Resolution No.: AC/I/(24-25).3.RUS11

S. P. Mandali's Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for

Program: F.Y.B.Sc.

Program Code: RUSSTA

(As per the guidelines of National Education Policy 2020-Academic year 2024-25)

(Choice based Credit System)

GRADUATE ATTRIBUTES

S. P. Mandali's Ramnarain Ruia Autonomous College has adopted the Outcome Based Education model to make its science graduates globally competent and capable of advancing in their careers. The Bachelors Program in Science also encourages students to reflect on the broader purpose of their education.

GA	GA Description
	A student completing Bachelor's Degree in Science program will be able to:
GA 1	Recall and explain acquired scientific knowledge in a comprehensive manner and
	apply the skills acquired in their chosen discipline. Interpret scientific ideas and
	relate its interconnectedness to various fields in science.
GA 2	Evaluate scientific ideas critically, analyse problems, explore options for practical
	demonstrations, illustrate work plans and execute them, organise data and draw
	inferences.
GA 3	Explore and evaluate digital information and use it for knowledge upgradation.
	Apply relevant information so gathered for analysis and communication using
	appropriate digital tools.
GA 4	Ask relevant questions, understand scientific relevance, hypothesize a scientific
	problem, construct and execute a project plan and analyse results.
GA 5	Take complex challenges, work responsibly and independently, as well as in
	cohesion with a team for completion of a task. Communicate effectively,
	convincingly and in an articulate manner.
GA 6	Apply scientific information with sensitivity to values of different cultural groups.
	Disseminate scientific knowledge effectively for upliftment of the society.
GA 7	Follow ethical practices at work place and be unbiased and critical in
	interpretation of scientific data. Understand the environmental issues and explore
2	sustainable solutions for it.
GA8	Keep abreast with current scientific developments in the specific discipline and
5	adapt to technological advancements for better application of scientific knowledge
	as a lifelong learner.

PROGRAM OUTCOMES

РО	Description
	A student completing Bachelor's Degree in Science program in the
	subject of Statistics will be able to:
PO 1	Understand, condense, visualize, analyze and interpret various data types generated
	in various scenarios of scientific, industrial, or social problems.
PO 2	Apply Statistical tools for data analysis.
PO 3	Pursue their higher education programs leading to post-graduate and/or doctoral
	degrees in Statistics, Data Science, Business Analytics, Biostatistics, Econometrics,
	Management Studies.
PO 4	Compete globally to enter into promising careers.
PO 5	Make a pathway to a range of traditional avenues in Academia and Industry, Govt.
	Service, IAS, Indian Statistical/ Economic Services, Industries, Commerce,
	Investment Banking, Banks and Insurance Sectors, CSO and NSSO, Research
	Personnel/Investigator in Govt. organizations such as NCAER, IAMR, ICMR,
	Statistical and Economic Bureau & various PSUs., Market Research, Actuarial
	Sciences, Biostatistics, Demography etc.
PO 6	Seek employment or self-employment in different sectors like Stock trading,
	Pharmaceutical sector, Sports, Politics, Business, Financial services and Media
	Industry.

CREDIT STRUCTURE B.Sc.

	Subj	ect 1		GE/		Vocat		Abili	ty	OJT/FP/	Total
Semester	DSC	DSE	Subject	2 (Acr discip		Enhan nt Co (VSC)	urse	Enhance Course/ V		CEPCC, RP	Credit s
1	4		4	4 4 (2		VSC SEC	C-2 + C-2	AEC- 2 + VEC- 2 Sc.) + I	2 (Env		22
2	4		4	4 (2	:*2)	VSC SEC		AEC-2 (0 VEC-2 (Undersi g India)	tandin	CC-2	22
Total	8		8	8	3	8		10		2	44
Exit op	tion: aw				_			and an ad ajor and I		4 credit Core N	SQF
3	Majo r 8		Mino r 4	20	VS	C-2	AEC	-2 MIL	FP	-2, CC-2	22
4	Majo r 8		Mino r 4	2	SE	C-2	AEC	-2 MIL	CE	P-2, CC-2	22
Total	16		8	4	4	1		4		8	44
Exit op	Exit option: award of UG Diploma in Major with 88 credits and an additional 4 credit Core NSQF course/ Internship or Continue with Major and Minor										
5	DSC 12	DS E 4	Mino r 2		VS	C-2			С	EP/FP-2	22

6	DSC 12	DS E 4	Mino r 2				OJT-4	22
Total	24	8	4		2		6	44
	Exit option: award of UG Degree in Major with 132 credits or Continue with Major for Honours/ Research							

Course Code- Discipline Specific Core: RUSSTA.O101 Course Title: DESCRIPTIVE STATISTICS Academic year 2024-25

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION A student completing this course will be able to:
CO 1	Explain the necessity for measures of central tendency. Apply diverse measures of central tendency to varied types of data. Compare and contrast the utility of mean, median, and mode, along with justifying the advantages and disadvantages of each measure.
CO 2	Compute and comprehend measures of dispersion. Differentiate between Absolute and Relative measures of dispersion.
CO 3	Deduce and establish raw moments and central moments. Interpret Skewness and Kurtosis of data while identifying outliers. Reformulate the aforementioned Course Outcomes.

DETAILED SYLLABUS

Course	Unit	Course/ Unit Title	No. of
Code			Hours
RUSSTA.O101	Unit I	 Measures of central tendency Concept of central tendency of data, Requirements of good measures of central tendency. 	15
		 Location parameters: Median, Quartiles, Deciles, and Percentiles Mathematical averages Arithmetic mean (Simple, weighted mean, combined mean), Geometric mean, Harmonic mean, Mode, Trimmed mean. Empirical relation between mean, median and 	
		mode. Merits and demerits of using different measures & their applicability.	
RUSSTA.O101	Unit II	 Measures of Dispersion, Skewness & Kurtosis Concept of dispersion, Requirements of good measure Absolute and Relative measures of dispersion: Range, Quartile Deviation, Inter Quartile Range, Mean absolute deviation, Standard deviation. Variance and Combined variance, raw moments and central moments and relations between them. Their properties Concept of Skewness and Kurtosis: Measures of Skewness: Karl Pearson's, Bowley's and Coefficient of skewness based on moments. Measure of Kurtosis. Absolute and relative measures of skewness. Box Plot: Outliers 	15
RUSSTA.0101	Unit III	 Karl Pearson's Product moment correlation coefficient and its properties. Spearman's Rank correlation. (With and without ties) Concept of Simple linear regression. Principle of least squares. Fitting a straight line by method of least squares (Linear in Parameters) Relationship between regression coefficients and correlation coefficient, cause and effect relationship, Spurious correlation. Concept and use of coefficient of determination (R²). 	15

 Fitting of curves reducible to linear form by transformation. 	

Distribution of Practical

	Course Code: RUSSTAP.0101				
Sr. No.	Practical based on course				
1	Measures of central tendency-1				
2	Measures of central tendency-2				
3	Measures of dispersion				
4	Moments, Skewness and Kurtosis				
5	Practical using Excel				
	i. Measures of central tendency				
	ii. Measures of dispersion				
6	Correlation analysis				
7	Regression analysis				
8	Fitting of curve				
9	Practical using Excel				
	i. Correlation analysis				
	ii. Regression analysis				
	iii. Fitting of curve				
10	Revision Session – I				
11	Revision Session – II				
12	Revision Session – III				

Course Code- Discipline Specific Core: RUSSTA.E111 Course Title: STATISTICAL METHODS

Academic year 2024-25

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	A student completing this course will be able to:
CO 1	Explain and distinguish between random and non-random experiments, highlighting their respective characteristics.
CO 2	Calculate the probabilities associated with events and investigate their independence.
CO 3	Grasp the notion of a random variable, analyze its probability distribution in both Univariate and Bivariate contexts, and utilize its properties effectively.
CO 4	Use standard discrete probability distributions to analyze real-life data scenarios

DETAILED SYLLABUS

Course	Unit	Course/ Unit Title	No. of
Code			Hours
RUSSTA.E111	Unit	 Elementary Probability Theory Trial, random experiment, sample point and sample space. Definition of an event, Operation of events, mutually exclusive and exhaustive events. Classical (Mathematical) and Empirical definitions of Probability and their properties. Theorems on Addition and Multiplication of probabilities Independence of events, Pair-wise and Mutual Independence for three events, Conditional 	15
RUSSTA.E111	Unit II	probability, Bayes' theorem and its applications	15
RUSSIA.EIII	Onit II	 Pandom variable Random variable. Definition and properties of probability distribution and cumulative distribution function of discrete random variable. Raw and Central moments and their relationships. 	13

		 Concepts of Skewness and Kurtosis and their uses. Expectation of a random variable. Theorems on Expectation & Variance. 	
RUSSTA.E111	Unit III	 Some Standard Discrete Distributions Degenerate (one point): Discrete Uniform, Bernoulli, Binomial, Poisson and Hypergeometric distributions derivation of their mean and variance for all the above distributions. Poisson approximation to Binomial distribution, Binomial approximation to hypergeometric distribution. 	15

Distribution of Practical

	Course Code: RUSSTAP.E111				
Sr. No.	Practical based on course				
1	Probability 1				
2	Probability 2				
3	Probability 3				
4	Discrete Random Variables				
5	Bivariate Probability Distributions				
6	Binomial Distribution				
7	Poisson Distribution				
8	Hypergeometric Distribution				
9	Practical using Excel				
,	i. Binomial Distribution				
	ii. Poisson Distribution				
	iii. Hypergeometric Distribution				
10	Revision session 1				
11	Revision session 2				
12	Revision session 3				

References:

- 1. Medhi J.: "Statistical Methods, An Introductory Text", Second Edition, New Age International Ltd.
- 2. Agarwal B.L.: "Basic Statistics", New Age International Ltd.
- 3. Spiegel M.R.: "Theory and Problems of Statistics", Schaum's Publications series.

 Tata McGraw-Hill.
- 4. Kothari C.R.: "Research Methodology", Wiley Eastern Limited.

- 5. David S.: "Elementary Probability", Cambridge University Press.
- 6. Hoel P.G.: "Introduction to Mathematical Statistics", Asia Publishing House.
- 7. Hogg R.V. and Tannis E.P.: "Probability and Statistical Inference". McMillan Publishing Co. Inc.
- 8. Pitan Jim: "Probability", Narosa Publishing House.
- 9. Goon A.M., Gupta M.K., Dasgupta B.: "Fundamentals of Statistics", Volume II: The World Press Private Limited, Calcutta.
- 10. Gupta S.C., Kapoor V.K.: "Fundamentals of Mathematical Statistics", Sultan Chand &Sons
- 11. Gupta S.C., Kapoor V.K.: "Fundamentals of Applied Statistics", Sultan Chand & Sons

Modality of Assessment: Department Specific Course

(3 Credit Theory Course)

A) Internal Assessment- 30 Marks

Sr. No	Evaluation type	Marks
1	Class Test/ Project / Assignment / Presentation / Open book test	20
2	Class Test/ Project / Assignment / Presentation / Open book test	10
	TOTAL	30

B) External Examination (Semester End)- 45 Marks Semester End Theory Examination:

- Duration The duration for these examinations shall be of One hour 30 Minutes.
- 2. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions Based on
1	Any 2 out of 3 subparts	15	Unit I
2	Any 2 out of 3 subparts	15	Unit II
3	Any 2 out of 3 subparts	15	Unit III
	TOTAL	45	

C) Practical Examination Pattern (Per Semester)

Practical Examination	50 Marks
Journal and attendance	5 Marks

At the end of the semester, examination of **2 hours** duration.

Pattern of Practical question paper at the end of the semester for the course:

- 1. Paper will consist of **two questions**.
- 2. Each **question** of **15 marks** will consist of three sub-questions with following mark distribution.
- 3. Learners will attempt one question.

Sub-Questions	Marks	Questions on
1	15	Unit I
2	15	Unit II
3	15	Unit III
Total	45	

PRACTICAL JOURNAL(5 marks)

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will **not be allowed to appear for the examination. The journals will be certified if the student attends 75% practicals.**

In case of loss of Journal and/or Report, a Lost Certificate should be obtained from Head/ Co-ordinator / In charge of the department; failing which the student will not be allowed to appear for the practical examination.
