Resolution No.: AC/II(22-23).3.RUS11

S. P. Mandali's Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for

Program: T.Y.B.Sc.

Program Code: (STATISTICS) RUSSTA

(Credit Based Semester and Grading System for academic year 2023–2024)

GRADUATE ATTRIBUTES

S. P. Mandali's Ramnarain Ruia Autonomous College has adopted the Outcome Based Education model to make its science graduates globally competent and capable of advancing in their careers. The Bachelors Program in Science also encourages students to reflect on the broader purpose of their education.

GA	GA Description								
	A student completing Bachelor's Degree in Science program will be able to:								
GA 1	Recall and explain acquired scientific knowledge in a comprehensive manner and								
	apply the skills acquired in their chosen discipline. Interpret scientific ideas and								
	relate its interconnectedness to various fields in science.								
GA 2	Evaluate scientific ideas critically, analyse problems, explore options for practical								
	demonstrations, illustrate work plans and execute them, organise data and draw								
	inferences.								
GA 3	Explore and evaluate digital information and use it for knowledge upgradation.								
	Apply relevant information so gathered for analysis and communication using								
	appropriate digital tools.								
GA 4	Ask relevant questions, understand scientific relevance, hypothesize a scientific								
	problem, construct and execute a project plan and analyse results.								
GA 5	Take complex challenges, work responsibly and independently, as well as in								
	cohesion with a team for completion of a task. Communicate effectively,								
	convincingly and in an articulate manner.								
GA 6	Apply scientific information with sensitivity to values of different cultural groups.								
	Disseminate scientific knowledge effectively for upliftment of the society.								
GA 7	Follow ethical practices at work place and be unbiased and critical in								
•	interpretation of scientific data. Understand the environmental issues and explore								
2	sustainable solutions for it.								
GA 8	Keep abreast with current scientific developments in the specific discipline and								
70	adapt to technological advancements for better application of scientific knowledge								
	as a lifelong learner.								

PROGRAM OUTCOMES

РО	Description
	A student completing Bachelor's Degree in Science program in the
	subject of Statistics will be able to:
PO 1	Understand, condense, visualize, analyze and interpret various data types generated in various scenarios of scientific, industrial, or social problems.
PO 2	Apply Statistical tools for data analysis.
PO 3	Pursue their higher education programs leading to post-graduate and/or doctoral degrees in Statistics, Data Science, Business Analytics, Biostatistics, Econometrics, Management Studies.
PO 4	Compete globally to enter into promising careers.
PO 5	Make a pathway to a range of traditional avenues in Academia and Industry, Govt. Service, IAS, Indian Statistical/ Economic Services, Industries, Commerce, Investment Banking, Banks and Insurance Sectors, CSO and NSSO, Research Personnel/Investigator in Govt. organizations such as NCAER, IAMR, ICMR, Statistical and Economic Bureau & various PSUs., Market Research, Actuarial Sciences, Biostatistics, Demography etc.
PO 6	Seek employment or self-employment in different sectors like Stock trading, Pharmaceutical sector, Sports, Politics, Business, Financial services and Media Industry.

PROGRAM OUTLINE

YEAR	SEM	COURSE	COURSE TITLE	CREDITS
		CODE		
TYBSc	V	RUSSTA501	PROBABILITY AND DISTRIBUTION	2.5
			THEORY	o'
TYBSc	V	RUSSTA502	THEORY OF ESTIMATION	2.5
TYBSc	V	RUSSTAP501	Practical based on RUSSTA501 &	3
			RUSSTA502	0,
TYBSc	V	RUSSTA503	BIOSTATISTICS	2.5
TYBSc	V	RUSSTA504	ELEMENTS OF ACTUARIAL	2.5
			SCIENCE	
TYBSc	V	RUSSTAP502	Practical based on RUSSTA503 &	3
			RUSSTA504	
TYBSc	VI	RUSSTA601	DISTRIBUTION THEORY AND	2.5
			STOCHASTIC PROCESSES	
TYBSc	VI	RUSSTA602	TESTING OF HYPOTHESES	2.5
TYBSc	VI	RUSSTAP601	Practical based on RUSSTA601 &	3
			RUSSTA602	
TYBSc	VI	RUSSTA603	APPLIED STATISTICS-I	2.5
TYBSc	VI	RUSSTA604	APPLIED STATISTICS-II	2.5
TYBSc	VI	RUSSTAP602	Practical based on RUSSTA603 &	3
			RUSSTA604	

Course Code: RUSSTA501

Course Title: PROBABILITYAND DISTRIBUTIONTHEORY

Academic year 2023-24

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	A student completing this course will be able to:
CO 1	Understand the advanced concepts of Probability theory to address diverse problems.
CO 2	Use Trinomial distribution, derive its joint moment generating function, and explore multinomial distribution.
CO 3	Use bivariate normal distribution, its properties, and assess the significance of correlation coefficient of Bivariate Normal Distribution.
CO 4	Understand and apply Order Statistics to estimate population parameters.

Course Code/	Unit	Course/ Unit Title	Credits/
Unit			Lectures
RUSSTA501	Unit	PROBABILITY-I:	15
	Y	 Basic definitions: Random Experiment, Outcome, Event, Sample Space, Complementary, Mutually Exclusive, Exhaustive and Equally Likely Events. concept of permutation and combination. Mathematical, Statistical, Axiomatic and Subjective probability. Sub populations and partitions. Derivation of a) A_{r,n}: Number of distinguishable distributions of putting r indistinguishable balls in n cells; b) Number of distinguishable balls in n cells such 	Lectures

		T	
		that no cell is empty.	
		Ordered samples and runs.	
		 Probabilities based on a) Maxwell Boltzmann, 	
		Bose Einstein and Fermi Dirac Statistics.	
		Addition Theorem for N events.	
		Theorems on Probability of realization of:	
		(a) At least one (b) Exactly m (c) At least m of N	, (
		events A ₁ , A ₂ , A ₃ A _N	
		Classical Occupancy Problems, Matching	103
		Problems and Guessing Problems	
RUSSTA501	Unit		15
	II	TRINOMIAL AND MULTINOMIAL	Lectures
		DISTRIBUTION:) =====================================
		Definition and properties of Moment Generating	
		Function (MGF) of two random variables of	
		discrete and continuous type. Necessary and	
		Sufficient condition for independence of two	
		random variables.	
		Concept and definition of Multivariate MGF.	
		Trinomial distribution:	
		 Definition of joint probability distribution of (X, 	
		Y). Joint moment generating function,	
		moments μ_{rs} where r=0, 1, 2 and s=0, 1, 2.	
		➤ Marginal & Conditional distributions. Their	
		Means & Variances.	
		Correlation coefficient between (X, Y).	
		Distribution of the Sum X+Y.	
		Extension to Multinomial distribution with	
		parameters (n, p_1 , p_2 p_{k-1}) where $p_1 + p_2 + p_{k-1}$	
	. 5	$_1 + p_k = 1$. Expression for joint MGF. Derivation of:	
		joint probability distribution of (X_i, X_j) . Conditional	
		probability distribution of X_i given $X_j = x_j$	
RUSSTA501	Unit	BIVARIATE NORMAL DISTRIBUTION	15
KU331A301	III	 Definition of joint probability distribution (X, Y). 	Lectures
	•••	Joint Moment Generating function, moments μ _{rs}	Lectures
		where r=0, 1, 2 and s=0, 1, 2. Marginal &	
		Conditional distributions. Their Means &	
O		Variances.	
		 Correlation coefficient between the random 	
		variables.	
		Necessary and sufficient condition for the	
		independence of X and Y. Distribution of aX + bY, where 'a' and 'b' are	
		constants.	
		Distribution of sample correlation coefficient	
		when $\rho = 0$.	
-			

		Testing the significance of a correlation	
		coefficient.	
		Fisher's z – transformation.	
		Tests for i) H_0 : $\rho = \rho_0$ ii) H_0 : $\rho_1 = \rho_2$	
		Confidence interval for ρ.	
RUSSTA501	Unit	ORDER STATISTICS	15
	IV	Definition of Order Statistics based on a random	Lectures
		sample.	6
		Derivation of:	. 0
		(a) Cumulative distribution function of rth order	
		statistic.	
		(b) Probability density functions of the r th order)
		statistic.	
		(c) Joint Probability density function of the rth and	
		the s th order statistic (r <s)< th=""><th></th></s)<>	
		(d) Joint Probability density function of all n	
		ordered statistics.	
		Probability density function of Median (in the	
		case of odd sample sizes) and Range for	
		Uniform and Exponential distributions.	

Course Code: RUSSTAP501(A)					
Sr. No.	Practicals based on course				
1	Probability-1				
2	Probability -2				
3	Multinomial Distribution				
4	Bivariate Normal Distribution				
5	Test for Significance of Correlation Coefficient				
6	Order Statistics -1				
7	Order Statistics -2				

REFERENCES

1. Feller W: An introduction to probability theory and it's applications, Volume: 1, Third edition, Wiley Eastern Limited.

- 2. Hogg R V. & Craig Allen T.: Introduction to Mathematical Statistics, Fifth edition, Pearson Education (Singapore) Pvt. Ltd.
- 3. Mood A. M., Graybill F. A., Boes D.C.: Introduction to the theory of statistics, Third edition, Mcgraw- Hill Series.
- 4. Hogg R. V. and Tanis E.A.: Probability and Statistical Inference, Fourth edition, McMillan Publishing Company.
- 5. Gupta S C & Kapoor V K: Fundamentals of Mathematical statistics, Eleventh edition, Sultan Chand & Sons.
- 6. Biswas S.: Topics in Statistical Methodology, First edition, Wiley Eastern Ltd.
- 7. Kapur J. N. & Saxena H. C.: Mathematical Statistics, Fifteenth edition, S. Chand and Company.
- 8. Chandra T. K. & Chatterjee D.: A First Course in Probability, Second Edition, Narosa Publishing House.
- 9. Sheldon M. Ross: Introduction to Probability Models

Course Code: RUSSTA502

Course Title: THEORY OF ESTIMATION

Academic year 2023-24

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	A student completing this course will be able to:
CO 1	Understand the use of Theory of estimation and the key properties of a good estimator.
CO 2	Utilize Cramer Rao inequality to determine the Minimum Variance Unbiased Estimator.
CO 3	Use different approaches like point estimation, interval estimation, and Bayes' estimation.
CO 4	Understand the full rank general linear model for analysis and its use.

Course	Unit	Course/ Unit Title	Credits/
Code/ Unit			Lectures
RUSSTA502	Unit	POINT ESTIMATION AND PROPERTIES OF	15
	I	ESTIMATOR- I:	Lectures
		 Notion of a parameter and parameter space. 	
		Problem of Estimation,	
		Definitions of Statistic, Estimator and Estimate.	
		Properties of a good estimator:	
		Unbiasedness: Definition of an unbiased	
		estimator, biased estimator, positive and negative	
		bias, illustrations and examples (these should	
		include unbiased and biased estimators for the	
		same parameters). Proofs of the following results regarding unbiased estimators.	
		(i) Two distinct unbiased estimators of $\varphi(\theta)$ give	
		rise to infinitely many unbiased estimators.	
		(ii) If T is an unbiased estimator of θ , then $\phi(T)$ is	
		unbiased estimator of $\varphi(\theta)$ provided $\varphi(.)$ is a	
		linear function.	
		 Consistency: Consistency: Definition, Proof of the following theorem: An estimator is consistent 	
		following theorem: An estimator is consistent if its bias and variance both tend to zero as the	
		sample size tends to infinity.	
		 Sufficiency: Concept and definition of Sufficiency, 	
	• (Neymann Factorization Theorem (without proof).	
		Exponential family of probability distributions and	
4	(O)	Sufficient statistic.	
		Relative efficiency of an estimator. Illustrative	
70		examples.	
		 Minimum variance unbiased estimator (MVUE), 	
		Uniqueness property of MVUE. Fisher information	
		function, Statement and proof of Cramer-Rao	
		inequality, Cramer–Rao Lower Bound (CRLB),	
		Definition of Minimum Variance Bound Unbiased	
		Estimator (MVBUE) of $\phi(\theta)$. Definition of Efficient	
		estimator using CRLB.	
RUSSTA502	Unit	PROPERTIES OF ESTIMATOR- II	15
	II	Minimum variance unbiased estimator (MVUE),	Lectures
		Uniqueness property of MVUE. Fisher information	

		function, Statement and proof of Cramer-Rao	
		inequality, Cramer–Rao Lower Bound (CRLB),	
		 Definition of minimum variance bound unbiased 	
		estimator (MVBUE) of $\phi(\theta)$. Definition of Efficient	
		estimator using CRLB.	
		Method of Maximum Likelihood Estimation	
		(M.L.E.), Definition of likelihood as a function of	A
		unknown parameter, for a random sample from i)	. ~ %
		discrete distribution ii) continuous distribution.	10,0
		Distinction between likelihood function and joint	
		p.d.f. / p.m.f.	
		 Derivation of Maximum Likelihood Estimator 	
		(M.L.E.) for parameters of standard distributions	
		(case of one and two unknown parameters).	
		Properties of M.L.E(without proof)	
		Method of Moments, Derivation of moment	
		estimators for standard distributions (case of one	
		and two unknown parameters). Illustrations of	
		situations where M.L.E. and Moment Estimators	
		are distinct and their comparison using Mean	
		Square Error.	
		Method of Minimum Chi-square and Modified	
		Minimum Chi-square.	
RUSSTA502	Unit	Minimum Chi-square. BAYESIAN ESTIMATION AND CONFIDENCE	15
RUSSTA502	Unit III	Minimum Chi-square. BAYESIAN ESTIMATION AND CONFIDENCE INTERVAL	15 Lectures
RUSSTA502		Minimum Chi-square. BAYESIAN ESTIMATION AND CONFIDENCE INTERVAL • Bayesian Estimation: Prior distribution, Posterior	_
RUSSTA502		Minimum Chi-square. BAYESIAN ESTIMATION AND CONFIDENCE INTERVAL • Bayesian Estimation: Prior distribution, Posterior distribution, Loss function, Risk function, Bayes'	_
RUSSTA502		Minimum Chi-square. BAYESIAN ESTIMATION AND CONFIDENCE INTERVAL • Bayesian Estimation: Prior distribution, Posterior distribution, Loss function, Risk function, Bayes' solution under Squared Error Loss Function	_
RUSSTA502		Minimum Chi-square. BAYESIAN ESTIMATION AND CONFIDENCE INTERVAL • Bayesian Estimation: Prior distribution, Posterior distribution, Loss function, Risk function, Bayes'	_
RUSSTA502		Minimum Chi-square. BAYESIAN ESTIMATION AND CONFIDENCE INTERVAL • Bayesian Estimation: Prior distribution, Posterior distribution, Loss function, Risk function, Bayes' solution under Squared Error Loss Function	_
RUSSTA502		Minimum Chi-square. BAYESIAN ESTIMATION AND CONFIDENCE INTERVAL • Bayesian Estimation: Prior distribution, Posterior distribution, Loss function, Risk function, Bayes' solution under Squared Error Loss Function (SELF) and Absolute Error Loss function.	_
RUSSTA502		Minimum Chi-square. BAYESIAN ESTIMATION AND CONFIDENCE INTERVAL • Bayesian Estimation: Prior distribution, Posterior distribution, Loss function, Risk function, Bayes' solution under Squared Error Loss Function (SELF) and Absolute Error Loss function. • Interval Estimation: Concept of Confidence	_
RUSSTA502		Minimum Chi-square. BAYESIAN ESTIMATION AND CONFIDENCE INTERVAL • Bayesian Estimation: Prior distribution, Posterior distribution, Loss function, Risk function, Bayes' solution under Squared Error Loss Function (SELF) and Absolute Error Loss function. • Interval Estimation: Concept of Confidence Interval and Confidence Limits. Definition of pivotal	_
RUSSTA502		BAYESIAN ESTIMATION AND CONFIDENCE INTERVAL Bayesian Estimation: Prior distribution, Posterior distribution, Loss function, Risk function, Bayes' solution under Squared Error Loss Function (SELF) and Absolute Error Loss function. Interval Estimation: Concept of Confidence Interval and Confidence Limits. Definition of pivotal quantity and its use in obtaining confidence limits.	_
RUSSTA502		 Minimum Chi-square. BAYESIAN ESTIMATION AND CONFIDENCE INTERVAL Bayesian Estimation: Prior distribution, Posterior distribution, Loss function, Risk function, Bayes' solution under Squared Error Loss Function (SELF) and Absolute Error Loss function. Interval Estimation: Concept of Confidence Interval and Confidence Limits. Definition of pivotal quantity and its use in obtaining confidence limits. Derivation of 100(1-α) % equal tailed confidence 	_
RUSSTA502		 Minimum Chi-square. BAYESIAN ESTIMATION AND CONFIDENCE INTERVAL Bayesian Estimation: Prior distribution, Posterior distribution, Loss function, Risk function, Bayes' solution under Squared Error Loss Function (SELF) and Absolute Error Loss function. Interval Estimation: Concept of Confidence Interval and Confidence Limits. Definition of pivotal quantity and its use in obtaining confidence limits. Derivation of 100(1-α) % equal tailed confidence interval for the parameters μ, μ1 - μ2 (Population 	_
RUSSTA502		 Minimum Chi-square. BAYESIAN ESTIMATION AND CONFIDENCE INTERVAL Bayesian Estimation: Prior distribution, Posterior distribution, Loss function, Risk function, Bayes' solution under Squared Error Loss Function (SELF) and Absolute Error Loss function. Interval Estimation: Concept of Confidence Interval and Confidence Limits. Definition of pivotal quantity and its use in obtaining confidence limits. Derivation of 100(1-α) % equal tailed confidence interval for the parameters μ, μ1 - μ2 (Population variance(s) known / unknown), σ², σ1²/σ2² (Normal 	_
RUSSTA502		 Minimum Chi-square. BAYESIAN ESTIMATION AND CONFIDENCE INTERVAL Bayesian Estimation: Prior distribution, Posterior distribution, Loss function, Risk function, Bayes' solution under Squared Error Loss Function (SELF) and Absolute Error Loss function. Interval Estimation: Concept of Confidence Interval and Confidence Limits. Definition of pivotal quantity and its use in obtaining confidence limits. Derivation of 100(1-α) % equal tailed confidence interval for the parameters μ, μ1 - μ2 (Population variance(s) known / unknown), σ², σ1²/σ2² (Normal distribution). Confidence Intervals based on asymptotic property of M.L.E. Confidence interval 	_
RUSSTA502		 Minimum Chi-square. BAYESIAN ESTIMATION AND CONFIDENCE INTERVAL Bayesian Estimation: Prior distribution, Posterior distribution, Loss function, Risk function, Bayes' solution under Squared Error Loss Function (SELF) and Absolute Error Loss function. Interval Estimation: Concept of Confidence Interval and Confidence Limits. Definition of pivotal quantity and its use in obtaining confidence limits. Derivation of 100(1-α) % equal tailed confidence interval for the parameters μ, μ1 - μ2 (Population variance(s) known / unknown), σ², σ1²/σ2² (Normal distribution). Confidence Intervals based on asymptotic property of M.L.E. Confidence interval for the parameters of Binomial, Poisson and 	_
RUSSTA502		 Minimum Chi-square. BAYESIAN ESTIMATION AND CONFIDENCE INTERVAL Bayesian Estimation: Prior distribution, Posterior distribution, Loss function, Risk function, Bayes' solution under Squared Error Loss Function (SELF) and Absolute Error Loss function. Interval Estimation: Concept of Confidence Interval and Confidence Limits. Definition of pivotal quantity and its use in obtaining confidence limits. Derivation of 100(1-α) % equal tailed confidence interval for the parameters μ, μ1 - μ2 (Population variance(s) known / unknown), σ², σ1²/σ2² (Normal distribution). Confidence Intervals based on asymptotic property of M.L.E. Confidence interval for the parameters of Binomial, Poisson and Exponential distribution. Equidistant confidence 	_
RUSSTA502		 Minimum Chi-square. BAYESIAN ESTIMATION AND CONFIDENCE INTERVAL Bayesian Estimation: Prior distribution, Posterior distribution, Loss function, Risk function, Bayes' solution under Squared Error Loss Function (SELF) and Absolute Error Loss function. Interval Estimation: Concept of Confidence Interval and Confidence Limits. Definition of pivotal quantity and its use in obtaining confidence limits. Derivation of 100(1-α) % equal tailed confidence interval for the parameters μ, μ1 - μ2 (Population variance(s) known / unknown), σ², σ1²/σ2² (Normal distribution). Confidence Intervals based on asymptotic property of M.L.E. Confidence interval for the parameters of Binomial, Poisson and Exponential distribution. Equidistant confidence interval for θ based on the random sample from 	_
RUSSTA502		 Minimum Chi-square. BAYESIAN ESTIMATION AND CONFIDENCE INTERVAL Bayesian Estimation: Prior distribution, Posterior distribution, Loss function, Risk function, Bayes' solution under Squared Error Loss Function (SELF) and Absolute Error Loss function. Interval Estimation: Concept of Confidence Interval and Confidence Limits. Definition of pivotal quantity and its use in obtaining confidence limits. Derivation of 100(1-α) % equal tailed confidence interval for the parameters μ, μ1 - μ2 (Population variance(s) known / unknown), σ², σ1²/σ2² (Normal distribution). Confidence Intervals based on asymptotic property of M.L.E. Confidence interval for the parameters of Binomial, Poisson and Exponential distribution. Equidistant confidence interval for θ based on the random sample from Uniform distribution (0,θ) by using distribution of 	_
RUSSTA502		 Minimum Chi-square. BAYESIAN ESTIMATION AND CONFIDENCE INTERVAL Bayesian Estimation: Prior distribution, Posterior distribution, Loss function, Risk function, Bayes' solution under Squared Error Loss Function (SELF) and Absolute Error Loss function. Interval Estimation: Concept of Confidence Interval and Confidence Limits. Definition of pivotal quantity and its use in obtaining confidence limits. Derivation of 100(1-α) % equal tailed confidence interval for the parameters μ, μ1 - μ2 (Population variance(s) known / unknown), σ², σ1²/σ2² (Normal distribution). Confidence Intervals based on asymptotic property of M.L.E. Confidence interval for the parameters of Binomial, Poisson and Exponential distribution. Equidistant confidence interval for θ based on the random sample from 	_

RUSSTA502	Unit	LINEAR MODELS	15
	IV	Linear Model $Y_{nX1} = X_{nXp}\beta_{pX1} + e_{nX1}$ where e follows	Lectures
		N(0, σ ² I). Maximum Likelihood and Least square	
		Estimators of β , and σ^2 . Properties of the estimators.	
		Confidence Intervals for β and σ^2 . Testing	
		Significance of the β. Best Linear Unbiased Estimator	
		(BLUE). Gauss -Markoff Theorem for Full rank Model.	~ <
		Properties of the Estimator, Estimation of Linear	. ~ ~
		function of parameters $l'\beta$. Its mean and variance.	160
		Confidence Interval and Testing of significance of $l'\beta$	

Course Code: RUSSTAP501(B)			
Sr. No.	Practicals based on course		
1	MVUE and MVBUE		
2	Method of Estimation -1		
3	Method of Estimation -2		
4	Bayes' Estimation		
5	Confidence Interval		
6	Linear Models		
7	Use of R software		

REFERENCES:

- 1. Hogg R.V., Craig A.T.: Introduction to Mathematical Statistics, Fourth Edition; Collier McMillan Publishers.
- 2. Hogg R.V., Tannis E. A.: Probability and Statistical Inference, Third Edition; Collier McMillan Publishers.
- 3. Rohatgi, V. K, Ehsanes Saleh A.K. Md.: An introduction to Probability Theory and Mathematical Statistics, Second Edition, Wiley series in Probability and Statistics.
- 4. John E. Freund's Mathematical Statistics: I. Miller, M. Miller; Sixth Edition; Pearson Education Inc.
- 5. Hoe IP.G.: Introduction to Mathematical Statistics; Fourth Edition; John Wiley & Sons Inc.

- 6. Gupta S.C., Kapoor V.K.: Fundamentals of Mathematical Statistics; Eighth Edition; Sultan Chand & Sons.
- 7. Kapur J.N., Saxena H.C.: Mathematical Statistics; Fifteenth Edition; S. Chand & Company Ltd.
- 8. Arora Sanjay and BansiLal: New Mathematical Statistics, Satya Prakashan, New Market, New Delhi,5 (1989)
- 9. Pawagi V.R. & Ranade Saroj A.: Statistical Methods Using R Software; Nirali Publications.

Course Code: RUSSTA503

Course Title: BIOSTATISTICS

Academic year 2023-24

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	A student completing this course will be able to:
CO 1	Analyse the spread and impact of epidemics using statistical methods and models.
CO 2	Identify and apply appropriate techniques for epidemiological data analysis, including disease transmission dynamics and risk factor identification.
CO 3	Differentiate between various methods used for potency estimation in bioassays and apply them effectively.
CO 4	Understand the principles of dose-response relationships in bioassays and employ statistical techniques to characterize these relationships.
CO 5	Apply statistical methodologies to design and analyze clinical trials effectively.
CO 6	Differentiate between various types of clinical trial designs and select appropriate methods for specific research objectives.
CO 7	Understand the statistical principles underlying randomization, blinding, and allocation concealment in clinical trials.
CO 8	Apply advanced statistical methods, such as survival analysis or Bayesian approaches, to analyze complex clinical trial data and derive

	meaningful conclusions.
CO 9	Apply statistical methods to assess bioequivalence between two pharmaceutical formulations.
CO 10	Understand the regulatory guidelines and requirements for bioequivalence studies and ensure compliance with relevant standards.
CO 11	Differentiate between various statistical approaches used to evaluate bioequivalence and select appropriate methods based on study design and objectives.
CO 12	Interpret bioequivalence study results and make informed decisions regarding the similarity or differences between drug formulations.

Course	Unit	Course/ Unit Title Credits/			
Code/ Unit		Lectures			
RUSSTA503	Unit	EPIDEMIC MODELS	15		
	I	 The features of Epidemic spread. Definitions of various terms involved. Simple mathematical models for epidemics: Deterministic model without removals, Carrier model. Chain binomial models. Reed - Frost and Greenwood models. Distribution of individual chains and total number of cases. Maximum 	Lectures		
RUSSTA503	Unit	likelihood estimator of 'p' and its asymptotic variance for households of sizes up to 4. General Epidemics and Host and Vector model BIOASSAYS	15		
NUSSTASUS	II	 Meaning and scope of bioassays. Relative potency. Direct assays. Fieller's theorem. Quantal Response assays. Tolerance distribution. Median effective dose ED50 and LD50. Probit analysis. Indirect assays. Dose-response relationship. 	Lectures		
		Condition of similarity and Monotony. Linearizing transformations. Parallel line assays. Symmetrical (2, 2) and (3, 3) parallel line assays. Validity tests using orthogonal contrasts. Point Estimate and Interval Estimate of Relative potency.			
RUSSTA503	Unit	CLINICAL TRIALS: AN INTRODUCTION	15		

	III	Introduction to clinical trials: The need and ethics	Lectures
		of clinical trials. Introduction to ICH E9 guidelines.	
		Common terminology used in clinical trials. Over	
		view of phases (I-IV)	
		Study Protocol, Case record/Report form,	
		Blinding (Single/Double) Randomized controlled (Placebo/Active)	
		controlled), Study Designs (Parallel, Cross Over).	6
		Estimation of Sample Size.	104
		Types of Trials: Inferiority, Superiority and	
		Equivalence, Multicentric Trial.	
		Inclusion/Exclusion Criteria. Statistical tools:	
		Analysis of parallel Design using Analysis of	
		Variance. Repeated Measures ANOVA (Concept	
		only)	
		Concept of odds ratio, Relative Risk.	
		Introduction to Survival Analysis for estimating	
		Median Survival Time. Kaplan Meier approach of	
RUSSTA503	Unit	survival Analysis. BIOEQUIVALENCE	15
100001A000	IV	Definitions of Generic Drug product.	Lectures
		Bioavailability, Bioequivalence,	200141100
		Pharmakokinetic (PK) parameters C _{max} , AUC _t ,	
		AUC _{0-∞} , T _{max} , K _{el} , T _{half} .	
		Estimation of PK parameters using 'time vs.	
		concentration' profiles.	
		Designs in Bioequivalence: Parallel (Analysis), The Man Consequent Three Man Consequents.	
		Two Way Crossover, Three Way Crossover,	
	•	Replicated Crossover (Concept only). Advantages of Crossover design over Parallel	
		design.	
4	0	Analysis of Parallel design using logarithmic	
		transformation (Summary statistics, ANOVA and	
V0		90% confidence interval).	
		Confidence Interval approach to establish	
		bioequivalence (80/125 rule).	

Course Code: RUSSTAP502(A)		
Sr. No.	Practicals based on course	
1	Epidemic models	
2	Direct Assays	
3	Quantal Response Assays	
4	Parallel line Assay	
5	Clinical Trials	
6	Bioequivalence	

REFERENCES:

- Bailey N.T.J.: The Mathematical theory of infectious diseases, Second edition, Charles Griffin and Co. London.
- 2. Das M.N and Giri N.C.: Design and Analysis of Experiments, Second edition, Wiley Eastern
- 3. Finney D.J.: Statistical Methods in Biological Assays, First edition, Charles Griffin and Co. London
- 4. Sanford Bolton and Charles Bon: Pharmaceutical Statistics, Fourth edition, Marcel Dekker Inc.
- 5. Zar Jerrold H.: Biostatistical Analysis, Fourth edition, Pearson's education.
- 6. Daniel Wayne W: Biostatistics- A Foundation for Analysis in the Health Sciences, 7th Edition, Wiley Series in Probability and Statistics.
- 7. Friedman L. M., Furburg C., Demets D. L.: Fundamentals of Clinical Trials, First edition, Springer Verlag.
- 8. Fleiss J. L. The Design and Analysis of Clinical Experiments, Second edition, Wiley and Sons
- 9. Shein-Chung-Chow: Design and Analysis of Bioavailability & Bioequivalence studies, Third Edition, Chapman & Hall/CRC Biostatistics series.
- 10. Glenwalker: Common Statistical Methods for clinical Research

Course Code: RUSSTA504
Course Title: ELEMENTS OF ACTUARIAL SCIENCE

Academic year 2023-24

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	A student completing this course will be able to:
CO 1	Understand the purpose of Mortality Tables and compute the likelihood of survival and death.
CO 2	Distinguish between different types of annuities, assess their worth now and in the future.
CO 3	Explain the need for various assurance plans and determine the premiums for each.

		A / 11 1/ = W	A 114 /
Course	Unit	Course/ Unit Title	Credits/
Code/ Unit			Lectures
RUSSTA504	Unit	MORTALITY TABLES:	15
	I	 Various mortality functions. Probabilities of living and dying. The force of mortality. Estimation of μx from the mortality table. Central Mortality Rate. Laws of mortality: Gompertz's and Makeham's first law. Select, Ultimate and Aggregate mortality tables. Stationary population. Expectation of life and Average life at death. 	Lectures
RUSSTA504	Unit	COMPOUND INTEREST AND ANNUITIES	15
		 Accumulated value and present value, nominal and effective rates of interest. Varying rates of interest. Equation of value. Equated time of payment. Present and accumulated values of annuity certain (immediate and due) with and without deferment period. Present value for perpetuity (immediate and due) with and without deferment Period. Present and accumulated values of (i) increasing annuity (ii) increasing annuity when successive instalments form (i) arithmetic progression (ii) Geometric 	Lectures

		progression (iii) annuity with Frequency different				
		from that with which interest is convertible.				
		Redemption of loan.				
RUSSTA504	Unit	LIFE ANNUITIES:	15			
	III	Present value in terms of commutation functions	Lectures			
		of Life annuities and Temporary life annuities				
		(immediate and due) with and without deferment				
		period.				
		Present values of Variable, increasing life	10%			
		annuities and increasing Temporary life				
		annuities (immediate and due).				
RUSSTA504	Unit	ASSURANCE BENEFITS: 15				
	IV	Present value of Assurance benefits in terms of	Lectures			
		commutation functions of: (i) pure endowment				
		assurance (ii) temporary assurance (iii)				
		endowment assurance (iv) whole life assurance				
		(v) special endowment assurance (vi) deferred				
		temporary assurance (vii) Double Endowment				
		Net premiums: Net level annual premiums				
		(including limited period of payment) for various				
		assurance plans.				
		Office premiums.				

Course Code: RUSSTAP502(B)			
Sr. No.	Practicals based on course		
1	Mortality tables 1		
2	Mortality tables 2		
3	Annuities 1		
4	Annuities 2		
5	Life annuities		
6	Assurance benefits		

REFERENCES:

- 1. Neill A.: Life Contingencies, First edition, Heineman educational books London
- 2. Dixit S.P., Modi C.S., Joshi R.V.: Mathematical Basis of Life Assurance, First edition Insurance Institute of India.
- 3. Gupta S. C. & Kapoor V. K.: Fundamentals of Applied Statistics, Fourth edition, Sultan Chand & Sons.
- 4. Ajaykumar Srivastava and Gorakhnath Agarwal: Mathematical Basis of Life Assurance

Modality of Assessment

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1	Class Test/ Project / Assignment / Presentation	20
2	Class Test/ Project / Assignment / Presentation	20
	TOTAL	40

B) External Examination- 60%- 60 Marks Semester End Theory Examination:

- 1. Duration These examinations shall be of **two hours** duration.
- 2. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions Based on
1	Any two out of A B or C	16	Unit I
2	Any two out of A B or C	16	Unit II
3	Any two out of A B or C	14	Unit III
4	Any two out of A B or C	14	Unit IV
VQ.	TOTAL	60	

Practical Examination Pattern:

Particulars	Marks
Journal	10 x 4 = 40
Total	40

Semester End Practical Examination:

Duration - These examinations shall be of **THREE HOURS** duration.

Particulars	Paper
RUSSTAP501(A) based on RUSSTA501	40 (1.5 hours)
RUSSTAP501(B) based on RUSSTA502	40 (1.5 hours)
RUSSTAP502(A) based on RUSSTA503	40 (1.5 hours)
RUSSTAP502(B) based on RUSSTA504	40 (1.5 hours)
Total	160

(There will be Two question with 4 parts each. Each part will be based on one unit for 10 marks. Student will attempt any one question.)

Overall Examination & Marks Distribution Pattern Semester V

Cours e RUSSTA501		RU	SSTA50	02	RU	SSTA50	03	RU	SSTA50	04	Gra nd Tot al		
	Inter	Exter	Tot	Inter	Exter	Tot	Inter	Exter	Tot	Inter	Exter	Tot	
	nal	nal	al	nal	nal	al	nal	nal	al	nal	nal	al	
Theo y	40	60	10 0	40	60	10 0	40	60	10 0	40	60	10 0	400
Pract cals	i 10	40	50	10	40	50	10	40	50	10	40	50	200

Course Code: RUSSTA601

Course Title: DISTRIBUTION THEORY AND STOCHASTIC PROCESSES

Academic year 2023-24

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	A student completing this course will be able to:
CO 1	Understand and use the concept of generating functions and probability generating functions, and analyze their properties.
CO 2	Understand and apply different stochastic processes and calculate their parameters through derivation.
CO 3	Describe and categorize various fundamental queueing models and compute their performance measures.

Course	Unit	Course/ Unit Title	Credits/
Code/ Unit			Lectures
RUSSTA601	Unit	GENERATING FUNCTIONS	15
		 Definitions of generating function and probability generating function. Expression for mean and variance in terms of generating functions. Definition of a convolution of two or more sequences. Generating function of a convolution. Generating functions of the standard discrete distributions. Relation between: i) Bernoulli and Binomial distributions ii) Geometric and Negative Binomial distributions in terms of convolutions. 	Lectures
RUSSTA601	Unit	STOCHASTIC PROCESSES	15
	II	 Definition of stochastic process. Postulates and difference differential equations for: (i) Pure birth process (ii) Poisson process with initially 'a' members, for a =0 and a >0 (iii) Yule Furry process (iv) Pure death process (v) Death process with μ_n=μ (vi) Death process with μ_n=nμ 	Lectures

		 (vii) Birth and death process (viii) Linear growth model. Derivation of P_n (t), mean and variance where ever applicable. 	
RUSSTA601	Unit	QUEUING THEORY –I	15
	III	Basic elements of the Queuing model.	Lectures
		 Roles of the Poisson and Exponential distributions. Assuming the difference differential equations for birth and death process, derivation of Steady state probabilities for birth and death process. Steady state probabilities and various average characteristics for the following models: (i) (M/M/1) : (GD/∞/∞), Waiting time distributions of (M/M/1)(FCFS/∞/∞) (ii) (M/M/1) : (GD/N/∞) 	
RUSSTA601	Unit	QUEUING THEORY -II	15
	IV	Other queuing models	Lectures
		i) (M/M/c) : (GD/ ∞/ ∞), ii) (M/M/c):(GD/ N /∞),	
		iii) (M/M/∞) : (GD/ ∞ /∞) (iv) Machine Serving	
		model (M/M/C): (GD/ k /k)	

Course Code: RUSSTAP601(A)				
Sr. No.	Practicals based on course			
1	Generating Function			
2	Stochastic Processes			
3	Queuing Theory -1			
4	Queuing Theory -2			
5	Queuing Theory -3			

REFERENCES:

1. Feller W: An introduction to probability theory and it's applications, Volume: 1, Third edition, Wiley Eastern Limited.

- 2. Hogg R. V. & CraigA.T.: Introduction to Mathematical Statistics, Fifth edition, Pearson Education (Singapore) Pvt Ltd.
- 3. Mood A M, Graybill F A, Bose D C: Introduction to the theory of statistics, Third edition, Mcgraw- Hill Series.
- 4. Hogg R. V. and Tanis E.A.: Probability and Statistical Inference, Fourth edition, McMillan Publishing Company
- 5. Gupta S C & Kapoor V K: Fundamentals of Mathematical statistics, Eleventh edition, Sultan Chand & Sons.
- 6. Taha H.A.: Operations Research: An introduction, Eighth edition, Prentice Hall of India Pvt. Ltd.
- 7. Medhi J.: Stochastic Processes, Second edition, Wiley Eastern Ltd.
- 8. Biswas S.: Topics in Statistical Methodology (1992), First edition, Wiley Eastern Ltd.
- 9. Kapur J. N., Saxena H. C.: Mathematical Statistics, Fifteenth edition, S. Chand and Company

Course Code: RUSSTA602

Course Title: TESTING OF HYPOTHESES

Academic year 2023-24

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	A student completing this course will be able to:
CO 1	Distinguish between the Most Powerful Test and Uniformly Most
	Powerful Test.
CO 2	Develop hypotheses testing using Likelihood Ratio Test (LRT).
CO 3	Create Sequential Probability Ratio Tests for Bernoulli, Binomial,
	Poisson, Normal, and Exponential distributions.
CO 4	Differentiate between parametric and non-parametric tests and
0	apply various Non-parametric tests as appropriate.

Course	Unit	Course/ Unit Title	Credits/
Code/ Unit			Lectures

RUSSTA602	Unit	MOST POWERFUL TESTS	15
	I	 Problem of testing of hypothesis. 	Lectures
		• Definitions and illustrations of i) Simple	
		hypothesis ii) Composite hypothesis iii)Null	
		Hypothesis iv) Alternative Hypothesis v)Test of	
		hypothesis vi) Critical region vii) Type I and	
		Type II errors viii) Level of significance ix) p-	_ (
		value x) size of the test xi) Power of the test	
		xii) Power function of a test xiii) Power curve.	10.4
		• Definition of most powerful test of size α for a	
		simple hypothesis against a simple alternative	
		hypothesis. Neyman-Pearson fundamental	
		lemma.	
RUSSTA602	Unit	UNIFORMLY MOST POWERFUL & LIKELIHOOD	15
	II	RATIO TESTS	Lectures
		Definition, Existence and Construction of	
		uniformly most powerful (UMP) test. Likelihood	
		ratio principle.	
		Definition of test statistic and its asymptotic	
		distribution (statement only)	
		• Construction of LRT for the mean of normal	
		distribution for i) known σ^2 ii) unknown σ^2 (two	
		sided alternatives).	
		LRT for variance of normal distribution for	
		i) known μ ii) unknown μ (two sided alternatives	
DUCCTACOO	I I to !4	hypotheses)	45
RUSSTA602	Unit III	SEQUENTIAL PROBABILITY RATIO TEST (SPRT)	15
	""	 Sequential test procedure for testing a simple 	Lectures
	• •	null hypothesis against a simple alternative	
		hypothesis. Its comparison with fixed sample	
4	0	size (Neyman-Pearson) test procedure.	
		 Definition of Wald's SPRT of strength (α, β). 	
~0		Problems based on Bernoulli, Binomial,	
		Poisson, Normal, Exponential distributions.	
		Graphical /tabular procedure for carrying out	
		the tests.	
0.		ASN and OC Function	
RUSSTA602	Unit	NON-PARAMETRIC TESTS	15
	IV	 Need for non-parametric tests. 	Lectures
		• Distinction between a parametric and a non-	
		parametric test.	
		• Concept of a distribution free statistic.	
		Nonparametric tests. (i) Sign test (Single and	

Two samples) (ii) Wilcoxon's signed rank test	
(iii) Median test (iv) Mann-Whitney test (v) Run	
test. (Single and Two samples)	
(vi) Fisher Exact Test (vii) Kruskal Wallis	
ANOVA (viii) Friedman ANOVA	
Assumptions, justification of the test procedure	
for small & large samples.	. (

	Course Code: RUSSTAP601(B)
Sr. No	Practicals based on course
1	Testing of Hypothesis 1
2	Testing of Hypothesis-2
3	SPRT
4	Non-Parametric test-1
5	Non-Parametric test-2
6	Use of R software.

REFERENCES:

- 1. Hogg R.V. and Craig A.T: Introduction to Mathematical Statistics Fourth edition London Macmillan Co. Ltd.
- 2. Hogg R.V. and Tanis E.A.: Probability and Statistical Inference. Third edition Delhi Pearson Education.
- 3. Lehmann, E. L.: Testing of Statistical Hypothesis, Wiley &sons
- 4. Rao, C. R.: Linear Statistical Inference,
- 5. Daniel W. W.: Applied Non Parametric Statistics First edition Boston-Houghton Mifflin Company.
- 6. Wald A.: Sequential Analysis First edition New York John Wiley & Sons
- 7. Biswas S.: Topics in Statistical Methodology. First edition New Delhi Wiley eastern Ltd.
- 8. Gupta S.C. and Kapoor V.K.: Fundamentals of Mathematical Statistics Tenth edition New Delhi S. Chand & Company Ltd.
- 9. Sanjay Aroraand BansiLal: New Mathematical Statistics, Satya Prakashan, New Market, New Delhi, 5(1989).

10. Pawagi V. R. and Ranade Saroj A: Statistical Methods Using R Software. Nirali Publications.

Course Code: RUSSTA603

Course Title: APPLIED STATISTICS-I

Academic year 2023-24

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	A student completing this course will be able to:
CO 1	Calculate the economic order quantity and reorder period for both deterministic and probabilistic inventory models.
CO 2	Optimize the replacement age of an item for various scenarios and differentiate between individual and group replacement policies.
CO 3	Generate random numbers and observations following various probability distributions. Apply Monte Carlo techniques to address problems in Inventory and Queueing Theory.
CO 4	Use the properties of mathematical functions in Economics and understand their relationships.

Course Unit	Course/ Unit Title	Credits/
Code/ Unit		Lectures
RUSSTA603 Unit	INVENTORY CONTROL	15
	Introduction to Inventory Problem	Lectures
	Deterministic Models: Single item static EOQ	
	models for:	
	 Constant rate of demand with instantaneous replenishment, with and without shortages. Constant rate of demand with uniform rate of replenishment, with and without shortages. Constant rate of demand with instantaneous replenishment without shortages, with one and two price breaks. 	
	 Probabilistic models: Single period with 	

		National desired Allegate and	
		> Instantaneous demand (discrete and	
		continuous) without setup cost.	
		Uniform demand (discrete and continuous)	
		without set up cost.	
RUSSTA603	Unit	REPLACEMENT	15
	II	Replacement of items that deteriorate with time	Lectures
		and value of money that remains constant and	. (
		that change with time.	
		Replacement of items that fail completely:	NOX
		Individual replacement and Group replacement	110,
		policies.	
RUSSTA603	Unit	SIMULATION	15
KU331A003			
	III	 Scope of simulation applications. Types of simulation. Monte Carlo Technique of 	Lectures
		Simulation and Bootstrapping.	
		Elements of discrete event simulation.	
		 Generation of random numbers. Sampling from 	
		probability distribution. Inverse method.	
		Generation of random observations from	
		i) Uniform distribution ii) Exponential	
		distribution iii) Gamma distribution iv) Normal	
		distribution.	
		Application of Simulation techniques to real life	
		situations.	
RUSSTA603	Unit	Mathematical Economics:	15
11000171000	IV	Behaviour of Demand and Supply, Demand	Lectures
	"	functions. Cost and Revenue functions. The	Lociales
		elasticity of a function, Elasticity of (i) Demand	
		(ii) Cost.	
		Normal conditions of (i) demand (ii) cost.	
		Features of prefect competition.	
		Monopoly (including effects of taxation and	
		subsidy), Duopoly.	
4	0	Production function. Euler's theorem linear	
		homogenous production functions, Cobb-	
~0		Douglas production function, CES production	
		function.	
41,		The elasticity of substitution.	

Course Code: RUSSTAP602(A)		
Sr. No.	Practicals based on course	

1	Inventory-1
2	Inventory-2
3	Replacement
4	Simulation
5	Mathematical Economics 1
6	Mathematical Economics 2

REFERENCES:

- Vora N. D.: Quantitative Techniques in Management, Third edition, McGraw Hill Companies
- 2. Bannerjee B.: Operation Research Techniques for Management, First edition, Business books
- 3. Bronson R.: Theory and problems of Operations research, First edition, Schaum's Outline series
- 4. Kantiswarup, P.K. Gupta, Manmohan : Operations Research, Twelfth edition, Sultan Chand & sons
- 5. Sharma S. D.: Operations Research, Eighth edition, Kedarnath Ramnath & Co.
- 6. Taha H.A.: Operations Research An Introduction, Prentice Hall of India
- 7. Allen R.G.D.: Mathematical Analysis for Economics
- 8. Henderson J. M. and Quandt R. E.: Micro Economic Theory-A mathematical approach
- 9. Gupta S.C. and Kapoor V. K.: Fundamentals of Applied Statistics

Course Code: RUSSTA604

Course Title: APPLIED STATISTICS-II

Academic year 2023-24

COURSE OUTCOMES:

COURSE	DESCRIPTION	
OUTCOME	A student completing this course will be able to:	
CO 1	Understand the principles and assumptions underlying multiple linear regression analysis.	
CO 2	Identify and evaluate the relationships between multiple independent	

	variables and a dependent variable.
CO 3	Perform model diagnostics and assess the goodness of fit of multiple linear regression models.
CO 4	Understand the fundamental concepts and measures of reliability.
CO 5	Apply statistical methods to assess and analyze reliability data.
CO 6	Evaluate the reliability of systems, components, or processes using appropriate reliability models and techniques.
CO 7	Understand the principles and concepts of time series modeling.
CO 8	Apply various time series analysis techniques, such as decomposition, smoothing, and forecasting methods.
CO 9	Evaluate the stationarity of time series data and implement appropriate transformations if necessary.
CO 10	Understand the principles and concepts of cluster analysis.
CO 11	Identify appropriate clustering techniques based on data characteristics and research objectives.
CO 12	Apply clustering algorithms such as K-means

Course	Unit	Course/ Unit Title	Credits/
Code/ Unit	• 1		Lectures
RUSSTA604	Unit	LINEAR REGRESSION I	15
		 Linear regression model with one or more explanatory variables. Assumptions of the model, Derivation of Ordinary Least Square (OLS) estimators of regression coefficients, (for one and two explanatory variables models). Properties of least square estimators (without proof). Coefficient of determination R² and adjusted R². Procedure of testing: Overall significance of the model Significance of individual coefficients Significance of incremental contribution of explanatory variable for two explanatory variables model. 	Lectures

		 Confidence intervals for the regression coefficients. Multiple Linear Regression with Qualitative Independent Variable. 	
RUSSTA604	Unit	 LINEAR REGRESSION II Autocorrelation: Concept, Detection using Durbin Watson Test, Generalized Least Square (GLS) method. Heteroscedasticity: Concept, Detection using Breusch-Pagan-Godfrey test. Weighted Least Square (WLS) estimators Multicollinearity: Concept, Detection using (i) R square & t ratios (ii) Variance Inflation Factor (VIF), Remedial measures for Multicollinearity: Ridge Regression. Concept of Statistical Outliers, Detection of Influential Observation. Cook's Distance and Influence Plot. Hold Out method for Model Validation. Binary Logistic Regression, Concept of Multinomial and ordinal logistic Step-wise Regression: Concept and Use 	15 Lectures
RUSSTA604	Unit	RELIABILITY	15
	III	Concept of reliability, Hazard-rate. Bath tub curve.	Lectures
		 Failure time distributions: (i) Exponential (ii) Gamma (iii) Weibull (iv) Gumbel. Definitions of increasing (decreasing) failure rate. System Reliability. Reliability of (i) series; (ii) parallel system of independent components having exponential life distributions. Mean Time to Failure of a system (MTTF). 	
RUSSTA604	Unit	CLUSTER ANALYSIS AND TIME SERIES	15
	IV	MODELS • Cluster Analysis: Introduction to cluster analysis	Lectures
		 Cluster Analysis: Introduction to cluster analysis, difference between k-means and hierarchical methods of clustering. Applications of clustering. Use of R to carry out k-means clustering. Time Series Models: Concept of stationary time series (graphical and DF test, Methods of converting non-stationary time series into stationary time series by differencing method and 	

detrending method, introduction to Box-Jenkin's	
ARIMA model (5 steps)	

	Course Code: RUSSTAP602(B)
Sr. No.	Practicals based on course
1	Multiple regression model -1
2	Multiple regression model- 2
3	Use of R in MLR, Binary Logistic Regression
4	Reliability
5	Cluster Analysis
6	Time Series Regression-ARMA/ ARIMA

REFERENCES:

- 1. Gupta S. C. & Kapoor V. K.: Fundamentals of Applied Statistics, Fourth edition, Sultan Chand & Sons.
- 2. Sharma J. K.: Operations Research Theory and Application, Third edition, Macmillan India Ltd.
- 3. Spiegel M.R.: Theory and Problems of Statistics, Fourth edition, Schaum's Outline Series Tata McGraw Hill
- 4. Taha Hamdy A.: Operations Research: Eighth edition, Prentice Hall of India Pvt. Ltd
- VoraN. D.: Quantitative Techniques in Management, Third edition, McGraw Hill Companies
- Barlow R.E. and Prochan Frank: Statistical Theory of Reliability and Life Testing Reprint, First edition, Holt, Reinhart and Winston
- 7. Mann N.R., Schafer R.E., Singapurwalla N.D.: Methods for Statistical Analysis of Reliability and Life Data, First edition, John Wiley & Sons.
- 8. Damodar Gujrathi, Sangetha S: Basic Econometrics, Fourth edition, McGraw-Hill Companies.
- 9. Greene William: Econometric Analysis, First edition, McMillan Publishing Company.

10. Johnson and Richen: Applied Multivariate Statistical Analysis.

Modality of Assessment

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1	Class Test/ Project / Assignment / Presentation	20
2	Class Test/ Project / Assignment / Presentation	20
	TOTAL	40

B) External Examination- 60%- 60 Marks Semester End Theory Examination:

- 1. Duration These examinations shall be of **two hours** duration.
- 2. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions Based on
1	Any two out of A B or C	16	Unit I
2	Any two out of A B or C	16	Unit II
3	Any two out of A B or C	14	Unit III
4	Any two out of A B or C	14	Unit IV
	TOTAL	60	

Practical Examination Pattern:

Particulars	Marks

Journal	10 x 4			
Total	40			

A) External Examination: 60%- 60 Marks (Per Practical Paper) Semester End Practical Examination:

Duration - These examinations shall be of **THREE HOURS** duration.

Particulars	Paper
RUSSTAP501(A) based on RUSSTA501	40 (1.5 hours)
RUSSTAP501(B) based on RUSSTA502	40 (1.5 hours)
RUSSTAP502(A) based on RUSSTA503	40 (1.5 hours)
RUSSTAP502(B) based on RUSSTA504	40 (1.5 hours)
Total	160

(There will be Two question with 4 parts each. Each part will be based on one unit for 10 marks. Student will attempt any one question.)

Overall Examination & Marks Distribution Pattern Semester VI

Cours e	RUSSTA601			RUSSTA602		RUSSTA603			RUSSTA604			Gra nd Tot al	
	Inter nal	Exter nal	Tot al										
Theor y	40	60	10 0	400									
Practi cals	10	40	50	10	40	50	10	40	50	10	40	50	200
