Resolution No.: AC/I(21-22).2(II).RUA14

S. P. Mandali's Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for

Program: B. A.

Program Code: (STATISTICS) RUASTA

(Choice Based Credit System for academic year 2022–2023)

PROGRAM OUTCOMES

S. P. Mandali's Ramnarain Ruia Autonomous College has adopted the Outcome Based Education model to make its science graduates globally competent and capable of advancing in their careers. The Bachelors Program in Science also encourages students to reflect on the broader purpose of their education.

РО	PO Description
	A student completing Bachelor's Degree in Arts program will be able to:
PO 1	Demonstrate understanding and skills of application of knowledge of historical
	and contemporary issues in the social and linguistic settings with a
	transdisciplinary perspective to make an informed judgement.
PO 2	Analyse and evaluate theories of individual and social behaviour in the familiar
	contexts and extrapolate to unfamiliar contexts in order to resolve contemporary
	issues.
PO 3	Effectively and ethically use concepts, vocabularies, methods and modern
	technologies in human sciences to make meaningful contribution in creation of
	information and its effective dissemination
PO 4	Explore critical issues, ideas, phenomena and debates to define problems or to
	formulate hypotheses; as well as analyse evidences to formulate an opinion,
	identify strategies, evaluate outcomes, draw conclusions and/or develop and
	implement solutions.
PO 5	Demonstrate oral and written proficiency to analyse and synthesise information
	and apply a set of cognitive, affective, and behavioral skills to work individually
	and with diverse groups to foster personal growth and better appreciate the
	diverse social world in which we live.
PO 6	Develop a clear understanding of social institutional structures, systems,
2	procedures, and policies existing across cultures, and interpret, compare and
	contrast ideas in diverse social- cultural contexts, to engage reasonably with
70.	diverse groups.
PO 7	React thoughtfully with emotional and moral competence to forms of expressive
	direct action and apply social strategies toward eradicating threats to a
	democratic society and a healthy planet.

PO 8	Articulate and apply values, principles, and ideals to the current societal
	challenges by integrating management and leadership skills to enhance the
	quality of life in the civic community through actions that enrich individual lives
	and benefit the community.
PO 9	Recognize and appreciate the diversity of human experience and thought, and
	apply intellect and creativity to contemporary scenario, to promote individual
	growth by practicing lifelong learning.

PROGRAM SPECIFIC OUTCOMES

PSO	Description			
	A student completing Bachelor's Degree in Arts program in			
	the subject of Statistics will be able to:			
	and dubject of diduction will be dible to:			
PSO 1	Understand, condense, visualize, analyze and interpret the data			
	collected in daily walk of life.			
PSO 2	Understand the data generated in various scenarios of scientific,			
	industrial, or social problems.			
PSO 3	Pursue their higher education programs leading to post-graduate			
•	or doctoral degrees.			
PSO 4	Enhance knowledge of Statistical tools.			
PSO 5	Enhance the theoretical rigor with technical skills which prepare			
	them to become globally competitive to enter into a promising			
	professional life after graduation.			
PSO 6	Make a pathway to a range of traditional avenues in Academia			
	and Industry , Govt. Service, IAS, Indian Statistical/ Economic			
	Services, Industries, Commerce, Investment Banking, Banks			
	and Insurance Sectors, CSO and NSSO, Research			
	Personnel/Investigator in Govt. organizations such as NCAER,			
<u>l</u>				

IAMR, ICMR, Statistical and Economic Bureau & various P			
Market Research, Actuarial Sciences, Biostatistics, Demogr			
etc.			
PSO 7	Seek employment in different sectors like Stock trading, Sports,		
	Politics, Business, Financial services and Media Industry.		

PROGRAM OUTLINE

YEAR	SEM	COURSE	COURSE TITLE	CREDITS
		CODE		
FYBA	I	RUASTA101	DESCRIPTIVE STATISTICS - I	2
		(CORE COURSE)	0/,	
FYBA	I	RUASTAP101	Practical based on RUASTA101	1
		(CORE COURSE)	, XO	
FYBA	II	RUASTA201	DESCRIPTIVE STATISTICS - II	2
		(CORE COURSE)		
FYBA	Ш	RUASTAP201	Practical based on RUASTA201	1
		(CORE COURSE)		
SYBA	III	RUASTA301	STATISTICAL METHODS - I	2
SYBA	4Ú	RUASTA302	OPERATIONS RESEARCH	2
SYBA	111	RUASTAP301	Practical based on RUASTA301 &	2
			RUASTA302	
SYBA	IV	RUASTA401	STATISTICAL METHODS – II	2
SYBA	IV	RUASTA402	PROJECT MANAGEMENT AND	2
			INDUSTRIAL STATISTICS	
SYBA	IV	RUASTAP401	Practical based on RUASTA401 &	2

				RUASTA402	
	TYBA	V	RUASTA501	PROBABILITY DISTRIBUTIONS	3
	TYBA	V	RUASTA502	THEORY OF SAMPLING	3
	TYBA	V	RUASTA503	ELEMENTS OF ACTUARIAL SCIENCE	2.5
	TYBA	V	RUASTAP501	Practical based on RUASTA501, RUASTA502 & RUASTA503	3
	TYBA	VI	RUASTA601	PROBABILITY AND SAMPLING DISTRIBUTIONS	3
	TYBA	VI	RUASTA602	ANALYSIS OF VARIANCE & DESIGN OF EXPERIMENTS	3
	TYBA	VI	RUASTA603	APPLIED STATISTICS	2.5
	TYBA	VI	RUASTAP601	Practical based on RUASTA601, RUASTA602 & RUASTA603	3
8					

CORE COURSE

Course Code: RUASTA101

Course Title: DESCRIPTIVE STATISTICS - I

Academic year 2022-23

COURSE OUTCOMES:

COURSE	DESCRIPTION				
OUTCOME	A student completing this course will be able to:				
CO 1	Distinguish between different types of scales. Compare the different				
	types of data and describe the various methods of data collection.				
CO 2	Compute Yule's coefficient of association Q and Yule's coefficient of				
	Colligation Y and associate two attributes, and relate Q and Y.				
CO 3	Construct Univariate and Bivariate frequency distribution of discrete,				
	continuous variables and Cumulative frequency distribution. Draw				
	Graphs and Diagrams: Histogram, Polygon/curve, Ogives. Heat Map,				
	Tree map.				
CO 4	Describe the need of measures of central tendency, Explain the				
	various measures of central tendencies. Relate mean, median and				
	mode. Justify merits and demerits of using different measures.				
CO 5	Compute and comprehend the measures of dispersion. Compare				
4	Absolute and Relative measures of dispersion.				
CO 6	Relate raw moments and central moments. Understand Skewness				
100	and Kurtosis of data. Identify the outliers.				

Course	Unit	Course/ Unit Title	Credits/
Code/ Unit			Lectures
RUASTA101 Unit Types of		Types of Data and Data Condensation:	15
RUASTA101	Unit	 Global Success stories of Statistics/Analytics in various fields. Concept of Population and Sample. Finite, Infinite Population, Notion of SRS, SRSWOR and SRSWR Different types of scales: Nominal, Ordinal, Interval and Ratio. Methods of Data Collection: i) Primary data: concept of a Questionnaire and a Schedule, ii) Secondary Data Types of data: Qualitative and Quantitative Data; Time Series Data and Cross Section Data, Discrete and Continuous Data Univariate frequency distribution of discrete and continuous variables. Cumulative frequency distribution Data Visualization: Graphs and Diagrams: Histogram, Polygon/curve, Ogives. Heat Map, Tree map. 	15 Lectures
		Bivariate Frequency Distribution of discrete and	
RUASTA101	Unit	continuous variables Measures of central tendency	15
ROASTATOT	II	 Concept of central tendency of data, 	Lectures
		Requirements of good measures of central tendency. Location parameters: Median, Quartiles, Deciles, and Percentiles Mathematical averages Arithmetic mean (Simple, weighted mean, combined mean), Geometric mean, Harmonic mean, Mode, Trimmed mean. Empirical relation between mean, median and mode. Merits and demerits of using different measures & their applicability.	
RUASTA101	Unit	Measures of Dispersion, Skewness & Kurtosis	15
	III	 Concept of dispersion, Requirements of good measure Absolute and Relative measures of dispersion: Range, Quartile Deviation, Inter Quartile Range, Mean absolute deviation, Standard deviation. Variance and Combined variance, raw moments and central moments and relations between 	Lectures

	 them. Their properties Concept of Skewness and Kurtosis: Measures of Skewness: Karl Pearson's, Bowley's and Coefficient of skewness based on moments. Measure of Kurtosis. Absolute and relative measures of skewness. Box Plot: Outliers 	
--	---	--

	Course Code RUASTAP101				
Sr. No.	Practicals based on course				
1	Classification of Data				
2	Diagrammatic representation				
3	Measures of central tendency-1				
4	Measures of central tendency-2				
5	Measures of dispersion				
6	Moments, Skewness and Kurtosis				
7	Practical using Excel i) Classification of Data ii) Diagrammatic representation iii) Measures of central tendency iv) Measures of dispersion				

References:

- 1. Medhi J.: "Statistical Methods, An Introductory Text", Second Edition, New Age International Ltd.
- 2. Agarwal B.L.: "Basic Statistics", New Age International Ltd.
- 3. Spiegel M.R.: "Theory and Problems of Statistics", Schaum's Publications series. Tata McGraw-Hill.
- 4. Kothari C.R.: "Research Methodology", Wiley Eastern Limited.
- 5. David S.: "Elementary Probability", Cambridge University Press.
- 6. Hoel P.G.: "Introduction to Mathematical Statistics", Asia Publishing House.
- 7. Hogg R.V. and Tannis E.P.: "Probability and Statistical Inference". McMillan Publishing Co. Inc.
- 8. Pitan Jim: "Probability", Narosa Publishing House.
- 9. Goon A.M., Gupta M.K., Dasgupta B.: "Fundamentals of Statistics", Volume II: The World Press Private Limited, Calcutta.
- 10. Gupta S.C., Kapoor V.K.: "Fundamentals of Mathematical Statistics", Sultan Chand &Sons
- 11. Gupta S.C., Kapoor V.K.: "Fundamentals of Applied Statistics", Sultan Chand & Sons

Modality of Assessment

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1	Class Test/ Project / Assignment / Presentation	20
2	Class Test/ Project / Assignment / Presentation	20
	TOTAL	40

B) External Examination- 60%- 60 Marks Semester End Theory Examination:

- 1. Duration These examinations shall be of **two hours duration**.
- 2. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions Based on
1	Any 2 out of 3 subparts	20	Unit I
2	Any 2 out of 3 subparts	20	Unit II
3	Any 2 out of 3 subparts	20	Unit III
(TOTAL	60	

Practical Examination Pattern:

A) Internal Examination: 40%- 40 Marks

Particulars	Marks
Journal and attendance	5
Assignments using Statistical Software	15
Total	20

B) External Examination: 60%- 60 Marks

Semester End Practical Examination:

Duration - These examinations shall be of **one and half hour** duration.

Particulars	Paper
Exam (There shall be Three COMPULSORY Questions of 10	30
marks each with internal choice)	
Total	30

Overall Examination & Marks Distribution Pattern Semester I

Course	RUASTA101			
	Internal External Total			
Theory	40	60	100	
Practicals	20	30	50	

CORE COURSE

Course Code: RUASTA201 Course Title: DESCRIPTIVE STATISTICS - II

Academic year 2022-23

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	A student completing this course will be able to:
CO 1	Compute the numerical measures to identify the direction and strength of
	linear relationship between two variables using. Also, list their properties.
CO 2	Build a simple linear regression model and interpret regression coefficients and coefficient of determination.
CO 3	Calculate and interpret various measures of associations between two attributes.
CO 4	Identify various components of time series. Apply the appropriate methods to evaluate and eliminate these components.
CO 5	Comprehend the concept and construct various index numbers.
CO 6	Use the basic mathematical operators in R for different data types. Apply different data management techniques and data visualisation.

Course	Unit	Course/ Unit Title	Credits/
Code/ Unit			Lectures
RUASTA201	UNIT	Correlation and Attributes	15
		 Karl Pearson's Product moment correlation coefficient and its properties. Spearman's Rank correlation. (With and without ties) Tabulation Dichotomous classification- for two and three attributes, Verification for consistency Association of attributes: Yule's coefficient of association Q. Yule's coefficient of Colligation Y, Relation between Q and Y (with proof). Measures of association with the help of Tau A, Tau B, Tau C, Gamma and Lambda, Somer's d 	LECTURES

RUASTA201	Unit	Simple linear Regression Analysis and Fitting	15
	II	of curves	LECTURES
		 Concept of Simple linear regression. Principle of least squares. Fitting a straight line by method of least squares (Linear in Parameters) Relationship between regression coefficients and correlation coefficient, cause and effect relationship, Spurious correlation. Concept and use of coefficient of determination (R²). Fitting of curves reducible to linear form by transformation. 	01166
RUASTA201	UNIT	Time Series and Index numbers	15
	Ш	Definition of time series. Components of time	LECTURES
		 series. Models of time series. Estimation of trend by: (i) Freehand Curve Method (ii) Method of Semi Average (iii) Method of Moving Average (iv) Method of Least Squares (Linear Trend only) Estimation of seasonal component by (i) Method of Simple Average (ii) Ratio to Moving Average (iii) Ratio to Trend Method Simple exponential smoothing Stationary Time series Index numbers: Index numbers as comparative tool. Stages in the construction of Price Index Numbers. Measures of Simple and Composite Index Numbers. Laspeyre's, Paasche's, Marshal-Edgeworth's, Dobisch & Bowley's and Fisher's Index Numbers formula Quantity Index Numbers and Value Index Numbers Time reversal test, Factor reversal test, Circular test Fixed base Index Numbers, Chain base Index Numbers. Base shifting, splicing and deflating. Cost of Living Index Number. Concept of Real Income. 	

	Course Code RUASTAP201		
Sr. No.	Practicals based on course		
1	Correlation analysis		
2	Tabulation		
3	Measures of Association	AV	
4	Regression analysis	. 000	
5	Fitting of curve	1/60	
6	Time series		
7	Index Numbers.	(0)	
8	Practical using Excel		
	i) Correlation analysis	iv) Moving Averages	
	ii) Regression analysis	v) Exponential Smoothing	
	iii) Fitting of curve		

REFERENCES:

- 1. Medhi J.: "Statistical Methods, An Introductory Text", Second Edition, New Age International Ltd.
- 2. Agarwal B.L.: "Basic Statistics", New Age International Ltd.
- 3. Spiegel M.R.: "Theory and Problems of Statistics", Schaum's Publications series. Tata McGraw-Hill.
- 4. Kothari C.R.: "Research Methodology", Wiley Eastern Limited.
- 5. David S.: "Elementary Probability", Cambridge University Press.
- 6. Hoel P.G.: "Introduction to Mathematical Statistics", Asia Publishing House.
- 7. Hogg R.V. and Tannis E.P.: "Probability and Statistical Inference". McMillan Publishing Co. Inc.
- 8. Pitan Jim: "Probability", Narosa Publishing House.
- 9. Goon A.M., Gupta M.K., Dasgupta B.: "Fundamentals of Statistics", Volume II: The World Press Private Limited, Calcutta.
- 10. Gupta S.C., Kapoor V.K.: "Fundamentals of Mathematical Statistics", Sultan Chand &Sons
- 11. Gupta S.C., Kapoor V.K.: "Fundamentals of Applied Statistics", Sultan Chand & Sons

Modality of Assessment

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1	Class Test/ Project / Assignment / Presentation	20
2	Class Test/ Project / Assignment / Presentation	20
	TOTAL	40

B) External Examination- 60%- 60 Marks Semester End Theory Examination:

- 1. Duration These examinations shall be of two hours duration.
- 2. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions Based on
1	Any 2 out of 3 sub-parts	20	Unit I
2	Any 2 out of 3 sub-parts	20	Unit II
3	Any 2 out of 3 sub-parts	20	Unit III
	TOTAL	60	

Practical Examination Pattern:

A) Internal Examination: 40%- 40 Marks

Particulars	Marks
Journal and attendance	5
Projects based on primary / secondary data	15
Total	20

B) External Examination: 60%- 60 Marks

Semester End Practical Examination:

Duration - These examinations shall be of one and half hour duration.

Particulars	Paper
Exam (There shall be Three COMPULSORY Questions of 10	30
marks each with internal choice)	
Total	30

Overall Examination & Marks Distribution Pattern Semester II

Course	RUASTA201			
	Internal External Total			
Theory	40	60	100	
Practicals	20	30	50	

Course Code: RUASTA301

Course Title: STATISTICAL METHODS-I

Academic year 2022-23

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	A student completing this course will be able to:
CO 1	Differentiate between random and non-random experiments
CO 2	Compute the probabilities of events
CO 3	Understand the concept of a random variable, its probability distribution of a random variable (one or two) and its properties
CO 4	Apply standard discrete probability distributions based on real life situations

Course	Unit	Course/ Unit Title	Credits/
Code/ Unit			Lectures
RUASTA301	Unit	Elementary Probability Theory	15
		 Trial, random experiment, sample point and sample space. Definition of an event, Operation of events, mutually exclusive and exhaustive events. Classical (Mathematical) and Empirical definitions of Probability and their properties. Theorems on Addition and Multiplication of probabilities Independence of events, Pair-wise and Mutual Independence for three events, Conditional probability, Bayes' theorem and its applications 	Lectures
RUASTA301	Unit	Discrete random variable	15
	II	 Random variable. Definition and properties of probability distribution and cumulative distribution function of discrete random variable. Raw and Central moments and their relationships. Concepts of Skewness and Kurtosis and their uses. 	Lectures

		 Expectation of a random variable. Theorems on Expectation & Variance. Joint probability mass function of two discrete random variables. Independence of two random variables. Marginal and conditional distributions. Theorems on Expectation &Variance, Covariance and Coefficient of Correlation.
RUASTA301	Unit	Some Standard Discrete Distributions 15
	III	 Degenerate (one point): Discrete Uniform, Bernoulli, Binomial, Poisson and Hypergeometric distributions derivation of their mean and variance for all the above distributions. Recurrence relationship for probabilities of Binomial and Poisson distributions, Poisson approximation to Binomial distribution, Binomial approximation to hypergeometric distribution

Course Code RUASTAP301(A)			
Sr. No.	Practicals based on course		
1	Probability		
2	Discrete Random Variables		
3	Bivariate Probability Distributions		
4	Binomial Distribution		
5	Poisson Distribution		
6	Hypergeometric Distribution		
7	Practical using Excel		
	i) Binomial distribution		
	ii) Poisson distribution		
	iii) Hypergeometric distribution		

References:

- 1. Medhi J.: "Statistical Methods, An Introductory Text", Second Edition, New Age International Ltd.
- 2. Agarwal B.L.: "Basic Statistics", New Age International Ltd.
- 3. Spiegel M.R.: "Theory and Problems of Statistics", Schaum's Publications series. Tata McGraw-Hill.
- 4. Kothari C.R.: "Research Methodology", Wiley Eastern Limited.
- 5. David S.: "Elementary Probability", Cambridge University Press.
- 6. Hoel P.G.: "Introduction to Mathematical Statistics", Asia Publishing House.

- 7. Hogg R.V. and Tannis E.P.: "Probability and Statistical Inference". McMillan Publishing Co. Inc.
- 8. Pitan Jim: "Probability", Narosa Publishing House.
- 9. Goon A.M., Gupta M.K., Dasgupta B.: "Fundamentals of Statistics", Volume II: The World Press Private Limited, Calcutta.
- Gupta S.C., Kapoor V.K.: "Fundamentals of Mathematical Statistics", Sultan Chand &Sons
- 11. Gupta S.C., Kapoor V.K.: "Fundamentals of Applied Statistics", Sultan Chand & Sons

Course Code: RUASTA302 Course Title: OPERATIONS RESEARCH

Academic year 2022-23

COURSE OUTCOMES:

COURSE	DESCRIPTION		
OOTOOME	A student completing this course will be able to:		
CO 1	Formulate and solve a linear programming problem graphically and using simplex method.		
CO 2	Obtain dual of a given problem and solve the primal from the optimum solution of a primal.		
CO 3	Solve a transportation problem and its variants using various methods and optimise it.		
CO 4	Solve an assignment problem and its variants using Hungarian methods.		
CO 5	Process sequencing problems using Johnson's Method		

Course Code/	Unit	Course/ Unit Title	Credits/
Unit			Lectures
RUASTA302	Unit	Linear Programming Problem (L.P.P.):	15
	I	Mathematical Formulation: Maximization &	Lectures
		Minimization. Concepts of Solution, Feasible	6
		Solution, Basic Feasible Solution, Optimal	. 04
		solution.	
		 Graphical Solution for problems with two 	
		variables. Simplex method of solving problems	O '
		with two or more variables. Big M method.	
		 Concept of Duality. Its use in solving L.P.P. 	
		Relationship between optimum solutions to	
		Primal and Dual. Economic interpretation of	
		Dual.	
RUASTA302	Unit	Transportation Problem:	15
	II	Concept, Mathematical Formulation. Concepts	Lectures
		of Solution, Feasible Solution. Initial Basic	
		Feasible Solution by North-West Corner Rule,	
		Matrix Minima Method, Vogel's Approximation	
		Method. Optimal Solution by MODI Method.	
		Optimality test, Improvement procedure.	
		• Variants in Transportation Problem:	
		Unbalanced, Maximization type, Restricted	
		allocations.	
RUASTA302	Unit	Assignment Problem:	15
	III	Concept. Mathematical Formulation	Lectures
		Solution by: Complete Enumeration Method	
		and Hungarian method.	
	0,	Variants in Assignment Problem: Unbalanced,	
		Maximization type.	
0		Airline Operating Problem	
		Travelling Salesman Problem	
		Sequencing:	
		Processing n Jobs through 2 and 3 Machines, 2	
5		Jobs through m Machines and n jobs through m	
		machines	

	Course Code RUASTAP301(B)			
Sr. No.	Practicals based on course			
1	Formulation and Graphical Solution of L.P.P.			
2	Simplex Method.			
3	Duality.			
4	Transportation.			
5	Assignment.			
6	Sequencing.			
7	Problems solving using TORA / EXCEL Solver.			

REFERENCES:

- 1. Kantiswaroop and Manmohan Gupta. 4th Edition; S Chand & Sons: Operations Research
- 2. Richard Broson. 2nd edition Tata Mcgraw Hill Publishing Company Ltd.: Schaum Series book in O.R.
- 3. Methods and Problems: Maurice Sasieni, Arthur Yaspan and Lawrence Friedman, (1959), John Wiley & Sons: Operations Research
- 4. J K Sharma, (1989), Tata McGraw Hill Publishing Company Ltd.: Mathematical Models in Operations Research
- 5. Harvey M. Wagner, 2nd Edition, Prentice Hall of India Ltd.: Principles of Operations Research with Applications to Management Decisions
- 6. S.D.Sharma.11th edition, Kedar Nath Ram Nath & Company.: Operations Research
- 7. H. A.Taha.6th edition, Prentice Hall of India.: Operations Research
- 8. J.K.Sharma, (2001), MacMillan India Ltd.: Quantitative Techniques For Managerial Decisions

Modality of Assessment

Theory Examination Pattern:

C) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1	Class Test/ Project / Assignment / Presentation	20
2	Class Test/ Project / Assignment / Presentation	20
	TOTAL	40

D) External Examination- 60%- 60 Marks Semester End Theory Examination:

- 1. Duration These examinations shall be of two hours duration.
- 2. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions Based on
1	Any 2 out of 3 subparts	20	Unit I
2	Any 2 out of 3 subparts	20	Unit II
3	Any 2 out of 3 subparts	20	Unit III
	TOTAL	60	

Practical Examination Pattern:

A) Internal Examination: 40%- 40 Marks

Particulars	Marks
Journal and attendance	5
Assignments using Statistical Software	15
Total	20

B) External Examination: 60%- 60 Marks

Semester End Practical Examination:

Duration - These examinations shall be of **one and half hour** duration.

Particulars	Paper
Exam (There shall be Three COMPULSORY Questions of 10	30
marks each with internal choice)	.\0.40
Total	30

Overall Examination & Marks Distribution Pattern Semester III

Course	RUASTA301			A301 RUASTA302			Grand Total
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practicals	20	30	50	20	30	50	100

Course Code: RUASTA401 Course Title: STATISTICAL METHODS - II

Academic year 2022-23

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	A student completing this course will be able to:
CO 1	Obtain a probability density function and cumulative distribution function for continuous random variable
CO 2	Apply standard continuous probability distributions to different situations
CO 3	Distinguish between point estimation and interval estimation
CO 4	Define the various terminologies of testing of hypotheses and apply large sample tests

Course	Unit	Course/ Unit Title	Credits/
Code/ Unit		• • • • • • • • • • • • • • • • • • • •	Lectures
RUASTA401	UNIT	Continuous random variable and some Standard	15 Lectures
	I	Continuous Distributions	
		Concept of Continuous random variable and	
	•	properties of its probability distribution	
		 Probability density function and cumulative distribution function. 	
	5 C	Their graphical representation.	
		Expectation of a random variable and its	
	0	properties. Measures of location, dispersion,	
		skewness and kurtosis.	
		 Raw and central moments (simple illustrations). 	
		 Uniform, Exponential distribution (location and 	
0.0		scale parameter), memory less property of	
		exponential distribution, Derivations of mean,	
		median, variance for Uniform and Exponential distributions.	
RUASTA401	UNIT	Normal Distribution and Sampling Distribution	15 Lectures
NUASTA401	_	. •	13 Lectures
	II	Normal distribution	
		Properties of Normal distribution/curve (without)	
		proof). Use of normal tables.	

		 Normal approximation to Binomial and Poisson distribution (statement only) Sample from a distribution: Concept of a statistic, estimate and its sampling distribution. Parameter, its estimator and bias, unbiasedness, standard error of an estimator. Concept of Central Limit theorem (statement only) Sampling distribution of sample mean and sample proportion difference between two population means and two proportions. Standard errors of sample mean and sample proportion. 	011666
RUASTA401	UNIT	Basics of Theory of Estimation and Testing of hypothesis	15 Lectures
		 Point and Interval estimate of single mean, single proportion from sample of large size. Statistical tests: Concept of hypothesis, Null and Alternative Hypothesis, Types of Errors, Critical region, Level of significance, Power Large sample tests For testing specified value of population mean For testing specified value in difference of two means For testing specified value of population proportion For testing specified value of difference of population proportion Concept of p-value 	

Course Code RUASTAP401(A)				
Sr. No.	Practicals based on co	Practicals based on course		
1	Continuous Random Variables			
2	Uniform and Exponential Distributions			
3	Normal Distribution			
4	Sampling Distribution			
5	Testing of Hypothesis			
6	Large sample Tests			
7	Practical using Excel and R			
	(i) Binomial and Poisson (ii) Uniform	and Exponential		
	(iii) Normal Distribution (iv) Samplin	ng Distribution		
	(v) Testing of Hypotheses (vi) Large S	Sample Tests		

REFERENCES:

- 1. Medhi J.: "Statistical Methods, An Introductory Text", Second Edition, New Age International Ltd.
 - 2. Agarwal B.L.: "Basic Statistics", New Age International Ltd.
 - 3. Spiegel M.R.: "Theory and Problems of Statistics", Schaum's Publications series. Tata McGraw-Hill.
 - 4. Kothari C.R.: "Research Methodology", Wiley Eastern Limited.
 - 5. David S.: "Elementary Probability", Cambridge University Press.
 - 6. Hoel P.G.: "Introduction to Mathematical Statistics", Asia Publishing House.
 - 7. Hogg R.V. and Tannis E.P.: "Probability and Statistical Inference". McMillan Publishing Co. Inc.
 - 8. Pitan Jim: "Probability", Narosa Publishing House.
 - 9. Goon A.M., Gupta M.K., Dasgupta B.: "Fundamentals of Statistics", Volume II: The World Press Private Limited, Calcutta.
 - 10. Gupta S.C., Kapoor V.K.: "Fundamentals of Mathematical Statistics", Sultan Chand &Sons
 - 11. Gupta S.C., Kapoor V.K.: "Fundamentals of Applied Statistics", Sultan Chand & Sons

Course Code: RUASTA402

Course Title: PROJECT MANAGEMENT AND INDUSTRIAL STATISTICS Academic year 2022-23

COURSE OUTCOMES

COURSE	DESCRIPTION
OUTCOME	A student completing this course will be able to:
CO 1	Draw project networks for probabilistic and deterministic time estimates to obtain critical path.
CO 2	Crash activities to optimise the project cost and update networks from time to time.
CO 3	Construct various control charts for variables and attributes to obtain standard values for future use.
CO 4	Design a single sampling plan and obtain its various characteristics and understand the concept of Double Sampling Plan

Course	Unit	Course/ Unit Title	Credits/
Code/ Unit			Lectures
RUASTA402	Unit	CPM and PERT:	15
	I	Objective and Outline of the techniques.	Lectures
		Diagrammatic representation of activities in a	6
		project: Gantt Chart and Network Diagram.	104
		Slack time and Float times. Determination of	110,
		Critical path. Probability consideration in	
		project scheduling.	\bigcirc
		Project cost analysis.	
		Updating.	
RUASTA402	Unit	Statistical Quality Control:	15
	II	Principles of control. Process quality control of	Lectures
		variables. X bar and R, X bar and Sigma Chart	
		and their uses. Problems involving setting up	
		standards for future use. Introduction to Six	
		sigma limits.	
		Concept of Natural Tolerance Limits,	
		Specification Limits and Detection of shift	
		Principles of control. Process quality control of	
		attributes p, c, np charts and their uses. p-	
		chart and c-chart with variable sample size.	
		Problems involving setting up standards for	
		future use	
		Acceptance sampling plan	
		Single Sampling Plans (without curtailment).	
	• (OC function and OC curves. AQL, LTPD, ASN, 	
		ATI, AOQ, Consumer's risk, Producer's risk.	
4	0	 Double Sampling Plan (Concept only) 	
RUASTA402	Unit	Game Theory and Decision Theory:	15
1 00	III	GAME THEORY:	Lectures
		Definitions of Two-person Zero Sum Game,	
		Saddle Point, Value of the Game, Pure and	
		Mixed strategy. Optimal solution of two-person	
		zero sum games.	
		Dominance property, Derivation of formulae for	
		(2x2) game. Graphical solution of (2xn) and	
		(mx2) games.	
		DECISION THEORY	
		Decision making under uncertainty: Laplace	
		criterion, Maximax (Minimin) criterion, Maximin	

(Minimax) criterion, Hurwicz α criterion,
Minimax Regret criterion.
Decision making under risk: Expected Monetary
Value criterion, Expected Opportunity Loss
criterion, EPPI, EVPI.
Decision tree analysis.

Course Code: RUASTAP401(B)		
Sr. No.	Practicals based on course	
1	PERT	
2	СРМ	
3	Project cost analysis	
4	Updating	
5	Control Charts for attributes and Control Charts for variables	
6	Acceptance Sampling Plans.	
7	Game theory.	
8	Decision theory.	
9	Practical using EXCEL and TORA software	

REFERENCES:

- 1. E.L. Grant. (2nd edition) McGraw Hill, 1988.: Statistical Quality Control
- 2. Duncan. (3rd edition) D. Taraporewala sons & company.: Quality Control and Industrial Statistics
- 3. Bertrand L. Hansen, (1973), Prentice Hall of India Pvt. Ltd.: Quality Control: Theory and Applications
- 4. Douglas Montgomery, Arizona State University. John Wiley & Sons, Inc. (6th Edition): Statistical Quality Control
- 5. Gupta S.C., Kapoor V.K., Fundamentals of Applied Statistics, Sultan Chand &Sons
- 6. Srinath. 2nd edition, East-west press Pvt. Ltd.: PERT and CPM, Principles and Applications
- 7. Kantiswaroop and Manmohan Gupta. 4th Edition; S Chand & Sons.: Operations Research

- 8. Richard Broson. 2nd edition Tata Mcgraw Hill Publishing Company Ltd.: Schaum Series book in O.R.
- 9. Maurice Sasieni, Arthur Yaspan and Lawrence Friedman, (1959), John Wiley & Sons.: Operations Research: Methods and Problems
- 10. J K Sharma, (1989), Tata McGraw Hill Publishing Company Ltd.: Mathematical Models in Operations Research
- 11. S.D. Sharma. 11th edition, Kedar Nath Ram Nath & Company.: Operations Research
- 12. H. A. Taha, 6th edition, Prentice Hall of India.: Operations Research
- 13. J.K.Sharma, (2001), MacMillan India Ltd.: Quantitative Techniques for Managerial Decisions

Modality of Assessment

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1	Class Test/ Project / Assignment / Presentation	20
2	Class Test/ Project / Assignment / Presentation	20
	TOTAL	40

B) External Examination- 60%- 60 Marks Semester End Theory Examination:

- 1. Duration These examinations shall be of **two hours** duration.
- 2. Theory question paper pattern:

Paper Pattern

Question	Options	Marks	Questions Based on
	Any 2 out of 3 subparts	20	Unit I
2	Any 2 out of 3 subparts	20	Unit II
3	Any 2 out of 3 subparts	20	Unit III
	TOTAL	60	

Practical Examination Pattern:

A) Internal Examination: 40%- 40 Marks

Particulars	Marks
Journal and attendance	5
Assignments using Statistical Software	15
Total	20

B) External Examination: 60%- 60 Marks

Semester End Practical Examination:

Duration - These examinations shall be of one and half hour duration.

Particulars	Paper
Exam (There shall be Three COMPULSORY Questions of 10 marks	30
each with internal choice)	
Total	30

Overall Examination & Marks Distribution Pattern Semester IV

Course	RUASTA401			RUASTA402			Grand Total
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practicals	20	30	50	20	30	50	100

Course Code: RUASTA501 Course Title: PROBABILITY DISTRIBUTIONS

Academic year 2022-23

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	A student completing this course will be able to:
CO 1	Understand different Standard Discrete Probability Distributions.
CO 2	Differentiate between the Standard Discrete Probability Distributions, understand their properties.
CO 3	Solve problems after identifying the underlying distribution.

Course Code/	Unit	Course/ Unit Title	Credits/
Unit			Lectures
RUASTA501	Unit I	Univariate Random Variables (Discrete and	15
		Continuous):	Lectures
		Moment Generating Function, Cumulant	
		generating Function-Their important	
•		properties. Relationship between moments	
		and cumulants and their uses.	
3 (Characteristic Function- Its properties	
		(without proof).	
~0		 Transformation of random Variable 	
RUASTA501	Unit	Standard Discrete Probability Distributions:	15
	II	 Uniform, Bernoulli, Binomial, Poisson, 	Lectures
		Geometric, Negative Binomial &	
0.		Hypergeometric distributions.	
		 The following aspects of the above 	
		distributions (wherever applicable) to be	
		discussed:	
		 Mean, Mode and Standard deviation. 	
		Moment Generating Function, Cumulant	
		• Generating Function, Additive property,	

		Recurrence relation for central	
		Moments, Skewness and Kurtosis (without)	
		proof), Limiting distribution.	
RUASTA501	Unit	Bivariate Probability Distributions:	15
	Ш	Joint Probability mass function for Discrete	Lectures
		random variables, Joint Probability density	
		function for continuous random variables.	
		Their properties.	Q
		Marginal and conditional Distributions.	10,2
		Independence of Random Variables.	
		Conditional Expectation & Variance.	
		Regression Function. Coefficient of	
		Correlation. Transformation of Random	
		Variables and Jacobian of transformation	
		with illustrations.	

Course Code RUASTAP501(A)				
Sr. No.	Practicals based on course			
1	Moment Generating Function, Moments.			
2	Cumulant generating Function, Cumulants, Characteristic function.			
3	Standard Discrete Distributions			
4	Fitting Standard Discrete Distributions.			
5	Bivariate Probability Distributions, Marginal & Conditional distributions, Conditional Mean, Conditional Variance, Correlation			
6	Transformation of discrete & continuous random variables.			

REFERENCES:

- 1. A. M. Mood, F.A. Graybill, D. C. Boyes, Third Edition; McGraw-Hill Book Company. Introduction to the theory of statistics
- 2. R.V. Hogg, A.T. Craig; Fourth Edition; Collier McMillan Publishers: Introduction to Mathematical Statistics
- 3. R.V. Hogg, E. A. Tannis, Third Edition; Collier McMillan Publishers: Probability and Statistical Inference

- 4. I. Miller, M. Miller; Sixth Edition; Pearson Education Inc.: John E. Freund's Mathematical Statistics
- 5. P.G. Hoel; Fourth Edition; John Wiley & Sons Inc.: Introduction to Mathematical Statistics
- S.C. Gupta, V.K. Kapoor; Eighth Edition; Sultan Chand & Sons.: Fundamentals of Mathematical Statistics
- 7. J.N. Kapur, H.C. Saxena; Fifteenth Edition; S. Chand & Company Ltd.: Mathematical Statistics
- 8. J. Medhi; Second edition; Wiley Eastern Ltd.: Statistical Methods: An Introductory Text
- 9. A.M. Goon, M.K. Gupta, B. DasGupta; Third Edition; The World Press Pvt. Ltd.: An Outline of Statistical Theory Vol. 1

Course Code: RUASTA502

Course Title: THEORY OF SAMPLING

Academic year 2022-23

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION A student completing this course will be able to:
CO 1	Understand the need of sampling and define the principal concepts in sampling
CO 2	Formulate and calculate estimates of population parameters for Simple Random Sampling, Stratified Sampling and Systematic sampling
CO 3	Contrast types of probability sampling
CO 4	Utilize auxiliary information in survey by means of Ratio and Regression method of estimation

Course Code/ Unit	Unit	Course/ Unit Title	Credits/ Lectures
RUASTA502	Unit	Concepts:	15
	1	 Population, Population unit, Sample, Sample unit, 	Lectures
		Parameter, Statistic, Estimator, Bias,	

-				1
			Unbiasedness, Mean square error & Standard	
			error.	
			Census survey, Sample Survey. Steps in	
			conducting a sample survey. Concepts of	
			Sampling and Non-sampling errors.	
			Concepts and methods of Probability and Non- Declarity a graphing.	
			Probability sampling.	6
			Simple Random Sampling (SRS):	104
			Description of Simple Random Sampling with & without replacement.	
			without replacement.	
			 Lottery method & use of Random numbers to select Simple random sample. 	\bigcirc
			·	
			 Estimation of population mean & total. Expectation & Variance of the estimators, Unbiased estimator 	
			of variance of these estimators.	
			 Estimation of population proportion. Expectation & 	
			Variance of the estimators,	
			 Unbiased estimator of variance of these 	
			estimators.	
			Estimation of Sample size based on a desired accuracy in case of SRS for variables & attributes.	
	RUASTA502	Unit	Stratified Sampling:	15
	NOACTAGGE	II	Need for Stratification of population with suitable	Lectures
			examples. Description of Stratified Random	200101.00
			Sample.	
			Advantages of stratified random Sampling.	
			Stratified Random Sampling:	
			Estimation of population mean & total in case of	
			Stratified Random Sampling (WOR within each	
			stratum). Expectation & Variance of the unbiased	
			estimators, Unbiased estimators of variances of	
			these estimators.	
	~0		Equal Allocation, Proportional allocation, Optimum	
			allocation with and without varying costs.	
			 Comparison of Simple Random Sampling, 	
			Stratified Random Sampling using	
	5		Proportional allocation & Neyman allocation	
	RUASTA502	Unit	Ratio & Regression Estimation assuming	15
		III	SRSWOR:	Lectures
			Ratio Estimators for population Ratio, Mean & Total Expectation & MSE of the Estimators	
			Total. Expectation & MSE of the Estimators. Estimators of MSE. Uses of Ratio Estimator.	
		1	 Regression Estimators for population Mean & 	

Total. Expectation & Variance of the Estimators
assuming known value of regression coefficient
'b'.
Estimation of 'b'. Resulting variance of the
estimators. Uses of regression
Estimator. Comparison of Ratio, Regression &
mean per Unit estimators.
Systematic sampling:
Estimator of Population Mean and its Variance.
Comparison of Systematic Sampling with Simple
Random sampling
Introduction to Cluster sampling & Two Stage
sampling with suitable illustrations.

	Course Code RUASTAP501(B)				
Sr. No.	Practicals based on course				
1	Designing of Questionnaire.				
2	Simple Random Sampling for Variables.				
3	Simple Random Sampling for Attributes.				
4	Estimation of Sample Size in Simple Random Sampling.				
5	Stratified Random Sampling.				
6	Ratio Estimation- Regression Estimation.				
7	Systematic Sampling				

REFERENCES:

- 1. W.G. Cochran; 3rd Edition; Wiley (1978): Sampling Techniques
- 2. M. N. Murthy; Statistical Publishing Society. (1967): Sampling Theory and methods
- 3. Des Raj; McGraw Hill Series in Probability and Statistics. (1968): Sampling Theory
- 4. P.V. Sukhatme and B.V. Sukhatme; 3rd Edition; Iowa State University Press (1984): Sampling Theory of Surveys with Applications
- 5. S. C. Gupta and V.K. Kapoor; 3rd Edition; Sultan Chand and Sons (2001): Fundamentals of Applied Statistics

- 6. Daroga Singh, F.S.Chaudhary, Wiley Eastern Ltd. (1986): Theory and Analysis of Sample Survey Designs:
- 7. S. Sampath, Second Edition (2005), Narosa: Sampling Theory and Methods
- 8. Parimal Mukhopadhyay, (1998), Prentice Hall Of India Pvt. Ltd.: Theory and Methods of Survey Sampling

Course Code: RUASTA503

Course Title: ELEMENTS OF ACTUARIAL SCIENCE

Academic year 2022-23

COURSE OUTCOMES:

COURSE	DESCRIPTION A student completing this course will be able to:			
OUTCOME				
CO 1	Understand the functions of Mortality Table and should be able to			
	relate them with the rate of mortality and calculate probabilities of			
	living and dyeing			
CO 2	Differentiate between Nominal and Effective rate of interest.			
	Analyse and evaluate various types of annuities certain, and also			
	calculate the present values and accumulated values			
CO 3	Distinguish between the Life annuities and Temporary annuities			
~0,	and calculate the present values of various Life and Temporary			
\mathcal{M}_{I}	annuities			
CO 4	Understand the difference between assurance and insurance.			
<u>J</u>	Evaluate the single premiums and level annual premiums for			
	various assurance schemes. Distinguish between the Net			
	premiums and the Office premiums			

Course Code/	Unit	Course/ Unit Title	Credits/
Unit			Lectures
RUASTA503	Unit	MORTALITY TABLES:	15
	ı	 Various mortality functions. Probabilities of 	Lectures
		living and dying.	NOX
		 The force of mortality. Estimation of μ_x from the 	
		mortality table.	
		Central Mortality Rate. Laws of mortality:	\mathcal{O}
		Gompertz's and Makeham's first law. Select,	
		Ultimate and Aggregate mortality tables.	
		Stationary population. Expectation of life and	
		Average life at death.	
RUASTA503	Unit	COMPOUND INTEREST AND ANNUITIES	15
	II	CERTAIN:	Lectures
		Accumulated value and present value, nominal	
		and effective rates of interest.	
		Varying rates of interest. Equation of value.	
		Equated time of payment.	
		Present and accumulated values of annuity	
		certain (immediate and due) with and without	
		deferment period.	
		Present value for perpetuity (immediate and	
		due) with and without deferment Period.	
		Present and accumulated values of (i)	
		increasing annuity (ii) increasing annuity when	
		successive instalments form	
		(i) arithmetic progression (ii) Geometric	
	O	progression (iii) annuity with Frequency	
		different from that with which interest is	
DULACTATOO	I I a i i	convertible. Redemption of loan.	45
RUASTA503	Unit	LIFE ANNUITIES AND ASSURANCE BENEFITS:	15
	III	Present value in terms of commutation functions of Life appointing and Temporary life.	Lectures
		functions of Life annuities and Temporary life	
		annuities (immediate and due) with and without	
		deferment period.	
		Present values of Variable, increasing life appuiting and increasing Temperatulife	
		annuities and increasing Temporary life	
		annuities (immediate and due).	
		Present value of Assurance benefits in terms of commutation functions of: (i) pure	
		of commutation functions of: (i) pure	

endowment assurance (ii) temporary assurance (iii) endowment assurance (iv) whole life assurance (v) special endowment assurance (vi) deferred temporary assurance (vii) Double Endowment Net premiums: Net level annual premiums (including limited period of payment) for various	6
(including limited period of payment) for various assurance plans.Office premiums.	100

Distribution of topics for Practicals

Course Code: RUASTAP501(C)			
Sr. No.	Practicals based on course		
1	Mortality tables 1		
2	Mortality tables 2		
3	Annuities 1		
4	Annuities 2		
5	Life annuities		
6	Assurance benefits		

REFERENCES:

- 1. Neill A.: Life Contingencies, First edition, Heineman educational books London
- 2. Dixit S.P., Modi C.S., Joshi R.V.: Mathematical Basis of Life Assurance, First edition Insurance Institute of India.
- 3. Gupta S. C. & Kapoor V. K.: Fundamentals of Applied Statistics, Fourth edition, Sultan Chand & Sons.
- 4. Ajaykumar Srivastava and Gorakhnath Agarwal: Mathematical Basis of Life Assurance

Modality of Assessment

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1	Class Test/ Project / Assignment / Presentation	20
2	Class Test/ Project / Assignment / Presentation	20
	TOTAL	40

B) External Examination- 60%- 60 Marks Semester End Theory Examination:

- 1. Duration These examinations shall be of two hours duration.
- 2. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions Based on
1	Any 2 out of 3 sub-parts	20	Unit I
2	Any 2 out of 3 sub-parts	20	Unit II
3	Any 2 out of 3 sub-parts	20	Unit III
	TOTAL	60	

Practical Examination Pattern:

A) Internal Examination: 40%- 40 Marks

Particulars	Marks
Journal and attendance	5
Assignments using Statistical Software	15
Total	20

B) External Examination: 60%- 60 Marks

Semester End Practical Examination:

Duration - These examinations shall be of **one and half hour** duration.

Particulars	Paper
Exam (There shall be Three COMPULSORY Questions of 10 marks each with internal choice)	30
Total	30

Overall Examination & Marks Distribution Pattern Semester V

RUASTA503 Course RUASTA501 **Grand Total** RUASTA502 Internal External Total Internal External Total Internal External Total 40 60 100 40 60 40 60 100 300 Theory 100 20 50 30 **Practicals** 30 50 20 20 50 150

Course Code: RUASTA601

Course Title: PROBABILITY AND SAMPLING DISTRIBUTIONS

Academic year 2022-23

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	A student completing this course will be able to:
CO 1	Understand different Standard Continuous Probability Distributions.
CO 2	Differentiate between the Standard Continuous Probability Distributions, understand their properties and solve problems based on these distributions.
CO 3	Apply Standard Continuous Probability Distributions in real life examples.

DETAILED SYLLABUS

Course Code/	Unit	Course/ Unit Title	Credits/
Unit			Lectures
RUASTA601	Unit	Standard Continuous Probability	15
	ı	Distributions:	Lectures
		• Rectangular, Triangular, Exponential,	
		Gamma (with Single & Double parameter),	
		Beta (Type I & Type II).	
		The following aspects of the above	
		distributions (wherever applicable) to be	
		discussed	
		Mean, Median, Mode & Standard deviation.	
		Moment Generating Function, Additive property, Cumulant Generating Function.	
		Skewness and Kurtosis (without proof).	
		Interrelation between the distributions.	
		Normal Distribution:	
		Mean, Median, Mode, Standard deviation,	
		Moment Generating function, Cumulant	
		Generating function, Moments &Cumulants	
		(up to fourth order). Recurrence relation for	
		central moments, skewness& kurtosis, Mean	
		absolute deviation. Distribution of linear	
		function of independent Normal variables.	
		Fitting of Normal Distribution.	
		 Central Limit theorem for i.i.d. random variables. 	
		 Log Normal Distribution: Derivation of mean 	
•	0	& variance.	
RUASTA601	Unit	Chi-Square Distribution:	15
	11	Concept of degrees of freedom. Mean,	Lectures
		Median, Mode & Standard deviation. Moment	
~ 0.		generating function, Cumulant generating	
		function. Additive property, Distribution of the sum of squares of independent Standard	
		Normal variables. Sampling distributions of	
		sample mean and sample variance and their	
' O-'		independence for a sample drawn from	
		Normal distribution (without proof).	
		Applications of Chi-Square:	
		Test of significance for specified value of	
		variance of a Normal population.	
		Test for goodness of fit & Test for	
		independence of attributes (derivation of test	

The second secon		statistics is not expected).	
variances. (Effect Size, Cohen's d) (ii) dependent samples). • F-distribution: Mean, Mode & Standard deviation. Distribution of: reciprocal of an F variate, Ratio of two independent Chisquares divided by their respective degrees of freedom. Interrelationship of F with: t-distribution, Chi-square distribution & Normal distribution.	RUASTA601	 t-distribution: Mean, Median, Mode & Standard deviation. Derivation of t distribution using Fisher's t. Student's t. Asymptotic properties. Applications of t: Confidence interval for: 	_
variances of two independent Normal populations.		 (i) independent samples with equal variances. (Effect Size, Cohen's d) (ii) dependent samples). F-distribution: Mean, Mode & Standard deviation. Distribution of: reciprocal of an F variate, Ratio of two independent Chisquares divided by their respective degrees of freedom. Interrelationship of F with: t-distribution, Chi-square distribution & Normal distribution. Applications of F: Test for equality of variances of two independent Normal 	

<u>Distribution of topics for Practicals</u>

	Course Code: RUASTAP601(A)
Sr. No.	Practicals based on course
1	Standard Continuous distributions.
2	Normal Distribution
3	Central Limit Theorem
4	Chi Square distribution
5	t distribution
6	F distribution
7	Practical using Excel/R software

REFERENCES:

- 1. A M Mood, F.A. Graybill, D C Boyes; Third Edition; McGraw-Hill Book Company.: Introduction to the theory of statistics
- 2. R.V.Hogg, A.T. Craig; Fourth Edition; Collier McMillan Publishers.: Introduction to Mathematical Statistics
- 3. R.V.Hogg, E. A.Tannis, Third Edition; Collier McMillan Publishers.: Probability and Statistical Inference
- 4. I. Miller, M. Miller; Sixth Edition; Pearson Education Inc.: John E. Freund's Mathematical Statistics
- 5. P.G. Hoel; Fourth Edition; John Wiley & Sons Inc.: Introduction to Mathematical Statistics
- 6. S.C. Gupta, V.K. Kapoor; Eighth Edition; Sultan Chand & Sons.: Fundamentals of Mathematical Statistics
- 7. J.N. Kapur, H.C. Saxena; Fifteenth Edition; S. Chand & Company Ltd.: Mathematical Statistics
- 8. J. Medhi; Second edition; Wiley Eastern Ltd.: Statistical Methods- An Introductory Text
- 9. A.M. Goon, M.K. Gupta, B. DasGupta; Third Edition; The World Press Pvt. Ltd.: An Outline of Statistical Theory Vol. 1

Course Code: RUASSTA602

Course Title: ANALYSIS OF VARIANCE & DESIGNS OF EXPERIMENTS

Academic year 2022-23

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	A student completing this course will be able to:
CO 1	Demonstrate analysis of one-way and two-way classification
CO 2	Explain the different components of ANOVA Table
CO 3	Define fundamental concepts in Designs of Experiment, describe the principles of designs of experiment and list the different types of experimental designs
CO 4	Analyse CRD, RBD and LSD using ANOVA
CO 5	Construct factorial experiments, analyse them and understand the concept of confounding

DETAILED SYLLABUS

Course Code/	Unit	Course/ Unit Title	Credits/
Unit			Lectures
RUASSTA602	Unit	Analysis of Variance:	15
	I	 Introduction, Uses, Cochran's Theorem (Statement only). One-way classification with equal & unequal observations per class, Two-way classification with one observation per cell. 	Lectures
		 For both the cases: Mathematical Model, Assumptions, Expectation of various sums of squares, F- test, Analysis of variance table. Least square estimators of the parameters, Expectation and Variance of the estimators, Estimation of linear contrasts, Standard Error and Confidence limits Testing for significance of elementary linear contrasts. 	
RUASSTA602	Unit	Design of Experiments:	15
		 Concepts of Experiments, Experimental unit, Treatment, Yield, Block, Replicate, Experimental Error, Precision. Principles of Design of Experiments: Replication, Randomization & Local Control. Efficiency of design D₁ with respect to design D₂. Choice of size, shape of plots & blocks in agricultural & non-agricultural experiments. Completely Randomized Design (CRD) & Randomized Block Design (RBD): Mathematical Model, Assumptions, 	Lectures
		 Expectation of various sums of squares, F-test, Analysis of variance table. Least square estimators of the parameters, Variance of the estimators, Estimation of linear contrasts, Standard Error and Confidence limits Testing for significance of elementary linear contrasts. Efficiency of RBD relative to CRD. 	

		Missing plot technique for one missing	
		observation in case of CRD, RBD	
RUASSTA602	Unit	Latin Square Design (LSD):	15
	III	Mathematical Model, Assumptions,	Lectures
		Expectation of various sums of squares, F-	
		test, Analysis of variance table.	
		 Least square estimators of the parameters, 	
		Variance of the estimators, Estimation of	
		treatment contrasts, Standard error and	167
		Confidence limits for elementary treatment	
		contrasts.	
		 Efficiency of the design relative to RBD, 	
		CRD.	
		Missing plot technique for one missing	
		observation in case of LSD.	
		Factorial Experiments: Definition, Purpose &	
		Advantages. 2 ² , 2 ³ Experiments.	
		Calculation of Main & interaction Effects.	
		Yates' method. Analysis of 2 ² & 2 ³ factorial	
		Experiments. Concept of Confounding.	
		(partial and total)	

Distribution of topics for Practicals

Course Code: RUASTAP601(B)							
Sr. No.	Practicals based on course						
1	Analysis of Variance- One Way						
2	Analysis of Variance- Two Way						
3	Completely Randomized Design						
4	Randomized Block Design						
5	Latin Square Design.						
6	Missing Observations in CRD, RBD & LSD						
7	Factorial Experiments						
8	Practical using Excel /R software						

REFERENCES:

- 1. W.G. Cochran and G.M.Cox; Second Edition; John Wiley and Sons.: Experimental Designs
- 2. Oscar Kempthorne, John Wiley and Sons.: The Design and Analysis of Experiments
- 3. Douglas C Montgomery; 6th Edition; John Wiley & Sons.: Design and Analysis of Experiments
- 4. M.N.Das and N.C.Giri, 2nd Edition; New Age International (P) Limited; 1986: Design and Analysis of Experiments
- 5. Walter T Federer; Oxford & IBH Publishing Co. Pvt. Ltd.: Experimental Design, Theory and Application
- 6. S.C.Gupta and V.K.Kapoor; 3rd Edition; Sultan Chand and Sons (2001): Fundamentals of Applied Statistics
- 7. B.J. Winer, McGraw Hill Book Company.: Statistical Principles in Experimental Design

Course Code: RUASTA603

Course Title: APPLIED STATISTICS

Academic year 2022-23

COURSE OUTCOMES:

COURSE	DESCRIPTION				
OUTCOME	A student completing this course will be able to:				
CO 1	Understand the concept of Predictive modelling and use techniques				
	like regression analysis, time series for real life situations.				
CO 2	Simulate random numbers and random observations for various				
	probability distributions. Apply Monte-Carlo technique to solve problems				
	in Inventory and Queueing Theory.				
CO 3	Understand the various terminologies of Micro Economics and its				
	applications.				

DETAILED SYLLABUS

Course	Unit	Course/ Unit Title	Credits/
Code/ Unit			Lectures
RUASTA603	Unit	LINEAR REGRESSION	15
RUASTAGOS	I	 Linear regression model with one or more explanatory variables. Assumptions of the model, Derivation of Ordinary Least Square (OLS) estimators of regression coefficients, (for one and two explanatory variables models). Properties of least square estimators (without proof). Coefficient of determination R² and adjusted R². Procedure of testing: Overall significance of the model Significance of individual coefficients Significance of incremental contribution of explanatory variable for two explanatory variables model. Confidence intervals for the regression coefficients. Multiple Linear Regression with Qualitative Independent Variable. Autocorrelation: Concept, Detection using Durbin Watson Test, Generalized Least Square (GLS) method. Heteroscedasticity: Concept, Detection using Breusch-Pagan-Godfrey test. Weighted Least Square (WLS) estimators Multicollinearity: Concept, Detection using R square & t ratios (ii) Variance Inflation Factor (VIF) 	Lectures
RUASTA603	Unit	SIMULATION	15
	31	 Scope of simulation applications. Types of simulation. Monte Carlo Technique of Simulation and Bootstrapping. Elements of discrete event simulation. Generation of random numbers. Sampling from probability distribution. Inverse method. Generation of random observations from i) Uniform distribution ii) Exponential distribution iii) Gamma distribution iv) Normal distribution. Application of Simulation techniques to real life situations. 	Lectures
RUASTA603	Unit	Mathematical Economics:	15
	III	 Behaviour of Demand and Supply, Demand 	Lectures

functions. Cost and Revenue functions. The elasticity of a function, Elasticity of (i) Demand (ii) Cost. Normal conditions of (i) demand (ii) cost. Features of prefect competition. Monopoly (including effects of taxation and subsidy), Duopoly. Production function. Euler's theorem linear homogenous production functions, Cobb-Douglas production function, CES production function.	100
 The elasticity of substitution. 	

Distribution of topics for Practicals

Course Code: RUASTAP601(C)					
Sr. No.	Practicals based on course				
1	Multiple regression model 1				
2	Multiple regression model- 2				
3	Simulation				
4	Mathematical Economics 1				
5	Mathematical Economics 2				
6	Use of R in MLR				

REFERENCES:

- 1. E.L. Grant. (2nd edition) McGraw Hill, 1988.: Statistical Quality Control
- 2. Duncan. (3rd edition) D. Taraporewala sons & company.: Quality Control and Industrial Statistics
- 3. Bertrand L. Hansen, (1973), Prentice Hall of India Pvt. Ltd.: Quality Control: Theory and Applications
- 4. Douglas Montgomery, Arizona State University. John Wiley & Sons, Inc. (6th Edition): Statistical Quality Control
- Gupta S.C., Kapoor V.K., Fundamentals of Applied Statistics, Sultan Chand &Sons
- 6. Srinath. 2nd edition, East-west press Pvt. Ltd.: PERT and CPM, Principles and Applications
- 7. Kantiswaroop and Manmohan Gupta. 4th Edition; S Chand & Sons.: Operations Research

- 8. Richard Broson. 2nd edition Tata Mcgraw Hill Publishing Company Ltd.: Schaum Series book in O.R.
- 9. Maurice Sasieni, Arthur Yaspan and Lawrence Friedman, (1959), John Wiley & Sons.: Operations Research: Methods and Problems
- 10. J K Sharma, (1989), Tata McGraw Hill Publishing Company Ltd.: Mathematical Models in Operations Research
- 11. S.D.Sharma.11th edition, Kedar Nath Ram Nath & Company.: Operations Research
- 12. H. A. Taha, 6th edition, Prentice Hall of India.: Operations Research
- 13. J.K.Sharma, (2001), MacMillan India Ltd.: Quantitative Techniques for Managerial Decisions

Modality of Assessment

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1	Class Test/ Project / Assignment / Presentation	20
2	Class Test/ Project / Assignment / Presentation	20
	TOTAL	40

B) External Examination- 60%- 60 Marks Semester End Theory Examination:

- 1. Duration These examinations shall be of two hours duration.
- 2. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions Based on
1	Any 2 out of 3 sub-parts	20	Unit I
2	Any 2 out of 3 sub-parts	20	Unit II
3	Any 2 out of 3 sub-parts	20	Unit III
	TOTAL	60	

Practical Examination Pattern:

A) Internal Examination: 40%- 40 Marks

Particulars	Marks
Journal and attendance	5
Assignments using Statistical Software	15
Total	20

B) External Examination: 60%- 60 Marks

Semester End Practical Examination:

Duration - These examinations shall be of one and half hour duration.

Particulars	Paper
Exam (There shall be Three COMPULSORY Questions of 10 marks each with internal choice)	30
Total	30

Overall Examination & Marks Distribution Pattern Semester VI

Course	RUASTA601		RUASTA602		RUASTA603			Grand Total		
	Internal	External	Total	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	40	60	100	300
Practicals	20	30	50	20	30	50	20	30	50	150
