Resolution No.: AC/I(19-20).2.RUS11

S.P. Mandali's

RAMNARAIN RUIA AUTONOMOUS COLLEGE

Syllabus for: S.Y.B.Sc.

Program: B.Sc.

Course Code: Statistics (RUSStA)

(Choice Based Credit System (CBCS) with effect from academic year 2018-19)

Objective of Course

In the second year, there will be three courses in Statistics per semester. The following are the objectives of these courses:

- 1. To enable learners with the concepts of probability distributions and its applications.
- 2. To equip learners with methods of sampling and designs of experiments
- 3. To use different sampling techniques and designs of experiments in various real life situations.
- 4. To equip learners with requisite optimization techniques that they can employ.
- 5. To understand statistical quality control techniques and its applications using mathematical methods and their graphical representation.

Learning Outcomes

- 1. Learners will be able to choose and apply appropriate statistical techniques to solve problems in different fields.
- 2. Learners will be able to use statistical tools to solve problems from different fields.
- **3.** Student will be able to engage in interpretation of wide range of information from variety of disciplines including quantitative analysis.
- 4. Learners will be able to use optimization techniques in real life situation
- 5. Learners will be able to employ statistical quality control techniques in various fields.

Title of the course	PROBABILITY DISTRIBUTIONS			
Course Code	UNIT	TOPICS	Credits	L / Week
	Ι	Univariate Random Variables. (Discrete and Continuous)		1
RUSSTA301	Π	Standard Discrete Probability Distributions.	2	1
	III	Bivariate Probability Distributions		1
Title of the course	THEORY OF SAMPLING			
RUSSTA302	Ι	Concepts of Sampling and Simple Random Sampling	2	1
	II	Stratified Sampling		1
	III	Ratio and Regression Estimation		1
Title of the course	OPERATIONS RESEARCH			
RUSSTA303	Ι	Linear Programming Problem.		1
	Π	Transportation Problem.	2	1
	III	Assignment & Sequencing Problem.		1
RUSSTAP301	Practical RUSSTA	based on courses RUSSTA301, 302 & RUSSTA303	3	9

SEMESTER III

Course Code RUSSTA301: PROBABILITY DISTRIBUTIONS

Unit I : Univariate Random Variables (Discrete and Continuous):	15
Moment Generating Function, Cumulant generating Function-Their important	Lectures
properties. Relationship between moments and cumulants and their uses.	
Characteristic Function- Its properties (without proof).	
Transformation of random Variable	
Unit II : Standard Discrete Probability Distributions:	15
Uniform, Bernoulli, Binomial, Poisson, Geometric, Negative Binomial	Lectures
&Hypergeometric distributions.	
The following aspects of the above distributions(wherever applicable) to be	
discussed:	
Mean, Mode and Standard deviation. Moment Generating Function, Cumulant	
Generating Function, Additive property, Recurrence relation for central	
Moments, Skewness and Kurtosis (without proof), Limiting distribution.	
Unit III : Bivariate Probability Distributions:	15
Joint Probability mass function for Discrete random variables, Joint Probability	Lectures
density function for continuous random variables. Their properties. Marginal	
and conditional Distributions. Independence of Random Variables. Conditional	
Expectation & Variance. Regression Function. Coefficient of Correlation.	
Transformation of Random Variables and Jacobian of transformation with	
illustrations.	

REFERENCES:

- 1. A. M. Mood, F.A. Graybill, D. C. Boyes, Third Edition; McGraw-Hill Book Company. Introduction to the theory of statistics
- 2. R.V. Hogg, A.T. Craig; Fourth Edition; Collier McMillan Publishers: Introduction to Mathematical Statistics
- 3. R.V. Hogg, E. A. Tannis, Third Edition; Collier McMillan Publishers: Probability and Statistical Inference
- 4. I. Miller, M. Miller; Sixth Edition; Pearson Education Inc.: John E. Freund's Mathematical Statistics
- 5. P.G. Hoel; Fourth Edition; John Wiley & Sons Inc.: Introduction to Mathematical Statistics

- 6. S.C. Gupta, V.K. Kapoor; Eighth Edition; Sultan Chand & Sons.: Fundamentals of Mathematical Statistics
- 7. J.N. Kapur, H.C. Saxena; Fifteenth Edition; S. Chand & Company Ltd.: Mathematical Statistics
- 8. J. Medhi; Second edition; Wiley Eastern Ltd.: Statistical Methods: An Introductory Text
- 9. A.M. Goon, M.K. Gupta, B. DasGupta; Third Edition; The World Press Pvt. Ltd.: An Outline of Statistical Theory Vol. 1

Course Code: RUSSTA302: THEORY OF SAMPLING

Unit I : Concepts:	15
• Population, Population unit, Sample, Sample unit, Parameter, Statistic, Estimator, Bias, Unbiasedness, Mean square error & Standard error.	Lectures
• Census survey, Sample Survey. Steps in conducting a sample survey. Concepts of Sampling and Non-sampling errors.	
• Concepts and methods of Probability and Non Probability sampling.	
Simple Random Sampling: (SRS).	
• Description of Simple Random Sampling with & without replacement.	
• Lottery method & use of Random numbers to select Simple random sample.	
• Estimation of population mean & total. Expectation & Variance of the estimators, Unbiased estimator of variance of these estimators.	
 Estimation of population proportion. Expectation & Variance of the estimators, Unbiased estimator of variance of these estimators. 	
• Estimation of Sample size based on a desired accuracy in case of SRS for variables & attributes.	
Unit II : Stratified Sampling:	15
• Need for Stratification of population with suitable examples. Description of Stratified Random Sample.	Lectures
Advantages of stratified random Sampling.	
Stratified Random Sampling:	
• Estimation of population mean & total in case of Stratified Random Sampling (WOR within each stratum). Expectation & Variance of the unbiased estimators,	
Unbiased estimators of variances of these estimators.	
• Equal Allocation, Proportional allocation, Optimum allocation with and without varying costs.	
 Comparison of Simple Random Sampling, Stratified Random Sampling using Proportional allocation & Neyman allocation 	
Unit III : a. Ratio & Regression Estimation assuming SRSWOR:	15
• Ratio Estimators for population Ratio, Mean & Total. Expectation & MSE of the Estimators Estimators of MSE. Uses of Ratio Estimator	Lectures
 Regression Estimators for population Mean & Total. Expectation & Variance of the Estimators assuming known value of regression coefficient 'h'. 	
 Estimation of 'b' Resulting variance of the estimators. Uses of regression 	
 Estimator Comparison of Ratio Regression & mean per Unit estimators 	
b. Systematic sampling: Estimator of Population Mean and its Variance. Comparison of	
Systematic Sampling with Simple Random sampling	
Introduction to Cluster sampling & Two Stage sampling with suitable illustrations.	

- 1. W.G. Cochran; 3rd Edition; Wiley (1978): Sampling Techniques
- 2. M. N. Murthy; Statistical Publishing Society. (1967): Sampling Theory and methods
- 3. Des Raj; McGraw Hill Series in Probability and Statistics. (1968): Sampling Theory
- 4. P.V. Sukhatme and B.V. Sukhatme; 3rd Edition; Iowa State University Press (1984): Sampling Theory of Surveys with Applications
- 5. S. C. Gupta and V.K. Kapoor; 3rd Edition; Sultan Chand and Sons (2001): Fundamentals of Applied Statistics
- 6. Daroga Singh, F.S.Chaudhary, Wiley Eastern Ltd. (1986): Theory and Analysis of Sample Survey Designs:
- 7. S. Sampath, Second Edition (2005), Narosa: Sampling Theory and Methods
- 8. Parimal Mukhopadhyay, (1998), Prentice Hall Of India Pvt. Ltd.: Theory and Methods of Survey Sampling

Course Code: RUSSTA303: OPERATIONS RESEARCH

Unit I : Linear Programming Problem (L.P.P.) :	15
 Mathematical Formulation: Maximization & Minimization. Concepts of Solution, Feasible Solution, Basic Feasible Solution, Optimal solution. Graphical Solution for problems with two variables. Simplex method of solving problems with two or more variables. Big M method. Concept of Duality. Its use in solving L.P.P. Relationship between optimum solutions to Primal and Dual. Economic interpretation of Dual. 	Lectures
Unit II : Transportation Problem:	15
 Concept, Mathematical Formulation. Concepts of Solution, Feasible Solution. Initial Basic Feasible Solution by North-West Corner Rule, Matrix Minima Method, Vogel's Approximation Method. Optimal Solution by MODI Method. Optimality test, Improvement procedure. Variants in Transportation Problem: Unbalanced, Maximization type, Restricted allocations. 	Lectures
Unit III :Assignment Problem:	15
 Concept. Mathematical Formulation Solution by: Complete Enumeration Method and Hungarian method. Variants in Assignment Problem: Unbalanced, Maximization type. Airline Operating Problem Travelling Salesman Problem Sequencing : Processing n Jobs through 2 and 3 Machines , 2 Jobs through m Machines and n jobs through m machines 	Lectures

- 1. Kantiswaroop and Manmohan Gupta. 4th Edition; S Chand & Sons: Operations Research
- 2. Richard Broson. 2nd edition Tata Mcgraw Hill Publishing Company Ltd.: Schaum Series book in O.R.
- 3. Methods and Problems: Maurice Sasieni, Arthur Yaspan and Lawrence Friedman, (1959), John Wiley & Sons: Operations Research
- 4. J K Sharma, (1989), Tata McGraw Hill Publishing Company Ltd.: Mathematical Models in Operations Research
- 5. Harvey M. Wagner, 2nd Edition, Prentice Hall of India Ltd.: Principles of Operations Research with Applications to Management Decisions
- 6. S.D.Sharma.11th edition, Kedar Nath Ram Nath & Company.: Operations Research
- 7. H. A.Taha.6th edition, Prentice Hall of India.: Operations Research
- 8. J.K.Sharma, (2001), MacMillan India Ltd.: Quantitative Techniques For Managerial Decisions

DISTRIBUTION OF TOPICS FOR PRACTICALS SEMESTER-III

COURSE CODE RUSSTAP301

Sr. No.	RUSSTAP301(A)
1	Moment Generating Function, Moments.
2	Cumulant generating Function, Cumulants, Characteristic function.
3	Standard Discrete Distributions
4	Fitting Standard Discrete Distributions.
5	Bivariate Probability Distributions, Marginal & Conditional distributions,
	Conditional Mean, Conditional Variance, Correlation
6	Transformation of discrete & continuous random variables.
7	Applications of R.

Sr. No.	RUSSTAP301(B)
1	Designing of Questionnaire.
2	Simple Random Sampling for Variables.
3	Simple Random Sampling for Attributes.
4	Estimation of Sample Size in Simple Random Sampling.
5	Stratified Random Sampling.
6	Ratio Estimation- Regression Estimation.
7	Systematic Sampling

Sr. No.	RUSSTAP301(C)
1	Formulation and Graphical Solution of L.P.P.
2	Simplex Method.
3	Duality.
4	Transportation.
5	Assignment.
6	Sequencing.
7	Problems solving using TORA.

SEMESTER IV

Title of course	PROBABILITY AND SAMPLING DISTRIBUTIONS			
Course code	UNIT	TOPICS	Credits	L / Week
	Ι	Standard Continuous Probability Distributions		1
RUSSTA401	II	Normal Distribution.	2	1
	III	Exact Sampling Distributions.		1
Title of course	ANALYSIS OF VARIANCE & DESIGN OF EXPERIMENTS			
	Ι	Analysis of Variance.		1
RUSSTA402	Π	Design Of Experiments, Completely Randomized Design & Randomized Block Design	2	1
	III	Latin Square Design & Factorial Experiments		1
Title of course	PROJECT MANAGEMENT AND INDUSTRIAL STATISTICS			
	Ι	CPM and PERT.		1
DUSSTA 403	II	Control charts	2	1
KU551A405	III	Lot Acceptance Sampling Plans By Attributes.	2	1
RUSSTAP401	Practical	based on courses above	3	9

Semester IV Course Code RUSSTA401: PROBABILITY AND SAMPLING DISTRIBUTIONS

Unit I : Standard Continuous Probability Distributions:	15
Rectangular, Triangular, Exponential, Gamma (with Single & Double	Lectures
parameter), Beta (Type I & Type II).	
The following aspects of the above distributions(wherever applicable) to be	
discussed:	
Mean, Median, Mode & Standard deviation. Moment Generating Function,	
Additive property, Cumulant Generating Function. Skewness and Kurtosis	
(without proof). Interrelation between the distributions.	
Normal Distribution:	
Mean, Median, Mode, Standard deviation, Moment Generating function,	
Cumulant Generating function, Moments & Cumulants (up to fourth order).	

Recurrence relation for central moments, skewness& kurtosis, Mean absolute	
deviation. Distribution of linear function of independent Normal variables.	
Fitting of Normal Distribution.	
Central Limit theorem for i.i.d. random variables.	
Log Normal Distribution: Derivation of mean & variance.	
Unit II : <u>Chi-Square Distribution:</u>	15
Concept of degrees of freedom. Mean, Median, Mode & Standard deviation.	Lectures
Moment generating function, Cumulant generating function. Additive	
property, Distribution of the sum of squares of independent Standard Normal	
variables. Sampling distributions of sample mean and sample variance and	
their independence for a sample drawn from Normal distribution (without	
proof).	
Applications of Chi-Square:	
Test of significance for specified value of variance of a Normal population.	
Test for goodness of fit & Test for independence of attributes (derivation of	
test statistics is not expected).	
Unit III: <u>t-distribution:</u>	15
Mean, Median, Mode & Standard deviation. Derivation of t distribution using	Lectures
Fisher's t. Student's t.	
Fisher's t. Student's t. Asymptotic properties.	
Fisher's t. Student's t. Asymptotic properties.	
Fisher's t. Student's t. Asymptotic properties. <u>Applications of t:</u> Confidence interval for: Mean of Normal population,	
Fisher's t. Student's t. Asymptotic properties. <u>Applications of t:</u> Confidence interval for: Mean of Normal population, difference between means of two independent Normal populations having the	
Fisher's t. Student's t. Asymptotic properties. <u>Applications of t:</u> Confidence interval for: Mean of Normal population, difference between means of two independent Normal populations having the same variance. Test of significance of: mean of a Normal population,	
 Fisher's t. Student's t. Asymptotic properties. <u>Applications of t:</u> Confidence interval for: Mean of Normal population, difference between means of two independent Normal populations having the same variance. Test of significance of: mean of a Normal population, difference in means of two Normal populations (based on: (i) independent 	
Fisher's t. Student's t. Asymptotic properties. <u>Applications of t:</u> Confidence interval for: Mean of Normal population, difference between means of two independent Normal populations having the same variance. Test of significance of: mean of a Normal population, difference in means of two Normal populations (based on: (i) independent samples with equal variances. (Effect Size, Cohen's d) (ii) dependent	
Fisher's t. Student's t. Asymptotic properties. <u>Applications of t:</u> Confidence interval for: Mean of Normal population, difference between means of two independent Normal populations having the same variance. Test of significance of: mean of a Normal population, difference in means of two Normal populations (based on: (i) independent samples with equal variances. (Effect Size, Cohen's d) (ii) dependent samples).	
 Fisher's t. Student's t. Asymptotic properties. <u>Applications of t:</u> Confidence interval for: Mean of Normal population, difference between means of two independent Normal populations having the same variance. Test of significance of: mean of a Normal population, difference in means of two Normal populations (based on: (i) independent samples with equal variances. (Effect Size, Cohen's d) (ii) dependent samples). <u>F-distribution:</u> Mean, Mode & Standard deviation. Distribution of: 	
 Fisher's t. Student's t. Asymptotic properties. <u>Applications of t:</u> Confidence interval for: Mean of Normal population, difference between means of two independent Normal populations having the same variance. Test of significance of: mean of a Normal population, difference in means of two Normal populations (based on: (i) independent samples with equal variances. (Effect Size, Cohen's d) (ii) dependent samples). <u>F-distribution:</u> Mean, Mode & Standard deviation. Distribution of: reciprocal of an F variate, Ratio of two independent Chi-squares divided by 	
 Fisher's t. Student's t. Asymptotic properties. <u>Applications of t:</u> Confidence interval for: Mean of Normal population, difference between means of two independent Normal populations having the same variance. Test of significance of: mean of a Normal population, difference in means of two Normal populations (based on: (i) independent samples with equal variances. (Effect Size, Cohen's d) (ii) dependent samples). <u>F-distribution:</u> Mean, Mode & Standard deviation. Distribution of: reciprocal of an F variate, Ratio of two independent Chi-squares divided by their respective degrees of freedom. Interrelationship of F with: t-distribution, 	
 Fisher's t. Student's t. Asymptotic properties. <u>Applications of t:</u> Confidence interval for: Mean of Normal population, difference between means of two independent Normal populations having the same variance. Test of significance of: mean of a Normal population, difference in means of two Normal populations (based on: (i) independent samples with equal variances. (Effect Size, Cohen's d) (ii) dependent samples). <u>F-distribution:</u> Mean, Mode & Standard deviation. Distribution of: reciprocal of an F variate, Ratio of two independent Chi-squares divided by their respective degrees of freedom. Interrelationship of F with: t-distribution, Chi-square distribution & Normal distribution. 	
 Fisher's t. Student's t. Asymptotic properties. <u>Applications of t:</u> Confidence interval for: Mean of Normal population, difference between means of two independent Normal populations having the same variance. Test of significance of: mean of a Normal population, difference in means of two Normal populations (based on: (i) independent samples with equal variances. (Effect Size, Cohen's d) (ii) dependent samples). <u>F-distribution:</u> Mean, Mode & Standard deviation. Distribution of: reciprocal of an F variate, Ratio of two independent Chi-squares divided by their respective degrees of freedom. Interrelationship of F with: t-distribution, Chi-square distribution & Normal distribution. <u>Applications of F:</u> Test for equality of variances of two independent 	
 Fisher's t. Student's t. Asymptotic properties. <u>Applications of t:</u> Confidence interval for: Mean of Normal population, difference between means of two independent Normal populations having the same variance. Test of significance of: mean of a Normal population, difference in means of two Normal populations (based on: (i) independent samples with equal variances. (Effect Size, Cohen's d) (ii) dependent samples). <u>F-distribution:</u> Mean, Mode & Standard deviation. Distribution of: reciprocal of an F variate, Ratio of two independent Chi-squares divided by their respective degrees of freedom. Interrelationship of F with: t-distribution, Chi-square distribution & Normal distribution. <u>Applications of F:</u> Test for equality of variances of two independent Normal populations. 	

- 1. A M Mood, F.A. Graybill, D C Boyes; Third Edition; McGraw-Hill Book Company.: Introduction to the theory of statistics
- 2. R.V.Hogg, A.T. Craig; Fourth Edition; Collier McMillan Publishers.: Introduction to Mathematical Statistics
- 3. R.V.Hogg, E. A.Tannis, Third Edition; Collier McMillan Publishers.: Probability and Statistical Inference
- 4. I. Miller, M. Miller; Sixth Edition; Pearson Education Inc.: John E. Freund's Mathematical Statistics
- 5. P.G. Hoel; Fourth Edition; John Wiley & Sons Inc.: Introduction to Mathematical Statistics
- S.C. Gupta, V.K. Kapoor; Eighth Edition; Sultan Chand & Sons.: Fundamentals of Mathematical Statistics
- 7. J.N. Kapur, H.C. Saxena; Fifteenth Edition; S. Chand & Company Ltd.: Mathematical Statistics
- 8. J. Medhi; Second edition; Wiley Eastern Ltd.: Statistical Methods- An Introductory Text
- 9. A.M. Goon, M.K. Gupta, B. DasGupta; Third Edition; The World Press Pvt. Ltd.: An Outline of Statistical Theory Vol. 1

Course Code RUSSTA402: ANALYSIS OF VARIANCE & DESIGNS OF EXPERIMENTS

Unit I : Analysis of Variance:	15	
• Introduction, Uses, Cochran's Theorem (Statement only).		
• One way classification with equal & unequal observations per class,		
• Two way classification with one observation per cell.		
• For both the cases: Mathematical Model, Assumptions, Expectation of various sums		
of squares, F- test, Analysis of variance table. Least square estimators of the		
parameters, Expectation and Variance of the estimators, Estimation of linear		
contrasts, Standard Error and Confidence limits Testing for significance of		
elementary linear contrasts.		
Unit II : Design Of Experiments:	15	
• Concepts of Experiments, Experimental unit, Treatment, Yield, Block,	Lectures	
Replicate, Experimental Error, Precision.		
• Principles of Design of Experiments: Replication, Randomization & Local Control.		
• Efficiency of design D ₁ with respect to design D ₂ .		
• Choice of size, shape of plots & blocks in agricultural & non agricultural		
experiments.		

Completely Randomized Design (CRD) & Randomized Block Design (RBD):	
• Mathematical Model, Assumptions, Expectation of various sums of squares,	
F-test, Analysis of variance table.	
• Least square estimators of the parameters, Variance of the estimators,	
Estimation of linear contrasts, Standard Error and Confidence limits Testing for	
significance of elementary linear contrasts. Efficiency of RBD relative to CRD.	
• Missing plot technique for one missing observation in case of CRD, RBD	
Unit III : Latin Square Design (LSD):	15
• Mathematical Model, Assumptions, Expectation of various sums of squares, F-	Lectures
test, Analysis of variance table.	
• Least square estimators of the parameters, Variance of the estimators,	
Estimation of treatment contrasts, Standard error and Confidence limits for	
elementary treatment contrasts.	
• Efficiency of the design relative to RBD, CRD.	
• Missing plot technique for one missing observation in case of LSD.	
Factorial Experiments: Definition, Purpose & Advantages. 2 ² , 2 ³ Experiments.	
• Calculation of Main & interaction Effects. Yates' method. Analysis of 2 ² & 2 ³	
factorial Experiments. Concept of Confounding. (partial and total)	

- 1. W.G. Cochran and G.M.Cox; Second Edition; John Wiley and Sons.: Experimental Designs
- 2. Oscar Kempthorne, John Wiley and Sons.: The Design and Analysis of Experiments
- 3. Douglas C Montgomery; 6th Edition; John Wiley & Sons.: Design and Analysis of Experiments
- 4. M.N.Das and N.C.Giri, 2nd Edition; New Age International (P) Limited; 1986: Design and Analysis of Experiments
- 5. Walter T Federer; Oxford & IBH Publishing Co. Pvt. Ltd.: Experimental Design, Theory and Application
- S.C.Gupta and V.K.Kapoor; 3rd Edition; Sultan Chand and Sons (2001): Fundamentals of Applied Statistics
- 7. B.J. Winer, McGraw Hill Book Company.: Statistical Principles in Experimental Design

Course Code RUSSTA403: PROJECT MANAGEMENT AND INDUSTRIAL STATISTICS

Unit I : CPM and PERT:	
• Objective and Outline of the techniques. Diagrammatic representation of	Lectures
activities in a project: Gantt Chart and Network Diagram.	
• Slack time and Float times. Determination of Critical path. Probability	
consideration in project scheduling.	
• Project cost analysis.	
• Updating.	
Unit II : Statistical Quality Control-I:	15
• Principles of control. Process quality control of variables. <i>X</i> bar and R, Xbar and	Lectures
Sigma Chart and their uses. Problems involving setting up standards for future	
use.	
• Exponentially weighted moving average (EWMA) control charts, Cumulative	
Sum (CUSUM) control chart, Introduction to Six sigma limits.	
• Concept of Natural Tolerance Limits, Specification Limits and Detection of shift	
Unit III : Statistical Quality Control-II:	15
• Principles of control. Process quality control of attributes p, c, np charts and	Lectures
their uses. p-chart and C-chart with variable sample size. Problems involving	
setting up standards for future use	
Acceptance sampling plan	
• Single Sampling Plans (without curtailment).	
• OC function and OC curves. AQL, LTPD, ASN, ATI, AOQ, Consumer's risk,	
Producer's risk.	
• Double Sampling Plan (Concept only)	

REFERENCES:

- 1. E.L. Grant. (2nd edition) McGraw Hill, 1988.: Statistical Quality Control
- Duncan. (3rd edition) D. Taraporewala sons & company.: Quality Control and Industrial Statistics
- 3. Bertrand L. Hansen, (1973), Prentice Hall of India Pvt. Ltd.: Quality Control: Theory and Applications

- Douglas Montgomery, Arizona State University. John Wiley & Sons, Inc. (6th Edition): Statistical Quality Control
- 5. Gupta S.C., Kapoor V.K., Fundamentals of Applied Statistics, Sultan Chand & Sons
- 6. Srinath. 2nd edition, East-west press Pvt. Ltd.: PERT and CPM, Principles and Applications
- 7. Kantiswaroop and Manmohan Gupta. 4th Edition; S Chand & Sons.: Operations Research
- 8. Richard Broson. 2nd edition Tata Mcgraw Hill Publishing Company Ltd.: Schaum Series book in O.R.
- Maurice Sasieni, Arthur Yaspan and Lawrence Friedman, (1959), John Wiley & Sons.: Operations Research: Methods and Problems
- 10. J K Sharma, (1989), Tata McGraw Hill Publishing Company Ltd.: Mathematical Models in Operations Research
- 11. S.D.Sharma.11th edition, Kedar Nath Ram Nath & Company.: Operations Research
- 12. H. A. Taha, 6th edition, Prentice Hall of India.: Operations Research
- J.K.Sharma, (2001), MacMillan India Ltd.: Quantitative Techniques for Managerial Decisions

DISTRIBUTION OF TOPICS FOR PRACTICALS SEMESTER-IV COURSE CODE RUSSTAP401

Sr. No.	Course Code: RUSSTAP401(A) PROBABILITY AND SAMPLING DISTRIBUTIONS
1	Standard Continuous distributions.
2	Normal Distribution
3	Central Limit Theorem
4	Chi Square distribution
5	t distribution
6	F distribution
7	Practical using Excel, R software

Sr. No.	Course Code: RUSSTAP401(B) ANALYSIS OF VARIANCE & DESIGN OF EXPERIMENTS
1	Analysis of Variance- One Way
2	Analysis of Variance- Two Way
3	Completely Randomized Design
4	Randomized Block Design

5	Latin Square Design.
6	Missing Observations in CRD, RBD & LSD
7	Factorial Experiments
8	Practical using Excel and R software

Sr. No.	Course Code: RUSSTAP401(C) PROJECT MANAGEMENT AND INDUSTRIAL STATISTICS
1	PERT
2	СРМ
3	Project cost analysis
4	Updating
5	Control Charts for attributes
6	Control Charts for variables
7	Acceptance Sampling Plans.
8	Practical using EXCEL and TORA software

THEORY

Internal Assessment of Theory Core Courses Per Semester Per Course

Semester End Examination

Theory: At the end of the semester, examination of two hours duration and 60 marks based on the three units shall be held for each course.

Pattern of **Theory question** paper at the end of the semester for *each course:* There shall be THREE COMPULSORY Questions of 20 marks each (Internal Option). Question1 based on Unit I, Question 2 based on Unit II, Question 3 based on Unit III.

Internal Assessment of Practical Core Courses per Semester per course

1 . One Class Test	15 Marks
2 . Journal	05 marks

Practical Core Courses per Semester per course

1. Practical Examination

At the end of the semester, examination of one and half hours duration and 30 marks shall be held for **each course**.

Pattern of **Practical question** paper at the end of the semester for **each theory course**: There shall be **Three** COMPULSORY Questions with internal choice.

<u>Workload</u>

Theory: 3 lectures per week per course.

Practicals: 3 lecture periods per course per week per batch. All three lecture periods of the practicals shall be conducted in succession together on a single day.
