Resolution No.: AC/II(24-25).3.RUS21

S. P. Mandali's Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for

Program Code For Semester 6:

Data Analysis Using Python(RUSACDA)

(Credit Based Semester and Grading System for academic year 2024-25)

GRADUATE ATTRIBUTES

GA	GA Description
	A student completing Bachelor's/Master's Degree in science
	program will be able to:
GA 1	Recall and explain acquired scientific knowledge in a
	comprehensive manner and apply the skills acquired in their
	chosen discipline. Interpret scientific ideas and relate its
	interconnectedness to various fields in science.
GA 2	Evaluate scientific ideas critically, analyse problems, explore
	options for practical demonstrations, illustrate work plans and
	execute them, organise data and draw inferences.
GA 3	Explore and evaluate digital information and use it for knowledge
	upgradation. Apply relevant information so gathered for analysis
	and communication using appropriate digital tools.
GA 4	Ask relevant questions, understand scientific relevance,
	hypothesize a scientific problem, construct and execute a project
	plan and analyse results.
GA 5	Take complex challenges, work responsibly and independently,
	as well as in cohesion with a team for completion of a task.
	Communicate effectively, convincingly and in an articulate
	manner.
GA 6	Apply scientific information with sensitivity to values of different
	cultural groups. Disseminate scientific knowledge effectively for
	upliftment of the society.
GA 7	Follow ethical practices at work place and be unbiased and
	critical in interpretation of scientific data. Understand the
	environmental issues and explore sustainable solutions for it.
GA 8	Keep abreast with current scientific developments in the specific
	discipline and adapt to technological advancements for better
	application of scientific knowledge as a lifelong learner.

PROGRAM OUTCOMES

РО	Description				
	A student completing Bachelor's Degree in science program in				
	the subject of Elements of Operations Research (AC) (Semester				
	5) / Data Analysis using Python(AC)(Semester 6) will be able to:				
PO 1	Understand, condense, visualize, analyze and interpret various data types				
	generated in various scenarios of scientific, industrial, or social problems.				
PO 2	Apply Statistical tools for data analysis.				
PO 3	Pursue their higher education programs leading to post-graduate and/or				
	doctoral degrees in Statistics, Data Science, Business Analytics,				
	Biostatistics, Econometrics, Management Studies.				
PO 4	Compete globally to enter into promising careers.				
PO 5	Make a pathway to a range of traditional avenues in Academia and Industry,				
	Govt. Service, IAS, Indian Statistical/ Economic Services, Industries,				
	Commerce, Investment Banking, Banks and Insurance Sectors, CSO and				
	NSSO, Research Personnel/Investigator in Govt. organizations such as				
	NCAER, IAMR, ICMR, Statistical and Economic Bureau & various PSUs.,				
	Market Research, Actuarial Sciences, Biostatistics, Demography etc.				
PO 6	Seek employment or self-employment in different sectors like Stock trading,				
	Pharmaceutical sector, Sports, Politics, Business, Financial services and				
	Media Industry.				

COURSE OUTLINE

YEAR	SEMESTER	COURSE CODE	COURSE TITLE	CREDITS
TYBSc	VI	RUSACDA601	DATA ANALYSIS USING PYTHON	2
TYBSc	Vt	RUSACDAP601	PRACTICAL BASED ON RUSACDA601	2

Course Code: RUSACDA601

Course Title: DATA ANALYSIS USING PYTHON

Academic year 2024-25

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	A student completing this course will be able to:
CO 1	Understand the foundational concepts of Python programming, including
	syntax, data types, control structures, and functions.
CO 2	Develop the ability to write Python code to perform statistical analysis,
	including descriptive statistics, hypothesis testing.
CO 3	Utilize Python programming skills to address real-world statistical
	problems, also employ Python libraries and tools to manipulate data, conduct exploratory data analysis, and visualize data.
	Conduct exploratory data analysis, and visualize data.

Learning Outcomes:

Students should be able to

- Handle data files in Python
- Describe Numpy, Pandas, Strings, List, Tuples and Dictionaries in Python
- Express different decision making statements and Functions
- Draw various types of graphs and diagrams using python
- Apply python to small sample test and large sample test

DETAILED SYLLABUS

Unit	\$	Title: - Data Analysis using Python	No. of lectures
Unit 1		Introduction to PYTHON Software	15
•	1.1	Python Setup	
		Python Arithmetic: Basic operators	
	1.2	Basic Data Types, Variables, Lists, Tuples and Strings,	
		Dictionaries and sets	
		Derive new variable/function	
		Summary statistics	
Unit 2		Numpy, Pandas and Data Exploration	15
	2.1	numpy arrays: Creating arrays crating n-dimensional arrays using np.array and array operations(indexing and slicing, transpose, mathematical operations)	
		pandas data frames: Creating series and data frames and	

		Operations on series and data frames	
		Reading and writing data: From and to Excel and CSV files.	
		Merging, sorting, sub-setting of Data files	
	2.2	Control statements: if, if-else, if-elif, while loop, for loop	
		Defining functions: def statement	
		Text data operations: len, upper, lower, slice, replace, contains, Frequency Tables	.\0
Unit 3		Descriptive statistics and Statistical Methods	15
	3.1	Plotting: using "matplotlib" (Histograms, Box plots, Scatter plot, Barplot, Line plot)	9.
		Descriptive Statistics: mean, median, mode, min, max, quantile, standard deviation, variance, skew, kurtosis, correlation	
		Probability distributions: (using scipy.stats) computations of probabilities, Cumulative probabilities, quantiles and drawing random sample using functions for following distributions:	
	3.2	Simulation from distributions, Binomial, Poisson, Hyper geometric, Normal, Exponential, Uniform, Graphs of pmf/pdf by varying parameters for above distributions	
Unit 4		Inferential Statistics	15
	4.1	Hypothesis testing and T-Tests: (using scipy.stats, math) Large sample test, ttest_1sample, ttest_ind(2 sample test), ttest_rel(paired), Type I and Type II error	
	4.2	Chi-square tests: (using scipy.stats) chisquare, chi2	
		ANOVA: (using scipy.stats) f_oneway	
	4.3	Linear regression: from sklearn import linear model and use linear model. Linear regression function.	

DISTRIBUTION OF TOPICS FOR PRACTICALS

Course Code RUSACDAP601			
Sr. No Practical based on course			
1	Python basics on data types		
2	Descriptive Statistics		
3	Probability Distributions: Discrete		

4	Probability Distributions: Continuous
5	Data visualization
6	Testing of Hypothesis
7	ANOVA
8	Regression analysis

REFERENCES

- Python for Data Analysis by O'Reilly Media (Second Edition) (2017)
- How to think like a computer scientist learning with Python by Allen Downey. (2002)
- Python for Data Analysis by Armando Fernandgo. (2017)

Modality of Assessment

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1	Class Test/ Project / Assignment / Presentation	20
2	Class Test/ Project / Assignment / Presentation	20
	TOTAL	40

B) External Examination- 60% - 60 Marks Semester End Theory Examination:

- 1. Duration These examinations shall be of **two hours** duration.
- 2. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions Based on
1	Any TWO subparts out of Three subparts	16	Unit I
2	Any TWO subparts out of Three subparts	14	Unit II
3	Any TWO subparts out of Three subparts	16	Unit III

	TOTAL	60	
4	Any TWO subparts out of Three subparts	14	Unit IV

Semester End Practical Examination Pattern:

Particulars	Marks
Journal	20
Practical	80
Total	100

External Examination: 80 Marks

There will be Two question with 4 parts each. Each part will be based on one unit for 20 marks. Student will attempt ANY ONE question.

Duration - These examinations shall be of **THREE HOURS** duration.

Overall Examination & Marks Distribution Pattern

Semester VI

Course	RUSACDA601		
	Internal	External	Total
Theory	40	60	100
Practical		100	100