Resolution No.: AC/I(19-20).2.RUS11

S.P. Mandali's RAMNARAIN RUIA AUTONOMOUS COLLEGE

Syllabus for: F.Y.B.Sc.

Program: B.Sc.

Course Code: Statistics (RUSSTA)

(Choice Based Credit System (CBCS) with effect from academic year 2018-19)

F.Y.B.Sc. STATISTICS Syllabus Credit Based Semester Grading System

Preamble

B. Sc. Statistics program is of 120 credits spread over six semesters. This program is offered at the Department of Statistics, Ramnarain Ruia Autonomous College, Matunga, Mumbai.

The program develops a wide range of skills beyond knowledge of statistical topics, including mathematical, computational and non-mathematical skills.

The program emphasizes on theory and applications of statistics. It is well structured to provide the knowledge and skills in depth necessary for the employability of students in industry, other organizations, as well as in academics.

Ramnarain Ruia Autonomous College has the academic autonomy. The independent projects and presentation work is one of the important components of this program. The syllabus offers four courses in the first year (two semesters) and it covers most of the basic core concepts. The second year syllabus has four core and two of applied nature courses. The syllabus has been framed to have a good balance of theory, methods and applications of statistics. The third year offers two courses of core statistics and two courses of applied statistics in each semester. Practical courses in all three years are designed to enhance the ability of students to study the applications of the core courses and to develop the interpretation skills. The presentations on various topics develop students' public speaking and communication skills.

Objective of Course

In the first year, there will be two courses in Statistics per semester. The following are the objectives of these courses:

- 1. To understand various data types and to learn visualization techniques.
- 2. To enable learners to summarize data quantitative and graphical methods.
- 3. To enable learners with concepts of probability and probability distributions
- 4. To equip learners with requisite quantitative techniques.
- 5. To develop learner's presentation and communication skills.

Learning Outcomes

- **1.** Learners will be able to visualize data using elementary graphs and diagrams and will be able to apply appropriate measures for quantitative and qualitative data.
- **2.** Learners will be able to choose and apply an appropriate statistical analysis or modeling methods to solve problems arising in different fields.
- **3.** Learners will be able to use statistical tools to solve problems from different fields.
- **4.** Learners will be able to engage in interpretation of wide range of information from variety of disciplines including quantitative analysis.

SEMESTER I

Title of Course	DESCRIPTIVE STATISTICS I				
Course Code	UNIT	TOPICS	Credits	L / Week	
I		Types of Data and Data Condensation		1	
RUSSTA101	II	Measures of central tendency	2	1	
III		Measures of Dispersion, Skewness & Kurtosis		1	
Title of Course	STATISTICAL METHODS - I				
	I Elementary Probability The			1	
	II	Discrete random variable	2	1	
RUSSTA102 III		Some Standard Discrete Distributions		1	
RUSSTAP101	Practical based on courses above		2	6	

SEMESTER II

Title of Course	DESCRIPTIVE STATISTICS II				
Course Code	UNIT	TOPICS	Credit	L / Week	
			S		
	т	Correlation and Regression		1	
RUSSTA201	1	Analysis	2	I	
	II	Time Series		1	
	III	Index Numbers		1	
Title of Course	STATISTICAL METHODS			– II	
	т	Continuous random variable and		1	
	1	Standard Continuous Distribution	2	1	
RUSSTA202	II	Normal Distribution		1	
	ш	Elementary topics on Estimation		1	
	111	and Testing of hypothesis		1	
RUSSTAP201	P	ractical based on courses above	2	6	

COURSE RUSSTA101: DESCRIPTIVE STATISTICS I

Unit I - Types of Data and Data Condensation:	15
Global Success stories of Statistics/Analytics in various fields.	Lectures
• Concept of Population and Sample. Finite, Infinite Population, Notion	
of SRS, SRSWOR and SRSWR	
• Different types of scales: Nominal, Ordinal, Interval and Ratio.	
• Methods of Data Collection: i) Primary data: concept of a Questionnaire	
and a Schedule, ii) Secondary Data	
• Types of data: Qualitative and Quantitative Data; Time Series Data and	
Cross Section Data, Discrete and Continuous Data	
Tabulation	
• Dichotomous classification- for two and three attributes, Verification	
for consistency	
• Association of attributes: Yule's coefficient of association Q. Yule's	
coefficient of Colligation Y, Relation between Q and Y (with proof).	
• Univariate frequency distribution of discrete and continuous variables.	
Cumulative frequency distribution	
• Data Visualization: Graphs and Diagrams: Histogram, Polygon/curve,	
Ogives. Heat Map, Tree map.	
Bivariate Frequency Distribution of discrete and continuous variables	1 7
Unit II–Measures of central tendency	15
• Concept of central tendency of data, Requirements of good measures of central tendency.	Lectures
 Location parameters : Median, Quartiles, Deciles, and Percentiles 	
 Mathematical averages Arithmetic mean (Simple, weighted mean, 	
combined mean), Geometric mean, Harmonic mean, Mode, Trimmed	
mean.	
Empirical relation between mean, median and mode	
• Merits and demerits of using different measures & their applicability.	1 7
Unit III - Measures of Dispersion, Skewness & Kurtosis	15
Concept of dispersion, Requirements of good measure	Lectures
• Absolute and Relative measures of dispersion: Range, Quartile Deviation, Inter Quartile Range, Mean absolute deviation, Standard	
deviation.	
 Variance and Combined variance, raw moments and central moments 	
and relations between them. Their properties	
• Concept of Skewness and Kurtosis: Measures of Skewness: Karl	
Pearson's, Bowley's and Coefficient of skewness based on moments.	
Measure of Kurtosis. Absolute and relative measures of skewness.	
Box Plot: Outliers	

COURSE RUSSTA102: STATISTICAL METHODS - I

UNIT – I: Elementary Probability Theory	15
• Trial, random experiment, sample point and sample space.	Lectures
• Definition of an event, Operation of events, mutually exclusive and	
exhaustive events.	
• Classical (Mathematical) and Empirical definitions of Probability and	
their properties.	
 Theorems on Addition and Multiplication of probabilities 	
• Independence of events, Pair-wise and Mutual Independence for three events, Conditional probability, Bayes' theorem and its applications	
UNIT – II: Discrete random variable	15
• Random variable. Definition and properties of probability distribution and cumulative distribution function of discrete random variable.	Lectures
• Raw and Central moments and their relationships.	
 Concepts of Skewness and Kurtosis and their uses. 	
• Expectation of a random variable. Theorems on Expectation &	
Variance. Concept of Generating function, Moment Generating	
function, Cumulant generating function, Probability generating	
function	
 Joint probability mass function of two discrete random variables. Independence of two random variables. 	
• Marginal and conditional distributions. Theorems on Expectation	
&Variance,	
Covariance and Coefficient of Correlation.	
UNIT – III: Some Standard Discrete Distributions	15
• Degenerate (one point) :-Discrete Uniform, Bernoulli, Binomial,	Lectures
Poisson and Hypergeometric distributions derivation of their mean	
and variance for all the above distributions.	
• Moment Generating Function and Cumulant Generating Function of	
Binomial and Poisson distribution.	
Recurrence relationship for probabilities of Binomial and Poisson	
distributions, Poisson approximation to Binomial distribution,	
Binomial approximation to hypergeometric distribution.	<u> </u>

COURSE RUSSTA201: DESCRIPTIVE STATISTICS II

UNIT – I: Correlation, Simple linear Regression Analysis and Fitting of	15
curves	Lectures
 Visualizing relationship using Bubble chart, Scatter Diagram, Karl Pearson's Product moment correlation coefficient and its properties. Spearman's Rank correlation.(With and without ties) Concept of Simple linear regression. Principle of least squares. Fitting a straight line by method of least squares (Linear in Parameters) Relationship between regression coefficients and correlation coefficient, cause and effect relationship, Spurious correlation. Concept and use of coefficient of determination (R²). Measures of association with the help of Tau A, Tau B, Tau C, Gamma and Lambda, Somer's d 	
• Fitting of curves reducible to linear form by transformation.	
UNIT – II : Time Series	15
 Definition of time series. Components of time series. Models of time series. Estimation of trend by: (i) Freehand Curve Method (ii) Method of Semi Average (iii)Method of Moving Average (iv) Method of Least Squares (Linear Trend only) Estimation of seasonal component by i) Method of Simple Average ii) Ratio to Moving Average iii)Ratio to Trend Method Simple exponential smoothing Stationary Time series 	Lectures
Unit - III : Index Numbers	15
 Index numbers as comparative tool. Stages in the construction of Price Index Numbers. Measures of Simple and Composite Index Numbers. Laspeyre's, Paasche's, Marshal-Edgeworth's, Dobisch & Bowley's and Fisher's Index Numbers formula Quantity Index Numbers and Value Index Numbers Time reversal test, Factor reversal test, Circular test Fixed base Index Numbers, Chain base Index Numbers. Base shifting, splicing and deflating Cost of Living Index Number. Concept of Real Income. 	Lectures

COURSE RUSSTA202: STATISTICAL METHODS – II

UNIT – I: Continuous random variable and some Standard Continuous	15
Distributions	Lectures
• Concept of Continuous random variable and properties of its probability distribution	
 Probability density function and cumulative distribution function. Their graphical representation. 	
• Expectation of a random variable and its properties. Concept of M.G.F. and C.G.F. characteristics. Measures of location, dispersion, skewness and kurtosis.	
• Raw and central moments (simple illustrations).	
• Uniform, Exponential distribution (location and scale parameter), memory less property of exponential distribution,	
• Derivations of mean, median, variance, MG.F. and C.G.F. for Uniform and Exponential distributions.	
UNIT – II: Normal Distribution and Sampling Distribution	15
Normal distribution	Lectures
• Properties of Normal distribution/curve (without proof). Use of normal tables.	
 Normal approximation to Binomial and Poisson distribution (statement only) 	
• Sample from a distribution: Concept of a statistic, estimate and its sampling distribution. Parameter, its estimator and bias, unbiasedness, standard error of an estimator.	
• Concept of Central Limit theorem (statement only)	
• Sampling distribution of sample mean and sample proportion difference between two population means and two proportions.	
• Standard errors of sample mean and sample proportion.	
UNIT – VI: Basics of Theory of Estimation and Testing of hypothesis	15
• Point and Interval estimate of single mean, single proportion from sample of large size.	Lectures
• Statistical tests: Concept of hypothesis, Null and Alternative	
Hypothesis, Types of Errors, Critical region, Level of significance, Power	
Large sample tests	
For testing specified value of population mean	
For testing specified value in difference of two means	
For testing specified value of population proportion	
For testing specified value of difference of population proportionConcept of p-value	

REFERENCES

- 1 Medhi J.:"Statistical Methods, An Introductory Text", Second Edition, New Age International Ltd.
- 2 Agarwal B.L.: "Basic Statistics", New Age International Ltd.
- 3 Spiegel M.R.:"Theory and Problems of Statistics", Schaum's Publications series. Tata McGraw-Hill.
- 4 Kothari C.R.: "Research Methodology", Wiley Eastern Limited.
- 5 David S.:"Elementary Probability", Cambridge University Press.
- 6 Hoel P.G.: "Introduction to Mathematical Statistics", Asia Publishing House.
- 7 Hogg R.V. and Tannis E.P.: "Probability and Statistical Inference". McMillan Publishing Co. Inc.
- 8 PitanJim:"Probability", Narosa Publishing House.
- 9 Goon A.M., Gupta M.K., Dasgupta B.:"Fundamentals of Statistics", Volume II: The World Press Private Limited, Calcutta.
- 10. Gupta S.C., Kapoor V.K.: "Fundamentals of Mathematical Statistics", Sultan Chand &Sons
- 11. Gupta S.C., Kapoor V.K.: "Fundamentals of Applied Statistics", Sultan Chand & Sons

Distribution	of to	nics fo	or Pra	cticals	in	Semester I	
Distribution	01 10	pico it	<u> </u>	cticuly		Demester 1	

Course Code RUSSTAP101(A)			Course Code RUSSTAP101(B)		
Sr.	Practicals based on course	Sr.	Practicals based on course		
No.		No.			
1	Tabulation	1	Probability		
2	Classification of Data	2	Discrete Random Variables		
3	Attributes	3	Bivariate Probability Distributions		
4	Diagrammatic representation	4	Binomial Distribution		
5	Measures of central tendency	5	Poisson Distribution		
6	Measures of dispersion	6	Hypergeometric Distribution		
7	Practical using Excel and R	7	Practical using Excel and R		
	i) Classification of Data and		i) Binomial distribution		
	Diagrammatic representation		ii) Poisson distribution		
	ii) Measures of central tendency		iii) Hypergeometric distribution		
	iii) Measures of dispersion				

Distribution of topics for Practicals in Semester II

Cou	rse Code RUSSTAP201(A)	Course Code RUSSTAP201(B)		
Sr. No.	Practicals based on course	Sr. No. Practicals based on cour		
1	Correlation analysis	1	Continuous Random Variables	
2	Regression analysis	2	Uniform and Exponential	
			Distributions	
3	Fitting of curve	3	Normal Distribution	
4	Time series	4	Sampling Distribution	
5	Index number-I	5	Testing of Hypothesis	
6	Index number-II	6	Large sample Tests	
7	Practical using Excel and R	7	Practical using Excel and R	
	i) Correlation analysis		i)Uniform and Exponential	
	ii) Regression analysis		ii)Normal Distribution	
	iii) Fitting of curve		iii) Sampling Distribution	
			iv) Testing of Hypotheses	
			v) Large sample Tests	

THEORY

Internal Assessment of Theory Core Courses Per Semester Per Course

Semester End Examination

Theory: At the end of the semester, examination of two hours duration and 60 marks based on the three units shall be held for each course.

Pattern of **Theory question** paper at the end of the semester for **each course:** There shall be THREE COMPULSORY Questions of 20 marks each (Internal Option).

Question1 based on Unit I, Question 2 based on Unit II, Question 3 based on Unit III.

PRACTICAL

	· 10 0	C A
Internal Assessment of Pract	ical l'are l'aurces n	her Semester her course
Internal Assessment of Pract	ical Cole Coulses p	

1. One Class Test	15 Marks.
2. Journal	

Practical Core Courses per Semester per course

1. Practical Examination

......30 Marks.

At the end of the semester, examination of one and half hours duration and 30 marks shall be held for **each course**.

Pattern of **Practical question** paper at the end of the semester for **each theory course**: There shall be **Three** COMPULSORY Questions with internal choice.

Workload

Theory: 3 lectures per week per course.

Practicals: 3 lecture periods per course per week per batch. All three lecture periods of the practicals shall be conducted in succession together on a single day.
