




# **PROGRAM OUTCOMES**

| PO   | PO Description                                                       |  |  |
|------|----------------------------------------------------------------------|--|--|
|      | A student completing Bachelor's Degree in Science program            |  |  |
|      | will be able to:                                                     |  |  |
| PO 1 | Recall and explain acquired scientific knowledge in a                |  |  |
|      | comprehensive manner and apply the skills acquired in their          |  |  |
|      | chosen discipline. Interpret scientific ideas and relate its         |  |  |
|      | interconnectedness to various fields in science.                     |  |  |
| PO 2 | Evaluate scientific ideas critically, analyse problems, explore      |  |  |
|      | options for practical demonstrations, illustrate work plans and      |  |  |
|      | execute them, organise data and draw inferences.                     |  |  |
| PO 3 | Explore and evaluate digital information and use it for knowledge    |  |  |
|      | upgradation. Apply relevant information so gathered for analysis     |  |  |
|      | and communication using appropriate digital tools.                   |  |  |
| PO 4 | Ask relevant questions, understand scientific relevance,             |  |  |
| _    | hypothesize a scientific problem, construct and execute a project    |  |  |
|      | plan and analyse results.                                            |  |  |
| PO 5 | Take complex challenges; work responsibly and independently,         |  |  |
|      | as well as in cohesion with a team for completion of a task.         |  |  |
|      | Communicate effectively, convincingly and in an articulate           |  |  |
|      | manner.                                                              |  |  |
| PO 6 | Apply scientific information with sensitivity to values of different |  |  |
| 19,  | cultural groups. Disseminate scientific knowledge effectively for    |  |  |
| , MC | upliftment of the society.                                           |  |  |
| PO 7 | Follow ethical practices at work place and be unbiased and           |  |  |
| 8    | critical in interpretation of scientific data. Understand the        |  |  |
| -    | environmental issues and explore sustainable solutions for it.       |  |  |
| PO 8 | Keep abreast with current scientific developments in the specific    |  |  |
|      | discipline and adapt to technological advancements for better        |  |  |
|      | application of scientific knowledge as a lifelong learner            |  |  |



# **PROGRAM SPECIFIC OUTCOMES**

| PSO 1<br>PSO 2                                              | A student completing coursework in Applied Component-<br>Biotechnology for Bachelor's Degree in Science program<br>will be able to:<br>Recall basic concepts and principles of Genetic engineering and<br>Industrial Biotechnology |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                             | will be able to:<br>Recall basic concepts and principles of Genetic engineering and                                                                                                                                                |
|                                                             | Recall basic concepts and principles of Genetic engineering and                                                                                                                                                                    |
|                                                             |                                                                                                                                                                                                                                    |
| PSO 2                                                       |                                                                                                                                                                                                                                    |
|                                                             | Apply knowledge of genetic engineering to understand the                                                                                                                                                                           |
|                                                             | developments in improvement of characteristics of animal and                                                                                                                                                                       |
|                                                             | plants for benefit of mankind                                                                                                                                                                                                      |
| PSO 3                                                       | Extrapolate the understanding of microbial properties and their modification for applications in various fields of biotechnology                                                                                                   |
| PSO 4                                                       | Analyse sequence data for DNA and protein using bioinformatics                                                                                                                                                                     |
|                                                             | tools                                                                                                                                                                                                                              |
| PSO 5                                                       | Evaluate the merits and demerits of various tools and techniques                                                                                                                                                                   |
|                                                             | used in genetic engineering as well as Plant and Anima                                                                                                                                                                             |
|                                                             | Biotechnology                                                                                                                                                                                                                      |
| PSO 6 Understand scientific relevance of biotechnological a |                                                                                                                                                                                                                                    |
|                                                             | practices and critically evaluate them on social, legal and ethica                                                                                                                                                                 |
| AMMAR                                                       | grounds                                                                                                                                                                                                                            |



# **PROGRAM OUTLINE**

|    | SEM | COURSE CODE | COURSE TITLE                       | CREDIT |
|----|-----|-------------|------------------------------------|--------|
| ΤY | V   | RUSACBT501  | Concepts in biotechnology          | 2      |
|    |     | RUSACBT     | Practical Based on Above           | 2      |
|    |     | P501        | Courses                            |        |
|    | VI  | RUSACBT601  | Applied biotechnology              | 2      |
|    |     | RUSACBT     | Practical Based on Above           | 2      |
|    |     | P601        | Practical Based on Above<br>Course | Ť      |
|    |     |             | 20.                                |        |



## Course Code: RUSACBT 501 Course Title: Concepts in Biotechnology

## Academic year 2020-21

### COURSE OUTCOMES:

| COURSE                | DESCRIPTION                                                         |
|-----------------------|---------------------------------------------------------------------|
| OUTCOME               |                                                                     |
| CO 1                  | Recognise and develop a broader perspective on the scope and        |
|                       | branches of modern biotechnology                                    |
| CO 2                  | Explain and summarise the principles that form the basis for        |
|                       | recombinant DNA technology and use them in genetic                  |
|                       | engineering                                                         |
| CO 3                  | Understand and apply general principles of generating               |
|                       | transgenic plants, animals and microbes                             |
| CO 4                  | Recognise and apply the principles of bioinformatics                |
| CO 5                  | Demonstrate working knowledge in techniques like PCR,               |
|                       | genetic mapping, gene isolation and cloning, DNA                    |
|                       | sequencing, and bioinformatics                                      |
| CO 6                  | Explain the different types of fermentations and their significance |
| _                     | and illustrate the overall design of different types of fermenters  |
| 2                     | used in production of biotechnological products                     |
| CO 7                  | Recognize, attribute and evaluate the importance of social,         |
| Ma                    | legal and ethical implications of biotechnology and apply the       |
| $\nabla_{L_{\alpha}}$ | knowledge in different situations involving GMO's or genome         |
|                       | editing                                                             |



## **DETAILED SYLLABUS**

| Course  | Sub- | Course/ Unit Title                                                                                                   | Credits/ |
|---------|------|----------------------------------------------------------------------------------------------------------------------|----------|
| Code    | Unit |                                                                                                                      | Lectures |
| RUSACBT |      | CONCEPTS IN BIOTECHNOLOGY                                                                                            | 2/60     |
| 501     |      |                                                                                                                      |          |
| I       |      | Importance of Biotechnology and Tools in                                                                             | 15       |
|         |      | Genetic Engineering                                                                                                  |          |
|         | 1.1  | Introduction to Biotechnology                                                                                        | 03       |
|         |      | a) History of Biotechnology – Traditional and                                                                        |          |
|         |      | Modern Biotechnology.                                                                                                |          |
|         |      | b) Biotechnology as an interdisciplinary area                                                                        |          |
|         |      | c) Global impact and current excitements of                                                                          |          |
|         |      | Biotechnology- (Health care, Agriculture, human                                                                      |          |
|         |      | genome project, environment), Biodiversity and                                                                       |          |
|         |      | its preservation.                                                                                                    |          |
|         |      |                                                                                                                      |          |
|         | 1.2  | Tools in Genetic Engineering                                                                                         | 12       |
|         |      |                                                                                                                      |          |
|         |      | a) Basic requirements: Electrophoresis, agarose gel                                                                  |          |
|         |      | electrophoresis, Pulse field gel electrophoresis                                                                     |          |
|         |      | (PFGE), SDS-PAGE, 2D gel electrophoresis                                                                             |          |
|         |      | b) Mass Spectrometry – Introduction to new                                                                           |          |
|         |      | terminologies (MALDI, ESI), Spectrophotometry -                                                                      |          |
|         |      | UV and Visible, PCR and types of PCR                                                                                 |          |
|         |      | c) Blotting Techniques: Southern, Northern and                                                                       |          |
|         |      | Western blotting, DNA sequencing, Probes,                                                                            |          |
|         | -    | ELISA, RIA, Nick translation and in situ                                                                             |          |
|         |      | Hybridization.                                                                                                       |          |
|         |      |                                                                                                                      |          |
| II      | 2    | Techniques in Genetic Engineering                                                                                    | 15       |
| 2.      |      |                                                                                                                      |          |
|         | 2.1  | Cutting and joining of DNA                                                                                           | 05       |
| 112     |      | a) Exonucleases, Endonucleases, Restriction                                                                          |          |
| DI      |      | Endonucleases (Type I, II, III). Examples of some                                                                    |          |
| OS -    |      | enzymes – DNA ligases, Alkaline Phosphatases,                                                                        |          |
| Υ-      |      | DNA polymerase                                                                                                       |          |
|         |      | b) Use of Linkers and Adaptors                                                                                       |          |
|         | 2.2  | Cloning Vectors                                                                                                      | 05       |
|         | 2.2  |                                                                                                                      | 05       |
|         |      |                                                                                                                      |          |
|         |      | <ul> <li>b) Cloning and Expression vectors.</li> <li>c) <i>E. coli</i> vectors – Plasmid, Cosmid, Phagmid</li> </ul> |          |
|         |      | c) E. coli vectors – Plasmid, Cosmid, Phagmid                                                                        |          |



|     |     | <ul> <li>d) Bacteriophage vectors – Lambda and M13</li> <li>e) Introduction to different vectors - Shuttle vectors,<br/>Yeast vectors (YAC), Animal and Plant Vectors</li> </ul>                                                                                                                                                                        |        |
|-----|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|     | 2.3 | Steps in gene cloning                                                                                                                                                                                                                                                                                                                                   | 05     |
|     |     | <ul> <li>a) Isolation of desired gene, cDNA library, Genomic library, Introduction of vector in to suitable bacterial host (various transformation methods).</li> <li>b) Selection of recombinant clones, selection of clones containing recombinant vector, selection of clones containing specific DNA inserts, colony hybridization test.</li> </ul> | LE CEL |
| III |     | Animal Biotechnology and Bioinformatics                                                                                                                                                                                                                                                                                                                 | 15     |
|     | 3.1 | Introduction Animal Biotechnology                                                                                                                                                                                                                                                                                                                       | 03     |
|     |     | <ul> <li>a) Basic Principles of mammalian cell culture</li> <li>b) Establishment of cell line</li> <li>c) Continuous cell lines</li> <li>d) Media and equipment for animal cell culture</li> </ul>                                                                                                                                                      |        |
|     | 3.2 | Methods in Animal Biotechnology                                                                                                                                                                                                                                                                                                                         | 05     |
|     |     | <ul> <li>a) Methods of transfection</li> <li>b) Embryonic stem cell transfer</li> <li>c) Targeted gene transfer methods</li> <li>d) Methods of detection of transgenics and trans<br/>gene</li> <li>e) Invitro fertilization</li> </ul>                                                                                                                 |        |
|     | 3.3 | Applications of Animal Biotechnology                                                                                                                                                                                                                                                                                                                    | 03     |
| 6   | 2A  | <ul><li>a) Hybridoma technology</li><li>b) Transgenic animals</li><li>c) Animal cloning</li></ul>                                                                                                                                                                                                                                                       |        |
| 4   | 3.4 | Introduction to Bioinformatics                                                                                                                                                                                                                                                                                                                          | 04     |
| 2AM |     | <ul> <li>a) Introduction to Genomics, Proteomics and<br/>Bioinformatics</li> <li>b) Genomic and Protein data base</li> <li>c) Introduction to data similarity search BLAST and<br/>FASTA</li> </ul>                                                                                                                                                     |        |
| IV  |     | Plant Biotechnology and Industrial<br>Biotechnology                                                                                                                                                                                                                                                                                                     | 15     |
|     | 4.1 | Introduction to Plant Biotechnology                                                                                                                                                                                                                                                                                                                     | 03     |
|     |     | a) Plant tissue cell, organ culture and callus culture                                                                                                                                                                                                                                                                                                  |        |

**Commented [vs1]:** Consider putting all these as sub headings a), b)...



|     | b) Regeneration of plant                         |    |
|-----|--------------------------------------------------|----|
|     | c) Germplasm bank                                |    |
|     | d) Artificial seeds                              |    |
|     |                                                  |    |
| 4.2 | Methods in Plant Biotechnology                   | 05 |
|     | a) Agro-mediated gene transfer                   |    |
|     | b) Agro-infection methods                        |    |
|     | c) Direct gene transfer methods                  |    |
|     | d) Method for integration of transgene           | C  |
|     | e) Methods for confirmation of transgenic plants |    |
|     | ,                                                |    |
| 4.3 | Introduction to Industrial Biotechnology         | 04 |
|     | a) Major types of Bioreactors                    |    |
|     | b) Submerged and solid-state fermentation        |    |
|     | c) Fermentation media                            |    |
|     | d) Fermentation control                          |    |
|     | e) Downstream processing                         |    |
|     |                                                  |    |
| 4.4 | IPR and Bioterrorism                             | 03 |
|     | a) Types of IPR                                  |    |
|     | b) Patent requirements                           |    |
|     | c) Indian patenting Law                          |    |
|     | d) Procedure of filing a patent                  |    |
|     | e) Patenting and biotechnology                   |    |
|     | f) Bioterrorism                                  |    |
|     | .,                                               |    |
|     |                                                  |    |

#### **References:**

- a) B. D. Singh. Biotechnology. Kalyani Publishers.
- b) R.Ian.Freshney Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications. Science Publishers. Sixth Edition.
- c) S.Ignacimuthu Basic Bioinformatics. Aplha Science International Ltd.
- d) T.K.Attwood Introduction to Bioinformatics. Pearson Education Ltd.
- e) Sant Saran Bhojwani Pant Tissue Culture: An Introductory Text. Springer.

f) Wulf Crueger Biotechnology: Textbook of Industrial Microbiology. 2<sup>nd</sup> Edition, Panima

- Publication Corporation, New Delhi.
- g) Nduka Okafor. Modern Industrial Microbiology and Biotechnology. Science Publishers.
- h) P.F.Stanbury Principles of Fermentation Technology. Academic Press. Second edition
- i) S. N. Jogdand. Advances in Biotechnology. 2005. 5t Edition
- j) H A Modi, "Fermentation Technology", 2009, Volume 1 and 2, Pointer Publications, India.



| Course   | Course/ Unit Title                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Credits/ |  |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|
| Code     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Lectures |  |
| RUSACBTP | CONCEPTS IN BIOTECHNOLOGY-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2/60     |  |
| 501      | Practicals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | lectures |  |
|          | <ol> <li>Basic techniques in Microbiology</li> <li>Preparation of culture media, M9 and LB medium</li> <li>Isolation of plasmid DNA from <i>E. coli</i></li> <li>Restriction digestion of DNA and study of restriction gene map.</li> <li>Gel electrophoresis of DNA</li> <li>Isolation of genomic DNA (bacterial / yeast or onion)</li> <li>PAGE for proteins.</li> <li>Plant Tissue culture</li> <li>Western blot technique</li> <li>Transformation in bacterial cultures.</li> <li>Cloning and expression of bacterial gene</li> <li>PCR</li> <li>Quantification of DNA and Protein using U.V absorption</li> </ol> |          |  |
|          | 14. Demonstration of use of Bioinformatic tools                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |  |
| AMMAR    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |  |

8

**Commented [vs2]:** Arent we adding bioinfo in these practicals?



## **Modality of Assessment**

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

| Sr No | Evaluation type                                                | Marks |
|-------|----------------------------------------------------------------|-------|
| 1     | One Assignment/Case study/Project/ Presentation                | 15    |
| 2     | One class Test (multiple choice questions / objective)         | 20    |
| 3     | Active participation in routine class instructional deliveries | 05    |
|       | TOTAL                                                          | 40    |

### B) External Examination- 60%- 60 Marks

#### Semester End Theory Examination:

- 1. Duration These examinations shall be of two hours duration.
- Duration These examinations shall be or the first of th questions.

#### Paper Pattern:

| Questions | Options                                  | Marks   | Total marks | Questions on |  |
|-----------|------------------------------------------|---------|-------------|--------------|--|
| Q.1) A)   | Any 2 out of 3                           | 10      |             |              |  |
| Q.1) B)   | Any 1 set out of 2 (i &<br>ii or i & ii) | 03 & 02 | 15          | Unit I       |  |
| Q.2) A)   | Any 2 out of 3                           | 10      |             |              |  |
| Q.2) B)   | Any 1 set out of 2 (i &<br>ii or i & ii) | 03 & 02 | 15          | Unit II      |  |
| Q.3) A)   | Any 2 out of 3                           | 10      |             |              |  |
| Q.3) B)   | Any 1 set out of 2 (i &<br>ii or i & ii) | 03 & 02 | 15          | Unit III     |  |
| Q.4) A)   | Any 2 out of 3                           | 10      |             |              |  |
| Q.4) B)   | Any 1 set out of 2 (i &<br>ii or i & ii) | 03 & 02 | 15          | Unit IV      |  |



#### Practical Examination Pattern:

A) Internal Examination: 40%- 40 Marks

| Particulars        | Marks |    |
|--------------------|-------|----|
| Journal            | 05    |    |
| Experimental tasks | 15    |    |
| Group Activity     | 15    |    |
| Participation      | 05    |    |
| Total              | 40    | .0 |
|                    |       | 0  |

#### B) External Examination: 60%- 60 Marks

Semester End Practical Examination:

| Particulars     | Marks |
|-----------------|-------|
| Laboratory work | 50    |
| Spots/Quiz/Viva | 10    |
| Total           | 60    |
| 11              | L     |

# PRACTICAL BOOK/JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.

In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Coordinator / Incharge of the department; failing which the student will not be allowed to appear for the practical examination.

#### **Overall Examination & Marks Distribution Pattern**

Semester V

| Course     | RUSACBT501 |          |       |
|------------|------------|----------|-------|
|            | Internal   | External | Total |
| Theory     | 40         | 60       | 100   |
| Practicals | 40         | 60       | 100   |



# Course Code: RUSACBT 601 **Course Title: Applied Biotechnology**

## Academic year 2020-21

#### COURSE OUTCOMES:

| COURSE  | DESCRIPTION                                                       |
|---------|-------------------------------------------------------------------|
| OUTCOME |                                                                   |
| CO 1    | Understand and apply basic principles of biotechnology to fields  |
|         | like food, beverage, pharmaceutical, and dairy industry and       |
|         | explain the role of microbes in their production                  |
| CO 2    | Recognise and evaluate the application of microbes as             |
|         | biofertilizers and biopesticides.                                 |
| CO 3    | Recall the role of genetically modified plants and animals and    |
|         | attributing the different values and discussions involved         |
|         | around genetically modified organisms                             |
| CO 4    | Explain the importance of biofuels and their manufacture          |
| CO 5    | Exemplify and apply the principles of gene manipulation for       |
|         | bioremediation of xenobiotics                                     |
| CO 6    | Explain the principles underlying working of biochips and         |
|         | biosensors                                                        |
| CO 7    | Exemplify on the use of microbes and mammalian cells for the      |
|         | production of pharmaceutical products                             |
| CO 8    | Organize and develop skills to execute an industrial fermentation |
| Th.     | process with necessary precautions and summarize significance of  |
| 11      | each step                                                         |



## DETAILED SYLLABUS

| Course<br>Code      |     |                                                                                                                           | Credits/<br>Lectures |
|---------------------|-----|---------------------------------------------------------------------------------------------------------------------------|----------------------|
| RUSACBT<br>601<br>I |     | APPLIED BIOTECHNOLOGY                                                                                                     | 2/60                 |
|                     |     | Industrial Biotechnology                                                                                                  | 15                   |
|                     | 1.1 | Exploitation of Microorganisms to produce primary and secondary metabolites: Amino acids (lysine) Antibiotics- Penicillin | 03                   |
|                     |     |                                                                                                                           |                      |
|                     | 1.2 | Alcoholic beverages (Wine), Dairy products (Cheese<br>and Yogurt) Organic acids (citric acid)                             | 04                   |
|                     | 1.3 | Introduction to SCP – Yeast, Spirulina, Mushroom                                                                          | 03                   |
|                     | 1.4 | Synthesis of Biopolymers – biogums,<br>biopolysaccharides, bioplastic.                                                    | 02                   |
|                     | 1.5 | Enzyme Technology: Methods of enzyme                                                                                      | 03                   |
|                     |     | Immobilization & their applications                                                                                       |                      |
|                     |     | Application of enzymes in detergent, leather, wool                                                                        |                      |
|                     |     | industry and food, dairy industry                                                                                         |                      |
| II                  |     | Agricultural and Livestock Biotechnology                                                                                  | 15                   |
|                     | 2.1 | Production of Biofertilizers- Types, carriers and                                                                         | 04                   |
|                     |     | application methods                                                                                                       |                      |
|                     | 2.2 | Biopesticides – Bacillus thurengenesis – Mode of                                                                          | 03                   |
|                     | 5   | action, Production & application, list of other examples                                                                  |                      |
|                     | 2.3 | Development of Insect, pathogen and herbicide                                                                             | 05                   |
|                     | 8.4 | resistant plants, golden rice, drought, salt and oxidative stress resistant plant, plants as bioreactors                  |                      |
| AM                  | 2.4 | Application of transgenic animals, animal bioreactors,<br>Introduction to molecular farming (pharming)                    | 03                   |
|                     |     | Environmental Biotechnology                                                                                               | 15                   |
| Ÿ                   | 3.1 | Sources of biomass, Biological fuel generation -ethanol                                                                   | 05                   |
|                     |     | and methane from biomass, Hydrogen production,<br>Biodiesel, Algal oils                                                   |                      |
|                     | 3.2 | Bioremediation: Methods of bioremediation,                                                                                | 05                   |
|                     | 0.2 | Bioremediation of hydrocarbons, dyes, paper and pulp                                                                      | 00                   |
|                     |     | industry, heavy metals, xenobiotics.                                                                                      |                      |



|    | 3.3 | Vermicomposting and bioleaching, biosensors and biochips                                                                                                          | 05 |
|----|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| IV |     | Biotechnology in Healthcare                                                                                                                                       | 15 |
|    | 4.1 | Disease prevention – vaccines: conventional vaccines,<br>purified antigen vaccines, recombinant vaccines. DNA<br>vaccines                                         | 04 |
|    | 4.2 | Disease Diagnosis – Probes, monoclonal antibodies<br>and detection of genetic disease                                                                             | 02 |
|    | 4.3 | Disease treatment – Products from recombinant<br>organisms, interferons, growth factors, antisense<br>nucleotides as therapeutic agents, monoclonal<br>antibodies | 04 |
|    | 4.4 | Drug discovery, Genome variation and<br>pharmacogenomics, drug delivery and targeting,<br>artificial tissue / organ, gene therapy, enzyme therapy                 | 03 |
|    | 4.5 | Forensic medicine.                                                                                                                                                | 02 |

#### **References:**

- a) Bernard R Glick and Jack J Pasternak. Molecular Biotechnology: Principles and Applications of recombinant DNA. 3rd Edition.
- b) B. D. Singh. Biotechnology. Kalyani Publishers.
- c) S. N. Jogdand. Advances in Biotechnology. 2005. 5t Edition.
- d) S. B. Primrose. Modern Biotechnology 1989. Blackwell Scientific Publ.
- e) Primrose and others. Principles of Gene manipulations. 6th edition. 2004 Blackwell Science.
- f) Aluizino Borent and others. Understanding Biotechnology. 2004 Pearson Education.
- g) James Watson and Others. Recombinant DNA. 2001. Scientific American Books.
- Keith Wilson and John Walker. Principles Techniques of Biochemistry and Molecular Biology.2010 Cambridge University Press.
- Michael J. Waites and others. Industrial Microbiology: An Introduction. Blackwell Science Ltd. 2001
- j) Marth and Steele. Applied Dairy Microbiology: 2nd Edition
- k) Henry J Peppler, Microbial Technology: Microbial processes, Volume 1, Academic Press, 1979
- I) Nduka Okafor, Modern Industrial microbiology and biotechnology, 2007, Science Publishers
- m) Principles of Pharmacology, David E Golan, 2007, LWW



| Codo     | Course/ Unit Title                                                                                                                         | Credits/ |  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------|----------|--|
| Code     |                                                                                                                                            | Lectures |  |
| RUSACBTP | APPLIED BIOTECHNOLOGY - Practicals                                                                                                         | 2/60     |  |
| 601      |                                                                                                                                            | ,G       |  |
|          | 1. Production of wine                                                                                                                      |          |  |
|          | 2. Preparation of yoghurt                                                                                                                  |          |  |
|          | <ol> <li>Production of yeast SCP and estimation of protein<br/>content</li> </ol>                                                          | )`       |  |
|          | <ol> <li>Production of Microbial polysaccharide and<br/>determination of yield.</li> </ol>                                                 |          |  |
|          | <ol> <li>Isolation and cultivation of Azotobacter,<br/>Rhizobium, Phosphate solubilizers and<br/>preparation of biofertilizers.</li> </ol> |          |  |
|          | <ol> <li>Immobilization of Saccharomyces cerevisiae using<br/>alginate and invertase assay.</li> </ol>                                     |          |  |
|          | 7. Cultivation of Edible mushroom                                                                                                          |          |  |
|          | 8. Detection of enzyme activity in detergents                                                                                              |          |  |
|          | <ol> <li>Enrichment of phenol degraders and estimation of<br/>phenol degraded</li> </ol>                                                   |          |  |
|          | 10. Detection of disorders using kits                                                                                                      |          |  |
|          | 11. Demonstration of ELISA                                                                                                                 |          |  |



## **Modality of Assessment**

**Theory Examination Pattern:** 

A) Internal Assessment- 40%- 40 Marks

| Sr No | Evaluation type                                                | Marks |
|-------|----------------------------------------------------------------|-------|
| 1     | One Assignment/Case study/Project/ Presentation                | 15    |
| 2     | One class Test (multiple choice questions / objective)         | 20    |
| 3     | Active participation in routine class instructional deliveries | 05    |
|       | TOTAL                                                          | 40    |

## B) External Examination- 60%- 60 Marks

#### Semester End Theory Examination:

- Duration These examinations shall be of two hours duration.
   Theory question paper pattern:
- - a. There shall be **four** questions each of **15** marks on each unit.
    b. All questions shall be compulsory with internal choice within the questions.

#### Paper Pattern:

| Questions | Options                                  | Marks   | Total marks | Questions on |  |
|-----------|------------------------------------------|---------|-------------|--------------|--|
| Q.1) A)   | Any 2 out of 3                           | 10      |             |              |  |
| Q.1) B)   | Any 1 set out of 2 (i &<br>ii or i & ii) | 03 & 02 | 15          | Unit I       |  |
| Q.2) A)   | Any 2 out of 3                           | 10      |             |              |  |
| Q.2) B)   | Any 1 set out of 2 (i &<br>ii or i & ii) | 03 & 02 | 15          | Unit II      |  |
| Q.3) A)   | Any 2 out of 3                           | 10      |             |              |  |
| Q.3) B)   | Any 1 set out of 2 (i &<br>ii or i & ii) | 03 & 02 | 15          | Unit III     |  |
| Q.4) A)   | Any 2 out of 3                           | 10      |             |              |  |
| Q.4) B)   | Any 1 set out of 2 (i &<br>ii or i & ii) | 03 & 02 | 15          | Unit IV      |  |



#### **Practical Examination Pattern:**

A) Internal Examination: 40%- 40 Marks

| Particulars        | Marks |            |
|--------------------|-------|------------|
| Journal            | 05    |            |
| Experimental tasks | 15    |            |
| Group Activity     | 15    |            |
| Participation      | 05    |            |
| Total              | 40    | -01        |
|                    |       | $-(\cdot)$ |

#### B) External Examination: 60%- 60 Marks

Semester End Practical Examination:

| Particulars     | Marks |
|-----------------|-------|
| Laboratory work | 50    |
| Spots/Quiz/Viva | 10    |
| Total           | 60    |
|                 |       |

## PRACTICAL BOOK/JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination. In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Co-ordinator / Incharge of the department; failing which the student will not be allowed to appear for the practical examination.

#### **Overall Examination & Marks Distribution Pattern**

Semester VI

| Course     | RUSA     |          |       |
|------------|----------|----------|-------|
|            | Internal | External | Total |
| Theory     | 40       | 60       | 100   |
| Practicals | 40       | 60       | 100   |