Resolution No.: AC/II(22-23).3.RUS11

S. P. Mandali's

Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for

Program: S.Y.B.Sc.

Program Code: (STATISTICS) RUSSTA

(Choice Based Credit System for the academic year 2023–2024)

GRADUATE ATTRIBUTES

S. P. Mandali's Ramnarain Ruia Autonomous College has adopted the Outcome Based Education model to make its science graduates globally competent and capable of advancing in their careers. The Bachelors Program in Science also encourages students to reflect on the broader purpose of their education.

GA	GA Description			
	A student completing Bachelor's Degree in Science program will be able to:			
GA 1	Recall and explain acquired scientific knowledge in a comprehensive manner and			
	apply the skills acquired in their chosen discipline. Interpret scientific ideas and			
	relate its interconnectedness to various fields in science.			
GA 2	Evaluate scientific ideas critically, analyse problems, explore options for practical			
	demonstrations, illustrate work plans and execute them, organise data and draw			
	inferences.			
GA 3	Explore and evaluate digital information and use it for knowledge upgradation.			
	Apply relevant information so gathered for analysis and communication using			
	appropriate digital tools.			
GA 4	Ask relevant questions, understand scientific relevance, hypothesize a scientific			
	problem, construct and execute a project plan and analyse results.			
GA 5	Take complex challenges, work responsibly and independently, as well as in			
	cohesion with a team for completion of a task. Communicate effectively,			
	convincingly and in an articulate manner.			
GA 6	Apply scientific information with sensitivity to values of different cultural groups.			
	Disseminate scientific knowledge effectively for upliftment of the society.			
GA 7	Follow ethical practices at work place and be unbiased and critical in			
	interpretation of scientific data. Understand the environmental issues and explore			
2.	sustainable solutions for it.			
GA 8	Keep abreast with current scientific developments in the specific discipline and			
ro	adapt to technological advancements for better application of scientific knowledge			
	as a lifelong learner.			

PROGRAM OUTCOMES

РО	Description
	A student completing Bachelor's Degree in Science program in the
	subject of Statistics will be able to:
PO 1	Understand, condense, visualize, analyze and interpret various data types generated
	in various scenarios of scientific, industrial, or social problems.
PO 2	Apply Statistical tools for data analysis.
PO 3	Pursue their higher education programs leading to post-graduate and/or doctoral
	degrees in Statistics, Data Science, Business Analytics, Biostatistics, Econometrics,
	Management Studies.
PO 4	Compete globally to enter into promising careers.
PO 5	Make a pathway to a range of traditional avenues in Academia and Industry, Govt.
	Service, IAS, Indian Statistical/ Economic Services, Industries, Commerce, Investment
	Banking, Banks and Insurance Sectors, CSO and NSSO, Research
	Personnel/Investigator in Govt. organizations such as NCAER, IAMR, ICMR,
	Statistical and Economic Bureau & Various PSUs., Market Research, Actuarial
	Sciences, biostatistics, beinography etc.
PO 6	Seek employment or self-employment in different sectors like Stock trading,
	Pharmaceutical sector, Sports, Politics, Business, Financial services and Media
	Industry.
\sim	*
0	

PROGRAM OUTLINE

YEAR	SEM	COURSE	COURSE TITLE	CREDITS
		CODE		
SYBSc	III	RUSSTA301	PROBABILITY DISTRIBUTIONS	2
SYBSc	III	RUSSTA302	THEORY OF SAMPLING	2
SYBSc	III	RUSSTA303	OPERATIONS RESEARCH	2
SYBSc		RUSSTAP301	Practical based on RUSSTA301,	3
			RUSSTA302 & RUSSTA303	D
SYBSc	IV	RUSSTA401	PROBABILITY AND SAMPLING	2
SYBSc	IV	RUSSTA402	ANALYSIS OF VARIANCE & DESIGN	2
			OF EXPERIMENTS	
SYBSc	IV	RUSSTA403	PROJECT MANAGEMENT AND	2
			INDUSTRIAL STATISTICS	
SYBSc	IV	RUSSTAP401	Practical based on RUSSTA401,	3
			RUSSTA402 and RUSSTA403	

Course Code: RUSSTA301 Course Title: PROBABILITY DISTRIBUTIONS

Academic year 2023-24

COURSE OUTCOMES:

	COURSE	DESCRIPTION
	OUTCOME	At the end of this course students will be able to
	CO 1	Identify various Standard Discrete Probability Distributions and their use.
6	CO 2	Distinguish between different types of Standard Discrete Probability Distributions and prove their properties and apply those for problem solving.
	CO 3	Recognize the underlying distribution in different situations.

Course	Unit	Course/ Unit Title	Credits/
Code/ Unit			Lectures
RUSSTA301	Unit I	Univariate Random Variables (Discrete and Continuous):	15 Lectures
		Moment Generating Function, Cumulant generating Function-Their important properties	
		Relationship between moments and cumulants	100
		and their uses.	
		Characteristic Function- Its properties (without	S
		proof).	
DUCCTA204	11	Transformation of random Variable Standard Discrete Probability Distribution	45
RU551A301		Standard Discrete Probability Distributions:	15 Lectures
	••	• Uniform, Bernoulli, Binomial, Poisson, Geometric,	Leotares
		Negative Binomial & Hypergeometric distributions.	
		• The following aspects of the above distributions	
		(wherever applicable) to be discussed:	
		• Mean, Mode and Standard deviation. Moment	
		Generating Function, Cumulant	
		Generating Function, Additive property,	
		Recurrence relation for central Moments,	
		Skewness and Kurtosis (without proof), Limiting	
		distribution.	
RUSSTA301	Unit	Bivariate Probability Distributions:	15
		 Joint Probability mass function for Discrete 	Lectures
	0	random variables, Joint Probability density function	
		for continuous random variables. Their properties.	
		 Marginal and conditional Distributions. 	
C.		Independence of Random Variables. Conditional	
3		Expectation & Variance.	
		Regression Function. Coefficient of Correlation.	
T		Transformation of Random Variables and	
		Jacobian of transformation with illustrations.	
1	1		

	Course Code RUSSTAP301(A)	
Sr. No.	Practical based on course	
1	Moment Generating Function, Moments.	6
2	Cumulant generating Function, Cumulants, Characteristic function.	X
3	Standard Discrete Distributions	
4	Fitting Standard Discrete Distributions.	
5	Bivariate Probability Distributions, Marginal & Conditional distributions, Conditional Mean, Conditional Variance, Correlation	
6	Transformation of discrete & continuous random variables.	

REFERENCES:

- 1. A. M. Mood, F.A. Graybill, D. C. Boyes, Third Edition; McGraw-Hill Book Company. Introduction to the theory of statistics
- 2. R.V. Hogg, A.T. Craig; Fourth Edition; Collier McMillan Publishers: Introduction to Mathematical Statistics
- 3. R.V. Hogg, E. A. Tannis, Third Edition; Collier McMillan Publishers: Probability and Statistical Inference
- 4. I. Miller, M. Miller; Sixth Edition; Pearson Education Inc.: John E. Freund's Mathematical Statistics
- 5. P.G. Hoel; Fourth Edition; John Wiley & Sons Inc.: Introduction to Mathematical Statistics
- 6. S.C. Gupta, V.K. Kapoor; Eighth Edition; Sultan Chand & Sons.: Fundamentals of Mathematical Statistics
- 7. J.N. Kapur, H.C. Saxena; Fifteenth Edition; S. Chand & Company Ltd.: Mathematical Statistics
- 8. J. Medhi; Second edition; Wiley Eastern Ltd.: Statistical Methods: An Introductory Text
- 9. A.M. Goon, M.K. Gupta, B. DasGupta; Third Edition; The World Press Pvt. Ltd.: An Outline of Statistical Theory Vol. 1

Course Code: RUSSTA302 Course Title: THEORY OF SAMPLING

Academic year 2023-24

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	A student completing this course will be able to:
CO 1	Understand the importance and use of sampling and its various methods.
CO 2	Calculate population parameters using Simple Random Sampling, Stratified Sampling, and Systematic Sampling techniques.
CO 3	Differentiate between types of probability sampling methods.
CO 4	Apply Ratio and Regression methods of estimation to incorporate auxiliary information into surveys.

		DETAILED SYLLABUS	
Course	Unit	Course/ Unit Title	Credits/
Code/ Unit			Lectures
Rauna	3	RURAU	

RUSSTA302 Unit Concepts: 15 I Population, Population unit, Sample, Sample unit, Parameter, Statistic, Estimator, Bias, Unbiasedness, Mean square error & Standard error. 15 Census survey, Sample Survey. Steps in conducting a sample survey. Concepts of Sampling and Non-sampling errors. Concepts and methods of Probability and Non- Probability sampling. Simple Random Sampling (SRS): Description of Simple Random Nampling with & without replacement. Estimation of population mean & total. Expectation & Variance of the estimators. E Estimation of population proportion. Expectation & Variance of the estimators. Estimation of Sample size based on a desired accuracy in case of SRS for variables & attributes. RUSSTA302 Unit Stratified Sampling: 15 II • Need for Stratification of population with suitable examples. Description of Stratified Random Sample. 15 RUSSTA302 Unit Stratified Random Sampling (WOR within each stratum). Expectation & Variance of the unbiased estimators. 15 Lectures • Advantages of stratified random Sampling. Stratified Random Sampling (WOR within each stratum). Expectation & Variance of the unbiased estimators. 15 Russta302 Unit Ratio & Regression Estimator of variances of these estimators. 15 Lectures • Advantages of stratified random Sampling. 15 <tr< th=""><th>-</th><th></th><th></th><th></th><th></th></tr<>	-				
I • Population, Population unit, Sample, Sample unit, Parameter, Statistic, Estimator, Bias, Unbiasedness, Mean square error & Standard error. • Lectures • Census survey, Sample Survey. Steps in conducting a sample survey. Concepts of Sampling and Non-sampling errors. • Concepts and methods of Probability and Non- Probability sampling. • Dispective and Mon-sampling (SRS): • Description of Simple Random Sampling (SRS): • Description of Simple Random numbers to select Simple random sample. • Estimation of population mean & total. Expectation & Variance of the estimators, Unbiased estimator of variance of the estimators. • Estimation of population proportion. Expectation & Variance of the estimators. • Estimation of Sample size based on a desired accuracy in case of SRS for variables & attributes. 15 II • Need for Stratified random Sampling. 15 II • Rues of stratified Random Sampling. 15 • Advantages of stratified random Sampling. • Advantages of stratified Random Sample. • Advantages of stratified Random Sample. • Advantages of stratified Random Sampling. • Estimation of population mean & total in case of Stratified Random Sampling (WOR within each stratum). Expectation & Variance of the unbiased estimators. • Equal Allocation, Proportional allocation, Optimum allocation with and without varying costs. • Comparison of Simple Random Sampling. • Equal Allocation, Proportional allocation • Freportional allocation <tr< th=""><th></th><th>RUSSTA302</th><th>Unit</th><th>Concepts:</th><th>15</th></tr<>		RUSSTA302	Unit	Concepts:	15
RUSSTA302 Unit RUSSTA303 Unit RUSSTA304 Unit RUSSTA305 Unit RUSSTA302 Unit RUSSTA303 Unit Stratified Sampling: 15 Lectures Advantages of stratification of population with suitable examples. Description of Stratified Random Sampling. Stratified Random Sampling: - Estimation of population mean & total in case of Stratified Random Sampling. - Estimation of population mean & total in case of Stratified Random Sampling. - Advantages of stratified random Sampling. - Estimation of population mean & total in case of Stratified Random Sampling. - Estimation of population mean & total in case o			I	 Population, Population unit, Sample, Sample unit, Parameter, Statistic, Estimator, Bias, Unbiasedness, Mean square error & Standard error 	Lectures
RUSSTA302 Unit Stratified Random Sampling: Estimation of population mean & total Expectation & Variance of the estimators, Unbiased estimator of variance of the estimators, Unbiased estimators. Estimation of population proportion. Expectation & Variance of the estimators, Unbiased estimator of variance of these estimators. Estimation of Sample size based on a desired accuracy in case of SRS for variables & attributes. RUSSTA302 Unit Stratified Sampling: Need for Stratified random Sampling. Stratified Random Sampling: Advantages of stratified random Sampling. Stratified Random Sampling (WOR within each straturi). Expectation & Variance of the unbiased estimators. Equal Allocation, Proportional allocation, Optimum allocation with and without varying costs. Comparison of Simple Random Sampling, Stratified Random Sampling using Proportional allocation & Neyman allocation RusstA302				 Census survey, Sample Survey. Steps in conducting a sample survey. Concepts of Sampling and Non-sampling errors. Concepts and methods of Probability and Non-Probability sampling. Simple Random Sampling (SRS): Description of Simple Random Sampling with & without replacement. 	1666
RUSSTA302 Unit Stratified Sampling: 15 Lectures examples. Description of Stratified Random Sample. 15 Estimation of population mean & total in case of Stratified Random Sampling. Stratified Random Sampling: 15 Estimation of population mean & total in case of Stratified Random Sampling. Stratified Random Sampling (WOR within each stratum). Expectation & Variance of the unbiased estimators. 15 Equal Allocation, Proportional allocation, Optimum allocation with and without varying costs. 0 Comparison of Simple Random Sampling, Stratified Random Sampling using Proportional allocation & Regression Estimation assuming 15				 Lottery method & use of Random numbers to select Simple random sample. Estimation of population mean & total. Expectation & Variance of the estimators, Unbiased estimator of variance of these estimators. 	
RUSSTA302 Unit Stratified Sampling: 15 II Stratified Sampling: 15 Lectures Need for Stratification of population with suitable examples. Description of Stratified Random Sample. 15 Advantages of stratified random Sampling. 15 Lectures Stratified Random Sampling: • Estimation of population mean & total in case of Stratified Random Sampling. Stratified Random Sampling: • Estimation of population mean & total in case of Stratified Random Sampling (WOR within each stratum). Expectation & Variance of the unbiased estimators, Unbiased estimators of variances of these estimators. • Equal Allocation, Proportional allocation, Optimum allocation with and without varying costs. • Comparison of Simple Random Sampling, Stratified Random Sampling using • Proportional allocation & Neyman allocation RUSSTA302 Unit Ratio & Regression Estimation assuming 15				 Estimation of population proportion. Expectation & Variance of the estimators, Unbiased estimator of variance of these estimators. 	
RUSSTA302Unit IIStratified Sampling: • Need for Stratification of population with suitable examples. Description of Stratified Random Sample. • Advantages of stratified random Sampling. Stratified Random Sampling: • Estimation of population mean & total in case of Stratified Random Sampling (WOR within each stratum). Expectation & Variance of the unbiased estimators, Unbiased estimators of variances of these estimators.15 LecturesRUSSTA302UnitRatio & Regression Estimation assuming • Proportional allocation & Neyman allocation15				 Estimation of Sample size based on a desired accuracy in case of SRS for variables & attributes. 	
 Advantages of stratified random Sampling. Stratified Random Sampling: Estimation of population mean & total in case of Stratified Random Sampling (WOR within each stratum). Expectation & Variance of the unbiased estimators, Unbiased estimators of variances of these estimators. Equal Allocation, Proportional allocation, Optimum allocation with and without varying costs. Comparison of Simple Random Sampling, Stratified Random Sampling using Proportional allocation & Neyman allocation RUSSTA302 Unit Ratio & Regression Estimation assuming 15 		RUSSTA302	Unit II	 Stratified Sampling: Need for Stratification of population with suitable examples. Description of Stratified Random Sample. 	15 Lectures
Stratified Random Sampling (WOR within each stratum). Expectation & Variance of the unbiased estimators, Unbiased estimators of variances of these estimators.• Equal Allocation, Proportional allocation, Optimum allocation with and without varying costs.• Comparison of Simple Random Sampling, Stratified Random Sampling using • Proportional allocation & Neyman allocationRUSSTA302Unit WRatio & Regression Estimation assuming • Proportional allocation				 Advantages of stratified random Sampling. Stratified Random Sampling: Estimation of population mean & total in case of 	
 Equal Allocation, Proportional allocation, Optimum allocation with and without varying costs. Comparison of Simple Random Sampling, Stratified Random Sampling using Proportional allocation & Neyman allocation 		na	5	Stratified Random Sampling (WOR within each stratum). Expectation & Variance of the unbiased estimators, Unbiased estimators of variances of these estimators.	
RUSSTA302 Unit Ratio & Regression Estimation assuming 15 III SPSWOP: IIII SPSWOP: IIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		31,		 Equal Allocation, Proportional allocation, Optimum allocation with and without varying costs. Comparison of Simple Random Sampling, Stratified Random Sampling using Proportional allocation & Neyman allocation 	
Batio Estimators for population Ratio Mean &	-	RUSSTA302	Unit III	Ratio & Regression Estimation assuming SRSWOR: • Ratio Festimators for population Ratio Mean &	15 Lectures

 Fotal. Expectation Regression Estine Expectation & V known value of restimation of estimators. Uses Comparison of estimators. Systematic sample Estimator of Performation of Pe	E. Uses of Ratio Estimator. E. Uses of Ratio Estimator. hators for population Mean & Total. priance of the Estimators assuming egression coefficient 'b'. 'b'. Resulting variance of the of regression estimator. tatio, Regression & mean per Unit ng: pulation Mean and its Variance. Systematic Sampling with Simple g Cluster sampling & Two Stage table illustrations
sampling with su	table illustrations.

Course Code RUSSTAP301(B)			
Sr. No.	Practical based on course		
1	Designing of Questionnaire.		
2	Simple Random Sampling for Variables.		
3	Simple Random Sampling for Attributes.		
4	Estimation of Sample Size in Simple Random Sampling.		
5	Stratified Random Sampling.		
6	Ratio Estimation- Regression Estimation.		
7	Systematic Sampling		

REFERENCES:

- 1. W.G. Cochran; 3rd Edition; Wiley (1978): Sampling Techniques
- 2. M. N. Murthy; Statistical Publishing Society. (1967): Sampling Theory and methods
- 3. Des Raj; McGraw Hill Series in Probability and Statistics. (1968): Sampling Theory

- P.V. Sukhatme and B.V. Sukhatme; 3rd Edition; Iowa State University Press (1984): Sampling Theory of Surveys with Applications
- 5. S. C. Gupta and V.K. Kapoor; 3rd Edition; Sultan Chand and Sons (2001): Fundamentals of Applied Statistics
- 6. Daroga Singh, F.S.Chaudhary, Wiley Eastern Ltd. (1986): Theory and Analysis of Sample Survey Designs:
- 7. S. Sampath, Second Edition (2005), Narosa: Sampling Theory and Methods
- 8. Parimal Mukhopadhyay, (1998), Prentice Hall Of India Pvt. Ltd.: Theory and Methods of Survey Sampling

Course Code: RUSSTA303

Course Title: OPERATIONS RESEARCH

Academic year 2023-24

COURSE OUTCOMES:

mai

COURSE	DESCRIPTION
OUTCOME	A student completing this course will be able to:
CO 1	Formulate and solve the linear programming problems through graphical methods and the simplex method.
CO 2	Optimize transportation problems, assignment problems, and their variations.
CO 3	Establish and correlate the primal and dual forms of a given linear programming problem.
CO 4	Solve process sequencing problems utilizing Johnson's Method.

Course	Unit	Course/ Unit Title	Credits/
Code/ Unit			Lectures
RUSSTA303	Unit	Linear Programming Problem (L.P.P.):	15
	I	Mathematical Formulation: Maximization &	Lectures
		Minimization. Concepts of Solution, Feasible	

[
		Solution, Basic Feasible Solution, Optimal				
		 Graphical Solution for problems with two 				
		variables Simplex method of solving problems				
		with two or more variables. Big M method				
		 Concept of Duality Its use in solving LPP 				
		Relationship between ontimum solutions to				
		Primal and Dual Economic interpretation of	6			
		Dual	NOX			
RUSSTA303	Unit	Transportation Problem:	15			
	I	Concept. Mathematical Formulation. Concepts	Lectures			
		of Solution. Feasible Solution. Initial Basic				
		Feasible Solution by North-West Corner Rule.				
		Matrix Minima Method, Vogel's Approximation				
		Method. Optimal Solution by MODI Method.				
		Optimality test, Improvement procedure.				
		Variants in Transportation Problem:				
		Unbalanced, Maximization type, Restricted				
		allocations.				
RUSSTA303	Unit	Assignment Problem:	15			
	Ш	 Concept. Mathematical Formulation 	Lectures			
		 Solution by: Complete Enumeration Method and 				
		Hungarian method.				
		• Variants in Assignment Problem: Unbalanced,				
		Maximization type.				
		Airline Operating Problem				
		 Travelling Salesman Problem 				
		Sequencing:				
		 Processing n Jobs through 2 and 3 Machines, 2 				
		Jobs through m Machines and n jobs through m				
	0	machines				
na						
Distribution of topics for Practical						
	-					

Course Code RUSSTAP301(C)							
Sr. No.	Practical based on course						
1	Formulation and Graphical Solution of L.P.P.						
2	Simplex Method.						

3	Duality.	
4	Transportation.	
5	Assignment.	
6	Sequencing.	
7	Problems solving using TORA / EXCEL Solver.	S

REFERENCES:

- 1. Kantiswaroop and Manmohan Gupta. 4th Edition; S Chand & Sons: Operations Research
- 2. Richard Broson. 2nd edition Tata Mcgraw Hill Publishing Company Ltd.: Schaum Series book in O.R.
- 3. Methods and Problems: Maurice Sasieni, Arthur Yaspan and Lawrence Friedman, (1959), John Wiley & Sons: Operations Research
- 4. J K Sharma, (1989), Tata McGraw Hill Publishing Company Ltd.: Mathematical Models in Operations Research
- 5. Harvey M. Wagner, 2nd Edition, Prentice Hall of India Ltd.: Principles of Operations Research with Applications to Management Decisions
- 6. S.D.Sharma.11th edition, Kedar Nath Ram Nath & Company.: Operations Research
- 7. H. A.Taha.6th edition, Prentice Hall of India.: Operations Research
- 8. J.K.Sharma, (2001), MacMillan India Ltd.: Quantitative Techniques For Managerial Decisions

Modality of Assessment

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1	Class Test/ Project / Assignment / Presentation	20
2	Class Test/ Project / Assignment / Presentation	20
2	TOTAL	40

O

B) External Examination- 60%- 60 Marks Semester End Theory Examination:

- 1. Duration These examinations shall be of **two hours** duration.
- 2. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions Based on
1	Any 2 out of 3 sub-parts	20	Unit I
2	Any 2 out of 3 sub-parts	20	Unit II
3	Any 2 out of 3 sub-parts	20	Unit III
	TOTAL	60	

Practical Examination Pattern:

A) Internal Examination: 40%- 40 Marks

Particulars	Marks
Journal and attendance	5
Assignments using Statistical Software	15
Total	20

B) External Examination: 60%- 60 Marks

Semester End Practical Examination:

Duration - These examinations shall be of **one and half hour** duration.

Particulars	Paper	
Exam (There shall be Three COMPULSORY Questions of 10 marks	30	
each with internal choice)		
Total	30	
Suug		

Overall Examination & Marks Distribution Pattern

Semester III

Course	Rl	JSSTA301		RI	JSSTA302		RUSSTA303			Grand Total
	Internal	External	Total	Internal	External	Total	Internal	External	Total	

RAMNARAIN RUIA AUTONOMOUS COLLEGE, SYLLABUS FOR STATISITCS 2023-2024

Theory	40	60	100	40	60	100	40	60	100	300
Practicals	20	30	50	20	30	50	20	30	50	150

Course Code: RUSSTA401

Course Title: PROBABILITY AND SAMPLING DISTRIBUTIONS

Academic year 2023-24

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	A student completing this course will be able to:
CO 1	Know different types of Standard Continuous Probability Distributions and their importance.
CO 2	Differentiate between various Standard Continuous Probability Distributions and use their properties for solving various problems.
CO 3	Implement Exact Sampling distribution methods.

Co	urse	Unit	Course/ Unit Title	Credits/
Code	e/ Unit			Lectures
RUSS	STA401	Unit	Standard Continuous Probability Distributions:	15
23			 Rectangular, Triangular, Exponential, Gamma (with Single & Double parameter), Beta (Type I & Type II). The following aspects of the above distributions (wherever applicable) to be discussed Mean, Median, Mode & Standard deviation. Moment Generating Function, Additive property, Cumulant Generating Function. Skewness and Kurtosis (without proof). Interrelation between the distributions. Normal Distribution: Mean, Median, Mode, Standard deviation, Moment Generating function, Cumulant Generating function, Cumulant Generating function, Cumulant moment Generating function, Cumulant Generating function, Cumulant Generating function, Cumulant Generating function, Cumulant Generating function, Moment Generating function, Cumulant Generating function, Moments & Cumulants (up to fourth order). Recurrence relation for central moments, skewness & kurtosis, Mean absolute 	Lectures
			moments, skewness & kurtosis, Mean absolute deviation. Distribution of linear function of	

RUSSTA401	Unit	 independent Normal variables. Fitting of Normal Distribution. Central Limit theorem for i.i.d. random variables. Log Normal Distribution: Derivation of mean & variance. Chi-Square Distribution: 	15
	II	 Concept of degrees of freedom. Mean, Median, Mode & Standard deviation. Moment generating function, Cumulant generating function. Additive property, Distribution of the sum of squares of independent Standard Normal variables. Sampling distributions of sample mean and sample variance and their independence for a sample drawn from Normal distribution (without proof). Applications of Chi-Square: Test of significance for specified value of variance of a Normal population. 	Lectures
		Test for goodness of fit & Test for independence of attributes (derivation of test statistics is not expected).	
RUSSTA401	III	 Hean, Median, Mode & Standard deviation. Derivation of t distribution using Fisher's t. Student's t. Asymptotic properties. Applications of t: Confidence interval for: Mean of Normal population, difference between means of two independent Normal populations having the same variance. Test of significance of: mean of a Normal population, difference in means of two Normal populations (based on: (i) independent samples with equal variances. (Effect Size, Cohen's d) (ii) dependent samples). F-distribution: Mean, Mode & Standard deviation. Distribution of: reciprocal of an F variate, Ratio of two independent Chi-squares divided by their respective degrees of freedom. Interrelationship of F with: t-distribution, Chi-square distribution & Normal distribution. Applications of F: Test for equality of variances of two independent Normal populations. 	15 Lectures

	Course Code: RUSSTAP401(A)
Sr. No.	Practical based on course

RAMNARAIN RUIA AUTONOMOUS COLLEGE, SYLLABUS FOR STATISITCS 2023-2024

1	Standard Continuous distributions.	
2	Normal Distribution	
3	Central Limit Theorem	
4	Chi Square distribution	
5	t distribution	2
6	F distribution	
7	Practical using Excel	

REFERENCES:

- 1. A M Mood, F.A. Graybill, D C Boyes; Third Edition; McGraw-Hill Book Company.: Introduction to the theory of statistics
- 2. R.V.Hogg, A.T. Craig; Fourth Edition; Collier McMillan Publishers.: Introduction to Mathematical Statistics
- 3. R.V.Hogg, E. A.Tannis, Third Edition; Collier McMillan Publishers.: Probability and Statistical Inference
- 4. I. Miller, M. Miller; Sixth Edition; Pearson Education Inc.: John E. Freund's Mathematical Statistics
- 5. P.G. Hoel; Fourth Edition; John Wiley & Sons Inc.: Introduction to Mathematical Statistics
- S.C. Gupta, V.K. Kapoor; Eighth Edition; Sultan Chand & Sons.: Fundamentals of Mathematical Statistics
- 7. J.N. Kapur, H.C. Saxena; Fifteenth Edition; S. Chand & Company Ltd.: Mathematical Statistics
- 8. J. Medhi; Second edition; Wiley Eastern Ltd.: Statistical Methods- An Introductory Text
- 9. A.M. Goon, M.K. Gupta, B. DasGupta; Third Edition; The World Press Pvt. Ltd.: An Outline of Statistical Theory Vol. 1

Course Code: RUSSTA402

Course Title: ANALYSIS OF VARIANCE & DESIGNS OF EXPERIMENTS

Academic year 2023-24

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	A student completing this course will be able to:
CO 1	Explain and illustrate the analysis of one-way and two-way classification.
CO 2	Define key concepts in Experimental Design, outline the principles of experimental design, and enumerate various types of experimental designs.
CO 3	Examine Completely Randomized Designs (CRD), Randomized Block Designs (RBD), and Least Significant Difference (LSD) using Analysis of Variance (ANOVA).
CO 4	Create factorial experiments, analyze their results, and grasp the concept of confounding.

Course	Unit	Course/Unit Litle	Credits/
Code/ Unit			Lectures
RUSSTA402	Unit	Analysis of Variance:	15
		 Introduction, Uses, Cochran's Theorem (Statement only). One-way classification with equal & unequal observations per class, Two-way classification with one observation per cell. For both the cases: Mathematical Model, Assumptions, Expectation of various sums of squares, F- test, Analysis of variance table. Least square estimators of the parameters, Expectation and Variance of the estimators, Estimation of linear contrasts, Standard Error and Confidence limits Testing for significance of elementary linear contrasts. 	Lectures
RUSSIA402	Unit	Design Of Experiments:	15
		Concepts of Experiments, Experimental unit,	Lectures
		I reatment, Yield, Block, Replicate, Experimental	
		Error, Precision.	
		• Principles of Design of Experiments: Replication,	
		Randomization & Local Control.	

			· · · · · · · · · · · · · · · · · · ·
		• Efficiency of design D ₁ with respect to design D ₂ .	
		• Choice of size, shape of plots & blocks in	
		agricultural & non-agricultural experiments.	
		Completely Randomized Design (CRD) &	
		Randomized Block Design (RBD):	
		Mathematical Model, Assumptions, Expectation of	
		various sums of squares F-test Analysis of	.0
		variance table	61
		• Loost square estimators of the parameters	
		• Least square estimators of the parameters,	
		variance of the estimators, Estimation of linear	
		contrasts, Standard Error and Confidence limits	J I
		lesting for significance of elementary linear	
		contrasts. Efficiency of RBD relative to CRD.	
		Missing plot technique for one missing observation	
		in case of CRD, RBD	
RUSSTA402	Unit	Latin Square Design (LSD):	15
	111	 Mathematical Model, Assumptions, Expectation of 	Lectures
		various sums of squares, F-test, Analysis of	
		variance table.	
		• Least square estimators of the parameters.	
		Variance of the estimators Estimation of treatment	
		contrasts Standard error and Confidence limits for	
		elementary treatment contracts	
		- Efficiency of the design relative to PRD, CRD	
		• Efficiency of the design relative to RBD, CRD.	
		Missing plot technique for one missing observation	
		in case of LSD.	
		Factorial Experiments: Definition, Purpose &	
		Advantages. 2 ² , 2 ³ Experiments.	
		• Calculation of Main & interaction Effects. Yates'	
		method. Analysis of 2 ² & 2 ³ factorial Experiments.	
		Concept of Confounding. (partial and total)	
anna		Concept of Confounding. (partial and total)	
~			
		Distribution of topics for Practical	

	Course Code: RUSSTAP401(B)
Sr. No.	Practical based on course

RAMNARAIN RUIA AUTONOMOUS COLLEGE, SYLLABUS FOR STATISITCS 2023-2024

1	Analysis of Variance- One Way	
2	Analysis of Variance- Two Way	
3	Completely Randomized Design	
4	Randomized Block Design	
5	Latin Square Design.	2
6	Missing Observations in CRD, RBD & LSD	.00
7	Factorial Experiments	
8	Practical using Excel	S .

REFERENCES:

- 1. W.G. Cochran and G.M.Cox; Second Edition; John Wiley and Sons.: Experimental Designs
- 2. Oscar Kempthorne, John Wiley and Sons.: The Design and Analysis of Experiments
- 3. Douglas C Montgomery; 6th Edition; John Wiley & Sons.: Design and Analysis of Experiments
- 4. M.N.Das and N.C.Giri, 2nd Edition; New Age International (P) Limited; 1986: Design and Analysis of Experiments
- 5. Walter T Federer; Oxford & IBH Publishing Co. Pvt. Ltd.: Experimental Design, Theory and Application
- 6. S.C.Gupta and V.K.Kapoor; 3rd Edition; Sultan Chand and Sons (2001): Fundamentals of Applied Statistics
- 7. B.J. Winer, McGraw Hill Book Company.: Statistical Principles in Experimental Design

Course Code: RUSSTA403

Course Title: PROJECT MANAGEMENT AND INDUSTRIAL STATISTICS

Academic year 2023-24

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	A student completing this course will be able to:
CO 1	Create project networks depicting both probabilistic and deterministic time estimates to identify critical paths. Illustrate decision networks.
CO 2	Accelerate activities to minimize project costs and regularly revise networks.
CO 3	Develop diverse control charts for variables and attributes to establish standard benchmarks for future reference.
CO 4	Devise a single sampling plan, analyze its characteristics, and comprehend the principles behind Double Sampling Plans.
CO 5	Assess various types of games and appraise decision-making processes across different scenarios.

	Course	Unit	Course/ Unit Title	Credits/
	Code/ Unit			Lectures
	RUSSTA403	Unit	CPM and PERT:	15
		I	 Objective and Outline of the techniques. 	Lectures
			Diagrammatic representation of activities in a	
			project: Gantt Chart and Network Diagram.	
			Slack time and Float times. Determination of	
			Critical path. Probability consideration in project	
			scheduling.	
			 Project cost analysis. 	
			Updating.	
	RUSSTA403	Unit	Statistical Quality Control:	15
		11	• Principles of control. Process quality control of	Lectures
			variables. X bar and R, X bar and Sigma Chart and	
			their uses. Problems involving setting up	
			standards for future use. Introduction to Six sigma	
Ċ			limits.	
			 Concept of Natural Tolerance Limits, Specification 	
			Limits and Detection of shift	
			Principles of control. Process quality control of	
			attributes p, c, np charts and their uses. p-chart	
			and c-chart with variable sample size. Problems	
			involving setting up standards for future use	

		Acceptance sampling plan	
		Single Sampling Plans (without curtailment).	
		• OC function and OC curves. AQL, LTPD, ASN,	
		ATI, AOQ, Consumer's risk, Producer's risk.	
		 Double Sampling Plan (Concept only) 	
RUSSTA403	Unit	Game Theory and Decision Theory:	15
	111	GAME THEORY:	Lectures
		Definitions of Two-person Zero Sum Game,	
		Saddle Point, Value of the Game, Pure and Mixed	$\sqrt{2}$
		strategy. Optimal solution of two-person zero sum	
		games.	
		Dominance property, Derivation of formulae for	
		(2x2) game. Graphical solution of (2xn) and (mx2)	
		games.	
		DECISION THEORY	
		Decision making under uncertainty: Laplace	
		criterion, Maximax (Minimin) criterion, Maximin	
		(Minimax) criterion, Hurwicz α criterion, Minimax	
		Regret criterion.	
		Decision making under risk: Expected Monetary	
		Value criterion, Expected Opportunity Loss	
		criterion, EPPI, EVPI.	
		Decision tree analysis.	

		Course Code: RUSSTAP401(C)				
Sr. No. Practical based on course						
	1	PERT				
	2	СРМ				
	3	Project cost analysis				
	4	Updating				
	5	Control Charts for attributes and Control Charts for variables				
	6	Acceptance Sampling Plans.				
	7	Game theory				
	8	Decision theory.				
	9 Practical using EXCEL and TORA software					

REFERENCES:

- 1. E.L. Grant. (2nd edition) McGraw Hill, 1988.: Statistical Quality Control
- 2. Duncan. (3rd edition) D. Taraporewala sons & company.: Quality Control and Industrial Statistics
- 3. Bertrand L. Hansen, (1973), Prentice Hall of India Pvt. Ltd.: Quality Control: Theory and Applications
- Douglas Montgomery, Arizona State University. John Wiley & Sons, Inc. (6th Edition): Statistical Quality Control
- 5. Gupta S.C., Kapoor V.K., Fundamentals of Applied Statistics, Sultan Chand & Sons
- Srinath. 2nd edition, East-west press Pvt. Ltd.: PERT and CPM, Principles and Applications
- 7. Kantiswaroop and Manmohan Gupta. 4th Edition; S Chand & Sons.: Operations Research
- 8. Richard Broson. 2nd edition Tata Mcgraw Hill Publishing Company Ltd.: Schaum Series book in O.R.
- 9. Maurice Sasieni, Arthur Yaspan and Lawrence Friedman, (1959), John Wiley & Sons.: Operations Research: Methods and Problems
- 10. J K Sharma, (1989), Tata McGraw Hill Publishing Company Ltd.: Mathematical Models in Operations Research
- 11.S.D.Sharma.11th edition, Kedar Nath Ram Nath & Company.: Operations Research
- 12. H. A. Taha, 6th edition, Prentice Hall of India.: Operations Research
- 13. J.K.Sharma, (2001), MacMillan India Ltd.: Quantitative Techniques for Managerial Decisions

Modality of Assessment

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1	Class Test/ Project / Assignment / Presentation	20
2	Class Test/ Project / Assignment / Presentation	20
	TOTAL	40

3) External Examination- 60%- 60 Marks Semester End Theory Examination:

- 1. Duration These examinations shall be of two hours duration.
- 2. Theory question paper pattern:

Paper Pattern:

Question Options	Marks	Questions Based on
------------------	-------	-----------------------

Practical Examination			
	TOTAL	60	
3	Any 2 out of 3 sub-parts	20	Unit III
2	Any 2 out of 3 sub-parts	20	Unit II
1	Any 2 out of 3 sub-parts	20	Unit I

Practical Examination Pattern:

A) Internal Examination: 40%- 40 Marks

Particulars	Marks
Journal and attendance	5
Projects based on primary / secondary data	15
Total	20

B) External Examination: 60%- 60 Marks

Semester End Practical Examination:

Duration - These examinations shall be of one and half hour duration.

Particulars	Paper
Exam (There shall be Three COMPULSORY Questions of 10 marks each with internal choice)	30
Total	30

Overall Examination & Marks Distribution Pattern

Semester IV

	Course	RUSSTA401			RI	RUSSTA402			RUSSTA403		
		Internal	External	Total	Internal	External	Total	Internal	External	Total	
	Theory	40	60	100	40	60	100	40	60	100	300
X	Practicals	20	30	50	20	30	50	20	30	50	150
