Resolution No.: AC/II(22-23).3.RUA14

S. P. Mandali's

Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for

Program: B. A.

Program Code: (STATISTICS) RUASTA

(Choice Based Credit System for academic year 2023–2024)

GRADUATE ATTRIBUTES

S. P. Mandali's Ramnarain Ruia Autonomous College has adopted the Outcome Based Education model to make its science graduates globally competent and capable of advancing in their careers. The Bachelors Program in Science also encourages students to reflect on the broader purpose of their education.

GA	GA Description
	A student completing Bachelor's Degree in Arts program will be able to:
GA 1	Demonstrate understanding and skills of application of knowledge of historical
	and contemporary issues in the social and linguistic settings with a
	transdisciplinary perspective to make an informed judgement.
GA 2	Analyse and evaluate theories of individual and social behaviour in the familiar
	contexts and extrapolate to unfamiliar contexts in order to resolve contemporary
	issues.
GA 3	Effectively and ethically use concepts, vocabularies, methods and modern
	technologies in human sciences to make meaningful contribution in creation of
	information and its effective dissemination
GA 4	Explore critical issues, ideas, phenomena and debates to define problems or to
U/ I	formulate hypotheses; as well as analyse evidences to formulate an opinion,
	identify strategies, evaluate outcomes, draw conclusions and/or develop and
	implement solutions.
GA 5	Demonstrate oral and written proficiency to analyse and synthesise information
	and apply a set of cognitive, affective, and behavioral skills to work individually
	and with diverse groups to foster personal growth and better appreciate the
	diverse social world in which we live.
GA 6	Develop a clear understanding of social institutional structures, systems,
2	procedures, and policies existing across cultures, and interpret, compare and
	contrast ideas in diverse social- cultural contexts, to engage reasonably with
0.	diverse groups.
GA 7	React thoughtfully with emotional and moral competence to forms of expressive
	direct action and apply social strategies toward eradicating threats to a
	democratic society and a healthy planet.

Articulate and apply values, principles, and ideals to the current societal
challenges by integrating management and leadership skills to enhance the
quality of life in the civic community through actions that enrich individual lives
and benefit the community.
Recognize and appreciate the diversity of human experience and thought, and
apply intellect and creativity to contemporary scenario, to promote individual
growth by practicing lifelong learning.

PROGRAM OUTCOMES

РО	Description
	A student completing Bachelor's Degree in Arts program in
	the subject of Statistics will be able to:
PO 1	Understand, condense, visualize, analyze and interpret various data
	types generated in various scenarios of scientific, industrial, or social
	problems.
PO 2	Apply Statistical tools for data analysis.
PO 3	Pursue their higher education programs leading to post-graduate
	and/or doctoral degrees in Statistics, Data Science, Business
	Analytics, Biostatistics, Econometrics, Management Studies.
PO 4	Compete globally to enter into promising careers.
PO 5	Make a pathway to a range of traditional avenues in Academia and
	Industry, Govt. Service, IAS, Indian Statistical/ Economic Services,
	Industries, Commerce, Investment Banking, Banks and Insurance
)	Sectors, CSO and NSSO, Research Personnel/Investigator in Govt.
	organizations such as NCAER, IAMR, ICMR, Statistical and Economic
	Bureau & various PSUs., Market Research, Actuarial Sciences,
	Biostatistics, Demography etc.
PO 6	Seek employment or self-employment in different sectors like Stock
	trading, Pharmaceutical sector, Sports, Politics, Business, Financial

services and Media Industry.

PROGRAM OUTLINE

YEAR	SEM	COURSE CODE	COURSE TITLE	CREDITS
TYBA	V	RUASTA501	PROBABILITY DISTRIBUTIONS	3
ТҮВА	V	RUASTA502	THEORY OF SAMPLING	3
ТҮВА	V	RUASTA503	ELEMENTS OF ACTUARIAL SCIENCE	2.5
ТҮВА	V	RUASTAP501	Practical based on RUASTA501, RUASTA502 & RUASTA503	3
ТҮВА	VI	RUASTA601	PROBABILITY AND SAMPLING DISTRIBUTIONS	3
ТҮВА	VI	RUASTA602	ANALYSIS OF VARIANCE & DESIGN OF EXPERIMENTS	3
ТҮВА	VI	RUASTA603	APPLIED STATISTICS	2.5
ТҮВА	VI	RUASTAP601	Practical based on RUASTA601, RUASTA602 & RUASTA603	3
S.C.	0		·	

Course Code: RUASTA501 Course Title: PROBABILITY DISTRIBUTIONS

Academic year 2023-24

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	A student completing this course will be able to:
CO 1	Identify various Standard Discrete Probability Distributions and their use.
CO 2	Distinguish between different types of Standard Discrete Probability Distributions and prove their properties and apply those for problem solving.
CO 3	Recognize the underlying distribution in different situations.

Course Code/	Unit	Course/ Unit Title	Credits/
Unit RUASTA501	Unit I	 Univariate Random Variables (Discrete and Continuous): Moment Generating Function, Cumulant generating Function-Their important properties. Relationship between moments and cumulants and their uses. Characteristic Function- Its properties 	Lectures 15 Lectures
RUASTA501	Unit	 (without proof). Transformation of random Variable Standard Discrete Probability Distributions: 	15
annar		 Uniform, Bernoulli, Binomial, Poisson, Geometric, Negative Binomial & Hypergeometric distributions. The following aspects of the above distributions (wherever applicable) to be discussed: Mean, Mode and Standard deviation. Moment Generating Function, Cumulant Generating Function, Additive property, Recurrence relation for central Moments, Skewness and Kurtosis (without proof), Limiting distribution. 	Lectures
RUASTA501	Unit	Bivariate Probability Distributions:	15
	III	 Joint Probability mass function for Discrete random variables, Joint Probability density function for continuous random variables. Their properties. 	Lectures

with illustrations.	11000
 Marginal and conditional Distributions. Independence of Random Variables. Conditional Expectation & Variance. Regression Function. Coefficient of Correlation. Transformation of Random Variables and Jacobian of transformation 	

	Course Code RUASTAP501(A)
Sr. No.	Practicals based on course
1	Moment Generating Function, Moments.
2	Cumulant generating Function, Cumulants, Characteristic function.
3	Standard Discrete Distributions
4	Fitting Standard Discrete Distributions.
5	Bivariate Probability Distributions, Marginal & Conditional distributions, Conditional Mean, Conditional Variance, Correlation
6	Transformation of discrete & continuous random variables.

REFERENCES:

- 1. A. M. Mood, F.A. Graybill, D. C. Boyes, Third Edition; McGraw-Hill Book Company. Introduction to the theory of statistics
- 2. R.V. Hogg, A.T. Craig; Fourth Edition; Collier McMillan Publishers: Introduction to **Mathematical Statistics**
- 3. R.V. Hogg, E. A. Tannis, Third Edition; Collier McMillan Publishers: Probability and **Statistical Inference**
- 4. J. Miller, M. Miller; Sixth Edition; Pearson Education Inc.: John E. Freund's Mathematical Statistics
- 5. P.G. Hoel; Fourth Edition; John Wiley & Sons Inc.: Introduction to Mathematical Statistics
- 6. S.C. Gupta, V.K. Kapoor; Eighth Edition; Sultan Chand & Sons.: Fundamentals of Mathematical Statistics

colle

- 7. J.N. Kapur, H.C. Saxena; Fifteenth Edition; S. Chand & Company Ltd.: Mathematical Statistics
- 8. J. Medhi; Second edition; Wiley Eastern Ltd.: Statistical Methods: An Introductory Text
- 9. A.M. Goon, M.K. Gupta, B. DasGupta; Third Edition; The World Press Pvt. Ltd.: An Outline of Statistical Theory Vol. 1

Course Code: RUASTA502 Course Title: THEORY OF SAMPLING Academic year 2023-24

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	A student completing this course will be able to:
CO 1	Understand the importance and use of sampling and its various methods.
CO 2	Calculate population parameters using Simple Random Sampling, Stratified Sampling, and Systematic Sampling techniques.
CO 3	Differentiate between types of probability sampling methods.
CO 4	Apply Ratio and Regression methods of estimation to incorporate auxiliary information into surveys.

Course Code/ Unit	Unit	Course/ Unit Title	Credits/ Lectures
RUASTA502	Unit	Concepts:	15
Sour.	I	 Population, Population unit, Sample, Sample unit, Parameter, Statistic, Estimator, Bias, Unbiasedness, Mean square error & Standard error. Census survey, Sample Survey. Steps in conducting a sample survey. Concepts of Sampling and Non-sampling errors. Concepts and methods of Probability and Non- Probability sampling. 	Lectures

		Simple Random Sampling (SRS):	
		 Description of Simple Random Sampling with & 	
		without replacement.	
		 Lottery method & use of Random numbers to 	
		select Simple random sample.	
		 Estimation of population mean & total. Expectation 	
		& Variance of the estimators, Unbiased estimator	. 0
		of variance of these estimators.	6
		 Estimation of population proportion. Expectation & 	
		Variance of the estimators,	
		 Unbiased estimator of variance of these 	\sim
			\mathbf{S}
		estimators.	
		Estimation of Sample size based on a desired	
		accuracy in case of SRS for variables & attributes.	
RUASTA502	Unit	Stratified Sampling:	15
	II	Need for Stratification of population with suitable	Lectures
		examples. Description of Stratified Random	
		Sample.	
		 Advantages of stratified random Sampling. 	
		Stratified Random Sampling:	
		 Estimation of population mean & total in case of 	
		Stratified Random Sampling (WOR within each	
		stratum). Expectation & Variance of the unbiased	
		estimators, Unbiased estimators of variances of	
		these estimators.	
		 Equal Allocation, Proportional allocation, Optimum 	
		allocation with and without varying costs.	
		 Comparison of Simple Random Sampling, 	
		Stratified Random Sampling using	
		 Proportional allocation & Neyman allocation 	
RUASTA502	Unit	Ratio & Regression Estimation assuming	15
	III	SRSWOR:	Lectures
~0		Ratio Estimators for population Ratio, Mean &	
		Total. Expectation & MSE of the Estimators.	
		Estimators of MSE. Uses of Ratio Estimator.	
		Regression Estimators for population Mean &	
0		Total. Expectation & Variance of the Estimators	
		assuming known value of regression coefficient	
		ʻb'.	
		 Estimation of 'b'. Resulting variance of the 	
		Ũ	
		estimators. Uses of regression	
		estimators. Uses of regressionEstimator. Comparison of Ratio, Regression &	

Systematic sampling: Estimator of Population Mean and its Variance.
Comparison of Systematic Sampling with Simple Random sampling
 Introduction to Cluster sampling & Two Stage sampling with suitable illustrations.

	Course Code RUASTAP501(B)
Sr. No.	Practicals based on course
1	Designing of Questionnaire.
2	Simple Random Sampling for Variables.
3	Simple Random Sampling for Attributes.
4	Estimation of Sample Size in Simple Random Sampling.
5	Stratified Random Sampling.
6	Ratio Estimation- Regression Estimation.
7	Systematic Sampling

REFERENCES:

- 1. W.G. Cochran; 3rd Edition; Wiley (1978): Sampling Techniques
- 2. M. N. Murthy; Statistical Publishing Society. (1967): Sampling Theory and methods
- 3. Des Raj; McGraw Hill Series in Probability and Statistics. (1968): Sampling Theory
- 4. P.V. Sukhatme and B.V. Sukhatme; 3rd Edition; Iowa State University Press (1984): Sampling Theory of Surveys with Applications
- 5. S. C. Gupta and V.K. Kapoor; 3rd Edition; Sultan Chand and Sons (2001): Fundamentals of Applied Statistics
- 6. Daroga Singh, F.S.Chaudhary, Wiley Eastern Ltd. (1986): Theory and Analysis of Sample Survey Designs:
- 7. S. Sampath, Second Edition (2005), Narosa: Sampling Theory and Methods
- 8. Parimal Mukhopadhyay, (1998), Prentice Hall Of India Pvt. Ltd.: Theory and Methods of Survey Sampling

Course Code: RUASTA503

Course Title: ELEMENTS OF ACTUARIAL SCIENCE

Academic year 2023-24

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	A student completing this course will be able to:
CO 1	Understand the purpose of Mortality Tables and compute the
	likelihood of survival and death.
CO 2	Distinguish between different types of annuities, assess their worth
	now and in the future.
CO 3	Explain the need for various assurance plans and determine the
	premiums for each.

Course Code/	Unit	Course/ Unit Title	Credits/
Unit			Lectures
RUASTA503	Unit	MORTALITY TABLES:	15
		 Various mortality functions. Probabilities of living and dying. The force of mortality. Estimation of µx from the mortality table. Central Mortality Rate. Laws of mortality: Gompertz's and Makeham's first law. Select, Ultimate and Aggregate mortality tables. Stationary population. Expectation of life and Average life at death. 	Lectures
RUASTA503	Unit	COMPOUND INTEREST AND ANNUITIES	15
	II	CERTAIN:	Lectures
		 Accumulated value and present value, nominal and effective rates of interest. Varying rates of interest. Equation of value. Equated time of payment. Present and accumulated values of annuity certain (immediate and due) with and without deferment period. 	

		 Present value for perpetuity (immediate and due) with and without deferment Period. Present and accumulated values of (i) increasing annuity (ii) increasing annuity when successive instalments form (i) arithmetic progression (ii) Geometric progression (iii) annuity with Frequency different from that with which interest is convertible. Redemption of Ioan.
RUASTA503	Unit	 LIFE ANNUITIES AND ASSURANCE BENEFITS: Present value in terms of commutation functions of Life annuities and Temporary life annuities (immediate and due) with and without deferment period. Present values of Variable, increasing life annuities and increasing Temporary life annuities (immediate and due). Present value of Assurance benefits in terms of commutation functions of: (i) pure endowment assurance (ii) temporary assurance (iii) endowment assurance (iv) whole life assurance (v) special endowment assurance (vi) deferred temporary assurance (vii) Double Endowment Net premiums: Net level annual premiums (including limited period of payment) for various assurance plans. Office premiums.

	Course Code: RUASTAP501(C)
Sr. No.	Practicals based on course
1	Mortality tables 1
2	Mortality tables 2
3	Annuities 1
4	Annuities 2
5	Life annuities
6	Assurance benefits

REFERENCES:

1. Neill A. : Life Contingencies, First edition, Heineman educational books London

- 2. Dixit S.P., Modi C.S., Joshi R.V.: Mathematical Basis of Life Assurance, First edition Insurance Institute of India.
- 3. Gupta S. C. & Kapoor V. K.: Fundamentals of Applied Statistics, Fourth edition, Sultan Chand & Sons.
- 4. Ajaykumar Srivastava and Gorakhnath Agarwal: Mathematical Basis of Life Assurance

Modality of Assessment

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1	Class Test/ Project / Assignment / Presentation	20
2	Class Test/ Project / Assignment / Presentation	20
	TOTAL	40

B) External Examination- 60%- 60 Marks Semester End Theory Examination:

- 1. Duration These examinations shall be of **two hours** duration.
- 2. Theory question paper pattern:

Paper Pattern:

	Question	Options	Marks	Questions Based on
		Any 2 out of 3 sub-parts	20	Unit I
0	2	Any 2 out of 3 sub-parts	20	Unit II
2	3	Any 2 out of 3 sub-parts	20	Unit III
		TOTAL	60	

Practical Examination Pattern:

A) Internal Examination: 40%- 40 Marks

Marks	
5	
15	
20	
-	5 15

B) External Examination: 60%- 60 Marks

Semester End Practical Examination:

Duration - These examinations shall be of one and half hour duration.

Particulars	Paper
Exam (There shall be Three COMPULSORY Questions of 10 marks each with internal choice)	30
Total	30

Overall Examination & Marks Distribution Pattern

Semester V

Course	RUASTA501			RI	JASTA502		RI	JASTA503		Grand Total
	Internal	External	Total	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	40	60	100	300
Practicals	20	30	50	20	30	50	20	30	50	150

Course Code: RUASTA601

Course Title: PROBABILITY AND SAMPLING DISTRIBUTIONS

Academic year 2023-24

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	A student completing this course will be able to:
CO 1	Know different types of Standard Continuous Probability Distributions and their importance.

60

CO 2	Differentiate between various Standard Continuous Probability Distributions and use their properties for solving various problems.
CO 3	Implement Exact Sampling distribution methods.

Course Code/	Unit	Course/ Unit Title	Credits/
Unit			Lectures
RUASTA601	Unit	Standard Continuous	Probability 15
NUAUTAUUT	1	Distributions:	Lectures
	•	Rectangular, Triangular,	Exponential,
		Gamma (with Single & Doub	
		Beta (Type I & Type II).	
		• The following aspects of	the above
		distributions (wherever appli	
		discussed	
		• Mean, Median, Mode & Stand	lard deviation.
		Moment Generating Funct	
		property, Cumulant Generat	
		Skewness and Kurtosis (w	
		Interrelation between the distrik	
		Normal Distribution:	
		• Mean, Median, Mode, Stand	ard deviation,
		Moment Generating function	n, Cumulant
		Generating function, Moments	s &Cumulants
		(up to fourth order). Recurren	
	6	central moments, skewness& I	
		absolute deviation. Distribut	
		function of independent Nor	nal variables.
	\sim	Fitting of Normal Distribution.	
.0		Central Limit theorem for	I.I.d. random
		variables.	
		Log Normal Distribution: Deriv	ation of mean
RUASTA601	Unit	& variance.	15
RUASTAOUT		Chi-Square Distribution:	
\sim	II	Concept of degrees of freedom Modian Mode & Standard dayi	
		Median, Mode & Standard devi	
S		generating function, Cumulant g function. Additive property, Dist	
		sum of squares of independent	
		Normal variables. Sampling dis	
		sample mean and sample varia	
		independence for a sample dra	
		Normal distribution (without pro	
		Applications of Chi-Square:	

		variance of a Normal population.	
		Test for goodness of fit & Test for	
		independence of attributes (derivation of test	
		statistics is not expected).	
		, ,	
RUASTA601	Unit	t-distribution:	15
		 Mean, Median, Mode & Standard deviation. Derivation of t distribution using Fisher's t. Student's t. Asymptotic properties. Applications of t: Confidence interval for: Mean of Normal population, difference between means of two independent Normal populations having the same variance. Test of significance of: mean of a Normal population, difference in means of two Normal populations (based on: (i) independent samples with equal variances. (Effect Size, Cohen's d) (ii) dependent samples). F-distribution: Mean, Mode & Standard deviation. Distribution of: reciprocal of an F variate, Ratio of two independent Chi- squares divided by their respective degrees of freedom. Interrelationship of F with: t- distribution, Chi-square distribution & Normal distribution. 	Lectures
		 Applications of F: Test for equality of variances of two independent Normal populations. 	

	Course Code: RUASTAP601(A)					
Sr. No.	Practicals based on course					
G	Standard Continuous distributions.					
2	Normal Distribution					
3 Central Limit Theorem						
4	Chi Square distribution					
5	t distribution					

6	F distribution
7	Practical using Excel/R software

REFERENCES:

- 1. A M Mood, F.A. Graybill, D C Boyes; Third Edition; McGraw-Hill Book Company.: Introduction to the theory of statistics
- R.V.Hogg, A.T. Craig; Fourth Edition; Collier McMillan Publishers.: Introduction to Mathematical Statistics
- 3. R.V.Hogg, E. A.Tannis, Third Edition; Collier McMillan Publishers.: Probability and Statistical Inference
- 4. I. Miller, M. Miller; Sixth Edition; Pearson Education Inc.: John E. Freund's Mathematical Statistics
- 5. P.G. Hoel; Fourth Edition; John Wiley & Sons Inc.: Introduction to Mathematical Statistics
- 6. S.C. Gupta, V.K. Kapoor; Eighth Edition; Sultan Chand & Sons.: Fundamentals of Mathematical Statistics
- 7. J.N. Kapur, H.C. Saxena; Fifteenth Edition; S. Chand & Company Ltd.: Mathematical Statistics
- 8. J. Medhi; Second edition; Wiley Eastern Ltd.: Statistical Methods- An Introductory Text
- 9. A.M. Goon, M.K. Gupta, B. DasGupta; Third Edition; The World Press Pvt. Ltd.: An Outline of Statistical Theory Vol. 1

Course Code: RUASSTA602

Course Title: ANALYSIS OF VARIANCE & DESIGNS OF EXPERIMENTS

Academic year 2023-24

COURSE OUTCOMES:

COURSE	DESCRIPTION		
OUTCOME	A student completing this course will be able to:		
CO 1	Explain and illustrate the analysis of one-way and two-way classification.		
CO 2	Define key concepts in Experimental Design, outline the principles of experimental design, and enumerate various types of experimental		

	designs			
CO 3	Examin	e Completely Randomized Designs (C	RD), Randomi	zed Block
	Designs	(RBD), and Least Significant Differen	nce (LSD) using	g Analysis of
	Varianc	e (ANOVA).		
CO 4	Create f of confo	actorial experiments, analyze their resounding.	sults, and gras	o the concept
'		DETAILED SYLLABUS	C	des
Course Code/	Unit	Course/ Unit Title		Credits/
Unit			S	Lectures
RUASSTA602	Unit	Analysis of Variance		15

[Course Code/	Unit	Course/ Unit Title	Credits/
	Unit		S	Lectures
Ī	RUASSTA602	Unit	Analysis of Variance:	15
		I	 Introduction, Uses, Cochran's Theorem 	Lectures
			(Statement only).	
			 One-way classification with equal & unequal 	
			observations per class,	
			 Two-way classification with one observation 	
			per cell.	
			 For both the cases: Mathematical Model, 	
			Assumptions, Expectation of various sums of	
			squares, F- test, Analysis of variance table.	
			Least square estimators of the parameters,	
			Expectation and Variance of the estimators,	
			Estimation of linear contrasts, Standard Error	
			and Confidence limits Testing for significance	
			of elementary linear contrasts.	
	RUASSTA602	Unit	Design of Experiments:	15
		л,	 Concepts of Experiments, Experimental unit, 	Lectures
		G	Treatment, Yield, Block, Replicate,	
		2	Experimental Error, Precision.	
			 Principles of Design of Experiments: 	
			Replication, Randomization & Local Control.	
			 Efficiency of design D₁ with respect to design 	
	0		D ₂ .	
			 Choice of size, shape of plots & blocks in 	
			agricultural & non-agricultural experiments.	
			Completely Randomized Design (CRD) &	
			Randomized Block Design (RBD):	
			Mathematical Model, Assumptions,	
			Expectation of various sums of squares, F-	
l			test, Analysis of variance table.	

r		· · · · · · · · · · · · · · · · · · ·
	Unit	 Least square estimators of the parameters, Variance of the estimators, Estimation of linear contrasts, Standard Error and Confidence limits Testing for significance of elementary linear contrasts. Efficiency of RBD relative to CRD. Missing plot technique for one missing observation in case of CRD, RBD
RUASSTA602		Latin Square Design (LSD):
	111	 Mathematical Model, Assumptions, Expectation of various sums of squares, F-test, Analysis of variance table. Least square estimators of the parameters, Variance of the estimators, Estimation of treatment contrasts, Standard error and Confidence limits for elementary treatment contrasts. Efficiency of the design relative to RBD, CRD. Missing plot technique for one missing
		observation in case of LSD.
		Factorial Experiments: Definition, Purpose &
		Advantages. 2^2 , 2^3 Experiments.
		 Calculation of Main & interaction Effects.
		Yates' method. Analysis of $2^2 \& 2^3$ factorial
		Experiments. Concept of Confounding.
		(partial and total)
<u>.</u>		

		Course Code: RUASTAP601(B)
C	Sr. No.	Practicals based on course
	1	Analysis of Variance- One Way
	2	Analysis of Variance- Two Way
	3	Completely Randomized Design
	4	Randomized Block Design

5	Latin Square Design.
6	Missing Observations in CRD, RBD & LSD
7	Factorial Experiments
8	Practical using Excel /R software

REFERENCES:

- 1. W.G. Cochran and G.M.Cox; Second Edition; John Wiley and Sons.: Experimental Designs
- 2. Oscar Kempthorne, John Wiley and Sons.: The Design and Analysis of Experiments
- 3. Douglas C Montgomery; 6th Edition; John Wiley & Sons.: Design and Analysis of Experiments
- 4. M.N.Das and N.C.Giri, 2nd Edition; New Age International (P) Limited; 1986: Design and Analysis of Experiments
- 5. Walter T Federer; Oxford & IBH Publishing Co. Pvt. Ltd.: Experimental Design, Theory and Application
- 6. S.C.Gupta and V.K.Kapoor; 3rd Edition; Sultan Chand and Sons (2001): Fundamentals of Applied Statistics
- 7. B.J. Winer, McGraw Hill Book Company.: Statistical Principles in Experimental Design

Course Code: RUASTA603

Course Title: APPLIED STATISTICS

Academic year 2023-24

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	A student completing this course will be able to:
CO 1	Grasp the idea of Predictive Modeling and employ techniques such
	as regression analysis for practical applications.

CO 2	Generate random numbers and observations following different probability distributions.	
CO 3	Apply Monte Carlo techniques to address challenges in Inventor and Queueing Theory.	у
CO 4	Utilize the properties of mathematical functions relevant to Economics and understand their interrelationships.	Ó
	DETAILED SYLLABUS	
Course	Unit Course/ Unit Title Cre	dits/

Course Unit Code/ Unit	Course/ Unit Title	Credits/ Lectures
RUASTA603 Unit		15
	• Linear regression model with one or more	Lectures
	explanatory variables. Assumptions of the	
	model, Derivation of Ordinary Least Square	
	(OLS) estimators of regression coefficients, (for	
	one and two explanatory variables models).	
	Properties of least square estimators (without	
	proof). Coefficient of determination R^2 and	
	adjusted R ² .	
	 Procedure of testing: 	
	Overall significance of the model	
	Significance of individual coefficients	
	 Significance of incremental contribution of 	
	explanatory variable for two explanatory	
	variables model.	
	 Confidence intervals for the regression 	
	coefficients.	
	 Multiple Linear Regression with Qualitative 	
	Independent Variable.	
	 Autocorrelation: Concept, Detection using 	
	Durbin Watson Test, Generalized Least Square	
	(GLS) method.	
	• Heteroscedasticity: Concept, Detection using	
	Breusch-Pagan-Godfrey test. Weighted Least	
	Square (WLS) estimators	
	 Multicollinearity: Concept, Detection using 	
	• R square & t ratios (ii) Variance Inflation Factor	
	(VIF)	
RUASTA603 Unit	SIMULATION	15
I	 Scope of simulation applications. Types of 	Lectures
	simulation. Monte Carlo Technique of Simulation	

		 and Bootstrapping. Elements of discrete event simulation. Generation of random numbers. Sampling from probability distribution. Inverse method. Generation of random observations from i) Uniform distribution ii) Exponential distribution iii) Gamma distribution iv) Normal distribution. Application of Simulation techniques to real life situations. 	000	2
RUASTA603	Unit III		15 Lectures	
		 Behaviour of Demand and Supply, Demand functions. Cost and Revenue functions. The elasticity of a function, Elasticity of (i) Demand (ii) Cost. Normal conditions of (i) demand (ii) cost. Features of prefect competition. Monopoly (including effects of taxation and subsidy), Duopoly. Production function. Euler's theorem linear homogenous production functions, Cobb-Douglas production function, CES production function. The elasticity of substitution. 	Lectures	

Course Code: RUASTAP601(C)							
Sr. No.	Practicals based on course						
1	Multiple regression model 1						
2	Multiple regression model- 2						
3	Simulation						
40	Mathematical Economics 1						
5	Mathematical Economics 2						
6	Use of R in MLR						

REFERENCES:

- 1. E.L. Grant. (2nd edition) McGraw Hill, 1988.: Statistical Quality Control
- 2. Duncan. (3rd edition) D. Taraporewala sons & company.: Quality Control and Industrial Statistics
- 3. Bertrand L. Hansen, (1973), Prentice Hall of India Pvt. Ltd.: Quality Control: Theory and Applications

- Douglas Montgomery, Arizona State University. John Wiley & Sons, Inc. (6th Edition): Statistical Quality Control
- 5. Gupta S.C., Kapoor V.K., Fundamentals of Applied Statistics, Sultan Chand &Sons
- 6. Srinath. 2nd edition, East-west press Pvt. Ltd.: PERT and CPM, Principles and Applications
- 7. Kantiswaroop and Manmohan Gupta. 4th Edition; S Chand & Sons.: Operations Research
- 8. Richard Broson. 2nd edition Tata Mcgraw Hill Publishing Company Ltd.: Schaum Series book in O.R.
- 9. Maurice Sasieni, Arthur Yaspan and Lawrence Friedman, (1959), John Wiley & Sons.: Operations Research: Methods and Problems
- 10. J K Sharma, (1989), Tata McGraw Hill Publishing Company Ltd.: Mathematical Models in Operations Research
- 11. S.D.Sharma.11th edition, Kedar Nath Ram Nath & Company.: Operations Research
- 12. H. A. Taha, 6th edition, Prentice Hall of India.: Operations Research
- 13. J.K.Sharma, (2001), MacMillan India Ltd.: Quantitative Techniques for Managerial Decisions

Modality of Assessment

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1	Class Test/ Project / Assignment / Presentation	20
2	Class Test/ Project / Assignment / Presentation	20
	TOTAL	40

B) External Examination- 60%- 60 Marks Semester End Theory Examination:

- 1. Duration These examinations shall be of **two hours** duration.
- 2. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions Based on
1	Any 2 out of 3 sub-parts	20	Unit I

	TOTAL	60		
3	Any 2 out of 3 sub-parts	20	Unit III	
2	Any 2 out of 3 sub-parts	20	Unit II	

Practical Examination Pattern:

A) Internal Examination: 40%- 40 Marks

Marks
5
15
20

B) External Examination: 60%- 60 Marks

Semester End Practical Examination:

Duration - These examinations shall be of **one and half hour** duration.

Particulars	Paper
Exam (There shall be Three COMPULSORY Questions of 10	30
marks each with internal choice)	
Total	30

Overall Examination & Marks Distribution Pattern

Semester VI

Course	RUASTA601			RUASTA602			RUASTA603			Grand Total
	Internal	External	Total	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	40	60	100	300

RAMNARAIN RUIA AUTONOMOUS COLLEGE, SYLLABUS FOR STATISTICS 2023-2024										80 87 St	
1	Practicals	20	30	50	20	30	50	20	30	50	