

Resolution No. : AC/II (23-24).2.RPS10

S.P. Mandali's Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for PG

Program: M.Sc.

Program Code: (RPSPHY)

2024-25

(As per the guidelines of NEP 2020 Academic Year 2024-25)

Page **1** of **67**

Graduate Attributes

S. P. Mandali's Ramnarain Ruia Autonomous College has adopted the Outcome Based Education model to make its science graduates globally competent and capable of advancing in their careers. The Master's Program in Science also encourages students to reflect on the broader purpose of their education.

A student completing Master's Degree in Physics (Electronics-I) Program will be able to:		
GA No.	Description	
	Demonstrate in depth understanding in the relevant science discipline. Recall, explain,	
GA1	extrapolate and organize conceptual scientific knowledge for execution and application	
	and also to evaluate its relevance.	
	Critically evaluate, analyse and comprehend a scientific problem. Think creatively,	
GA2	experiment and generate a solution independently, check and validate it and modify if	
	necessary.	
	Access, evaluate, understand and compare digital information from various sources and	
GA3	apply it for scientific knowledge acquisition as well as scientific data analysis and	
	presentation.	
	Articulate scientific ideas, put forth a hypothesis, design and execute testing tools and	
GA4	draw relevant inferences. Communicate the research. work in appropriate scientific	
	language.	
	Demonstrate initiative, competence and tenacity at the workplace. Successfully plan and	
GA5	execute tasks independently as well as with team members. Effectively communicate	
	and present complex information accurately and appropriately to different groups.	
	Use an objective, unbiased and non-manipulative approach.in collection and	
GA6	interpretation of scientific data and avoid plagiarism and violation of Intellectual	
	Property Rights. Appreciate and be sensitive to environmental and sustainability issues	
	and understand its scientific significance and global relevance.	
	Translate academic research into innovation and creatively design scientific solutions to	
GA7	problems. Exemplify project plans, use management skills and lead a team for planning	
0.0.	and execution of a task.	
	Understand cross disciplinary relevance of scientific developments and relearn and	
GA8	reskill so as to adapt to technological advancements.	
1		

-

PROGRAM OUTCOMES

A student completing Master's Degree in Physics (Electronics-I) Program will be able to:			
PO No.	Description		
	To demonstrate procedural knowledge related to different areas of study in Physics		
PO1	including Quantum Mechanics, Nuclear Physics, Electronics, Microprocessor and		
	Microcontroller, Embedded Systems and RTOS.		
	To demonstrate comprehensive, quantitative and conceptual understanding of the core		
PO2	areas of Physics and keeping update with current developments in the academic field of		
	Physics		
	To demonstrate the ability to use analytical skills in Physics and its related areas of		
PO3	technology to solve a wide range of problems including open ended problems associated		
	with Physics.		
	Utilize contemporary experimental apparatus and analysis tools to acquire, analyse and		
PO4	interpret scientific data in the extents of Physics with reference to Research.		
	Plan and execute Physics-related experiments or investigations, analyse and interpret		
PO5	data collected using appropriate methods, and report accurately the findings relating to		
	relevant theories of Physics.		
	Develop skills in areas related to specialization in the subfields of physics-		
PO6	Microprocessor, Microcontroller, VHDL, ARM7 and Python.		
	Demonstrate communication skills, to present complex information in a concise manner		
PO7	and develop personal skills such as the ability to work both independently and in a		
2	group.		
00	▼		

PROGRAM OUTLINE

Year	Semester	Course Code	Course Title	Credits
		RPSPHY.O501	Mathematical Methods	3
		(Discipline Specific Core)		
		RPSPHYP.O501	Practical based on RPSPHYP.O501	
		(Discipline Specific Core)		
		RPSPHY.O502	Classical Mechanics	3
		(Discipline Specific Core)		
		RPSPHYP.0502	Practical based on RPSPHYP.0502	1
		(Discipline Specific Core)		
		RPSPHY.0503	Solid State Physics	3
	_	(Discipline Specific Core)		
2024-25	Ι	RPSPHYP.0503	Practical based on RPSPHYP.0503	1
		(Discipline Specific Core)		2
		RPSPHY.0504	Python Programming	2
		(Discipline Specific Core)		4
		RPSRMPHY.0505	Research Methodology	4
		RPSPHY.O506		3
		(Discipline Specific	Microprocessor 8085 and 8086	
		Elective Course)	Desting 1 and a DDCDUVD O50(1
		(Dissiming Specific	Practical based on RPSPHYP.0506	I
		Elective Course)		
			Total Credits	22
Year	Semester	Course Code	Course Title	Credits
		RPSPHY.E511	Electrodynamics	3
		(Discipline Specific Core)	5	
		RPSPHYP.E511	Practical based on RPSPHYP.E511	1
		(Discipline Specific Core)		
		RPSPHY.E512	Quantum Mechanics - I	3
		(Discipline Specific Core)		
		RPSPHYP.E512	Practical based on RPSPHYP.E512	1
		(Discipline Specific Core)		
		RPSPHY.E513	Solid State Devices	3
2024-25		(Discipline Specific Core)		
		RPSPHYP.E513	Practical based on RPSPHYP.E513	1
		(Discipline Specific Core)		2
\mathbf{X}		RPSPHY.E514	Advanced Electronics	2
		(Discipline Specific Core)	OIT/ED Drain at	1
		RPSRMPHY.E313	OJI/FP – Project	4
		RPSPHY.E516		3
		(Discipline Specific	Microcontroller 8051	
		RPSPHVDF516	Practical based on RDSPHVDE516	1
		(Discipline Specific		1
		Elective Course)		
			Total Credits	22

Page **4** of **67**

Resolution No. : AB/II (20-21).2.RPS10

S.P. Mandali's Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for

Program: Master of Science (M.Sc.) Physics

Program Code: RPSPHY

(As per the guidelines of NEP 2020 Academic Year 2024-25)

Page 5 of 67

Course Code: RPSPHY.O501 Course Title: Mathematical Methods Academic Year: 2024-25

Course Outcomes:

Course Outcome	Description				
CO1	A Student should gain a deep understanding of foundational mathematical				
	concepts relevant to physics, such as calculus (differentiation, integration, and				
	their applications), linear algebra, complex analysis, and differential equations.				
CO2	A Student should develop the ability to apply mathematical methods to solve				
	complex physics problems. This involves selecting appropriate mathematical				
	techniques, performing calculations accurately, and interpreting the results in the				
	context of physical phenomena.				
CO3	A Student should be able to work with complex numbers, understand the concept				
	of analytic functions, and use techniques such as contour integration to solve				
	physics problems involving complex variables.				
CO4	A Student should be able to solve ordinary and partial differential equations				
	commonly encountered in physics, including equations describing physical				
	processes like diffusion, wave propagation, and quantum mechanics.				
CO5	A Student should understand the principles of linear algebra, including vector				
	spaces, matrices, determinants, eigenvalues, and eigenvectors. These concepts				
	are important for describing linear transformations and solving systems of linea				
	equations.				
CO 6	A Student should be familiar with Fourier series, Fourier transforms, and Laplace				
	transforms, which are essential for analyzing periodic and transient phenomena				
	in physics.				

1100

RPSPHY.O501: Mathematical Methods

	3	
Units	Title	Credits - 03
Ι	Cauchy-Riemann Equations, Analytic functions, Harmonic	15 Lectures
	functions, Elementary functions: Exponential and	
	Trigonometric, Taylor and Laurent series, Residues, Residue	
	theorem, Principal part of the functions, Residues at poles,	
	zeroes and poles of order m, Contour Integrals, Evaluation	
	of improper real integrals, improper integral involving Sines	
	and Cosines, Definite integrals involving sine and cosine	
	functions.	
П	Matrices, Eigenvalues and Eigen vectors, orthogonal,	15 Lectures
	unitary and Hermitian matrices, Diagonalization of	
	Matrices, Applications to Physics problems. General	
	treatment of second order linear differential equations with	
	non-constant coefficients, Power series solutions, Frobenius	
	method, Legendre, Hermite and Laguerre polynomials,	
	Bessel equations, non-homogeneous equation, Green's	
***	function, Sturm-Liouville theory.	
111	Integral transforms: three dimensional Fourier transforms	15 Lectures
	and its applications to PDEs (Green function of Poisson's	
	PDE), convolution theorem, Parseval's relation, Laplace	
	transforms, Laplace transform of derivatives, Inverse	
	Laplace transform and Convolution theorem, use of	
	Laplace's transform in solving differential equations.	

Course Code:	Practical based on RPSPHY.0501	Credits/Hours
1	Numerical Integration: Trapezoidal Method, Simpson's	1
	1/3 rd Rule	
2	Solution of Transcendental or Polynomial Equations by	1
	Newton Raphson Method	
3	Solution of Differential Equation by Runge Kutta Method	1
4	Jacobi Method of Matrix Diagonalization	1

Main References:

- 1. S. D. Joglekar, Mathematical Physics: The Basics, Universities Press 2005.
- 2. S.D. Joglekar, Mathematical Physics: Advanced Topics, CRC Press 2007.
- 3. M.L. Boas, Mathematical Methods in the Physical Sciences, Wiley India 2006.
- 4. G. Arfken and H. J. Weber, Mathematical Methods for Physicists, Academic Press 2005.

Additional References:

- 1. A.K. Ghatak, I.C. Goyal and S.J. Chua, Mathematical Physics, McMillan.
- 2. A. C. Bajpai, L. R. Mustoe and D. Walker, Advanced Engineering Mathematics, J Wiley.
- 3. E. Butkov, Mathematical Methods, Addison-Wesley.
- 4. J. Mathews and R. L. Walker, Mathematical Methods of Physics.
- 5. P. Dennery and A. Krzywicki, Mathematics for Physicists.
- 6. T. Das and S. K. Sharma, Mathematical methods in Classical and Quantum Mechanics.
- R. V. Churchill and J. W. Brown, Complex variables and applications, 5th Ed. McGraw Hill.

uira Autonor

8. A. W. Joshi, Matrices and Tensors in Physics, Wiley India.

Course Code: RPSPHY.O502 Course Title: Classical Mechanics

Academic Year: 2024-25

Course Outcomes:

Course Outcome	Description			
CO1	Understand formalism of Lagrange equation and D' Alembert's Principle,			
	Hamilton's principle, variation principle. Its application to mechanics of			
	particles.			
CO2	Comprehend Conservation theorems, Two-Body Central Force Problem,			
	Scattering in a central force field.			
CO3	Application of the differential equation to the problem of the orbit, The Kepler's			
	problem: Inverse square law of force.			
CO4	Evaluate Legendre transformations and the Hamilton equations of motion			
CO5	Analysis of Small Oscillations using Eigen function and Eigen value			
CO6	Analysis of Equations of motion using concepts of Canonical Transformations			
	and Poisson brackets.			
CO7	Demonstrate problem solving skills in all above areas			
Rannal				

RPSPHY.O502: Classical Mechanics

Unit/s	Title	Credits - 03
I	Historical context and advantages of the Lagrangian approach. Comparison with Newtonian mechanics and Hamiltonian mechanics. Variational calculus and the principle of least action. Deriving Lagrange's equations and understanding their significance. Coordinate transformations and generalized coordinates. Handling holonomic and non-holonomic constraints. Kinematics and dynamics of rotational motion. Euler's equations of motion for rigid bodies. Hamilton's principle and its connection to Lagrangian mechanics. Noether's theorem and its application to derive conservation laws.	15 Lectures
Π	Introduction to central force problems. Non-Inertial frames of reference and pseudoforces: Centrifugal, Coriolis and Euler forces. Gravitational force and the two-body problem. Transformation to relative coordinates. Deriving the effective potential and analyzing equilibrium points. The Virial Theorem. Solutions to the central force equation of motion. Properties of conic sections and Kepler's laws. Analysis of scattering in central force motion. Transformation of the scattering problem to laboratory coordinates. Small oscillations Normal mode analysis. Normal modes of a harmonic chain.	15 Lectures
III	Legendre Transformations, Hamilton's equations of motion and Hamiltonian function. Canonical Transformations, Examples of canonical transformations, The symplectic approach to canonical transformations, Poisson brackets and other canonical invariants, Equations of motion, infinitesimal canonical transformations and conservation theorems in the Poisson bracket formulation, The angular momentum Poisson brackets. Hamiltonian formulation of continuous systems.	15 Lectures

Course Code RPSPHYP.0502	Practical based on RPSPHY.0502	Credits/Hours
	Coupled Oscillations	1
2	Ultrasonic Interferometry-Velocity measurements in different Fluids	1
3	Transient Response of LCR Circuit	1
4	M.I of a Flywheel	1

Main References:

2

1. Classical Mechanics, H. Goldstein, Poole and Safko, 3rd Edition, Narosa Publication (2001)

2. Classical Mechanics, N. C. Rana and P. S. Joag. Tata McGraw Hill Publication.

.0.

itonor

3. Classical Mechanics, G. Aruldhas, Prentice Hall India Learning Private Limited (1 January 2008)

Additional References:

- 1. Classical Mechanics, S. N. Biswas, Allied Publishers (Calcutta).
- 2. Classical Mechanics, V. B. Bhatia, Narosa Publishing (1997).
- 3. Mechanics, Landau and Lifshitz, Butterworth, Heinemann.
- 4. Classical Mechanics, Vol I and II, E. A. Deslougue, John Wiley (1982).

il?

- 5. Theory and Problems of Lagrangian Dynamics, Schaum Series, McGraw (1967).
- 6. Classical Mechanics of Particles and Rigid Bodies, K. C. Gupta, Wiley Eastern (2001

Course Code: RPSPHY.O503 Course Title: Solid State Physics Academic Year: 2024-25

Course Outcomes:

Course Outcome	Description			
C01	Get a brief idea about crystalline and amorphous substances, about lattice, unit			
	cell, miller indices, reciprocal lattice, and concept of Brillouin zones and			
	diffraction of x-rays by different crystalline materials.			
CO2	Gain knowledge of lattice vibrations the basics of the optical and acoustic			
	phonons in crystals.			
CO3	Understand about different types of magnetism like diamagnetism and			
	Paramagnetism. Quantum mechanical formulation of magnetism and application			
	of Langevin diamagnetic equation.			
CO4	Carry out the experiments based on the theory that they have learned to measure			
	carrier lifetime, magnetic susceptibility, and dielectric constant. They will also			
	employ to four probe methods to determine electrical conductivity and the Hall			
	setup to determine the hall coefficient of semiconductor.			
CO5	Demonstrate cautious problem-solving skills in all above areas.			
Raulus				

RPSPHY.O503 - Solid State Physics

Units	Title	Credits - 03
Ι	Lattice Vibrations and Thermal properties: Vibrations of	15 Lectures
	Monoatomic Lattice, normal mode frequencies, dispersion	. 00
	relation. Lattice with two atoms per unit cell, normal mode	
	frequencies, dispersion relation, Quantization of lattice	
	vibrations, phonon momentum, Inelastic scattering of neutrons	N
	by phonons, Surface vibrations, Inelastic Neutron scattering.	
	Anharmonic Crystal Interaction. Thermal conductivity-Lattice	
	Thermal Resistivity, Umklapp Process, Imperfections.	
II	Diamagnetism and Paramagnetism: Langevin diamagnetic	15 Lectures
	equation, diamagnetic response, Quantum mechanical	
	formulation, core diamagnetism. Quantum Theory of	
	Paramagnetism, Rare Earth Ions, Hund's Rule, Iron Group ions,	
	Crystal Field Splitting and Quenching of orbital angular	
	momentum; Adiabatic Demagnetisation of a paramagnetic Salt,	
	Paramagnetic susceptibility of conduction electrons.	
III	Ferromagnetic order- Exchange Integral, Saturation	15 Lectures
	magnetisation Magnons, neutron magnetic scattering;	
	Ferrimagnetic order, spinels, Yttrium Iron Garnets, Anti	
	Ferromagnetic order. Ferromagnetic Domains – Anisotropy	
	energy, origin of domains, transition region between domains,	
	Blochwall, Coercive force and hysteresis.	

Course Code RPSPHYP.0503	Practical based on RPSPHY.0503	Credits/Hours
1	DC Hall Effect	1
2	Measurement of dielectric constant, Curie temperature and verification of Curie—Weiss law for ferroelectric material	1
3	Hysteresis Loop for a Ferromagnetic Material (B-H Curve)	1
4	Four Probe Method: Semiconductor Resistivity and Energy Band Gap	1

Main References:

- 1. Charles Kittel, "Introduction to Solid State Physics", 7th edition John Wiley & sons.
- 2. J. Richard Christman, "Fundamentals of Solid-State Physics", John Wiley & sons.
- 3. M.A. Wahab, "Solid State Physics –Structure and properties of Materials", Narosa Publications 1999.
- 4. M. Ali Omar, "Elementary Solid-State Physics", Addison Wesley (LPE).
- 5. H. Ibach and H. Luth, 3rd edition "Solid State Physics–An Introduction to Principles of Materials Science", Springer International Edition (2004)

Course Code: RPSPHY.0504

Course Title: Python Programming

Academic Year: 2024-25

Course Outcomes:

zamnarain

Course Outco	omes:
Course Outcome	Description
CO1	By the end of the course, students should be proficient in Python's basic syntax,
	including variables, data types, operators, and basic input/output operations.
CO2	Students should be proficient in using control structures such as loops (for, while)
	and conditional statements (if, elif, else) to control the flow of a program.
CO3	Students should be able to define and use functions in Python, understanding
	concepts such as function parameters, return values, and scope.
CO4	Students should develop the ability to break down problems into smaller, solvable
	components and translate these solutions into Python code, fostering algorithmic
	thinking and problem-solving skills.

Page **14** of **67**

RPSPHY.O504 - Python Programming

Unit	Title	Credits - 02
Ι	The Python Programming Language, Program Meaning,	15 Lectures
	Debugging, Formal and Natural Languages, The first	
	program. Values and types, Variables, Variable names and	
	Keywords, Statements, Evaluating Expressions, Operators	· O·
	and Operands, Order of Operations, Operation on Strings,	5
	Composition, Comments. Functions Calls, Type	
	Conversion, Type coercion, Math Functions, Composition,	
	Adding New Functions, Definitions and Use, Flow of	
	Execution, Parameters and Arguments, Variables and	
	Parameters are local, Stack Diagrams, Functions with	
	results.	
II	The modulus operator, Boolean expressions, Logical	15 Lectures
	operators, Conditional execution Alternative execution,	
	Chained conditionals, Nested conditionals, the return	
	statement, Recursion, Stack diagrams for recursive functions	
	Infinite recursion Keyboard input, return values Program	
	development, Composition, Boolean functions, more	
	recursion, Leap of faith, Checking types, Multiple	
	assignment, The while statement Tables Two-dimensional	
	tables Encapsulation.	

Main References:

1. Allen Downey, Jeffrey Elkner, Chris Meyers - Learning with PYTHON How to Think Like a Computer Scientist-CreateSpace (2009).

.....

Course Code: RPSRMPHY.0505

Course Title: Research Methodology

Academic Year: 2024-25

Course Outcomes:

R

Course Outco	omes:			
Course Outcome	Description			
CO1	Describe the fundamental concepts and principles of research, including the			
	research process and various research methodologies.			
CO2	Demonstrate the ability to design research studies, including selecting			
	appropriate research methods, variables, and data collection techniques.			
CO3	Conduct a comprehensive literature review to identify gaps in existing research			
	and formulate research questions or hypotheses.			
CO4	Understand and apply ethical principles in research, including the responsible			
	conduct of research, informed consent, and ethical considerations in data			
	collection and analysis.			
CO5	Collect and record data using various research methods, such as surveys,			
	interviews, experiments, observations, or archival research.			
CO6	Analyse and interpret research data using appropriate statistical or qualitative			
	analysis techniques, depending on the research design.			
CO7	Develop critical thinking skills to evaluate research articles, methodologies, and			
	findings critically.			
6-suulus				

RPSRMPHY.O505 - Research Methodology

Units	Title	Credits - 03
Ι	Introduction to research and its significance, Research process and steps,	15 Lectures
	Types of research (qualitative, quantitative, mixed methods), Ethical	
	considerations in research Introduction to research design, Experimental,	
	quasi-experimental, and non-experimental designs, Survey research	
	design, Case study and ethnographic research design.	
II	Importance of literature review in research, Searching and evaluating	15 Lectures
	relevant sources, Organizing and synthesizing literature, Writing a	
	literature review, References, Abstraction of a research paper, Possible	
	ways of getting, oneself abreast of current literature	
III	Results and Conclusions, Preparation of manuscript for Publication of	15 Lectures
	Research paper, Presenting a paper in scientific seminar, Thesis writing.	
	Structure and Components of Research Report, Types of Report: research	
	papers, thesis, Research Project Reports, Pictures and Graphs, citation	
	styles, writing a review of paper, Bibliography.	
IV	Statistical analysis and fitting of data: Introduction to Statistics -	15 Lectures
	Probability, Conditional Probability, Poisson Distribution, Binomial	
	Distribution and Properties of Normal Distributions, Estimates of Means	
	and Proportions; Chi-Square Test, Association of Attributes. t-Test Anova-	
	Standard deviation, Co-efficient of variations. Co-relation and Regression	
	Analysis.	

Main References:

- 1. C.R. Kothari-Research Methodology Methods and Techniques-New Age Publications (Academic) (2009).
- 2. Data Analysis for Physical Sciences (Featuring Excel®) Les Kirkup, 2nd Edition, Cambridge University Press (2012), Chapters1-6 and 9.
- 3. Statistical Methods in Practice for scientists and Technologists, Richard Boddy and Gordon Smith, John Wiley & Sons (2009)

Course Code: RPSPHY.0505

Course Title: Microprocessor 8085 and 8086

Academic Year: 2024-25

Course Outcomes:

aunaran

Course Outco	omes:
Course Outcome	Description
CO1	Understand the concepts of serial I/O, data communication and the 8085
	Interrupt.
CO2	Understand the basic concepts of Programmable Peripheral and Interface Devices
	like 8255 and 8259A with microprocessor 8085.
CO3	Understand the basic of architecture and of 8086 microprocessor and basic
	assembly language programming of 8086
CO4	Get exposure to the simulators and software which. mimics the behavior of the
	microprocessors
CO5	Demonstrate the practical utility of microprocessor through experiments.
CO6	In the laboratory course, student will gain hands-on experience of the working
	and applications of the microprocessors.

RPSPHY.O505 - Microprocessor 8085 and 8086

Units	Title	Credits - 03
Ι	Microprocessor 8085	15 Lectures
	Counters and Time Delays, Stack and Sub-routines. 8085	. 00
	Interrupts: The 8085 Interrupt, 8085 Vectored Interrupts, Restart	
	as Software Instructions, Additional I/O Concepts and Processes.	
	Programmable Peripheral and Interface Devices: The 8255A	N
	Programmable Peripheral Interface.	
II	The 8259A Programmable Interrupt Controller, Direct Memory	15 Lectures
	Access (DMA) and 8237 DMA Controller, the 8279	
	Programmable Keyboard/Display Interface Serial I/O and Data	
	Communication: Basic Concepts in Serial I/O, Software	
	Controlled Asynchronous Serial I/O, The 8085 Serial I/O lines:	
	SOD and SID.	
III	Microprocessor 8086:	15 Lectures
	Register organization of 8086, Architecture, Signal Descriptions	
	of 8086, Physical Memory Organization, General Bus operation,	
	I/O Addressing Capability, Special Processor Activities, Minimum	
	mode 8086 system and timings, Maximum mode of 8086 system	
	and timings. 8086 Instruction set and assembler directives:	
	Machine Language Instructions Formats, addressing modes of	
	8086, Instruction set of 8086. Introduction to Stack, Stack	
	structure of 8086, Interrupts and Interrupt Service Routines,	
	Interrupt cycle of 8086, non-maskable interrupt, Maskable	
	interrupt (INTR).	

Course Code RPSPHYP.O506	Practical based on RPSPHY.0506	Credits/Hours
1	Study of 8085 microprocessor Kit and execution of simple Programs	1
2	Wave form generation using 8085	1
3	SID & SOD using 8085	1
4	Study of 8085 interrupts (Vector Interrupt7.5)	1
5	Study of PPI8255 as Handshake I/O (mode1): interfacing switches, LED's.	1
6	8086 assembly language programming: Simple data manipulation programs. (8/16-bit addition, subtraction, multiplication, division, 8/16-bit data transfer, finding greatest/smallest number, finding positive/negative numbers, finding odd/even numbers, ascending/descending of numbers, converting BCD nos. into Binary using INT20, displaying a string of characters using INT20)	1

Please note: Assembly language programming of 8086 may be done by operating PC in real mode by using 'Debug' program. Separate 8086 study kit not needed.

Main References:

- 1. Microprocessor Architecture, Programming and Applications with the 8085, R. S. Gaonkar,4thEdition, Penram International.
- 2. Microprocessor Architecture, Programming and Applications with the 8085 by Ramesh S. Gaonkar, Fifth Edition Penram International Publication (India) Pvt Ltd.
- 3. Advanced Microprocessors and Peripherals by a K. Rayand K.M. Bhurchandi Second Edition Tata McGraw– Hill Publishing Company Ltd. (AB)
- 4. 8086 Microprocessor: Programming and Interfacing K. J. Ayala, Penram International
- 5. Microprocessors and interfacing, programming and hardware, By Douglas V. Hall

Page 20 of 67

Modality of Assessment – DSC / DSE

Theory Examination Pattern:

A) Internal Assessment – 40% - 30 Marks

Sr. No.	Evaluation Type	Marks
1	Internal Class Test	20
2	Class Test/ Project / Assignment / Presentation	10
	Total	30

B) External Examination (Semester End) - 60%- 45 Marks

Semester End Theory Examination:

- 1. Duration The duration for these examinations shall be of **two hours**.
- 2. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions Based on
Q1.	3 questions of 5 M each from 4 Questions OR 7/8 marks questions with option to any one	15	Unit - I
Q2.	3 questions of 5 M each from 4 Questions OR 7/8 marks questions with option to any one	15	Unit - II
Q3.	3 questions of 5 M each from 4 Questions OR 7/8 marks questions with option to any one	15	Unit - III
	TOTAL	45	

Practical Examination Pattern:

A) External Examination (Semester End)- 25 Marks Semester End Theory Examination:

6)

- 3. Duration The duration for these examinations shall be of **two hours**.
- 4. Practical question paper pattern:

Paper Pattern:

10812

Question		Marks
1	Major Experiment	C25
	TOTAL	25

Uila Autor

Modality of Assessment – Research Methodology

Theory Examination Pattern:

A) Internal Assessment – 40% - 40 Marks

Sr. No.	Evaluation Type	Marks
1	Scientific Writing assignment (Abstract /Research Article)	20
2	Research Review/ Research Proposal Writing	20
	Total	40

B) External Examination (Semester End) - 60%- 60 Marks

Semester End Theory Examination:

- 5. Duration The duration for these examinations shall be of two hours.
- 6. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions Based on
Q1.	3 questions of 5 M each from 4 Questions OR 7/8 marks questions with option to any one	15	Unit - I
Q2.	3 questions of 5 M each from 4 Questions OR 7/8 marks questions with option to any one	15	Unit - II
Q3.	3 questions of 5 M each from 4 Questions OR 7/8 marks questions with option to any one	15	Unit - III
Q4.	3 questions of 5 M each from 4 Questions OR 7/8 marks questions with option to any one	15	Unit - IV
	TOTAL	60	

Course Title: Electrodynamics

Academic Year: 2024-25

Course Outcomes:

Course Outcome	Description	
CO1	Understand formalism of Maxwell's equations, Pointing vector. Its application to	
	Lorentz Transformations.	
CO2	Comprehend concept of Four Vectors and Four Tensors.	
CO3	Developing formalism of electromagnetic waves propagation and its application	
	in wave guide and resonant cavity -related to Fiber optics and laser	
CO4	Evaluate moving charges in vacuum and application of Leinerd-Wiechert fields	
	to fields-radiation from a charged particle, Antennas	
CO5	Analysis of moving charges with application to dipole radiation-electric and	
	magnetic.	
CO6	Application of relativity concepts to electrodynamics.	
CO 7	Demonstrate problem solving skills in all above areas.	

zannarain Ruiro

RPSPHY.E511: Electrodynamics

Units	Title	Credits - 03
Ι	Maxwell's equations, The Pointing vector, The	15 Lectures
	Maxwellian stress tensor, Lorentz Transformations, Four	
	Vectors and Four Tensors, The field equations and the	
	field tensor, Maxwell equations in covariant notation.	
II	Electromagnetic waves in vacuum, Polarization of plane	15 Lectures
	waves. Electromagnetic waves in matter, frequency	
	dependence of conductivity, frequency dependence of	N N
	polarizability, frequency dependence of refractive index.	
	Wave guides, boundary conditions, classification of	
	fields in wave guides, phase velocity and group velocity,	
	resonant cavities.	
III	Moving charges in vacuum, gauge transformation, The	15 Lectures
	time dependent Green function, The Lienard-Wiechert	
	potentials, Leinard-Wiechert fields, application to fields-	
	radiation from a charged particle, Antennas, Radiation by	
	multipole moments, Electric dipole radiation, Complete	
	fields of a time dependent electric dipole, Magnetic	
	dipole radiation.	
	Relativistic covariant Lagrangian formalism: Covariant	
	Lagrangian formalism for relativistic point charges, The	
	energy-momentum tensor, Conservation laws.	

Course Code: RPSPHYP.E511	Practical based on RPSPHY.E511	Credits/Hours
1	Study of Antenna Trainer Kit	1
2	Pulse Width Modulation using IC555 Timer	1
3	Visualization of Fields in a Rectangular Waveguide	1
	(Simulation) Using MATLAB	
4	Amplitude Modulation	1
5	Phase Lock Loop using PLL IC565	1

Main Reference:

1. W. Greiner, Classical Electrodynamics (Springer-Verlag, 2000) (WG).

2. M. A. Heald and J. B. Marion, Classical Electromagnetic Radiation, 3rd edition (Saunders, 1983) (HM)

Additional references:

1. J. D. Jackson, Classical Electrodynamics, 4Th edition, (John Wiley & sons) 2005 (JDJ)

 W. K. H. Panofsky and M. Phillips, Classical Electricity and Magnetism, 2nd edition, (Addison-Wesley)1962.

Autonomous

1112

5,

 D. J. Griffiths, Introduction to Electrodynamics, 2nd Ed., Prentice Hall, India, 1989.
J. R. Reitz, E. J. Milford and R. W. Christy, Foundation of Electromagnetic Theory, 4th ed., Addison-Wesley, 1993

Course Code: RPSPHY.E512

Course Title: Quantum Mechanics - I

Academic Year: 2024-25

Course Outcomes:

Course Outcome	Description
CO1	Understand the theory of quantum measurements, wave packets and uncertainty
	principle.
CO2	Understand the concepts of quantum mechanics like wave -function, momentum
	and energy operators, the Schrodinger equation, time dependent and time
	independent cases, probability density and the normalization techniques,
	Commutator algebra, their connection to uncertainty principle, solution to the
	eigen value problems, etc.
CO3	Develop skills on problem solving for One dimensional rigid box, three-
	dimensional rigid box and Harmonic oscillator.
CO4	Understand the formalism of modern quantum mechanics, Dirac notation, Hilbert
	space and matrix mechanisms.
CO5	Learn the Schrodinger equation solutions for Hydrogen atom, determine its eigen
	value and radial eigen functions, degeneracy, etc.
CO6	Understand the angular momentum operators, its Commutator relations, ladder
	operators, their eigen functions and eigen values, learn spin eigen functions, Pauli
	Spin matrices, and understand the addition of angular momentum.
CO7	Understand the ClebschGordon coefficients
Saul	

RPSPHY.E512: Quantum Mechanics – I

Unit/s	Title	Credits - 03
Ι	Postulates of quantum mechanics, observables and operators, measurements, state function and expectation values, the time- dependent Schrodinger equation, time development of state functions, The Superposition principle, Commutator relations, complete set of commuting observables, conservation theorems and parity. Linear Vector Spaces and operators, Dirac notation, Hilbert space, Hermitian operators and their properties, Matrix mechanics: Basis and representations, unitary transformations, the energy representation.	15 Lectures
Π	Gaussian wave packet, Schrodinger equation solutions: one dimensional problem: General properties of one-dimensional Schrodinger equation, Particle in a box, Harmonic oscillator by raising and lowering operators, one dimensional barrier problems, finite potential well. Orbital angular momentum operators in Cartesian and spherical polar coordinates. Commutation and uncertainty relations, spherical harmonics, two particle problem- coordinates relative to centre of mass,	15 Lectures
III	Hydrogen atom, eigen-values and radial eigen-functions, degeneracy, probability distribution. Ladder operators, eigen-values and eigen-functions of L2 and Lz using spherical harmonics, angular momentum and rotations. Total angular momentum J; L-S coupling; eigen-values of J2 and Jz. Addition of angular momentum, Clebsch-Gordan coefficient for $j1=j2=\frac{1}{2}$ and $j1=1$ and $j2=\frac{1}{2}$. Angular momentum matrices, Pauli spin matrices, free particle wave function including spin, addition of two spins.	15 Lectures

Course Code: RPSPHYP.E512	Practical based on RPSPHY.E512	Credits/Hours
1	Double Slit Fraunhoffer Diffraction (Missing Order)	1
2	Stefan's Law of Radiation	1
3	Diameter of Lycopodium Powder Particles using Diffraction.	1
4	Simulation Based Practical	1

Main references:

- 1. Richard Liboff, Introductory Quantum Mechanics, 4thedition, Pearson.
- 2. D J Griffiths, Introduction to Quantum Mechanics 4thedition.
- 3. A. Ghatak and S. Lokanathan, Quantum Mechanics: Theory and Applications, 5th edition.
- 4. N. Zettili, Quantum Mechanics: Concepts and Applications, 2nd edition, Wiley.

with Automotion

Additional References

131

R

- 1. W. Greiner, Quantum Mechanics: An introduction, Springer, 2004.
- 2. R. Shankar, Principles of Quantum Mechanics, Springer, 1994.
- 3. P. M. Mathews and K. Venkatesan, A Textbook of Quantum Mechanics, Tata McGraw Hill (1977).
- 4. J. J. Sakurai Modern Quantum Mechanics, Addison-Wesley (1994).

Page 30 of 67

Course Code: RPSPHY.E513

Course Title: Solid State Devices

Academic Year: 2024-25

Course Outcomes:

S

Course Outco	omes:
Course Outcome	Description
CO1	Study about P-N junction diodes its fabrication by different processes.
	Characteristics like I-V and C-V characteristics and evaluate the dependence of
	reverse saturation current on minority carrier concentration and forward diffusion
	current on potential barrier.
CO2	Learn about Metal- Semiconductor contacts like Schottky and Ohmic Contacts
	and its I-V and C-V characteristics
CO3	Describe the principle and analyse the operation of Bipolar Junction Transistors,
	MOSFETs, MODFETs, MESFETs and study its I-V and C-V characteristics.
CO4	Demonstrate cautious problem-solving skills in all above areas.
CO5	Carry out the experiments based on the theory that they have learnt to measure I-
	V, C-V characteristics on semiconductor specimen, carrier mobility by
	conductivity, barrier capacitance of a junction diode and Energy band gap.
03mm?	

RPSPHY.E513 - Solid State Devices

Units	Title	Credits - 03
	p-n junction: Fabrication of p-n junction by diffusion and ion-	15 Lectures
	implantation; Abrupt and linearly graded junctions; Thermal	
	equilibrium conditions; Depletion regions; Depletion capacitance,	
	Capacitance – voltage (C-V) characteristics, Evaluation of	
Ι	impurity distribution, Varactor; Ideal and Practical Current-	N
	voltage(I-V) characteristics; Tunnelling and avalanche reverse	
	junction breakdown mechanisms; Minority carrier storage,	·
	diffusion capacitance, transient behaviour; Ideality factor and	
	carrier concentration measurements; Carrier life time	
	measurement by reverse recovery of junction diode; p- 1-n diode;	
	Tunnel diode, Introduction to p-n junction solar cell and	
	semiconductor laser diode.	151
	Metal-Semiconductor Contacts: Schottky barrier-Energy band	15 Lectures
П	relation, Capacitance- voltage (C-V) characteristics, Current-	
11	voltage(I-v) characteristics; Ideanity factor, Barrier height and	
	Lunation Transistor (DIT), Static Characteristics, Frequency	
	Posponso and Switching Semiconductor hotoro junctions	
	Hetero junction bipolar transistors. Quantum well structures	
	Metal-semiconductor field effect transistor (MESEET)- Device	15 Lacturas
	structure Principles of operation Current voltage (I-V)	15 Lectures
Ш	characteristics High frequency performance Modulation doned	
111	field effect transistor (MODFET): Introduction to ideal MOS	
	device: MOSFET fundamentals. Measurement of mobility.	
	channel conductance etc. from Ids vs Vds and Ids vs Vg	
	characteristics. Introduction to Integrated circuits.	
	XU	L

Course Code: RPSPHYP.E513	Practical based on RPSPHY.E513	Credits/Hours
1	Carrier Lifetime by Pulse Reverse Method	1
2	Barrier capacitance of a junction Diode	1
3	Input Output Characteristics of a BJT	1
4	N-Channel MOSFET Output and Transfer Characteristics	1
5	Delayed linear sweep using IC 555	1
6	Active filter circuits (second order)	1
7	Instrumentation amplifier and its applications	1
8	Shift registers	1

Additional References:

3

- 1. Jasprit Singh; Semiconductor Devices: Basic Principles, John Wiley, New York, 2001.
- Donald A. Neamen; Semiconductor Physics and Devices: Basic Principles, 3rd edition, Tata McGraw-Hill, NewDelhi,2002.
- 3. M. Shur; Physics of Semiconductor Devices, Prentice Hall of India, New Delhi, 1995
- 4. Pallab Bhattacharya; Semiconductor Optoelectronic Devices, Prentice Hall of India, New Delhi,1995.

Ruia Autonom

Course Code: RPSPHY.E514

Course Title: Advanced Electronics

Academic Year: 2024-25

Course Outcomes:

R

Course Outco	omes:
Course Outcome	Description
CO1	Analyse, explain the operation of ideal and non-ideal Op-Amps and identify the
	key characteristics of Op-Amps, such as gain, input impedance, and output
	impedance.
CO2	Gain knowledge regarding inverting and non-inverting amplifiers, active filter
	circuits, instrumentation amplifiers for signal conditioning applications.
CO3	Understand different types of Oscillators such as Wein Bridge Oscillator, RC
	Oscillator, Colpitts Oscillators, LC oscillators.
CO4	Learn about IC555 timers in astable, monostable, and bistable modes.
	Design and understand circuits that generate precise timing signals and
	oscillations.
C05	Develop an understanding regarding the logic gates, combinational logic circuits
	Data Processing Circuit: Multiplexers, demultiplexers, decoder, encoder, parity
	generators.
CO6	Study about flip-flops, RS, JK, D, edge triggering, registers, SISO, SIPO, PISO,
	PIPO, application of shift registers, counters, asynchronous counters,
-7	synchronous counter, modulus of a counter, counter design, design of
	synchronous and asynchronous sequential circuits.

RPSPHY.E514 - Advanced Electronics

Unit	Title	Credits - 02
Ι	Differential Amplifier, Instrumentation and operational	15 Lectures
	amplifiers; Op-Amp Circuits: Characteristics of ideal and	
	practical op-amp; inverting, noninverting and differential	
	amplifier, Basic characteristics with detailed internal circuit	
	of IC Op-Amp; Active filters; Nonlinear amplifiers using	
	Op-Amps-log amplifier, anti-log amplifier, regenerative	
	comparators; ADC and DAC circuits; Op-amp based self-	
	oscillator circuits- RC phase shift, Wien bridge, non-	
	sinusoidal oscillators.	
II	Oscillators: sinusoidal oscillation, Wein Bridge Oscillator, RC	15 Lectures
	Oscillator, Colpitts Oscillators, LC oscillators, Quartz crystals,	
	the 555 timer, astable operation of the 555 timers, 555 circuit	
	applications, the phase locked loop. Digital Principle and	
	Digital Logic: logic gates, combinational logic circuits Data	
	Processing Circuit: Multiplexers, demultiplexers, decoder,	
	encoder, parity generator and checker, arithmetic circuits,	
	adder, subtractors, clocks and timing circuits, 555 timer-	
	astable, monostable, flip-flops, RS, JK, D, edge triggering,	
	registers, SISO, SIPO, PISO, PIPO, application of shift	
	registers, counters, asynchronous counters, synchronous	
	counter, modulus of a counter, counter design, design of	
	synchronous and asynchronous sequential circuits.	

Main References:

- 1. Malvino, A., Bates, D., Electronic Principles, McGraw-Hill, 2016.
- 2. Leach, D. P., Malvino, A. P. and Saha, G., Digital Principles and Applications, TMH, 2014.
- 3. Horowitz, P. and Hill, W., The Art of Electronics, CUP, 2016.
- 4. Op-Amps and Linear Integrated Circuits R. A. Gayakwad, 3rdEdition Prentice Hall India.
- Operational Amplifiers and Linear Integrated Circuits, Robert F. Coughlin and Frederic F. Driscoll, 6thEdition, Pearson Education Asia.

Course Code: RPSPHY.E516

Course Title: Microcontroller 8051

Academic Year: 2024-25

Course Outcomes:

zamnarainn

S

Course Outco	omes:
Course Outcome	Description
C01	Understand the basic architecture and the assembly language programming of
	8051 controller & PIC microcontrollers
CO2	Understand the basics of 8051 serial communication and serial port programming
	in assembly language
CO3	Understand the basic programming of the microcontroller with and without the
	interrupt service request.
CO4	Acquire knowledge of microcontrollers and their role in I/0 port programming
	and their interface with peripherals.
CO5	Get exposure to the simulators and software which. mimics the behaviour of a
	mainframe microcontrollers
CO6	Demonstrate the practical utility of microcontrollers through experiments
CO7	In the laboratory course, student will gain hands-on experience of the working
	and applications of the microcontrollers.

RPSPHY.E516 – Microcontroller 8051

Units	Title	Credits - 03
Ι	Introduction, Microcontrollers and Microprocessors, History of	15 Lectures
	Microcontrollers and Microprocessors, Embedded versus External	
	Memory Devices, 8-bit and 16-bit Microcontrollers, CISC and	
	RISC Processors, Harvard and Von-Neumann Architectures,	
	Commercial Microcontroller Devices. 8051 Microcontrollers:	
	Introduction, MCS-51 Architecture, Registers in MCS-51, 8051	
	Pin Description, Connections,8051 Parallel I/O Ports and Memory	
	Organization.	
II	8051 Instruction set and Programming: MCS-51 Addressing	15 Lectures
	Modes and Instruction set. 8051 Instructions and Simple programs	
	using Stack Pointer.	
III	Counters, Interrupts, Serial communication. Programming 8051	15 Lectures
	Timers, Counter Programming, Basics of Serial Communication,	
	8051 Connection to RS232, 8051 Serial Port Programming in	
	assembly. 8051 Interrupts, Programming. Timer, interrupts	
	Programming External hardware Interrupts, Programming the	
	Serial Communication Interrupt, Interrupt Priority in 8051/52	

Course Code:	Practical based on RPSPHY.E516	Credits/Hours							
RPSPHYP.E516									
Microcontroller 8051 Programming									
1	8031/51 assembly language programming:								
	Simple data manipulation programs. (8/16-bit addition,								
	subtraction, multiplication, division,8/16-bit data transfer,								
	cubes of nos., to rotate a 32- bit number, finding								
	greatest/smallest number from a block of data, decimal/								
	hexadecimal counter)								
2	Study of IN and OUT port of 8031/51 by Interfacing switches,								
	LEDs and Relays: to display bit pattern on LED's, to count the								
	number of "ON" switches and display on LED's, to trip a relay								
	depending on the logic condition of switches, event counter								
\mathbf{O}	(using LDR and light source).								
3	Study of external interrupts (INT0/INT1) of 8031/51.								
4	Study of internal timer and counter in 8031/51.								
	Microcontroller 8051 Interfacing								
1	Interfacing 8-bit DAC with 8031/51 to generate waveforms:								
	square, saw-tooth, triangular.								
2	Interfacing stepper motor with 8031/51: to control direction,								
	speed and number of steps.								

3	Interface 8-bit ADC (0804) with 8031/51: to convert an analog	
	signal into its binary equivalent.	

Main References:

- 1. The 8051 Microcontroller and Embedded Systems, Dr. Rajiv Kapadia, Jaico Publishing House.
- 2. The 8051 Microcontroller & Embedded Systems by M. A. Mazidi, J. G. Mazidi and R.D. McKinlay
- 3. The 8051 Microcontroller: K. J. Ayala: Penram International
- 4. Programming & customizing the 8051 Microcontroller: Myke Predko, TMH
- 5. The 8051 Microcontroller & Embedded Systems by M.A. Mazidi, J.G. Mazidi and R.D. McKinlay, Second Edition, Pearson (MMM)
- 6. Microcontrollers by Ajay V. Deshmukh, Tata-McGraw Hill Publication (AVD)

Modality of Assessment – DSC / DSE

Theory Examination Pattern:

C) Internal Assessment – 40% - 30 Marks

c) meermar								
Sr. No.	No. Evaluation Type							
1	Internal Class Test	20						
2	Class Test/ Project / Assignment / Presentation	10						
	Total	30						

D) External Examination (Semester End) - 60%- 45 Marks

Semester End Theory Examination:

- 7. Duration The duration for these examinations shall be of **two hours**.
- 8. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions Based on
Q1.	3 questions of 5 M each from 4 Questions OR 7/8 marks questions with option to any one	15	Unit - I
Q2.	3 questions of 5 M each from 4 Questions OR 7/8 marks questions with option to any one	15	Unit - II
Q3.	3 questions of 5 M each from 4 Questions OR 7/8 marks questions with option to any one	15	Unit - III
	TOTAL	45	

Practical Examination Pattern:

A) External Examination (Semester End)- 25 Marks Semester End Theory Examination:

- 9. Duration The duration for these examinations shall be of **two hours**.
- 10. Practical question paper pattern:

Paper Pattern:

Question			Marks
1	Major Experiment	~	25
	TOTAL		25

Overall Examination and Marks Distribution Pattern:

Course	RI	PSPHY	/.E511	RPS	PHY.F	E512	RPS	PHY.I	E513	RP	SPHY.	E514	RF	SPHY.	E515	RPS	PHY.I	E 516	Total
	Ι	Ε	Т	Ι	Е	Т	Ι	E	Т	Ι	Ε	Т	Ι	Ε	Т	Ι	Ε	Т	
Theory	30	45	75	30	45	75	30	45	75	-	50	50	-	100	100	30	45	75	450

Course	RPSPHYP. E511	RPSPHYP. E512	RPSPHYP. E513	RPSPHYP. E514	Total
Practical	25	25	25	25	100

[Grand Total: 550 Marks]

Resolution No. : AB/II (20-21).2.RPS10

S.P. Mandali's Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for

Program: Master of Science (M.Sc.) Physics

Program Code: RPSPHY

(As per the guidelines of NEP 2020 Academic Year 2024-25)

Page **41** of **67**

Graduate Attributes

S. P. Mandali's Ramnarain Ruia Autonomous College has adopted the Outcome Based Education model to make its science graduates globally competent and capable of advancing in their careers. The Master's Program in Science also encourages students to reflect on the broader purpose of their education.

A student co	ompleting Master's Degree in Physics (Electronics-I) Program will be able to:
GA No.	Description
	Demonstrate in depth understanding in the relevant science discipline. Recall, explain,
GA1	extrapolate and organize conceptual scientific knowledge for execution and application
	and also to evaluate its relevance.
	Critically evaluate, analyse and comprehend a scientific problem. Think creatively,
GA2	experiment and generate a solution independently, check and validate it and modify if
	necessary.
	Access, evaluate, understand and compare digital information from various sources and
GA3	apply it for scientific knowledge acquisition as well as scientific data analysis and
	presentation.
	Articulate scientific ideas, put forth a hypothesis, design and execute testing tools and
GA4	draw relevant inferences. Communicate the research. work in appropriate scientific
	language.
	Demonstrate initiative, competence and tenacity at the workplace. Successfully plan and
GA5	execute tasks independently as well as with team members. Effectively communicate
	and present complex information accurately and appropriately to different groups.
	Use an objective, unbiased and non-manipulative approach.in collection and
GA6	interpretation of scientific data and avoid plagiarism and violation of Intellectual
	Property Rights. Appreciate and be sensitive to environmental and sustainability issues
	and understand its scientific significance and global relevance.
<u> </u>	Translate academic research into innovation and creatively design scientific solutions to
GA7	problems. Exemplify project plans, use management skills and lead a team for planning
0.0	and execution of a task.
	Understand cross disciplinary relevance of scientific developments and relearn and
GA8	reskill so as to adapt to technological advancements.

PROGRAM OUTCOMES

R RU

A student co	mpleting Master's Degree in Physics (Electronics-I) Program will be able to:
PO No.	Description
	To demonstrate procedural knowledge related to different areas of study in Physics
PO1	including Quantum Mechanics, Nuclear Physics, Electronics, Microprocessor and
	Microcontroller, Embedded Systems and RTOS.
	To demonstrate comprehensive, quantitative and conceptual understanding of the core
PO2	areas of Physics and keeping update with current developments in the academic field of
	Physics
	To demonstrate the ability to use analytical skills in Physics and its related areas of
PO3	technology to solve a wide range of problems including open ended problems associated
	with Physics.
	Utilize contemporary experimental apparatus and analysis tools to acquire, analyse and
PO4	interpret scientific data in the extents of Physics with reference to Research.
	Plan and execute Physics-related experiments or investigations, analyse and interpret
PO5	data collected using appropriate methods, and report accurately the findings relating to
	relevant theories of Physics.
	Develop skills in areas related to specialization in the subfields of physics-
PO6	Microprocessor, Microcontroller, VHDL, ARM7 and Python.
	Demonstrate communication skills, to present complex information in a concise manner
PO7	and develop personal skills such as the ability to work both independently and in a
2	group.
00	▼

PROGRAM OUTLINE

Year	Semester	Course Code	Course Title	Credits
		RPSPHYO601	Statistical Mechanics	3
		(Discipline Specific Core)		
		RPSPHYPO601	Practical Based on RPSPHYO601	
		RPSPHYO602	Quantum Mechanics II	3
		(Discipline Specific Core)		1
2024-25	III	RPSPHYPO602	Practical Based on RPSPHY0602	
		RPSPHYO603	Physics of Nanomaterials	3
		Discipline Specific Core)	Drastical Passed on PDSDUV0602	1
		RESERVED DD	Plactical Based on KFSFH10005	l
		<u>RP</u>	Research Project	6
		RPSEPHYO604	PIC Microcontroller and ARM I	3
		Elective Course)		
		RPSEPHYPO604	Practical Based on RPSEPHYO604	1
			Total Credits	22
Year	Semester	Course Code	Course Title	Credits
		RPSPHYE611	Nuclear Physics	3
		(Discipline Specific Core)	\mathbf{D} \mathbf{C}^{\prime} 1 \mathbf{D} 1 \mathbf{D} DODUNE(11)	1
		KPSPHYPE011	Practical Based on RPSPH YE011	1
		RPSPHYE612	Atomic and Molecular Physics	3
2024.25	** *	Discipline Specific Core)	Practical Pasad on PDSDUVE612	1
2024-25	IV			1
			Research Project	10
		RPSEPHYE614	VHDL and ARM II	3
		Elective Course)		
		RPSEPHYPE614	Practical Based on RPSPHYE614	1
	5	0	Total Credits	22
	0			
	<u> </u>			
	\sim			
~?				
V	,			
Ŧ				

Resolution No. : AB/II (20-21).2.RPS10

S.P. Mandali's Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for

Program: Master of Science (M.Sc.) Physics

Program Code: RPSPHY

(As per the guidelines of NEP 2020 Academic Year 2024-25)

Page **45** of **67**

Course Code: RPSPHYO6O1 Course Title: Statistical Mechanics Academic Year: 2024-25

Course Outcomes:

R

Course Outcome	Description
C01	Recall and identify the concepts of macroscopic and microscopic states in
	thermodynamics, and understand the connection between statistics and
	thermodynamics.
CO2	Explain the statistical basis of thermodynamics, including the classical ideal gas,
	entropy of mixing, Gibbs paradox, and the enumeration of microstates.
CO3	Apply the principles of ensemble theory to analyze the phase space of classical
	systems, understand Liouville's theorem, and its consequences.
CO4	Analyze the microcanonical ensemble, canonical ensemble, and grand canonical
	ensemble, including equilibrium conditions, statistical quantities, partition
	functions, and energy fluctuations.
CO5	Evaluate the physical significance of statistical quantities in different ensembles,
	such as the microcanonical, canonical, and grand canonical ensembles, and
	compare their correspondence with thermodynamic principles.
CO6	Solve problems involving the statistical mechanics of classical and quantum
	systems in different ensembles, including systems of harmonic oscillators and
	para-magnetism.
C07	Integrate knowledge of statistical mechanics and thermodynamics to analyze and
0.0.	interpret density and energy fluctuations in the grand canonical ensemble, and
	demonstrate their correspondence with other statistical ensembles.

1181

RPSPHYO6O1: Statistical Mechanics

Units	Title	Credits - 03
Ι	The Statistical Basis of Thermodynamics-The macroscopic	15 Lectures
	and the microscopic states, contact between statistics and	
	thermodynamics, the classical ideal gas, The entropy of	
	mixing and the Gibbs paradox, the enumeration of the	
	microstates. Elements of Ensemble Theory-Phase space of a	
	classical system, Liouville's theorem and its consequences.	
	The micro-canonical ensemble – Examples Quantum states	
	and the phase space.	
Π	The Canonical Ensemble-Equilibrium between a system and	15 Lectures
	a heat reservoir, a system in the canonical ensemble,	
	physical significance of the various statistical quantities in	
	the canonical ensemble, expressions of the partition	
	function, the classical systems, energy fluctuations in the	
	canonical ensemble, correspondence with the	
	microcanonical ensemble, the equipartition theorem and the	
	virial theorem, system of harmonic oscillators, statistics of	
	para-magnetism, thermodynamics of magnetic systems.	
III	The Grand Canonical Ensemble-Equilibrium between a	15 Lectures
	system and a particle-energy reservoir, a system in the grand	
	canonical ensemble, physical significance of the various	
	statistical quantities, Examples, Density and energy	
	fluctuations in the grand canonical ensemble,	
	correspondence with other ensembles.	

Main References:

1. Statistical Mechanics- R.K. Pathria & Paul D. Beale (Third Edition), Elsevier 2011 Chapter 1 to 5

Additional References:

- 1. Thermodynamics and Statistical Mechanics, Greiner, Neise and Stocker, Springer 1995.
- 2. Introduction to Statistical Physics, Kerson Huang, Taylor and Francis 2001.
- 3. Thermal and Statistical Physics, F Reif.
- 4. Statistical Physics, D Amit and Walecka.
- 5. Statistical Mechanics, Kerson Huang.
- 6. Statistical Mechanics, J.K.Bhattacharjee.
- 7. Non-equilibrium Statistical Mechanics, J.K.Bhattacharjee.
- 8. Statistical Mechanics, Richard Feynman.

Page **47** of **67**

.0.

- 9. Statistical Mechanics, Landau and Lifshitz.
- 10. Thermodynamics, H.B.Callen.

Mare

RPSPHYP.O601: PRACTICAL BASED ON RPSPHYO601

Sr. No.	Experiment Name	Credits
1	Plot the probability of macrostates in tossing a coin (SCILAB)	
2	Plot Maxwell Speed distribution function for different gases (SCILAB)	O_1
3	Plot Maxwell-Boltzmann, Bose-Einstein & Fermi-Dirac distribution	1
	functions (SCILAB)	
4	Plot Partition function & other thermodynamic variables (SCILAB)	1
5	Thermal diffusivity of Brass	1
	arain Rula Autonomous	

Page 48 of 67

Course Code: RPSPHYO602 Course Title: Quantum Mechanics II Academic Year: 2024-25

Course Outcomes:

Course Outcome	Description
CO1	Recall the principles and methods of time-independent perturbation theory,
	including first and second-order corrections to energy eigenvalues and
	eigenfunctions.
CO2	Explain the concepts of degenerate perturbation theory and its application in
	calculating first-order corrections to energy levels.
CO3	Apply time-dependent perturbation theory to analyze harmonic perturbations,
	Fermi's Golden Rule, sudden and adiabatic approximations, and their
	applications in quantum mechanics.
CO4	Analyze the variation method and its application in solving simple potential
	problems, such as the hydrogen atom, to determine energy eigenvalues.
CO5	Evaluate the WKB approximation, including turning points, connection
	formulas, and quantization conditions, and its applications in solving quantum
	mechanical problems.
CO6	Integrate knowledge of partial wave analysis, Born approximation, and S-wave
	scattering to understand scattering from finite spherical potential wells and apply
	the optical theorem in scattering phenomena.

RPSPHYO602: Quantum Mechanics II

Unit/s	Title	Credits - 03
Ι	Perturbation Theory:	15 Lectures
	Time independent perturbation theory: First order and second order	
	corrections to the energy eigen-values and eigen-functions.	
	Degenerate perturbation Theory: first order correction to energy.	
	Time dependent perturbation theory: Harmonic perturbation, Fermi's	
	Golden Rule, sudden and adiabatic approximations, applications.	
II	Approximation Methods:	15 Lectures
	Variation Method: Basic principle, applications to simple potential	
	problems, He- atom. WKB Approximation: WKB approximation,	
	turning points, connection formulas, Quantization conditions,	
	applications.	
III	Scattering Theory:	15 Lectures
	Laboratory and center of mass frames, differential and total scattering	
	cross-sections, scattering amplitude, Partial wave analysis and phase	
	shifts, optical theorem, S- wave scattering from finite spherical	
	attractive and repulsive potential wells, Born approximation.	

Main References:

- 1. Richard Liboff, Introductory Quantum Mechanics,4th edition, Pearson.
- 2. D J Griffiths, Introduction to Quantum Mechanics4thedition
- 3. A Ghatak and S Lokanathan, Quantum Mechanics: Theory and Applications, 5thedition.
- 4. N Zettili, Quantum Mechanics: Concepts and Applications, 2nd edition, Wiley.
- 5. J. Bjorken and S. Drell, Relativistic Quantum Mechanics, McGraw-Hill (1965).

Additional References:

- 1. W. Greiner, Quantum Mechanics: An introduction, Springer, 2004
- 2. R. Shankar, Principles of Quantum Mechanics, Springer, 1994
- 3. P. M. Mathews and K. Venkatesan, A Textbook of Quantum Mechanics, Tata McGraw Hill (1977).
- 4. J.J. Sakurai Modern Quantum Mechanics, Addison-Wessley (1994).

RPSPHYPO602: PRACTICAL BASED ON RPSPHYO602

Sr. No.	Experiment Name	Credits
1	Simulations based experiments	1
2	Frank-Hertz experiment	1
3	e/m by Thopson method	1
4	Verification of Richardson's law	1

.0.

Course Code: RPSPHYO603

Course Title: Physics of Nanomaterials

Academic Year: 2024-25

Course Outcomes:

R

Course Outcome	Description		
C01	Recall and describe the particle properties of waves, including phenomena such		
	as black body radiation, the photoelectric effect, and the Compton effect.		
CO2	Understand the wave properties of particles, including De Broglie waves, wave-		
	particle duality, particle diffraction, and the uncertainty principle, along with its		
	applications.		
CO3	Apply knowledge of atomic structure, including electron orbits and the Bohr		
	atom model, and quantum structures like quantum wells, wires, and dots, to		
	analyze and interpret experimental observations.		
CO4	Analyze quantum mechanical systems using the Schrödinger equation in its		
	steady-state form, including the particle in a box and finite potential well		
	problems.		
CO5	Evaluate the phenomenon of barrier penetration, including step potential and		
	rectangular barrier penetration, and understand its applications in quantum		
	mechanics.		
CO6	Integrate the Schrödinger approach to describe the hydrogen atom, including		
	quantum numbers, electron probability density, radiative transitions, and		
	selection rules, with the understanding of phenomena like the normal Zeeman		
\circ	effect and spin-orbit coupling.		

RPSPHYO603- Physics of Nanomaterials

Units	Title	Credits - 03
Ι	Particle properties of waves: Black body radiation, Photoelectric	15 Lectures
	effect, Compton Effect; Wave properties of particles: De Broglie	
	waves, Wave description, Particle diffraction, Uncertainty	
	principle and application of uncertainty principle.	\mathbf{S}
II	Atomic structure: Electron orbits, The Bohr atom; Quantum	15 Lectures
	Structure: 2D (Quantum well), 1D (Quantum Wires), 0D	
	(Quantum Dots); Quantum mechanics: Schrodinger equation	
	(steady state form), Particle in a box, Finite potential well;	
	Barrier Penetration: Step Potential, Rectangular Barrier	
	Penetration, Applications of Barrier Penetration; Tunnelling:	
	Scanning Tunnelling Microscope; Harmonic Oscillator.	
III	Schrodinger approach for the hydrogen atom; Quantum	15 Lectures
	numbers: principal, orbital and magnetic; Electron probability	
	density; Radiative transitions; Selection rules; Normal Zeeman	
	effect; Degeneracy of Hydrogen atom energy levels; Spin Orbit	
	coupling.	

Main References:

- 6. Charles Kittel, "Introduction to Physics of Nanomaterials", 7th edition John Wiley & sons.
- 7. J. Richard Christman, "Fundamentals of Solid-State Physics", John Wiley & sons.
- 8. M.A. Wahab, "Physics of Nanomaterials –Structure and properties of Materials", Narosa Publications 1999.
- 9. M. Ali Omar, "Elementary Solid-State Physics", Addison Wesley (LPE).
- 10. H. Ibach and H. Luth, 3rd edition "Physics of Nanomaterials–An Introduction to Principles of Materials Science", Springer International Edition (2004).

RPSPHYPO603: PRACTICAL BASED ON RPSPHYO603

Sr. No.	Experiment Name	Credits
1	Characterization study of nanomaterial (powder) using XRD techniques	1
2	Characterization study of lattice strain of nanomaterial (powder) using W-	1
	H plot.	
3	Characterization study of surface morphology of nanomaterial (powder)	1
	using SEM technique.	
4	Characterization study of nanomaterial band gap (powder) using Tauc plot.	1

Page 52 of 67

Course Code: RPSEPHYO604

Course Title: PIC Microcontroller and ARM I

Academic Year: 2024-25

Course Outcomes:

R

Course Outco	omes:
Course Outcome	Description
CO1	Recall and identify the fundamental features and components of PIC
	microcontrollers, including their pin diagram, STATUS register, and Power Control Register (PCON).
CO2	Explain the architecture and organization of PIC microcontrollers, including
	memory organization, I/O ports, and the functionality of Capture/Compare/PWM
	(CCP) modules.
CO3	Apply knowledge of PIC microcontroller instructions, addressing modes, and I/O
	port configurations to develop simple embedded systems solutions.
CO4	Analyze the operation of PIC microcontrollers, including reset actions, oscillator
	connections, and interrupt handling mechanisms, to troubleshoot and debug
	system issues.
CO5	Assess the effectiveness of different PIC microcontroller configurations and
	programming techniques in achieving specific system requirements and
	performance objectives.
CO6	Design and implement advanced embedded systems solutions using PIC
~?	microcontrollers, incorporating features such as timers, interrupts, and analog-to-
	digital conversion.
CO 7	Integrate knowledge of ARM architecture, including the Acorn RISC Machine
$\mathbf{O}'\mathbf{O}$	(ARM), ARM Programmer's model, and ARM organization and implementation,
	to compare and contrast with PIC microcontroller architectures for embedded
*	systems development.

RPSEPHYO604 - PIC Microcontroller and ARM I

Units	Title	Credits - 03
Ι	16C61/71 PIC Microcontrollers:	15 Lectures
	Overview and Features, PIC 16C6X/7X, PIC Reset Actions, PIC	
	Oscillator Connections, PIC Memory Organization, PIC	$\langle 0 \rangle$
	16C6X/7X Instructions, Addressing Modes, I/O Ports, Interrupts	
	in PIC 16C61/71, PIC 16C61/71 Timers, PIC 16C71 Analog-to-	
	Digital Converter.	
II	PIC 16F8XX Flash Microcontrollers:	15 Lectures
	Introduction, Pin Diagram, STATUS Register, Power Control	
	Register (PCON), OPTION Register, Program memory, Data	
	memory, I/O Ports.	
	AVD – Ch. 10: 10.1, 10.2, 10.3, 10.4, 10.5, 10.6, 10.7, 10.10	
	Capture/Compare/PWM (CCP) Modules in PIC 16F877, Analog-	
	to- Digital Converter.	
III	The ARM Architecture:	15 Lectures
	The Acorn RISC Machine, Architectural inheritance, The ARM	
	Programmer's model, ARM development tools.	
	SF - Ch 2: 2.1, 2.2, 2.3, 2.4	
	ARM Organization and Implementation: 3-stage Pipeline ARM	
	organization, ARM instruction execution, ARM implementation.	
	SF - Ch 4: 4.1, 4.3, 4.4	
	ARM Processor Cores: ARM7TDMI SF – Ch 9: 9.1 only.	

Main References:

- 1. Microcontrollers by Ajay V. Deshmukh, Tata-Mcgraw Hill Publication (AVD).
- 2. ARM System-on-Chip Architecture, by Steve Furber, Second Edition, Pearson (SF)
- 3. Microprocessors and interfacing, programming and hardware, By Douglas V. Hall (TMH)

RPSEPHYPO604: PRACTICAL BASED ON RPSEPHYO604

Sr. No.	Experiment Name	Credits
	PIC MICROCONTROLLER BASED PRACTICAL	
1	Interfacing LED's: flashing LED's, to display bit pattern, 8-bit counter.	1
2	Interfacing Push Buttons: to increment and decrement the count value at the	1
	output by recognizing of pushbuttons, etc.	
3	Interfacing Relay: to drive an AC bulb through a relay; the relay should be	1
	tripped on recognizing of a pushbutton.	
4	Interfacing buzzer: the buzzer should be activated for two different frequencies,	1
	depending on recognizing of corresponding pushbuttons.	
	ARM 7 BASED PRACTICAL	
1	Simple data manipulation programs (addition, subtraction, multiplication,	1
	division etc.)	

2	Study of IN and OUT port of ARM7 by Interfacing switches, LEDs etc.	1
3	Study of Timer.	1
4	Interfacing DAC/ADC using I2C Protocols.	1

Modality of Assessment – DSC / DSE

Theory Examination Pattern:

E) Internal Assessment – 40% - 30 Marks

L) Internat		
Sr. No.	Evaluation Type	Marks
1	Internal Class Test	20
2	Class Test/ Project / Assignment / Presentation	10
	Total	30

F) External Examination (Semester End) - 60%- 45 Marks

Semester End Theory Examination:

11. Duration – The duration for these examinations shall be of **two hours**.

12. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions Based on
Q1.	3 questions of 5 M each from 4 Questions OR 7/8 marks questions with option to any one	15	Unit - I
Q2.	3 questions of 5 M each from 4 Questions OR 7/8 marks questions with option to any one	15	Unit - II
Q3.	3 questions of 5 M each from 4 Questions OR 7/8 marks questions with option to any one	15	Unit - III
	TOTAL	45	

Practical Examination Pattern:

B) External Examination (Semester End)- 25 Marks Semester End Theory Examination:

- 1. Duration The duration for these examinations shall be of **two hours**.
- 2. Practical question paper pattern:

Paper Pattern:

72

Question		Marks
1	Major Experiment	25
	TOTAL	25

Overall Examination and Marks Distribution Pattern:

Course	RPS	SPHY.C)601	RPSI	РНҮ.О	602	RPSI	РНҮ.О	603	RPS	EPHY.	.0604	RPS	RPPHY.	O605	Total
	Ι	Е	Т	Ι	Е	Т	I	E	Т	Ι	Е	Т	Ι	Е	Т	
Theory	30	45	75	30	45	75	30	45	75	-	50	50	-	150	150	450

Course	RPSPHYP.O601	RPSPHYP.0602	RPSPHYP.O603	RPSEPHYP.O604	Total
Practical	25	25	25	25	100

[Grand Total: 550 Marks]

Course Code: RPSPHYE611 Course Title: Nuclear Physics Academic Year: 2024-25

Course Outcomes:

R

Course Outcome	Description
CO1	Recall and identify the static properties of nuclei, including charge, mass, binding
	energy, size, shape, angular momentum, and magnetic and electric moments.
CO2	Explain the principles and methods used in measuring nuclear size, estimating R,
	and calculating Q-values for fusion and fission reactions.
CO3	Apply knowledge of the Deuteron Problem, square well potential, tensor force,
	and nucleon-nucleon scattering to analyze the ground state properties of nuclei
	and their interactions.
CO4	Analyze alpha decay, beta decay, and gamma decay processes, including Fermi
	theory, selection rules, and gamma ray interactions with matter.
CO5	Evaluate the strengths and limitations of the shell model and collective model in
	describing nuclear structure, including spin-orbit interactions and predictions of
	Schmidt lines.
CO6	Integrate knowledge of various nuclear decay processes, including alpha, beta,
	and gamma decay, to understand their role in determining the stability and
S.	dynamics of atomic nuclei.

18

RPSPHYE611: Nuclear Physics

	RPSPHYE611: Nuclear Physics	2
Units	Title	Credits - 03
Ι	All static properties of nuclei (charge, mass, binding energy, size, shape, angular momentum, magnetic dipole momentum, electric quadrupole momentum, statistics.	15 Lectures
	parity, isospin), Measurement of Nuclear size and estimation of R (mirror nuclei and mesonic atom method)	5
	Q- value equation, energy release in fusion and fission reaction. Deuteron Problem and its ground state properties, Estimate the depth and size of (assume)square	
	well potential, Tensor for ceasan example of non-central force, nucleon- nucleon scattering-qualitative discussion	
	on results, Spin-orbit strong interaction between nucleon, double scattering experiment.	
	based on above mentioned topics	
П	Review of alpha decay, Introduction to Beta decay and its energetic, Fermi theory: derivation of Fermi's Golden rule, Information from Fermi– curie plots, Comparative	15 Lectures
	half- lives, selection rules for Fermi and G-T transitions. Gamma decay: Multipole radiation, Selection rules for	
	gamma ray transitions, Gamma ray interaction with matter, and Charge-particle interaction with matter. *Tutorials should include 4 problem	
	solving session based on above mentioned topics	
ш	Nuclear Models: Shell Model (extreme single particle): Introduction, Assumptions, Evidences, Spin-orbit	15 Lectures
0'0	interactions, Predictions including Schmidt lines, limitations, Collective model-Introduction to Nilsson	
	Nuclear Reactions: Kinematics, scattering and reaction cross sections Compound nuclear reaction direct	
5.0.	nuclear reaction. *Tutorials should include 4 problem solving session	
	based on above mentioned topics	

Main References:

S

- 1. Introductory Nuclear Physics, Kenneth Krane, Wiley India Pvt. Ltd.
- 2. Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles, Robert Eisberg and Robert Resnick, Wiley (2006).

Page **58** of **67**

3. Introduction to Elementary Particles, David Griffith, John Wiley and sons.

Additional References:

- 1. Introduction to Nuclear Physics, H. A. Enge, Eddison Wesley.
- 2. Nuclei and Particles, E. Segre, W. A. Benjamin.
- 3. Concepts of Nuclear Physics, B. L. Cohen.
- 4. Subatomic Particles, H. Fraunfelder and E. Henley, Prentice Hall.
- 1. Nuclear Physics: Experimental and Theoretical, H. S. Hans, New Age International.
- 2. Introduction to Nuclear and Particle Physics, A. Das & T. Ferbel, World Scientific.
- 3. Introduction to high energy physics, D. H. Perkins, Addis on Wesley.
- 4. Nuclear and Particle Physics, W. E. Burcham and M. Jones, Addison Wesley.
- 5. Introductory Nuclear Physics, S. M. Wong, Prentice Hall.
- 6. Nuclear Physics: An Introduction, S. B. Patel, New Age International.
- 7. Nuclear Physics: S. N. Ghoshal.

marie

RPSPHYPE611: PRACTICAL BASED ON RPSPHYE611

Sr. No.	Experiment Name	Credits
1	Characteristics of a Geiger Muller counter and measurement of dead time.	1
2	Verification of Inverse Square Law for Gamma Rays.	1
3	Linear and Mass attenuation coefficient using Gamma Source.	1
4	To study Beta Particle Range and Maximum Energy.	1
5	Measurement of Short Half Life.	1
6	Rydberg constant experiment	1
7	Simulation based Experiments	1

Course Code: RPSPHYE612

Course Title: Atomic and Molecular Physics

Academic Year: 2024-25

Course Outcomes:

R

Course Outcome	Description
C01	Recall the fundamental principles of one-electron eigenfunctions, energy levels of bound states, and the probability density in quantum mechanics.
CO2	Explain the concepts of the virial theorem, fine structure, Lamb shift, hyperfine structure, and isotope shift in the hydrogen atom.
CO3	Apply knowledge of linear and quadratic Stark effects, Zeeman effect, and Paschen-Back effect in describing the behavior of atoms in external electric and magnetic fields.
CO4	Analyze the Schrödinger equation for two-electron atoms, considering identical particles, the exclusion principle, exchange forces, and the independent particle model.
C05	Evaluate the central field, Thomas-Fermi potential, and gross structure of alkalis within the framework of the Hartree theory and its implications for multi-electron atoms and the periodic table.
CO6	Design and interpret energy level diagrams and term symbols using the L-S coupling approximation, identifying allowed terms, fine structure, and relative intensities.
C07	Integrate knowledge of the interaction of one-electron atoms with electromagnetic radiation, including absorption and emission transition rates, Einstein coefficients, selection rules, and line intensities, to analyze X-ray spectra and line shapes.
6-suur	

RPSPHYE612: Atomic and Molecular Physics

Unit/s	Title	Credits - 03
Ι	Review*of one-electron eigen functions and energy levels of bound	15 Lectures
	states, Probability density, Virial theorem. Fine structure of hydrogen	
	atoms, Lamb shift. Hyper fine structure and isotope shift. (ER8-6)	
	Linear and quadratic Stark effect in spherical polar coordinates.	
	Zeeman effect in strong and weak fields, Paschen-Back effect.	
	(BJ,GW) Schrodinger equation for two electron atoms: Identical	
	particles, The Exclusion Principle. Exchange forces and the helium	
	atom (ER), independent particle model, ground and excited states of	
	two electron atoms. (BJ)	
II	The central field, Thomas-Fermi potential, the gross structure of	15 Lectures
	alkalis (GW). The Hartree theory, ground state of multi-electron	
	atoms and the periodic table (ER), The L-S coupling approximation,	
	allowed terms in L-S coupling, fine structure in L-S coupling, relative	
	intensities in LS coupling, j-j coupling approximation and other types	
	of coupling (GW).	
III	Interaction of one electron atoms with electromagnetic radiation:	15 Lectures
	Electromagnetic radiation and its interaction with charged particles,	
	absorption and emission transition rates, dipole approximation.	
	Einstein coefficients, selection rules. Line intensities and lifetimes of	
	excited state, line shapes and line widths. X-ray spectra. (BJ)	

Main References:

- 1. Robert Eisberg and Robert Resnick, Quantum physics of Atoms, Molecules, Solids, Nuclei and Particles, John Wiley & Sons, 2nded, (ER).
- 2. B.H. Bransden and G. J. Joachain, Physics of atoms and molecules, Pearson Education 2nd ed, 2004 (BJ).
- 3. G. K. Woodgate, Elementary Atomic Structure, Oxford university press, 2nded, (GW).
- 4. G. Aruldhas, Molecular structure and spectroscopy, Prentice Hall of India 2nded, 2002 (GA).
- 5. Ira N. Levine, Quantum Chemistry, Pearson Education, 5th edition, 2003 (IL).

Additional References:

- 1. Leighton, Principals of Modern Physics, McGraw hill.
- 2. Igor I. Sobelman, Theory of Atomic Spectra, Alpha Science International Ltd. 2006.
- 3. C. N. Banwell, Fundamentals of molecular spectroscopy, Tata McGraw-Hill, 3rded.
- 4. Wolfgang Demtröder, Atoms, molecules & photons, Springer-Verlag 2006.
- 5. Sune Svanberg, Atomic and Molecular Spectroscopy Springer, 3rded 2004.

.0.

6. C.J. Foot, Atomic Physics, Oxford University Press, 2005 (CF).

RPSPHYPE612: PRACTICAL BASED ON RPSPHYE612

Sr. No.	Experiment Name	Credits
1	Zeeman Effect	1
2	e/m by Thopson method	
3	FTIR Analysis	1
4	Spectral Analysis	1
5	Analysis of Sodium Spectra	1
231	natain Ruia Autonomous	

Course Code: RPSEPHYE614

Course Title: VHDL and ARM II

Academic Year: 2024-25

Course Outcomes:

R

Course Outcome	Description							
CO1	Recall and define VHDL terms, including entities, architectures, and concurrent signal assignment, as well as ARM assembly language instructions and their syntax.							
CO2	Explain the concepts of event scheduling, statement concurrency, and behavioural modelling in VHDL, as well as the ARM instruction set architecture and its execution model.							
CO3	Apply VHDL concepts to describe hardware designs, including structural designs and sequential behavior, and write simple programs to perform data processing and control flow operations.							
CO4	Analyze the differences between inertial delay and transport delay models in VHDL behavioural modelling, as well as the impact of sensitivity lists versus WAIT statements in sequential processing.							
CO5	Evaluate the effectiveness of using subprograms, packages, and predefined attributes in VHDL for code organization and reuse, as well as the advantages and limitations of different configurations in hardware design.							
CO6	Design and implement VHDL code using appropriate data types, subprograms, and packages to model complex hardware systems							
C07	Develop ARM assembly language programs to accomplish specific tasks utilizing the ARM instruction set.							
8-3mm2								

R

RUIA

RPSEPHYE614 – VHDL and ARM II

RPSEPHYE614 – VHDL and ARM II							
Units	Title	Credits - 03					
I	VHDL-I: Introduction to VHDL: VHDL Terms, Describing Hardware in	15 Lectures					
	VHDL, Entity, Architectures, Concurrent Signal Assignment, Event Scheduling, Statement concurrency, Structural Designs, Sequential Pahavier, Process, Statements, Process, Declarative						
	Region, Process Statement Part, Process Execution, Sequential Statements, Architecture, Selection, Configuration, Statements						
	Power of Configurations. Behavioral Modeling: Introduction to Rehavioral Modeling. Transport Versus Inertial Dalay Inertial						
	Delay, Transport Delay, Inertial Delay Model, Transport Delay Model Simulation Deltas, Drivers, Driver Creation, Bad Multiple						
	Driver Model, Generics, Block Statements, Guarded Blocks. Sequential Processing: Process Statement Sensitivity List						
	Process Example, Signal Assignment Versus Variable Assignment, Incorrect Mux Example, Correct Mux Example, Sequential						
	Statements, IF Statements, CASE Statements, LOOP statements, NEXT Statement, EXIT Statement, ASSERT Statement, Assertion						
	BNF, WAIT Statements, WAIT ON Signal, WAIT UNTIL Expression, WAIT FOR time expression, Multiple WAIT						
	Conditions, WAIT Time-Out, Sensitivity List Versus WAIT Statement, Concurrent Assignment Problem, Passive Processes,						
II	VHDL-II:	15 Lectures					
	Data Types: Object Types, Signal, Variables, Constants, Data Types Scalar Types Composite Types Incomplete Types File						
	Types, File Type Caveats, Subtypes. Subprograms and Packages:						
	Functions, Procedures, Packages, Package Declaration, Deferred						
	Constants, Subprogram, Declaration, Package Body. DLP -Ch 5 Predefined Attributes: Value Kind Attributes, Value Type						
00	Attributes, Value Array Attributes, Value Block Attributes, Function Kind Attributes, Function Type Attributes, Function						
	Array, Attributes, Function Signal Attributes, Attributes 'EVENT						
	and 'LAST-ACTIVE Signal Kind Attributes, Attribute						
	TRANSACTION, Type Kind Attributes, Range Kind Attributes.						
	Configurations: Default Configurations, Component Configurations, Lower-Level Configurations, Entity-Architecture						
	Pair Configuration, Port Maps, Mapping Library Entities,						

	Generics in Configurations, Generic Value Specification in	
	Architecture, Generic Specifications in Configurations, Board-	
	Socket-Chip Analogy, Block Configurations, Architecture	
	configurations.	
III	ARM Assembly language Programming: Data processing	15 Lectures
	instructions, Data transfer instructions, Control flow instructions,	
	Writing simple assembly language programs.	
	SF – Ch 3: 3.1. 3.2. 3.3. 3.4	
	The ARM Instruction Set: Introduction Exceptions Condition	
	execution Branch and Branch with Link (B BL) Branch Branch	
	with Link and exchange (BX BLX) Software Interrupt (SWI)	
	Data processing instructions, multiply instructions, count leading	
	Data processing instructions, multiply instructions, could leading	
	zeros (CLZ), Single word and unsigned byte data transfer	O [*]
	instructions, Half-word and signed byte data transfer instructions,	
	Multiple register transfer instructions, Swap memory and register	
	instructions. (SWP), Status register to general register transfer	
	instructions, General register to Status register transfer	
	instructions	
	SF-Ch	
	5:5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,5.10,5.11,5.12,5.13,5.14,5.15	
	The Thumb Instruction Set: The Thumb bit in the CPSR, The	
	Thumb programmer's model, Thumb branch instructions, Thumb	
	software interrupt instruction, Thumb data processing	
	instructions. Thumb single register data transfer instructions.	
	Thumb multiple register data transfer instructions. Thumb	
	breakpoint instruction. Thumb implementation Thumb	
	applications Example and exercises	
	SE $Ch 7 \cdot 7 + 7 + 7 + 7 + 7 + 7 + 7 + 7 + 7 +$	
	$\int SI = CII / . / . I, / . 2, / . 3, / . 4, / . 3, / . 0, / . 7, / . 10, / . 11$	

Main References:

- 1. VHDL programming by example by Douglas L. Perry, Fourth edition, Tata McGraw-Hill (DLP).
- 2. ARM System-on-Chip Architecture, by Steve Furber, Second Edition, Pearson (SF)
- 3. Microprocessors and interfacing, programming and hardware, By Douglas V. Hall (TMH)

RPSEPHYPE614: PRACTICAL BASED ON RPSEPHYE614

	Sr. No.	Experiment Name						
	VHDL Programming Based Experiments							
	Write VHDL programs to realize: logic gates, half adder and full adder							
	2 Write VHDL programs to realize the following combinational designs:2 to 4							
		decoder, 8 to 3 encoder without priority, 4 to 1 multiplexer, 1 to 4 de-						
	multiplexer							
	3 Write VHDL programs to realize the following: SR–Flip Flop, JK–Flip Flop, T							
		– Flip Flop						
	4	Write a VHDL program to realize a 2/3/4-bit ALU (2-arithmetic,2-logical	1					
	operations)							
	VHDL Interfacing Based Experiments							
ſ	1	Interfacing stepper motor: write VHDL code to control direction, speed and	1					
	number of steps.							

2	Interfacing dc motor: write VHDL code to control direction and speed using	1
	PWM.	
3	Interfacing relays: write VHDL code to control AC bulbs (at least two) using	1
	relays.	

Modality of Assessment - DSC / DSE

Theory Examination Pattern:

G) Internal Assessment – 40% - 30 Marks

G) Internar			
Sr. No.	Evaluation Type	Marks	
1	Internal Class Test		20
2	Class Test/ Project / Assignment / Presentation		10
	Total		30

H) External Examination (Semester End) - 60%- 45 Marks

Semester End Theory Examination:

13. Duration – The duration for these examinations shall be of **two hours**.

14. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions Based on
Q1.	3 questions of 5 M each from 4 Questions OR 7/8 marks questions with option to any one	15	Unit - I
Q2.	3 questions of 5 M each from 4 Questions OR 7/8 marks questions with option to any one	15	Unit - II
Q3.	3 questions of 5 M each from 4 Questions OR 7/8 marks questions with option to any one	15	Unit - III
	TOTAL	45	

Practical Examination Pattern:

A) External Examination (Semester End)- 25 Marks Semester End Theory Examination:

- 1. Duration The duration for these examinations shall be of **two hours**.
- 2. Practical question paper pattern:

Paper Pattern:

mare

Question		Marks
1	Major Experiment	25
	TOTAL	25

Overall Examination and Marks Distribution Pattern:

Course	RPS	SPHYI	E 611	RPS	рнуе	612	RPSI	EPHYE	614	RPS	RPPHY	E615	Total
	Ι	Е	Т	Ι	Е	Т	I	Е	Т	Ι	Е	Т	
Theory	30	45	75	30	45	75	30	45	75	-	200	200	450

Course	RPSPHYPE611	RPSPHYPE612	RPSEPHYPE614	Total
Practical	25	25	25	125

[Grand Total: 550 Marks]