, USA. 83. General and Comparative Physiology. Prentice Hall of India, New Delhi.	
		W. and Somero, G.N. 1984. Biochemical Adaptation. Princeton University	
0	Press, New Jers	-	
X		W. and Somero, G.N 2002. Biochemical Adaptation: Mechanism and Process	
	in Physiologica	al Evolution. Oxford University Press, New York.	
	•	Introduction to Animal Physiology. Bios Scientific Publishers Ltd., Oxford,	
	UK		
	11. Keele, C.A, Ne	eil, E. and Joels, N. 1982. Samson Wright's Applied Physiology. Oxford	
		67	

University Press

- 12. Knut Schmidt-Neilsen. 1997. Animal physiology: Adaptations and Environment Cambridge University Press
- 13. Moyers, D.C and Schulte, P.M. 2007. Principles of Animal Physiology (2nd edn). Benjamin Cummings, CA, USA
- 14. Prosser, C.L and Brown, F.A. 1973. Comparative Animal Physiology. W.B Saunders Company, Philadelphia
- 15. Randall, D., Burgrenn, W. and French, K. 1997. Eckert Animal physiology. freeman & Co,New York
 - Star marked (*) topics should be considered as Class Assignment topics for Internal Assessment.

Course Title: Endocrinology

Academic year 2021-22

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	Upon successful completion of this course, learners will be able to;
CO 1	Understand & comprehend the invertebrates' endocrine organs & systems, its
	anatomical organization, hormones and role of hormones in complex
	physiological process like reproduction, development, metamorphosis.
CO 2	Understand and gain the knowledge about neuro endocrine integration and
	reflexes and a deep insight about hormones and its types. Understand working
	of hormones at target site.
CO 3	Compare & contrast developmental and phylogenetic relationship of endocrine
	glands between different vertebrates' group.
CO 4	Understand the various endocrine glands of vertebrates, their position,
	microanatomy, hormones and complex interrelationship between them.
CO 5	Develop employable skill related to endocrine glands. Explore new
	technologies in studying the endocrine glands
anar	

RPSZOP403	Title: Endocrinology	Credits 4
UNIT: I	Introduction to invertebrate endocrinology	15
	Scope of invertebrate endocrinology	Lectures
	 *Anatomical organization 	
	 *Structure of endocrine glands in invertebrates 	
	 Endocrine glands of invertebrates 	
	i.Corpora cardiac	
	ii.Corpora allata	
	iii.Moulting glands	
	iv.X-organ and Y-organ of Crustaceans	
	v.Green gland, Epitracheal gland and Inka cells	
	vi. Mandibular organs in crustaceans	
	• Reproduction, development, somatic retinal and pigmentation	
	and metamorphosis (including diapause and molting) in	
	insects.	
	• Hormonal control of metabolism, retinal and somatic	
	pigmentation, reproduction and moulting in Crustaceans.	
UNIT: II	General Endocrinology	15
	*General introduction to hormone	Lectures
	Neuroendocrine integration	
	i. Afferent pathways	
	ii. Integration center's	
	iii. Efferent pathways	
	Neuroendocrine reflex	
	i. First order	
	ii. Second order	
	iii. Third order	
	• *Hormones as messengers.	
	• Hormones and eukaryotic metabolic regulation	
C	Classification and Discovery of hormones	
	i. Protein hormones	
	ii. Steroid hormones	
	Hormonereceptors	
	• Cascade of reaction linked to signal transduction.	
	• Prostaglandins	
UNIT: III	Phylogeny and Ontogeny of endocrine glands	15
	• Phylogeny of Pituitary, Pancreas, Adrenal, Thyroid,	Lectures
	parathyroid and Pineal gland in Pisces, Amphibia, Reptiles	
	and Mammals	
	• Ontogeny of Pituitary, Pancreas, Adrenal, Thyroid,	
	parathyroid and Pineal gland in Pisces, Amphibia, Reptiles	
	and Mammals	1

RAMNARAIN RUIA AUTONOMOUS COLLEGE, SYLLABUS FOR M.Sc. ZOOLOGY 2021-22

	 Caudal neurosecretory system in fishes- Dahlgren cells Corpuscles of Stannius 	
UNIT: IV	 Study of endocrine glands Endocrine glands - Anatomy and Microstructure and disorders of - Pituitary, Thyroid, Parathyroid, Ultimobranchial glands, Adrenal, Pancreas, Pineal Role of hypothalamus and the higher brain centers in reproductive behavior *Special endocrine organs i. Thymus ii. Placenta iii. Corpus Luteum iv. GI tract v. Kidney vi. Heart 	15 Lectures
RPSZOPP403	Practical Title Endocrinology	Credits 2
	 Demonstration and localization of endocrine glands of vertebrate group (rat / mice). (Simulation / Photographs / ICT) Study of histology of vertebrate endocrine glands (comparative aspects). Pituitary Thyroid Adrenal, Parathyroid. Preparation and submission of slides of adrenal, ovary and testis in vertebrate (Goat / Chicken) using microtomy technique. (Student activity- to be submitted at the time of exam) Estimation of calcium level in given blood sample. Estimation of glucose level in given blood sample. Estimation of blood glucose before and after eye stalk ablation in Crab/ Prawns. Effect of acetylcholine / Adrenalin on fish chromatophores. Study of Endocrine disorders in human (Slides / Photographs / TC tools / models / charts / photographs) Phytosteroids that mimics animal steroids: (Soybean, Ashwagandha, Shatavari, Dioscorea) 	

References:

- 1. Mandal A. (1994). Handbook of Neuroendocrinology, EMKAY Publications.
- 2. Comparative Endocrinology of the Invertebrates, Kenneth C. Highnam, Second Edition, ELBS Low price Edition.
- 3. Tambhare D. B. (2012). Invertebrate Endocrinology, Himalaya Publication House.
- 4. Invertebrate Endocrinology-Tombes, Academic Press. 5. Insect Endocrinology-Edited by Lawrence I Gilbert, Academic Press.
- 5. Barington (1979) Hormones and Evolution Vol. I&II Academic Press, New York.
- 6. Bentley P.J. (1994) Comparative Vertebrate Endocrinology-II Cambridge University Press, New York. 3. Johnf-Laycock and Peter H. Wise, Essential of Endocrinology.
- 7. Wiliamas R.H. (1974) Textbook of Endocrinology V. Ed. Saunders Press. London.
- 8. Turner C.D. and Bugnara J.T. (2013). General Endocrinology, sixth Edition, W.B. Saunders. EPW East West Press Pvt. Ltd. New Delhi.
- 9. Endocrinology -Hadley
- 10. The physiology of reproduction, Vol I&II E.K. Nobil and JU.D. Neil, Raven Press, New York.
- 11. Benjamin Levin-Gene VII, Oxford University Press.
- 12. Lodish et.al. Molecular Cell Biology
- 13. Mammalian Endocrinology, Ashok Kumar Boral, New Central Book Agency (P) Ltd. London
- 14. Zarrow M.X. and Mc Carthy J.L. (1964). Experimental Endocrinology, Academic Press, New York.
- 15. Norris D.O. (1996). Vertebrate Endocrinology IIIrd Ed. Academic Press,
- 16. Norris: Vertebrate Endocrinology 4th Ed.2007 Elsevier)
- 17. Mammalian Endocrinology, Manoj Yadav, (2008). Discovery publishing House Ltd. New Delhi.
- 18. Chandra S. Negi (2015). Introduction to Endocrinology PHI Learning, Pvt.Ltd. New Delhi.
- 19. Endocrinology-P.R. Yadav, Discovery publishing House Ltd. New Delhi.
- 20. Endocrinology, Hormones and Human Health-Prakash S. Lohar, MJP Publisher, Chennai.
- 21. Franlyn F. Bolander, Molecular Endocrinology (Third Edition), Academic Press, An Imprint of Elsevier, California, U.S.A.
 - Star marked (*) topics should be considered as Class Assignment topics for Internal Assessment.

Course Title: Biological rhythm and Ecophysiology

Academic year 2021-22

COURSE OUTCOMES:

CO	URSE	DESCRIPTION
OUT	ГСОМЕ	Upon successful completion of this course, learners will be able to;
(CO 1	Understand & comprehend the deep insight of migration amongst animal and
		complex biochemical and physiological process that regulate it.
(CO 2	Learn and understand about the complex physiological processes that govern
		sleep, dream and biological rhythms.
(CO 3	Learn and analyse the effects of radiation at the cellular & molecular level, role
		& example of biomolecules involves in trapping the light energy in living being
		also understand the phenomenon of radioprotection.
(CO 4	Understand & learn about temperature as an important environmental factor,
		temperature and types of animals and biochemical adaptation of animals at
		different thermal range.
(CO 5	Develop practical skill related to temperature on some physiological aspects of
		animals. Students also learn a deep insight about some remarkably interesting
		migratory animals, sleep and sleep disorder.
Ran	nar	

RPSZOP404	SZOP404 Title: Biological rhythm and Ecophysiology			
UNIT: I	Physiology of Migration	15		
	Physiological stimulus of Migration	Lectures		
	 Orientation and Navigation 	6		
	Energetic			
	Timing			
	Synthesis			
	 *Migration for food, reproduction, territory 			
	 Migration is factor in life cycle 			
	 Adaptations for Migration 			
	Communication during Migration.			
UNIT: II	Biological rhythms & sleep	15		
	• The nature of sleep and dreams	Lectures		
	 The functions of sleep 			
	 Mechanism of sleep and arousal 			
	 Biological rhythms 			
	 Disruption of sleep and rhythms 			
	 Chronobiology: Experiments to study human circadian 			
	rhythms; subterranean rooms, deep cave dwelling etc.			
	mythins, subternation rooms, deep cave dwennig etc.			
UNIT: III	Environmental Radiation	15		
	• Radiation as an environmental parameter.	Lectures		
	• *The solar spectrum			
	• *Biomolecules involved in perception and trapping of solar			
	radiations: Chlorophyll, Bacterio-rhodospin, Rhodospin and			
	Vitamin A. Adaptations of animals to absence of solar			
	radiations.			
•	• Effects of Ionizing radiations at the cellular and molecular			
	level.			
	Phenomenon of radioprotection.			
UNIT: IV	Temperature as environmental factor	15		
	Temperature Regulation/ Response to temperature	Lectures		
	fluctuations:			
	 Thermal limits of survival 			
	 Temperature and Structural effects with response to 			
Y	biological molecules and biological membranes.			
	 Temperature and rate effects: Temperature dependent 			
	E~Saffinity, Lipoprotein enzymes.			
	 Thermal resistance of dormant and active cells. 			
	Letomernig and endomernig.			
	• *Endothermy in invertebrates.			

	Biochemical adaptations of Ectothermy: Antifreeze substances, Heatshock proteins.	
RPSZOPP404	Practical Title Biological rhythm and Ecophysiology	Credits 2
	 To study the effect of temperature on respiratory rate of any suitable fish. Study of effect of electrolyte stress on angiogenesis using chick embryo. Study of migration in animals in relation to food, reproduction and environment. (Olive Ridley turtle, Monarch butterfly, Amur Falcon, Bar headed geese, Artic tern, Siberian crane) Central Asian Flyway and its location on map. To study the effect of temperature on the activity of human saliva. To different types of sleep disorders. Sleep Apnea Narcolepsy Sleep Paralysis Snorting 	
 C. L. Prosser (C. Ladd Prosse Animal Physic C. Ladd Prosse Animal Physic Withers, P.C. (Publishing. 	 5. To study the effect of temperature on the activity of human saliva. 6. To different types of sleep disorders. Sleep Apnea Narcolepsy <lisleep li="" walking<=""> Restless leg Syndrome Sleep Paralysis </lisleep> 	tive omparative rs College
Cambridge Un 7. R. W. Hill (19) Harper & Row 8. P. W. Hochach 9. J. G. Philips (1	iv. Press. 78): "Comparative Physiology of Animals – An Environmental App	roach"

Modality of Assessment

Theory Examination Pattern:

D) Internal Assessment- 40%- 40 Marks

Sr. No.	Evaluation type	Marks	>,
1.	Two Assignments/Case study/Project/Research paper review	20	
2.	One class Test (multiple choice objective question)	\mathbf{Q}	

B) External Examination- 60%- 60 Marks

Semester End Theory Examination:

- 5. Duration These examinations shall be of **2hours 30 mins** duration.
- 6. Theory question paper pattern:

Paper Pattern:

Questions	Options	Marks	Questions on
Q.1	Any 1 out of 2	12	Unit- I
Q.2	Any 1 out of 2	12	Unit- II
Q.3	Any 1 out of 2	12	Unit- III
Q.4	Any 1 out of 2	12	Unit- IV
Q.5	3 short notes out of 5	12	All Units

Practical Examination Pattern:

F) External Examination: 50 Marks

Particulars	Marks
Journal	05
Experimental tasks/ Viva	45
Total	50

Overall Examination & Marks Distribution Pattern

Semester-IV	
-------------	--

Course	RPSZOP401		RPSZOP4(P402 RPSZOP403 RPSZOP404		404	Grand Total		
	Internal	External	Internal	External	Internal	External	Internal	External	
Theory	40	60	40	60	40	60	40	60	400
Practical 50		6	50	5	50	5	50	200	

External Examination- 60%- 60 Marks

Semester End Theory Examination: (Deviation from the usual modality)

Owing to the pandemic situation prevailing in 2020 and continuing in 2021, the external examinations (Semester End) may be conducted online as per the instructions/circulars received from the University of Mumbai and Maharashtra State notifications from time to time. The conventional mode of external examination will commence again only after the declaration of normalcy by the Government authorities.