

S.P.Mandali's RamnarainRuia Autonomous College

Syllabus for UG

Program: B.Sc. (Physics)

Course: RUSPHY

(Credit Based Semester and Grading System with effect from the academic year 2020–2021)

COURSE	UNIT	Credits	Lec /
CODE			Week

Credits Let Wee

RUSPHY501		Mathematical Methods of Physics, Thermal & Statistical Physics	2.5	4
COURSE	UNIT		Credits	Lec /
CODE	I	Probability		Week
	11	Differential equations		
	III	Statistical & Thermal Physics	A	014
	IV	Statistical Mechanics and Quantum Statistics	1	
RUSPHY502		Solid State Physics	2.5	4
	I	Crystal Physics		
	II	Electrical properties of metals		
	III	Conduction in Semiconductors		
	IV	Diode,magnetism and superconductivity		
RUSPHY503		Atomic & Molecular Physics	2.5	4
	I	Schrödinger's equation and Hydrogen		
	II	Electron Spin		
	III	Zeeman effect and Paschen-Back effect		
	IV	Molecular Spectra		
RUSPHY504		Electrodynamics	2.5	4
	Ι,	Electrostatics		İ
	II	Polarisation& Magnetostatics		
	111	Magnetism & Varying Fields		
	IV	Electromagnetic Waves		
RUSPHP 05	Prac	tical Course (RUSPHYP501 – Group A)	3	8
	Prac	tical Course (RUSPHYP502 – Group B)	3	8
27,		Total	16	32

SEMESTER VI

RUSPHY601		Classical Mechanics& Non Linear Mechanics	2.5	4
	I	Central Force		
	II	Lagrange's equations		4
	III	Kinematics	A	
	IV	Non linear mechanics		
RUSPHY602		Electronics	2.5	4
	ı	FET &SCR		
	II	Regulated DC power supply, Differential Amplifier, Transistor Multivibrators		
	Ш	Operational Amplifier and 555 Timer		
	IV	Logic family		
RUSPHY603		Nuclear Physics	2.5	4
	I	Alpha & Beta Decay		
	II	Gamma Decay & Nuclear Models		
	III	Particle Accelerators & Energy Generation		
	IV	Meson theory & Elementary particles		
RUSPHY604		Special Theory of Relativity	2.5	4
	1	Special Theory of Relativity & Relativistic Kinematics		
	II	Relativistic Kinematics		
	A III	Relativistic Dynamics		
A	IV	Relativity and Electromagnetism		
RUSPHP 06	Pract	tical Course (RUSPHYP601 – Group A)	3	8
	Pract	tical Course (RUSPHYP602 – Group B)	3	8
0,		Total	16	32

Learning Objectives:

Upon completion of this course, students would acquire the following knowledge & skills:

- (1) The ability to apply the principles of physics to solve new and unfamiliar problems
- (2) The ability to analyze and interpret quantitative results in the areas of physics
- (3) The ability to use contemporary experimental apparatus and analysis tools to acquire, analyze and interpret scientific data
- (4) The ability to communicate scientific results effectively in presentations or posters
- (5) A comprehensive, quantitative and conceptual understanding of the core areas of physics, including mechanics, optics, thermodynamics, electrostatics, electrodynamics at a level attuned with graduate programs in physics at peer institutions.

SEMESTER V

COURSE CODE	UNIT	TITLE	Credits	Lec / Week
RUSPHY501		Mathematical Methods in Physics, Thermal & Statistical Physics	2.5	4
Kooi iii oo i	I	Probability		
		Review of basic concepts: sample space, events, independent events, conditional probability, probability theorems, permutations and combinations, discrete and continuous random variables, binomial distribution, joint distributions and covariance, the normal distribution, the Poisson distribution, statistics and experimental measurements, Chebyshev's inequality, law of large numbers, central limit theorem. MB: Chapter 15		
	11	Differential Equations		
		Second-order non-homogeneous linear differential equations with constant coefficients: the method of successive integrations and the method of undetermined coefficients. Forced vibrations and resonance. The Laplace transform and its use in the solution of differential equations CH – Sections 5.2.4, 8.2.1, 8.2.2, 8.2.4 MB – Sections 8.6, 8.8 and 8.9		

			1	<u> </u>
		Fourier series: Introduction, Fourier cosine and sine series, Change of interval, Fourier Integral, Complex form of the Fourier series CH: 7.1, 7.1.1, 7.1.2, 7.1.3, 7.1.4, 7.2. Fourier transforms: Introduction, Formal development of the complex Fouriertransform, Cosine and Sine transforms, The transforms of derivatives (with proof) CH: 8.1, 8.2.1, 8.2.2, 8.2.4, 8.2.5, 8.2.6		200
	III	Statistical & Thermal Physics		
		Description of a system:Why statistical approach, Particle-states, System-states, Microstates and Macrostates of a system, Equilibrium and Fluctuations, Irreversibility, The equi-probabilitypostulate, Statistical ensemble, Number of states accessible to a system, Phase space, Reversible processes. LG: 1.1 to 1.11 Thermal and Adiabatic Interactions: Thermal interaction, Canonical distribution, Energy fluctuations, Entropy of asystem in a heat bath, Helmholtz free energy, Adiabatic interaction and enthalpy,General interaction and the first law of thermodynamics, Infinitesimal generalinteraction, Gibbs free energy, Phase transitions. LG: 2.1, 2.3 to 2.11		
	IV	Statistical Mechanics and Quantum Statistics		
200103		Statistical Mechanics:Phase space, The probability of a distribution, The most probable distribution, Maxwell-Boltzmann statistics, Molecular speeds. AB: 15.1 to 15.5 Quantum Statistics:Bose-Einstein statistics, Black-body radiation, The Rayleigh-Jeans formula, ThePlanck radiation formula, Fermi-Dirac statistics, Comparison of results, Transitionbetween states. AB: 16.1 to 16.7		
	Reference			(3.55)
	1. Mat	hematical Methods in the Physical Sciences – Ma	iry L. Boas	(MB)

- 2. Introduction to Mathematical Physics Charlie Harper (CH)
- 3. Statistical & Thermal Physics by S. Lokanathan& R. S Gambhir (**LG**)
- 4. Perspectives of Modern Physics Arthur Beiser (AB)

COURSE	UNIT	TITLE	Credits	Lec / Week
RUSPHY502		Solid State Physics	2.5	4
	I	Crystal Physics		
		Revision-Lattice points and space lattice, The basis and crystal structure, Unit Cells and lattice parameters, Primitive Cells. Crystal Systems, Crystal Symmetry, Bravais space lattices, Metallic crystal structures, Relation between the density of crystal material and lattice constant in a cubic lattice, Directions, Planes, Miller Indices, Important planes in simple cubic structure, separation between lattice planes in a cubic crystal, Reciprocal Lattice, X-ray Diffraction SOP: Ch. 4 Art – II, III, IV, V, VI, VII, XIV,XV, XVI, XVI		
	II	Electrical properties of metals		
		Electrical properties of metals: Classical free electron theory of metals, drawbacks of classical theory, Relaxation time, Collision time and mean free path, Quantum theory of free electrons, Fermi-Dirac statistics and electronic distribution in solids, Density of energy states and Fermi energy, Heat capacity of the electron gas, Mean energy of electron gas at 0 K SOP: Ch. 6 Art – I to V, XIV, XV, XVII, XVIII Band theory of solids, The Kronig- Penney model (Omit eq. 6.184 to 6.188), Brillouin zones, Number of wave functions in a band, Motion of electrons in a one-dimensional periodic potential, Distinction between metals, insulators and intrinsic semiconductors SOP: Ch. 6 Art – XXXVII, XXXVIII,		

	XXXIX,XXXX, XXXXI		
III	Conduction in Semiconductors		
	Electrons and Holes in an Intrinsic Semiconductor, Conductivity, Carrier concentrations in an intrinsic semiconductor, Donor and Acceptor impurities, Charge densities in a semiconductor, Fermi level in extrinsic semiconductors, Diffusion, Carrier lifetime, The continuity equation, Hall Effect 2.Magnetic Properties of matter: Diamagnetism and Paramagnetism, The origin of permanent magnetic dipoles, Diamagnetism and Larmor precession, the static paramagnetic susceptibility		200
IV	D: 18.1 to 18.4 Diode, magnetism and superconductivity		
	Semiconductor-diode Characteristics: Qualitative theory of the p-n junction, the p-n junction as a diode, Band structure of an open-circuit p-n junction MH: 4.1 to 4.10; 5.1, 5.2, 5.3 The current components in a p-n junction diode, Quantitative theory of p-n diode currents, The Volt-Ampere characteristics, The temperature dependence of p-n characteristics, Diode resistance MH: 5.4 to 5.8 Superconductivity: survey, Mechanism of Superconductors, Effects of magnetic field, Critical Currents, The Meissner effect, the penetration depth, Type I and Type II Superconductors SOP: Chapter 8: II, III, IV, VI, VII, XII, XIII		
Referen			C41- E-I
ı 1. S	Solid State Physics: S. O. Pillai. New Age Inter	national. (bīn ⊢d. I

- Solid State Physics: S. O. Pillai, New Age International. 6th Ed. (SOP)
- 2. Electronic Devices and Circuits: Millman, Halkias&Satyabrata Jit. (3rd Ed.) Tata McGraw Hill. (MH)
- 3. Solid State Physics: A. J. Dekker, Prentice Hall(D)

COURSE CODE	UNIT	TITLE	Credits	Lec / Week
RUSPHY503		Atomic & Molecular Physics	2.5	4
RUSPHY503	I	Schrödinger's equation and Hydrogen atom		200
	II	Schrödinger's equation for Harmonic oscillator, its solution by operatormethod. Graphical representation of its energy level and wave functions. PTM: 5.2; AB: 8.7 Hydrogen atom: Schrödinger's equation for Hydrogen atom, Separation ofvariables, Quantum Numbers: Total quantum number, Orbital quantum number, Magnetic quantum number. Angular momentum, Electron probability density (Radial part) AB: 9.1 to 9.9 Electron Spin: The Stern-Gerlach experiment, Pauli's Exclusion Principle, Symmetric and Antisymmetric wave functions. AB: 10.1, 1.03 Spin orbit coupling, Hund's Rule, Total angular momentum, Vector atom model,L-S and j-j coupling. Origin of spectral lines, Selection rules. AB:10.2,10.6,10.7, 10.8, 10.9; 11.1 and 11.2.		
	III	Zeeman effect and Paschen-Back effect		
		Effect of Magnetic field on atoms, Zeeman effect, Earlier discoveries and developments, Experimental arrangement, The normal Zeeman effect and its explanation(Classical and Quantum) HSA: 9.14, 9.15 The Lande g factor, Anomalous Zeeman effect; Paschen-Back effect, Paschen-Back effect of principal series doublet, Selectionrules for Paschen-Back effect. HEW: 9.16, 9.17, 10.7, 10.8, 10.9		
	IV	Molecular Spectra :		

Molecular Spectra (Diatomic Molecules): Rotational energy levels, Rotationalspectra, Vibrational energy levels, Vibrational- Rotational spectra. Electronic Spectra of Diatomic molecules: The Born-Oppenheimer approximation, Intensity of vibrational- electronic spectra: The Franck-Condon principle. AB: 14.1, 14.3, 14.5, 14.7 BM: 6.11, 6.13 Raman Effect: Quantum Theory of Raman Effect, Classical theory of Raman Effect, Experimental Setup of Raman Effect, Applications of Raman Spectroscopy. BM: 4.1.1, 4.1.2
 Reference: Introduction to Quantum mechanics – P. T Mathews (PTM) Perspectives of Modern Physics – Arthur Beiser (AB) Introduction to Atomic & Nuclear Physics – Henry Semat& J. R Albright (5th Ed) (HSA); Introduction to Atomic Spectra – H. E White (HEW) Fundamentals of Molecular Spectroscopy – C. N Banwell& E. M McCash (BM)

COURSE CODE	UNIT	TITLE	Credits	Lec / Week
RUSPHY504		Electrodynamics	2.5	4
	D	Electrostatics		
RUSPHY504		Electric Field lines, Flux and Gauss' law, The divergence of E , Applications of Gauss' law, The curl of E . Introduction to potential, Comments on potential, Poisson's equation andLaplace's equation, The potential of a localized charge distribution, Review of Conductors & Faraday's Cage DG: 2.2.1 to 2.2.4, 2.3.1 to 2.3.4. Greiner-1.1,1.2,1.3 First Uniqueness theorem (Without proof),		

	The classic image problem- Infinite conducting	
	plane	
	DG: 3.2.1 to 3.2.3.	
	Greiner—chapter2-Green's theorems, Green's	
	function,Ex2.1(Image charge problem)	
II	Polarisation & Magnetostatics	Ó
	Dielectrics, Induced Dipoles, Alignment of polar molecules, Polarization, Bound charges and their physical interpretation, Gauss' law in presence of dielectrics, A deceptive parallel, Susceptibility, Permittivity, Dielectric constant, Energy in dielectric systems. DG: 4.1.1 to 4.1.4, 4.2.1, 4.2.2, 4.3.1, 4.3.2, 4.4.1, 4.4.3. Straight-line currents, The Divergence and Curl of B, Applications of Ampere's Law in the case of a long straight wire and a long solenoid, Comparison of Magneto-statics and Electrostatics.	
	DG: 5.3.1 to 5.3.4.	
III	Magnetism & Varying Fields	
	Magnetization, Bound currents and their physical interpretation, Ampere's law in magnetized materials, Adeceptive parallel, Magnetic susceptibility and permeability. DG: 6.2.1, 6.2.2, 6.3.1, 6.3.2, 6.4.1. Energy in magnetic fields, Electrodynamics before Maxwell, Maxwell's correction to Ampere's law, Maxwell's equations, Magnetic charge, Maxwell's equations in matter, Boundary conditions. DG: 7.2.4, 7.3.1 to 7.3.6.	
AA	Electromagnetic Waves	
	The continuity equation, Poynting's theorem, Newton's third law in electrodynamics. DG: 8.1.1, 8.1.2., 8.2.1. The wave equation for E and B, Monochromatic Plane waves, Energy and momentum in electromagnetic waves, Propagation in linear media, Reflection and transmission of EM waves at normal incidence, Electromagnetic waves in conductors, guided waves-wave guides DG: 9.2.1 to 9.2.3, 9.3.1 to 9.3.2, 9.4.1, 9.5.1	

References: Introduction to Electrodynamics by Davi Griffith (3 rd edition)-Prentice hall of India With good number of solved examples an unsolved examples from David Griffith(DG) Additional References: 1. Introduction to Electrodynamics: A. Z Capria and P. V. Panat. 2. Electricity and Magnetism: Navin Wadhwani	
Practicals	

RUSPHYP05 – Physics Laboratory Course

The T. Y. B. Sc. Syllabus integrates the regular practical work with a series of demonstration and skill experiments. During the teaching and examination of Physics laboratory work, simple modifications of experimental parameters may be attempted. Attention should be given to basic skills of experimentation which include:

- i) Understanding relevant concepts
- ii) Planning of the experiments
- iii) Layout and adjustments of the equipment
- iv) Recording of observations and plotting of graphs
- v) Calculation of results and estimation of possible errors in the observation of results

Regular Physics Experiments: A minimum of 8 experiments from each of the course are to be performed and reported in the journal

Skill Experiments: All the 8 skills are compulsory and must be reported in the journal. Skills will be tested during the examination through viva or practical. The certified journal must contain a minimum of 16 regular experiments (8 from each group), with all 8 Skills in semester V.

A separate index and certificate in journal is must for each semester course. There will be two turns of three hours each for the examination of practical courses

- Internal component of Practical examination Evaluation is based on regular experiments and skill experiments.
- For external practical examination, the learner will be examined in two experiments (one from each group)
- A learner will be allowed to appear for the semester end practical examination only if he submits a certified journal of Physics

Skill	Lateral shift removal on optical bench	
experiments	2. Dual Trace CRO: Phase Shift Measurement.	
	3. Study of advanced Optics setup- Hologram	
	making Apparatus	
	4. BG: C1 /C2 by comparing θ1 / θ2	
	5. Use of electronic balance: Radius of a small	
	ball bearing or suitable another skill expt.	

	6	Soldering technique		
		Temperature and Pressure measurement-		
	/.	BMPSensor and Arduino board, PC.		
	0		_	
	0.	Bread Board Circuit using three IC		
	_		0 " 0	
Group A		Determination of g by Kater's Pendulum	Credits = 3	
(RUSPHYP501)		Resolving power of prism		
,	3.	Diameter of Lycopodium Powder		
	4.	Goniometer	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	5.	Thermal Diffusivity of Brass		
	6.	Fresnel's bi-prism: determination of		
	0.	wavelength of sodium yellow line.		
	7.	Diode as Temperature Sensor		
	8.	Hall Effect		
	9.	Hologram Making		
	1.	Mutual Inductance by BG	Credits = 3	
	2.	Hysteresis by Magnetometer		
	3.	Maxwell's Bridge		
	4.	Curie-Weiss Law		
Group B	5.	Band-gap Energy		
(RUSPHYP502)		Log Amplifier using OpAmp		
		First Order Active High/Low Pass Filter		
		Schmitt Trigger using OPAMP		
		Wein Bridge Oscillator-OPAMP		

References:

- 1. Advanced course in Practical Physics: D. Chattopadhya, PC. Rakshit& B. Saha (8th Edition) Book & Allied Pvt. Ltd.
- 2. BSc Practical Physics: Harnam Singh. S. Chand & Co. Ltd. 2001
- 3. A Text book of Practical Physics: Samir Kumar Ghosh New Central Book Agency (4rd edition)
- 4. B Sc. Practical Physics: C. L. Arora (1st Edition) 2001 S. Chand & Co. Ltd
- 5. Practical Physics: C. L. Squires (3rd Edition) Cambridge University Press.
- 6. University Practical Physics: D C Tayal. Himalaya Publication.
- 7. Advanced Practical Physics: Worsnop& Flint.
- 8. DSO –tektronics, Aplab manual CD.
- 9. Hologram -Holmark manual.

MODALITY OF ASSESSMENT

Overall Examination and Marks Distribution Pattern

Semester---- V

Course	RUSPHY501		RUSPHY502		RUSPHY503		RUSPHY504		Grand Total				
	Int	Ext.	Total	I	Е	Т	I	Е	Т	I	Е	Т	
Theory	40	60	100	40	60	100	40	60	100	40	60	100	400

Course		RUSPHYP	501		Grand		
							Total
	Int.	Ext.	Total	Int.	Ext.	Total	
Practicals	40	60	100	40	60	100	200

Theory Examination Pattern:-Sem-V

A) Internal Assessment - 40% = 40 marks.

Theory Paper- Paper code	Test Marks	Assignment	Marks distribution	Total Marks per paper
Math. Methods of Physics, Thermal & Statistical Physics RUSPHY501	20	15 questions on units1,2,3	Assessment- 15 mark Viva on it05 mark Total= 20 mark	40
Solid State Physics RUSPHY502	20	15 questions on units1,2,3	Assessment- 15 mark Viva on it05 mark Total= 20 mark	40
Atomic & Molecular Physics RUSPHY503	20	15 questions on units1,2,3	Assessment- 15 mark Viva on it05 mark Total= 20 mark	40
Electrodynamics RUSPHY504	20	15 questions on units1,2,3	Assessment- 15 mark Viva on it05 mark Total= 20 mark	40

B) Internal test pattern (half an hour test)

Q.1	20 objective questions, all compulsory, each question with 4 options;	10
	(half mark each)	
Q.2	Attempt any two numerical out of four.(3 marks each)	06
Q.3	Attempt any one numerical out of two.(4 marks each)	04
	Total marks	20

C) External examination - 60 %

Semester-end Theory Assessment - 60 marks

- i. Duration These examinations shall be of **2 hours** duration.
- ii. Paper Pattern:
 - 1. There shall be **5** questions each of **12** marks. On each unit there will be one question & last question will be based on all the 4 units.
 - 2. All questions shall be compulsory with internal choice within the questions.

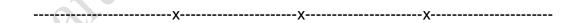
Questions	Options	Marks	Questions on
Q.1)A)	Any 1 out of 2	6	Unit I
Q.1)B)	Any 1 out of 2	6	
Q.2)A)	Any 1 out of 2	6	Unit II
Q.2)B)	Any 1 out of 2	6	
Q.3)A)	Any 1 out of 2	6	Unit III
Q.3)B)	Any 1 out of 2	6	
Q.4)A)	Any 1 out of 2	6	Unit IV
Q.4)B)	Any 1 out of 2	6	
Q.5)A)	Any 1 out of 2	3	Unit I
Q.5)B)	Any 1 out of 2	3	Unit II
Q.5C)	Any 1 out of 2	3	Unit III
Q.5)D)	Any 1 out of 2	3	Unit IV

Practical Examination Pattern:

(A)Internal Examination:

Sr. No.	Activity	Practical- Group-A	Practical- Group-B

1.	Seminar on experiment from each group: Content- 2 mark Presentation-2 mark Q(Teacher)2 mark Q(Student) -2 mark	8 mark	8 mark
2.	Continuous Assessment (2 mark per experiment/ 8 regular and 4 skill experiment))	24 mark	24 mark
3.	Main Journal (1 mark per regular experiment)	8 mark	8 mark
	Total (1+2+3)	40 mark	40 mark
	Requirement for the certification 8 Skill experiments and 16 regular experiments		


(B) External (Semester end practical examination):

Particulars	Practical I	Practical II
Laboratory work	50	50
Viva	10	10
Total	60	60

PRACTICAL BOOK/JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.

In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Co-ordinator / Incharge of the department; failing which the student will not be allowed to appear for the practical examination.

SEMESTER VI

COURSE CODE	UNIT	TITLE	Credit	Lec / Week
----------------	------	-------	--------	---------------

RUSPHY601		Classical Mechanics& Non Linear Mechanics	2.5	4
	I	Central Force		
		Motion under a central force, central force inversely proportional to the square of the distance, Elliptical orbits. The Kepler problem. Hyperbolic Orbits: The Rutherford problem – Scattering cross section. KRS: Art. 3.13 to 3.16 Moving origin of co-ordinates, Rotating co-ordinate systems, Laws of motion on the rotating earth, Foucault pendulum, Larmor's theorem (with proof) KRS: Art. 7.1 to 7.5		
	II	Lagrange's equations		
		Lagrange's equations: D'Alembert's principle, Generalized coordinates, Lagrange's equations using D'Alembert's principle, Examples, Systems subject to constraints, Examples of systems subject to constraints, Constants of motion and ignorable coordinates. KRS: Art. 9.1 to 9.6; G:1.4		
	III	Kinematics		
		Kinematics of moving fluids, Equation of motion for an ideal fluid, Conservation laws for fluid motion, Steady flow. KRS: Art. 8.6 to 8.9 The rotation of a Rigid body: Motion of a rigid body in space, Euler's equations of motion for a rigid body, Euler's angles, Heavy symmetrical top (without notation). KRS: Art. 11.1, 11.2, 11.4, 11.5; BO: 6.7		
	IV	Non-linear mechanics		
		Non-linear mechanics: Qualitative approach to chaos, The anharmonic oscillator, Numerical solution of Duffing's equation, Transition to chaos: Bifurcations and strange attractors, Aspects of chaotic behaviour.		

BO: Art. 11.1, 11.3 to 11.5
68
References:
 Mechanics by Keith R. Symon (KRS)
 Classical Mechanics – A Modern Perspective by V. D Barger & M. S Olsson (BO)
3. Classical Mechanics by Herbert Goldstein (G)
Additional References:
 An Introduction to Mechanics – Daniel Kleppner& Robert Kolenkow
2. Chaotic Dynamics – An Introduction – Baker and Gollup

COURSE	UNIT	TITLE	Credits	Lec / Week
		Electronics	2.5	4
RUSPHY602	ı	FET and SCR:		
		Field Effect Transistors: JFET: Basic ideas, Drain Curve, The trans-conductance curve, Biasing in the ohmic region and the active region, Trans-conductance, JFET common source amplifier, JFET analog switch, multiplexer, voltage controlled resistor, Current sourcing. MOSFET: Depletion and enhancement mode, MOSFET operation andcharacteristics, digital switching. Thyristors: SCR – Working, Equivalent circuit, important terms, I-VCharacteristics, SCR as a switch, half wave rectifier and full wave rectifier. TRIAC: Construction, Operation, I-V Characteristics, Applications. DIAC: Construction, Operation, Characteristics and applications. 1. MB: Art. 13.1 to 13.9, 14.1, 14.2, 14.4, 14.6. 2. VKM: Art. 20.1 to 20.10, 21.1 to 21.6, 21.8,		

	21.9, 21.10.	
	3. VKM: Art 7.7 to 7.11. MB: 7.10.	
<u> </u>	Regulated DC power supply, Differential	
"	Amplifier and Transistor Multivibrators	
	Regulated DC power supply: Supply	C
	characteristics, series voltage regulator, short	4
	circuit protection (current limit and fold back)	
	Monolithic linear IC voltageregulators. (LM 78XX,	() L
	LM 79XX, LM 317).	
	Differential Amplifier using transistor: The	
	Differential Amplifier, DC and ACanalysis of a	
	differential amplifier, Input characteristic-effect of	
	input bias, Off-setcurrent and input offset voltage	
	on output, common mode gain, CMRR.	
	Transistor Multivibrators: Astable, Monostable	
	and Bistable Multivibrators, Schmitt trigger.	
	1. MB: Art 17.1 to 17.5.	
	2.KVR:Art. 14.5.2.1, 14.5.2.5, 14.5.2.6, 14.5.4.1. 3.MB: Art. 20.5, 20.8, 21.4, 22.7,22.8, 23.2.	
	MH: 16.14.	
III	Operational Amplifier and 555 Timer	
	On Amp Applications: Log amplifier	
	Op Amp Applications: Log amplifier, Instrumentation amplifiers,	
	Voltagecontrolledcurrent sources (grounded	
	load), First order Active filters, Astableusing OP	
	AMP, square wave and triangular wave	
	generator using OPAMP,Wein-bridge oscillator	
	using OP AMP.	
	555 Timer: Block diagram, Triggered linear ramp	
	generator.	
• 🔥	1. MB: Art. 23.7 to 23.9.	
	2. ML: Art. 6.2, 6.4, 6.6, 6.7, 7.2 to 7.4.	
IV	Logic families	
	Logic families: Standard TTL NAND, TTL NOR,	
	Open collector gates, Three state TTL devices,	
	MOS inverters, CMOS NAND and NOR gates,	
	CMOScharacteristics.	
	Applications of JK flip flop: Types of registers, 4-bit shift register (serial in-serialout),	
	Asynchronous counters, 4-bit up-down counter,	
	MOD-3, MOD-5, Decadecounter, Shift counter.	
	Electronic communication techniques: Radio	
	broadcasting, Transmission andreception,	
	Modulation, Amplitude modulation, Modulation	
	factor, Analysis ofamplitude modulated wave,	

Side band frequencies in AM wave, Transistoramplitude modulator, Power in AM wave, Limitations of AM, Frequencymodulation. (Qualitative) 1 ML: Art 10.1, 10.2, 11.1, 11.3 to 11.5, 11.7. 2. MB: Art 24.1, 24.3, 24.4. 3. VKM: Art. 16.1 to 16.11.
References:
MB: Electronic Principles: A. P. Malvino and D.J. Bates (7th Ed.) – (TMH).
2. VKM: Principles of Electronics: V. K. Mehta and Rohit Mehta. S.
Chand Publications. (11th Ed.). 3. KVR: Functional Electronics: K .V. Ramanan (TMH).
4. ML: Digital Principles and Applications: Malvino and Leach (4th
Ed) (TMH).
5. MH: Integrated Electronics: Millman&Halkias Mc Graw Hill International.
Additional References:
1. Electronic Devices and Circuits: S. Salivahanan, N. Suresh
Kumarand A. Vallavaraj. (2nd Ed.) (Tata McGraw Hill)
2. Pulse, Digital & Switching Waveforms: Millman&Taub. (TMH)
(((((((((((((((((((

COURSE	UNIT	TITLE	Credit	Lec / Week
RUSPHY603		Nuclear Physics	2.5	4
	14	Alpha & Beta Decay		
		Alpha Decay: Velocity, energy, and Absorption of alpha particles: Range, Ionization and stopping power, Nuclear energy levels. Range of alpha particles, alpha particle spectrum, Fine structure, long range alpha particles, Alpha decay paradox: Barrier penetration (Gamow's theory of alpha decay and Geiger-Nuttal law), Beta decay: Introduction, Velocity and energy of beta particles, Energy levels and decay schemes, Continuous beta ray spectrum-Difficulties encountered to understand it, Pauli's neutrino hypothesis, Detection of neutrino, Energetics of beta decay.		

		K: 13.1,13.2,13.5; P: 4. II. 1, 4. II. 2, 4. II. 3, 1.II.3 K:14.1,14.7 P: 4.III.1,4.III.2, 4.III.3, 4.III.5; G: 5.5.		
	II	Gamma Decay & Nuclear Models		
		Gamma decay: Introduction, Internal conversion, nuclear isomerism, Mossbauer effect Nuclear Models: Liquid drop model, Weizsacher's semi-empirical mass formula, Mass parabolas - Prediction of stability against beta decay for members of an isobaric family, Stability limits against spontaneous fission. Shell model (Qualitative), Magic numbers in the nucleus P 4. IV. 1, 4. IV. 3, 4. IV. 4, 9.4. P: 5.1, 5.3, 5.4, 5.5. AB: 11.6-pages (460,461)		506
	III	Particle Accelerators & Energy Generation		
	N/	Particle Accelerators: Van de Graff Generator, Cyclotron, Synchrotron, Betatron and Idea of Large Hadron Collider Nuclear energy: Introduction, Asymmetric fission - Mass yield, Emission of delayed neutrons, Nuclear release in fission, Nature of fission fragments, Energy released in the fission of U235, Fission of lighter nuclei, Fission chain reaction, Neutron cycle in a thermal nuclear reactor (Four Factor Formula), Nuclear reactors, Natural fusion, Possibility of controlled fusion P: 1.I.4 (i), 1.I.4 (ii), 1.I.4 (iii), 1.I.4 (iv), AB 15.7 P: 6.1, 6.3 to 6.9, 9.6, 9.7		
	IV	Meson theory & Elementary particles		
2000		Meson theory of Nuclear Force- A qualitative discussion Elementary particles: Introduction, Classification of elementary particles, Particle interactions, Conservation laws(linear &angular momentum, energy, charge, baryon number & lepton number), particles and anti-particles(Electrons and positrons, Protons and anti-protons, Neutrons and anti-neutrinos), Photons, Mesons, Quark model(Qualitative). 1. P:8.6 2. T: 18.1, 18.2,18.3, 18.4, 18.5 to 18.9 AB: 13.5		
		References 1. AB: Concepts of Modern Physics: Arthur Mahajan, S Rai Choudhury (6th Ed.) (TMH).	Beiser,	Shobhit

	 P: Nuclear Physics: S.B. Patel (Wiley Eastern Ltd.). K: Nuclear Physics: Irving Kaplan (2nd Ed.) (Addison Wesley).
	4. G: Nuclear Physics: S. N. Ghoshal (S. Chand & Co.)
	5. T: Nuclear Physics: D. C. Tayal (Himalayan Publishing House)
	5 th Ed.
	Additional References.
	1. Modern Physics: Kenneth Krane (2nd Ed.) John Wiley & Sons.
	2. Atomic & Nuclear Physics: N Subrahmanyam, Brij Lal. (Revised by JivanSeshan.) S. Chand.
	3. Atomic & Nuclear Physics: A B Gupta & Dipak Ghosh Books & Allied (P) Ltd.
	4. Introduction to Elementary Particles: David Griffiths, Second
	Revised Edition, Wiley-VCH

COURSE	UNIT	TITLE	Credits	Lec / Week
RUSPHY604		Special Theory of Relativity	2.5	4
	I	Special Theory of Relativity & Relativistic Kinematics		
		Experimental background of special theory of relativity and relativistic kinematics: Galilean transformations, Newtonian relativity, Electromagnetism and Newtonian relativity. Attempts to locate absolute frame: Michelson-Morley experiment, Attempts to preserve the concept of a preferred ether frame: Lorentz Fitzgerald contraction and ether drag hypothesis, Attempt to modify electrodynamics, postulates of the special theory of relativity. Relativistic Kinematics: Simultaneity, Derivation of Lorentz transformation equations, Some consequences of the Lorentz transformation equations: length contraction, time dilation and meson experiment, The observer in relativity RR: 1.1 to 1.6, 1.8, 1.9, 2.1, to 2.5		
	II	Relativistic Kinematics		
		Relativistic Kinematics (continued): The relativistic addition of velocities and acceleration transformation equations, Aberration and		

	III	Doppler Effect in relativity, The common sense of special relativity. The Geometric Representation of Space-Time: Space-Time Diagrams, Simultaneity, Length contraction and Time dilation, The time order and space separation of events, The twin paradox RR 2.6 to 2.8, Supplementary topics A1, A2, A3, B1, B2, B3 Relativistic Dynamics		
		Relativistic Dynamics: Mechanics and Relativity, The need to redefine momentum, Relativistic momentum, Alternative views of mass in relativity, The relativistic force law and the dynamics of a single particle, The equivalence of mass and energy, The transformation properties of momentum, energy and mass. RR 3.1 to 3.7		
	IV	Relativity and Electromagnetism		
		Relativity and Electromagnetism: Introduction, The interdependence of Electric and Magnetic fields, The Transformation for E and B, The field of a uniformly moving point charge, Force and fields near a current-carrying wire, Force between moving charges, The invariance of Maxwell's equations. The principle of equivalence and general relativity, Gravitational red shift. RR 4.1 to 4.7 Supplementary topic C1, C2, C3, C4		
Ź		References: 1. RR: Introduction to Special Relativity: Rober Student Edition) 2. Special theory of Relativity: A. P. French	t Resnick	(Wiley

Practicals

RUSPHYP06 – Physics Laboratory Course

The T. Y. B. Sc. Syllabus integrates the regular practical work with a series of demonstration and skill experiments. During the teaching and examination of Physics laboratory work, simple modifications of experimental parameters may be attempted. Attention should be given to basic skills of experimentation which include:

- i. Understanding relevant concepts.
- ii. Planning of the experiments
- iii. Layout and adjustments of the equipment

- iv. Recording of observations and plotting of graphs
- v. Calculation of results and estimation of possible errors in the observation of results. **Regular Physics Experiments:** A minimum of 8 experiments from each of the practical course are to be performed and reported in the journal.

Demo Experiments: The demonstration experiments are to be performed by the teacher in the laboratory and students should be encouraged to participate and take observation wherever possible. Demonstration experiments are designed to bring about interest and excitement in Physics. Students are required to enter details of these 'demo' experiments in their journal. The certified journal must contain a minimum of **16 regular experiments** (**8 from each practical course**), with minimum **8 demonstration experiments** in semester VI. A separate index and certificate in journal is must for each semester course. There will be two turns of three hours each for the examination of practical courses

Demonstration		1.	Amplitude Modulation	
Experiments:		2.	Frequency Modulation	
		3.	lodine absorption spectra	
		4.	Equation Solver	
		5.	Michelson's interferometer	
		6.	Open CRO, power Supply, Signal Generator:	
			Discuss Block Diagram	
		7.	Firing of TRIAC using DIAC	
		8.	Use of PC / μP to control real world	
			parameters	
		9.	Standing waves in liquid using Ultrasonic	
			waves	
		10.	Zeeman Effect	
		11.	Millikan's oil drop experiment	
		12.	Seven segment display	
		13.	Data sheets reading for Diodes, transistor,	
•	A		Opamp, and Optoelectronic devices	
		14.	Circuit Designing – single stage amplifier,	
			Transistor Multivibrator etc. and designing on Breadboard.	
Group A		1		Credits = 3
Group A		1.	Quincke's method for surface tension of Mercury	Credits = 3
(RUSPHYP601)		2. 3.	Lloyd's mirror Double refraction	
		4. 5.	FET characteristics UJT as relaxation oscillator	
.0,				
		6.	SCR characteristics	
1		7.	Photodiode characteristics	
		8. 9.	Applications of MOSFET SCR-Half Wave rectifier	
		9.	SCK-Hall vvave reciller	

	1.	Capacitance by using parallel bridge	Credits = 3
	2.	Calbration of Si diode & copper constantan	
	۷.	thermocouple as temperature sensor	
	3.	Maxwell's, deSauty's and Maxweel-Wein Bridge	
	4.	555 timer as Monostable Multivibrator	. 0
Group B	5.	555 timer as AstableMultivibrator	
(RUSPHYP602)	6.	Transistor series regulator – foldback	APIC
	7.	555 timer as ramp generator	
	8.	LM317 as current regulator	
	9.	OPAMP as monostable /astable multivibrator	
	Э.	using breadboard	
	 	.13	

MODALITY OF ASSESSMENT

Overall Examination and Marks Distribution Pattern

Semester---- VI

Course	RUSPHY601		RUSPHY602		RUSPHY603		RUSPHY604		Grand Total				
	Int	Ext.	Total	I	E	Т	ı	E	Т	I	Е	Т	
Theory	40	60	100	40	60	100	40	60	100	40	60	100	400

Course		RUSPHYP601			RUSPHYP602		
	Int.	Ext.	Total	Int.	Ext.	Total	
Practicals	40	60	100	40	60	100	200

Theory Examination Pattern:-Sem-VI

B) Internal Assessment - 40% = 40 marks.

Theory Paper- Paper code	Test Marks	Assignment	Marks distribution	Total Marks per paper
Math. Methods of Physics, Thermal & Statistical Physics RUSPHY501	20	15 questions on units1,2,3	Assessment- 15 mark Viva on it05 mark Total= 20 mark	40
Solid State Physics RUSPHY502	20	15 questions on units1,2,3	Assessment- 15 mark Viva on it05 mark Total= 20 mark	40
Atomic & Molecular Physics RUSPHY503	20	15 questions on units1,2,3	Assessment- 15 mark Viva on it05 mark Total= 20 mark	40
Electrodynamics RUSPHY504	20	15 questions on units1,2,3	Assessment- 15 mark Viva on it05 mark Total= 20 mark	41

B) Internal test pattern (half an hour test)

Questions	options	Marks
Q.1	20 objective questions, all compulsory, each question with 4 options; (half mark each)	10
Q.2	Attempt any two numerical out of four.(3 marks each)	06
Q.3	Attempt any one numerical out of two.(4 marks each)	04
	Total marks	20

C) External examination - 60 %

Semester-end Theory Assessment - 60 marks

- iii. Duration These examinations shall be of **2 hours** duration.
- iv. Paper Pattern:
 - 3. There shall be **5** questions each of **12** marks. On each unit there will be one question & last question will be based on all the 4 units.

4. All questions shall be compulsory with internal choice within the questions.

Questions	Options	Marks	Questions on
Q.1)A)	Any 1 out of 2	6	Unit I
Q.1)B)	Any 1 out of 2	6	
Q.2)A)	Any 1 out of 2	6	Unit II
Q.2)B)	Any 1 out of 2	6	
Q.3)A)	Any 1 out of 2	6	Unit III
Q.3)B)	Any 1 out of 2	6	
Q.4)A)	Any 1 out of 2	6	Unit IV
Q.4)B)	Any 1 out of 2	6	
Q.5)A)	Any 1 out of 2	3	Unit I
Q.5)B)	Any 1 out of 2	3	Unit II
Q.5C)	Any 1 out of 2	3	Unit III
Q.5)D)	Any 1 out of 2	3	Unit IV

Practical Examination Pattern:

(A)Internal Examination:

Sr. No.	Activity	Practical- Group-A	Practical- Group-B
1.	Seminar on experiment from each group: Content- 2 mark Presentation-2 mark Q(Teacher)2 mark Q(Student) -2 mark	8 mark	8 mark
2.	Continuous Assessment (2 mark per experiment/ 8 regular and 4 demo experiment))	24 mark	24 mark
3.	Main Journal (1 mark per regular experiment)	8 mark	8 mark
	Total (1+2+3)	40 mark	40 mark
	Requirement for the certification 8 demo experiments and 16 regular experiments		

(B) External (Semester end practical examination):

Particulars	Practical I	Practical II	
Laboratory work	50	50	
Viva	10	10	
Total	60	60	

PRACTICAL BOOK/JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.

In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Co-ordinator / Incharge of the department; failing which the student will not be allowed to appear for the practical examination.

