Resolution No. AC/I/(23-24).2.RUS10

S. P. Mandali's Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for

Program: F.Y.B.Sc. (VSC)

Program Code: (RUSPHY)

2024-25

(As per the guidelines of National Education Policy 2020-Academic year 2023-24)

(Choice based Credit System)

Graduate Attributes

S. P. Mandali's Ramnarain Ruia Autonomous College has adopted the Outcome Based Education model to make its science graduates globally competent and capable of advancing in their careers. The Bachelors Program in Science also encourages students to reflect on the broader purpose of their education.

Graduate	Graduate Attributes Description		
Attributes	A student completing Bachelor's Degree in Science program will		
	be able to:		
Graduate	Recall and explain acquired scientific knowledge in a comprehensive manner		
Attributes- 1	and apply the skills acquired in their chosen discipline. Interpret scientific ideas		
	and relate its interconnectedness to various fields in science.		
Graduate	Evaluate scientific ideas critically, analyse problems, explore options for		
Attributes- 2	practical demonstrations, illustrate work plans and execute them, organise		
	data and draw inferences		
Graduate	Explore and evaluate digital information and use it for knowledge		
Attributes- 3	upgradation. Apply relevant information so gathered for analysis and		
	communication using appropriate digital tools.		
Graduate	Ask relevant questions, understand scientific relevance, hypothesize a		
Attributes- 4	scientific problem, construct and execute a project plan and analyze results.		
Graduate	Take complex challenges, work responsibly and independently, as well as in		
Attributes- 5	cohesion with a team for completion of a task. Communicate effectively,		
	convincingly and in an articulate manner.		
Graduate	Apply scientific information with sensitivity to values of different cultural groups.		
Attributes- 6	Disseminate scientific knowledge effectively for upliftment of the society.		
Graduate	Follow ethical practices at work place and be unbiased and critical in		
Attributes- 7	interpretation of scientific data. Understand the environmental issues and		
	explore sustainable solutions for it.		
Graduate	Keep abreast with current scientific developments in the specific discipline and		
Attributes- 8	adapt to technological advancements for better application of scientific		
¥	knowledge as a lifelong learner		

PROGRAM OUTCOMES

	Description
РО	A student completing Bachelor's Degree in Science program in the
	subject of Physics will be able to:
PO 1	To demonstrate fundamental and procedural knowledge related to different areas of study in Physics including mechanics, optics, modern physics, thermodynamics, electronics, electrodynamics at a level attuned with graduate programs in physics at peer institutions
PO 2	To demonstrate comprehensive, quantitative and conceptual understanding of the core areas of physics.
PO 3	To apply the principles and acquired skill-set related to physics, to handle innovative and unfamiliar problems, so that effective solution or strategy to deal with, could be developed.
PO 4	To explore and deduce quantitative results in the extents of physics.
PO 5	To use contemporary experimental apparatus and analysis tools to acquire, analyse and interpret scientific data in the extents of physics.
PO 6	To communicate scientific results effectively in presentations or posters in the extents of physics to both the scientists and public at large.
PO 7	Utilize acquired ICT skills, physics practical skills, mathematical skills to prepare for employment, for advancement of a career path and also for lifelong learning in Physics.

CREDIT STRUCTURE BSc

	Subje	ect 1		GE/ OE	Vocational and Skill	Ability		
Semester	DSC		Subject 2	course (Across disciplines)	Enhancement Course (VSC) & SEC	Enhancement Course/ VEC/IKS	OJT/FP/CEP CC, RP	Total Credits
1	4		4	4 (2*2)	VSC-2 + SEC -2	AEC- 2 (CSK) + VEC- 2 (Env Sc.) + IKS-2	0	22
2	4		4	4 (2*2)	VSC-2 + SEC-2	AEC-2 (CSK)+ VEC- 2 (Understandi ng India)	CC-2	22
Total	8		8	8	8	10	2	44
Exit opt	ion: awa			_	44 credits and nue with Major	an additional 4 c	redit Core NS	QF
3	Major 8		Minor 4	2	VSC-2	AEC-2 MIL	FP -2, CC-2	22
4	Major 8	(3)	Minor 4	2	SEC-2	AEC-2 MIL	CEP-2, CC-2	22
Total	16		8	4	4	4	8	44
Exit option	: award o	of UG Dip		-	edits and an ac	dditional 4 credit I Minor	Core NSQF c	ourse/
5	DSC 12	DSE 4	Minor 2		VSC-2		CEP/FP-2	22

6	DSC 12	DSE 4	Minor 2			OJT-4	22
Total	24	8	4		2	6	44
	Exit option: award of UG Degree in Major with 132 credits or Continue with Major for Honours/ Research						

Course Code-: RUSVSCPHY. E111

Course Title: Digital and Analog Electronics

Type of Course: Vocational Skill Course

Academic year 2024-25

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION A student completing this course will be able to:
	A cradent completing the course will be able to
CO 1	Understand the basic concepts of electrical circuit theorems, its applications at various levels and basic concepts of working of alternating current circuits.
CO 2	Understand the working of electronic equipment -rectifier
CO 3	Understand the conversion from among various number system viz decimal,
	Binary and hexadecimal and difference between digital and analog system.
CO 4	Understand the working of digital electronic equipment such digital sensors and
	adder using logic gates etc.
CO 5	Able to understand the construction and working of bipolar transistor.
CO 6	Designing for the desired biasing of the transistor and Demonstration qualitative
	problem-solving skills in the topics covered

DETAILED SYLLABUS

Course	Unit	Title	Credits/
Code	Offic	TIUG	Hours
RUSVSCPHY. E111		Digital and Analog Electronics	1 credit
Unit I	I	Digital and Analog Electronics	15 Hours
		Review - Logic Gates-AND,OR,NOT,NOR,NAND,EX-OR	
		Implementation of basic gates using NAND & NOR gates and their applications	
		VKM: 28.8 to 28.14, 28.19, LMS: 6.7	
		binary addition and subtraction Half Adder, Full adder	
		Decimal, binary, hexadecimal number system and their mutual conversions.	
		LMS- 5.2 to 5.5, 5.7	
		Transistor as an amplifier: Definition of gain α , β (dc & ac gains) and relation between them.	
		CE amplifier: operation, dc and ac-Load line Analysis, operating point, cut off and saturation points	
		VKM : 11.7 to 11.17, 11.21	
	::(Operational Amplifiers: Introduction, Schematic symbol of OPAMP, Output voltage from OPAMP, Inverting Amplifier, Non-Inverting Amplifier, Voltage Follower MM	

References:

- 1. Digital Principles and Applications Leach & Malvino Goutam Saha(LM)(13th ed
- 2. Principles of Electronics V. K. Mehta & Rohit Mehta (VKM)
- **3.** Principles of Electronics V. K. Mehta and Rohit Mehta. (S. Chand Multi-colored illustrative edition) (**MM**)

Additional References:

- 1. Digital Principles and Applications by Leach & Malvino
- 2. Digital Electronics by Tolkheim

Practical

	Course Code: RUSVSCPHYP. E111
Sr. No.	Regular Experiments
1.	Common emitter transistor (NPN) amplifier
2.	Bridge Rectifier – Load Regulation
3.	Zener diode as Regulator
4.	NAND & NOR gate
5.	EX-OR gate, Half Adder & Full Adder
6.	NAND/NOR gates as Universal Building Blocks
	Skill Experiments
1.	Use of Cathode Ray Oscilloscope (or Digital Storage Oscilloscope)
2.	Charging -Discharging of a Capacitor
3.	Light Dependent Switch

- Any one out of the following activity is equivalent to two experiments.
 - 1. Student doing mini-project up to the satisfaction of the Professor or In-Charge of the Practical.
 - 2. Study Tour: Students participated in study tour must submit a **study tour report.**
- ➤ Regular 5experiments out of 6 experiments and 2 Demonstration out of 3 experiments from the list should be completed in the first semester and reported in the Journal for final practical examination.
- Certified Journal is a MUST for a candidate to be eligible in the end semester practical examination.

For External practical examination, student will be examined in 1 regular experiment.

Modality of Assessment: Vocational Skill Course (1 Credit Theory Course for BSc)

A) Internal Assessment- 40%- 10 Marks

Sr No	Evaluation type	Marks
1	Class Test	10
	TOTAL	10

B) External Examination (Semester End)- 60%- 15 Marks Semester End Theory Examination:

- 1. Duration The duration for these examinations shall be of **45 Minutes**.
- 2. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions Based on
1	Class Test	15	Digital and Analog Electronics
	TOTAL	15	(0,

Modality of Assessment: Vocational Skill Course (1 Credit Practical course)

Practical Examination Pattern: Total Marks 50

A. Internal Examination: 40%- 20 Marks

Question	Options	Marks
1	Journal	10
2	Class test	10
	Total (= 1 + 2)	20

B. External Examination: 60%- 30 Marks

Semester End Practical Examination:

C) External Examination (Semester End)- 30 Marks

Semester End Practical Examination:

- 1. Duration The duration for these examinations shall be of **90 minutes**.
- 2. Practical question paper pattern:

Paper Pattern:

Question	Options	Marks
1	Laboratory work	25
2	Viva	5
	Total (= 1 + 2)	30