AC/II(23-24).2.RUS9

S. P. Mandali's

Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for T.Y

Program: BSc Microbiology

Program Code: RUSMIC

(Choice Based Credit System for academic year 2024–2025)

GRADUATE ATTRIBUTES

GA	A student completing Bachelor's Degree in Science program will
	able to:
GA1.	Recall and explain acquired scientific knowledge in a comprehensive mann
	and apply the skills acquired in their chosen discipline. Interpret scienti
	ideas and relate its interconnectedness to various fields in science.
GA2	Evaluate scientific ideas critically, analyse problems, explore options for
	practical demonstrations, illustrate work plans and execute them, organise
	data and draw inferences.
GA3	Explore and evaluate digital information and use it for knowledge
	upgradation. Apply relevant information so gathered for analysis and
	communication using appropriate digital tools.
GA4	Ask relevant questions, understand scientific relevance, hypothesize a
GA4	scientific problem, construct and execute a project plan and analyse result
GA5	Take complex challenges; work responsibly and independently, as well as
GAJ	in cohesion with a team for completion of a task. Communicate effectively,
	convincingly and in an articulate manner.
GA6	Apply scientific information with sensitivity to values of different culture
GAU	groups. Disseminate scientific knowledge effectively for upliftment of the
	society.
GA7	Follow ethical practices at work place and be unbiased and critical
GAI	interpretation of scientific data. Understand the environmental issues a
	explore sustainable solutions for it.
<u> </u>	
GA8	Keep abreast with current scientific developments in the specific disciplined and adapt to technological advancements for better application of scienti
θ_{L}	knowledge as a lifelong learner

PROGRAM OUTCOMES

РО	Description			
	A student completing Bachelor's Degree in Science program in the subject of Microbiology will be able to:			
PO 1	Recall, explain and summarize basic concepts related to cytology,			
	biochemistry, physiology, genetics and reproduction of prokaryotes and compare it with eukaryotes.			
PO 2	Appreciate and exemplify the diversity in the microbial world and evaluate their ecological role as well as state their significance to humankind.			
PO 3	Understand the basic concepts associated with growth and control of microorganisms and apply it in pure culture and preservation techniques.			
PO 4	Differentiate, classify and characterize microorganisms based on their morphological, cultural, biochemical, and molecular properties.			
PO 5	Explore, compare and evaluate the role of microorganisms in different natural environments as well as plants, animals and humans, and evaluate and exemplify their interrelationships.			
PO 6	Apply the understanding of microbial processes to diverse science areas such as medical, industrial, agricultural and food and evaluate their potential for human well-being, for tackling environmental issues and exploring sustainable solutions			
PO 7	Recall and explain the nature of biomolecules and metabolic processes; the role and kinetics of enzymes as well as the thermodynamic laws that drive these reactions.			
PO 8	Recall the basic working principles of various bioanalytical techniques and tools and apply them to detect, estimate and structurally evaluate biomolecules present in the microbial cells.			
PO 9	Understand and explain the nature of genetic material and elaborate the molecular mechanisms underlying various genetic processes like replication, transcription, translation, gene transfer and recombination in bacteria; and explain basic concepts in virology.			

PO 10	Apply the basics of genetics and molecular biology to understand and evaluate techniques in genetic engineering and also for the use of bioinformatic tools for presentation and processing of data.
PO 11	Recognize and explain the role of microorganisms in different diseases, attribute pathogenesis mechanisms to their properties and extrapolate it to disease diagnosis, treatment and prevention. Outline and recall concepts in epidemiology of diseases. Classify and evaluate different chemotherapeutic agents.
PO 12	Recall, classify and summarize mechanisms of defense in humans, detail out the functioning of our immune system, correlate it to disease and its prevention and outline its association to health. Apply immunological principles for diagnosis of diseases.
PO 13	Understand and outline different biochemical mechanisms and their regulation; retrieve and construct biochemical pathways in microbial metabolism of major macromolecules and, recall and integrate the bioenergetics of metabolic reactions.
PO 14	Evaluate, exemplify and outline the role of microorganisms in different industrial fermentations, summarize technological aspects of bioprocesses, recall knowledge about patents, copyright and regulatory practices and QA.
PO 15	Demonstrate key practical skills/competencies in working with microbes for their study and use in the laboratory as well as outside, including the use of good microbiological practices. Analyze problems involving microbes, articulate them and devise innovative and creative solutions.
PO 16	Hypothesize, design experiments, construct experimental plans, execute them and analyze data with a basic understanding of statistics. Demonstrate an ability to be unbiased and critical in interpretation of scientific data
PO 17	Communicate effectively to express scientific ideas and/or their experimental data in an effective, precise and concise manner.

PROGRAM OUTLINE

YEAR	SEM	COURSE	COURSE TITLE	CREDITS
		CODE		
	I	RUSMIC 101	Fundamentals of Microbiology	02
		Core course		
		RUSMIC 102	Techniques in Microbiology	02
		Core course	S	02
		RUSMICP101	Practical based on above two	00
FY		Core course	courses	02
		RUSMIC 201	Microbial world: types and	
		Core course	inter-relations	02
		RUSMIC 202	Microbial biomolecules,	
		Core course	Growth & Control	02
		RUSMICP201	Practical based on above two	
		Core course	courses	02
	ш		Microbial taxonomy and	
		RUSMIC 301	Introduction to Genetics and	02
	6	\mathcal{A}	Molecular Biology	
	2		Introduction to Experimental	02
	\sim	RUSMIC 302	Microbial Biochemistry	02
SY		RUSMIC 303	Environmental Microbiology	02
R'		RUSMICP301	Practicals based on above	
25		RUSIVIICP301	three courses	03
	IV	RUSMIC 401	Microbe interactions and host	02
		RUSIVIIC 401	responses	UZ
		1	Introduction to Metabolic	02
		RUSMIC 402	Pathways and Enzymology	UZ

		RUSMIC 403	Applied Microbiology	02
		RUSMICP401	Practicals based on above three courses	03
	V	RUSMIC 501	Microbial Genetics	2.5
		RUSMIC 502	Medical Microbiology	2.5
		RUSMICP501	Practical Based on Above Two Courses	3
		RUSMIC 503	Microbial Biochemistry: Part-	2.5
		RUSMIC 504	Bioprocess Technology	2.5
		RUSMICP502	Practical Based on Above Two Courses	3
ΤY	VI	RUSMIC 601	Genetics, Bioinformatics & Virology	2.5
		RUSMIC 602	Immunology	2.5
		RUSMICP601	Practical Based on Above Two Courses	3
		RUSMIC 603	Microbial Biochemistry Part II	2.5
		RUSMIC 604	Industrial Microbiology	2.5
		RUSMICP602	Practical Based on Above Two Courses	3
	7	RUSMICP602	Practical Based on Above Two	3

Course Code: RUSMIC 501

Course Title: Microbial Genetics

COURSE	DESCRIPTION
OUTCOME	
CO 1	Understand and differentiate between population and
	quantitative genetics and compare model organisms used in genetic
	studies.
CO 2	Summarize different natural plasmids and transposons
	present in prokaryotes and be able to compare and contrast
	between different plasmids.
CO 3	Understand the coherence of the molecular mechanisms
	involved in DNA replication and outline different enzymes and
	proteins associated with both prokaryotic and eukaryotic DNA
	replication
CO 4	Identify, interpret and classify mutations in DNA followed by
	mechanism of DNA repair
CO 5	Test the effect of mutagens on bacteria and identify mutants
CO 6	Solve and interpret problems based on mapping of bacterial
	genes using transformation, transduction and conjugation
CO 7	Retrieving basic concepts of homologous recombination and genetic
St.	exchange among prokaryotes
AMAK	1

Course Code	Unit	Course/ Unit Title	Credits/ Lectures
RUSMIC 501		MICROBIAL GENETICS	2.5/60
I		Branches of Genetics, Plasmids, Transposons	15
	1.1	Overview of branches of Genetics	04
		 a) Transmission, Molecular, b) Population Genetics: Hardy-Weinberg Law- principle and violation of assumptions (Mutation, Migration, Genetic Drift, Natural Selection) c) Quantitative Genetics: Characteristics, concept of Heritability, QTLs, Response to selection 	
	1.2	Model Organisms	03
		 a) Characteristics of a model organism b) Examples of select model organisms used in study: <i>E.coli</i>, Yeast, Mouse, <i>Caenorhabditis</i> <i>elegans</i>, <i>Arabidopsis thaliana</i> 	
	1.3	Plasmids	04
	R	 a) Physical nature b) Detection and isolation of plasmids c) Plasmid incompatibility and Plasmid curing d) Cell to cell transfer of plasmids e) Types of plasmids i. Resistance Plasmids ii. Plasmids encoding Toxins and other Virulence characteristics iii. col factor iv. Degradative plasmids 	
	1.4	Transposable elements in Prokaryotes	04
RA1.		 a) Insertion sequences b) Transposons Types Structure and properties Mechanism of transposition Transposon mutagenesis Integrons 	

II		DNA Replication	15
	2.1	Historical perspective	04
		a) Conservative	
		b) Dispersive	
		c) Semi-conservative	
		d) Bidirectional	
		e) Semi-discontinuous DNA replication	
	2.2	Prokaryotic DNA replication	`04
		Details of molecular mechanism involved in Initiation, Elongation and Termination	
	2.3	Enzymes and proteins associated with DNA replication	04
		a) Primase	
		b) Helicase	
		c) Topoisomerase	
		d) SSB	
		e) DNA polymerases	
		f) Ligases	
		g) Ter and Tus proteins	
	2.4	Eukaryotic DNA replication	02
		 a) Molecular details of DNA synthesis 	
		 b) Replicating the ends of the chromosomes 	
	2.5	Rolling circle mode of replication	01
		Mutation and Repair	15
	3.1	Mutation	10
		a) <u>Terminology</u> : alleles, homozygous, heterozygous,	
		genotype, phenotype, Somatic mutation, Germline	
		mutation, Gene mutation, Chromosome mutation,	
	7	phenotypic lag, hotspots and mutator genes	
		b) Fluctuation test.	
		c) <u>Types of mutations</u> : Point mutation, reverse	
		mutation, suppressor mutation, frameshift	
7.		mutation, conditional lethal mutation, base pair	
		substitution, transition, transversion, missense	
		mutation, nonsense mutation, silent mutation,	
OX^{-}		neutral mutation, pleiotropic mutations.	
		d) Causes of mutation: Natural/spontaneous	
•		mutationreplication error, depurination,	
		deamination. Induced mutation: principle and	
		mechanism with illustrative diagrams for -	
		i. Chemical mutagens- base analogues, nitrous	
		acid, hydroxyl amine, intercalating agents and	
		alkylating agents.	

		ii. Physical mutagen	
		iii. Biological mutagen (only examples)	
		e) Ames test	
		f) Detection of mutants	
	3.2	DNA Repair	05
		a) Mismatch repair	
		b) Light repair	
		c) Repair of alkylation damage	
		d) Base excision repair	\sim
		 e) Nucleotide excision repair 	
		f) SOS repair	
IV		Genetic Exchange	15
	4.1	Gene transfer mechanisms in bacteria & homologous	
		recombination	
		a) Transformation	04
		i. Introduction and History	
		ii. Types of transformation in prokaryotes—Natural	
		transformation in Streptococcus pneumoniae,	
		Hemophilus influenzae and Bacillus subtilis	
		iii. Mapping of bacterial genes using transformation	
		iv. Problems based on transformation.	
		b) Conjugation	05
		i. Discovery of conjugation in bacteria	
		ii. Properties of F plasmid/Sex factor	
		iii. The conjugation machinery	
		iv. Hfr strains, their formation and mechanism of	
		conjugation	
		 v. F' factor, origin and behavior of F' strains, 	
		Sexduction.	
		vi. Mapping of bacterial genes using conjugation	
		(Wolman and Jacob experiment).	
		vii. Problems based on conjugation	
		c) Transduction	03
	7	i. Introduction and discovery	
		ii. Generalized transduction	
		iii. Use of Generalized transduction for mapping genes	
	K	iv. Specialized transduction	
7.		v. Problems based on transduction	
Θ_{I}			
	4.2	Recombination in bacteria	03
		a) General/Homologous recombination	
		i. Molecular mechanism	
		ii. Holliday model of recombination	
		b) Site-specific recombination	

- a) Peter J. Russell, "Genetics-A molecular approach", 2nd edition, 2006.
- b) Benjamin A. Pierce, "Genetics a conceptual approachl", 3rdedition, 2008, W. H. Freeman and company.
- c) R. H. Tamarin, "Principles of genetics", 2004, Tata McGraw Hill.
- d) D, Nelson and M. Cox, "Lehninger's Principles of biochemistry" 4th edition,2005, Macmillan worth Publishers.
- e) M.Madigan, J. Martinko, J.Parkar, "Brock Biology of microorganisms", 12th edition, 2009, Pearson Education International.
- f) Fairbanks and Anderson, "Genetics", 1999, Wadsworth Publishing Company.
- g) Willey, Sherwood and Woolverton, Prescott's Microbiology, 7th edition, 2013, International edition, McGraw Hill.
- h) Robert Weaver, "Molecular biology", 3rd edition, McGraw Hill international edition.
- Nancy Trun and Janine Trempy, "Fundamental bacterial genetics", 2004, Blackwell Publishing.
- j) Snustad, Simmons, "Principles of genetics" 3rd edition, John Wiley & sons, Inc.
- k) Stanier, Ingraham, "General Microbiology", 5th edition, Macmillan
- I) Benjamin Lewin, "Genes IX", Jones and Bartlett publishers.
- m) JD Watson, Bake, Bell, Gann, Levine, Losick, "Molecular biology of the gene", 5th edition, Person

Course Code: RUSMIC 502

Course Title: Medical Microbiology

COURSE OUTCOME	DESCRIPTION
CO 1	Understand modern alternatives to Koch's postulates
CO 2	Summarize the basic aspects of clinical and diagnostic microbiology and implement bacteriological investigations using good laboratory practices
CO 3	Understand, interpret and explain the coherence between pathogenesis mechanisms of microorganisms, clinical manifestation of disease and prophylactic measures of representative bacterial, fungal and parasitic infections in various organ systems
CO 4	Extrapolate the understanding of representative infections of skin, respiratory system, urinary tract, gastro intestinal tract central nervous system to other infections within the same system
CO 5	Given a few key clinical features, design and execute lab diagnostic procedures for any given pathological specimen and test antibiotic susceptibility of the isolated pathogen
CO6	Differentiate between the different classes of antibiotics on the basis of their mechanism of action
C07	Attribute strategies through which microbes acquire anti-microbial resistance
CO8	Check and evaluate drugs/ antibiotics for their efficacy by demonstrating their action on microorganisms

Course Code	Unit	Course/ Unit Title	Credits/ Lectures
RUSMIC 502		MEDICAL MICROBIOLOGY	2.5/60
I		Study of Infectious diseases-I	15
	1.1	Associating Microbes to disease	02
		 a) Koch's Postulate and modern alternatives to it b) Molecular Koch's postulates 	
	1.2	Introduction to Clinical and diagnostic Microbiology	05
		 a) Phases of diagnostic cycle- Pre analytic, analytic and post analytic b) Introduction to Molecular and immunological methods 	
	1.3	Study of Infectious Diseases-I (With Emphasis on Characteristics of the Aetiological Agent, Pathogenesis & clinical features, Laboratory Diagnosis and Prevention)	08
		 Respiratory diseases: a) Strep throat by S. pyogenes b) Diphtheria c) Common cold d) Tuberculosis e) Pneumonia caused by K. pneumoniae 	
II	1	Study of Infectious Diseases II (With emphasis on cultural characteristics of the aetiological agent, pathogenesis, laboratory diagnosis and prevention)	15
	2.1	Study of skin infections	05
M	A	 a) Leprosy b) Pyogenic skin infections caused by <i>Pseudomonas</i>, <i>S. pyogenes</i> and <i>S. aureus</i>. c) Fungal infections- Oral Thrush, Dermatophytosis 	
<u>N</u>	2.2	Study of gastrointestinal tract infections	08
		 a) Enteric fever- Salmonella b) Shigellosis c) Infections due to pathogenic <i>E. coli</i> strains d) Rotavirus diarrhoea e) Dysentery due to <i>Entamoeba histolytica</i> 	
	2.3	. Study of urinary tract infections	02

		a) Predisposing factors	
		b) List of causative agents	
		c) Pathogenesis and laboratory diagnosis	
III		Study of Infectious Diseases III	15
		(With emphasis on cultural characteristics of the	
		aetiological agent, pathogenesis, laboratory diagnosis and	
		prevention)	\sim
	3.1	Study of vector-borne infections	03
		a) Rickettsial diseases	
		b) Malaria	
	3.2	Study of sexually transmitted infectious diseases	07
		a) Syphilis	
		b) AIDS	
		c) Gonorrhea	
	3.3	Study of central nervous system infectious diseases	05
		a) Tetanus	
		b) Polio	
		c) Meningococcal meningitis	
IV		Chemotherapy of infectious agents	15
	4.1	Introduction to Chemotherapeutic agents	03
		a) Attributes of an ideal chemotherapeutic agent and	
		related definitions	
		b) Selection and testing of antibiotics for bacterial	
		isolates by Kirby-Bauer method and other assays	
		(E-test & Checker Board Assay)	
	4.2	Mode of action of antibiotics	08
		a) Cell wall (Beta-lactams- Penicillin and	
		Cephalosporins, Carbapenems)	
		b) Cell Membrane (Polymyxin and Imidazole)	
		c) Protein Synthesis Aminoglycosides (Streptomycin),	
		Macrolide (Erythromycin), Tetracycline and	
	\sim	Chloramphenicol	
		d) Nucleic acid (Quinolones, Nalidixic acid,	
		Rifamycin)	
N.		e) Enzyme inhibitors (Sulfa drugs, Trimethoprim)	
25	4.3	List of common antibiotics	01
		used for treating viral, fungal and parasitic diseases, New	
		antibiotics	
	4.4	Mechanisms of drug resistance	03
		Its evolution, pathways and origin	

- a) Brenda Wilson, Abigail Salyer And Dixie Whitt, Bacterial Pathogenesis A molecular approach 3rdEd ASM press 2011
- b) Gary. W. Procop, Dierdre Church et al, Koneman's Color Atlas and Textbook of Diagnostic Microbiology, Seventh Ed, Walters Kluwer, 2017
- c) Willey, Sherwood and Woolverton, Prescott's Microbiology, 9th edition, 2013, International edition, McGraw Hill.
- d) Brooks, Carroll, et al, Jawetz, Melnick & Adelberg's Medical Microbiology, 26th Ed McGraw Hill Lange 2013
- e) Ananthanarayan and Panicker's, Textbook of Microbiology, 10th edition, Ed by Reba Kanugo, Universities Press, 2017
- f) Goering, Dockerel et al, Mim's Medical microbiology, 5th Ed 2013, Saunders

RAMNARAIN RUIA AUTONOMOUS COLLEGE, SYLLABUS FOR TYBSC MICROBIOLOGY 2024-2025

Course code	PRACTICALS	3 Credits
RUSMICP 501	PRACTICAL 1	
	 UV survival curve – determination of exposure time leading to 90% reduction 	
	2. Isolation of mutants using UV mutagenesis	
	 Replica plate technique for selection & characterization of mutants – auxotroph & antibiotic resistant 	
	4. Isolation and detection of plasmid DNA.	
	5. Preparation of competent cells and transformation	
	6. Demonstration of conjugation.	
	 Assignment on sample collection, transport and processing of any one pathological sample 	
	8. Rapid detection of infection in samples from CNS	
	9. Rapid Direct tests for identification of pathogens-	
	a. Acid fast staining of <i>M. tuberculosis/ M.leprae</i> .	
	b. Metachromatic granule staining for C. diphtheriae	
	c. Catalase test	
	d. Bile solubility test	
	e. Slide coagulase test for S.aureus	
	f. Spot indole test	
	g. Oxidase test	
	h. Modern methods for identification of pathogens.	
	10. Identification of isolates obtained from following samples by	
	morphological, cultural and biochemical properties from-	
	a. Nasal/ throat swabs (URT infection)	
	b. Sputum (LRT infection)	
7	c. Skin swab/ pus (Skin infection)	
2 ANI	 Identification of <i>Candida</i> species using the germ tube test and growth on HiChrom agar 	
	e. Stool (GI tract infection)	
	f. Urine (UTI infection) 11. Demonstration of malarial parasite in blood film	

	 Selection and testing of antibiotics using the Kirby-Bauer method
	13. Determination of MIC of an antibiotic by E-test
	14. Synergistic action of two drugs
	15. Determination of MBC of an antibiotic.
	16. Detection of β lactamase in <i>S.aureus.</i>
	17. Role of plasmids in antibiotic resistance through curing of the
	plasmid
RAMMA	RAMPRUANTONONOUSCOLL
	16
	10

4

Course Code: RUSMIC503

Course Title: Microbial Biochemistry Part I

Understand the membrane architecture & critique the modes of solute transportation. Compare & contrast the mechanism of ATP synthesis in Prokaryotes &
Compare & contrast the mechanism of ATP synthesis in Prokaryotes &
Eukaryotes.
Summarize & differentiate the catabolic pathways of carbohydrates &
deconstruct its amphibolic nature.
Outline & evaluate the different fermentative pathways in bacteria.
Paraphrase the anabolic pathways for carbohydrate synthesis.
Organize the tally sheet of energetics for different catabolic substrates
and solve problems based on these.
Execute & evaluate the experimental aspects of metabolic reactions &
differentiate organisms on the basis of their metabolic differences.

Course Code	Unit	Course/ Unit Title	Credits/ Lectures
RUSMIC 503		MICROBIAL BIOCHEMISTRY PART I	2.5/60
I		Biological Membranes & Transport	15
_	1.1	Composition and architecture of membrane	02
		 a) Lipids b) Integral & peripheral proteins & interactions with lipids c) Permeability and outer membrane- a barrier d) Aquaporins e) Mechanosensitive channels 	
	1.2	Methods of studying solute transport	02
		 a) Using whole cells b) Using Liposomes c) Using Proteoliposome 	
	1.3	Solute transport across membrane	08
	R	 a) Passive transport facilitated by membrane proteins. b) Transporters grouped into Superfamilies' ' c) Co transport across plasma membrane (Uniport, Antiport, Symport) d) Active transport & electrochemical gradient e) Ion gradient provides energy for secondary Active transport e.g. Lactose transport f) ATPases and transport g) ABC transporters e.g. Histidine transport h) Shock sensitive system – Role of binding proteins e.g. Maltose uptake i) Phosphotransferase system j) Schematic representation of various Membrane transport mechanisms in. <i>E. coli</i> 	
<i>N</i> .	1.4	Other examples of solute transport	03
84		 a) Iron transport: A special problem b) Bacterial protein export c) Bacterial membrane fusion central to many biological processes 	
II		Bioenergetics and Bioluminescence	15
	2.1	Biochemical mechanism of generating ATP a) Substrate level	01
		b) Oxidative	

		c) Photo Phosphorylation	
	2.2	Electron transport chain	03
		 a) Universal Electron acceptors that transfer Electrons to ETC. b) Carriers in ETC i. Hydrogen carriers – Flavoproteins, Quinones ii. Electron carriers-Iron sulphur proteins, Cytochromes c) Mitochondrial ETC i. Biochemical anatomy of mitochondria ii. Complexes in Mitochondrial ETC iii. Schematic representation of Mitochondrial ETC 	FCF
	2.3	Prokaryotic ETC	03
		 a) Organization of electron carriers in bacteria b) Generalised electron transport pathway in bacteria c) Different terminal oxidases d) Branched bacterial ETC e) Pattern of electron flow in <i>E. coli</i>- aerobic an anaerobic f) Pattern of electron flow in <i>Azotobacter vinelandii</i> 	
	2.4	ATP synthesis	04
	2	 a) Explanation of terms – Proton motive force, Proton Coupling sites, P: O ratio, Redox potential b) Free energy released during electron transfer from to O₂. c) Chemiosmotic theory d) Structure & function of Mitochondrial ATP synthase (No Kinetics) e) Mechanism by Rotational catalysis f) Structure of bacterial ATP synthase g) Inhibitors of ETC, Inhibitors of ATPase, Uncouplers, Ionophores 	
	2.5	Other modes of generation of electrochemical energy	02
2411		 a) ATP hydrolysis b) Oxalate formate exchange c) Product efflux, Definition- Lactate efflux d) Bacteriorhodopsin - Definition, Significance, Function as proton pump 	
	2.6	Bioluminescence	02
		 a) Brief survey of bioluminescent systems b) Biochemistry of light emission c) Schematic diagram d) Significance / Application 	

		Methods of Studying Metabolism & Catabolism of	15
		Carbohydrates	
	3.1	Experimental Analysis of metabolism	03
		a) Goals of the study	
		 b) Levels of organization at which metabolism is 	
		studied.	
		c) Metabolic probes	
		 d) Use of radioisotopes in biochemistry 	
		i. Pulse labelling	. (^ V
		ii. Assay & study of radio respirometry –to	
		differentiate EMP & ED	
		 e) Use of biochemical mutants. b) Segmential induction technique 	
		f) Sequential induction technique	
	3.2	Catabolism of Carbohydrates	12
		 Breakdown of polysaccharides – glycogen, starch, cellulose. 	
		 b) Breakdown of oligosaccharides– lactose, maltose, sucrose, cellobiose 	
		c) Utilization of monosaccharides – fructose,	
		Galactose.	
		d) Major pathways-	
		i. Glycolysis (EMP) & its regulation	
		ii. HMP Pathway & Significance of the pathway	
		iii. ED pathway,	
		iv. TCA cycle, Significance & its regulation	
		v. Anaplerotic reactions	
		vi. Glyoxylate bypass,	
		vii. Incomplete TCA in anaerobic bacteria	
		viii. Amphibolic role of EMP and TCA cycle	
		ix.Energetics of Glycolysis, ED and TCA-	
		Balance sheet and efficiency calculation	
IV		Fermentative Pathway & Anabolism of	15
	2	Carbohydrates	
	4.1	Fermentative pathways (With structures and enzymes)	04
		a) Lactic acid fermentation –	
		i. Homofermentors	
7/		ii. Heterofermentors	
		iii. Bifidobacterium pathway (Schematic)b) Alcohol fermentation	
		i. by ED pathway in bacteria	
24		ii. by EMP in yeasts	
	4.2	Other modes of fermentations in microorganisms	05
		a) Mixed acid	
		b) Butanediol	
		c) Butyric acid	
		d) Butanol-acetone	
		e) Propionic acid (Acrylate pathway and	

	succinate propionate pathway)	
4.3	Anabolism of Carbohydrates	06
	 a) General pattern of metabolism leading to synthesis of a cell from Glucose b) Gluconeogenesis c) Biosynthesis of Glycogen d) Biosynthesis of Peptidoglycan e) Role of carriers in synthesis of LPS and capsule 	

- a) Stanier R. Y., Ingraham. J. L, Wheelis. M. L, Painter. P. R., General Microbiology, 5th edition, 1987, The Macmillan press Ltd.
- b) Conn, E.E., P. K. Stumpf, G.Bruening and R. Y. Doi, Outlines of Biochemistry, 5th edition, 1987. John Wiley &Sons. New York.
- c) Gottschalk, G., Bacterial Metabolism, 2nd edition, 1985, Springer Verlag.
- d) White, D., The Physiology and Biochemistry of Prokaryotes, 3rd edition, 1995, Oxford University Press.
- e) Nelson, D. L. and M.M. Cox, Lehninger, Principles of biochemistry. 4th edition, 2005, W. H.
 Freeman and Company.
- f) Rose, A.H. Chemical Microbiology, 3rd edition, 1976, Butterworth-Heinemann.
- g) Zubay, G. L, Principles of Biochemistry, 4th edition, 1996, Wm. C. Brown publishers
- h) Mathews, C.K., K.E. van Holde, D.R. Appling, S.J. Anthony-Cahill, Biochemistry, 4th edition, 2012, Pearson.
- Wilson and Walker, Principles & techniques of Biochemistry & Molecular Biology, 7th edition, 2010, Cambridge University Press.
- Madigan, M.T. and J.M. Martinko, Brock Biology of Microorganisms, 11th edition, 2006, Pearson Prentice Hall;

k) Cohen, G.N., Microbial Biochemistry. 2nd edition, 2006, Springer.

Course Code: RUSMIC 504

Course Title: Bioprocess Technology

COURSE OUTCOME	DESCRIPTION
CO 1	Understand and execute the process for isolation and strain improvement of industrially important microorganisms
CO 2	Outline the types and significance of sterilization process in fermentation industry
CO 3	Design the process of Inoculum development at various levels of scale-
	up
CO 4	Understand the assembly and working of typical fermenters and apply
	the knowledge to operate fermenters in microbiological industries
CO 5	Understand, attribute and apply methods of recovery and purification of
	fermentation products
CO 6	Recall, infer and apply methods in industrial effluent treatment and
	correlate it to environment protection
CO 7	Understand and use spectroscopic techniques in Biological analysis
CO 8	Recognize the significant role of different organizations in genesis of
0	Intellectual Property Rights, categorize and use different types of
R	intellectual property rights in protection of intangible properties
M.	
PL	

Course Code	Unit	Course/ Unit Title	Credits/ Lectures
RUSMIC 504		BIOPROCESS TECHNOLOGY	2.5 /60
I		Upstream Processing	15
	1.1	Strains and Strain Improvement of industrial	11
		microorganisms	
		 a) Isolation of industrially important microorganisms b) Improvement of industrial microorganisms i. Selection of induced mutants for primary metabolites ii. Isolation of induced mutants for secondary metabolites 	
	1.2	Sterilization	04
		 a) Introduction to the concept of media sterilization and Nabla factor b) Design and methods of batch sterilization c) Design and methods of continuous sterilization 	
		Fermenter equipment and control	15
	2.1	Design of fermenter	05
		 a) Inoculum development b) Basics of fermenter Aseptic operation and containment Body construction Aeration and agitation c) Achievement and maintenance of aseptic condition Valves- function in general and examples Steam Traps- function in general and examples 	
	2.2	Types of fermenters	05
RAM	R	 a) Acetator b) Cavitator c) Tower fermenter d) Cylindro conical fermenters e) Air lift fermenters i. Outer loop fermenters ii. Inner loop fermenters f) Cyclone column g) Packed tower (generator) h) Rotating disc fermenters i) Bubble cap fermenters 	
	2.3	Control of Variables	05
		 a) Types of variables b) Sensing and control of i. pH 	

	1	· · · ·	
		ii. Temperature	
		iii. Dissolved oxygen	
		iv. Flow measurement	
		v. Pressure	
		vi. Inlet/ Exit gas analysis	
		vii. Foam sensing	
		Downstream processing	15
	3.1	Downstream processing	12
		a. Recovery & Purification of fermentation products:	
		i. Introduction	
		ii. Precipitation	
		iii. Filtration - theory, filter-aids, batch filters (Plate	
		and frame filters), continuous filters (Rotary	
		vacuum),	
		iv. Centrifugation: flocculating agent, range of	
		centrifuges - Basket, tubular bowl.	
		b. Cell disruption methods: Physico-chemical.	
		d. Chromatography –Ion exchange &Adsorption	
		e. Membrane processes – Ultrafiltration, reverse	
		osmosis, liquid membranes.	
		f. Drying, Crystallization, Whole broth processing	
	3.2	Environmental aspects	3
	0.2	a) Modern methods of effluent treatment	•
		b) Carbon Credits	
		b) Carbon credits	
IV		Bioinstrumentation And IPR	15
	4.1	Bioinstrumentation	8
		Principles, working and applications of:	
		a) Spectrophotometry (I. R)	
		b) Atomic absorption (AAS) & Atomic Emission	
		spectroscopy (Flame photometry)	
	0	 c) Mass Spectroscopy- MALDI ToF, ESI 	
	4.2	Intellectual Property Rights	7
	7.2	a) Introduction to Intellectual Property	1
			3
64.)
		Intellectual Property Organization (WIPO)	2
		c) Types of Intellectual Property – Patents, Copyright,	3
		Trademark, Trade secret, Plant varieties protection	
		act, Industrial Designs, Geographical Indications	

- a) Casida L. E., "Industrial Microbiology" (2009) Reprint, New Age International (P)Ltd, Publishers, New Delhi
- b) Stanbury P. F., Whitaker A. & Hall S. J., (1997), "Principles of Fermentation Technology", 2nd Edition, Aditya Books Pvt. Ltd, New Delhi.
- c) H. A. Modi, (2009). _ 'Fermentation Technology "Vols 1 & 2, Pointer Publications, India
- d) Okafor Nduka (2007) _ 'Modern Industrial Microbiology and Biotechnology ", Science Publications Enfield, NH, USA.
- e) G Y Shitole and Ram Sable (2012) Environmental Degradation Issues and Challenges (Research publication)
- f) Crueger W. and Crueger A. (2000) "Biotechnology -"A Textbook of Industrial Microbiology", 2nd Edition, Panima Publishing Corporation, New Delhi.
- g) Principles and Techniques of Biochemistry and Molecular Biology by Wilson/Walker 7th Edition
- h) Brian McNeil & Linda M. Harvey, Practical Fermentation Technology, John Wiley and Sons.
 Pvt. Ltd. (2008).
- i) WIPO Publication No. 450(E) ISBN 978-92-805-1555-0 https://www.wipo.int/edocs/pubdocs/en/intproperty/450/wipo_pub_450.pdf

	PRACTICALS	3 Credits
RUSMICP502	PRACTICAL 2	
	1. Isolation and detection of Mitochondria	
	2. Isolation and study of Bioluminescent organisms	
	3. Study of oxidative and fermentative metabolism	. (5)
	4. Carbohydrate fermentation tests	
	5. Mixed acid fermentations- Detection of organic	
	acids by TLC	
	6. Study of Homo and Hetero fermentation in Lactic	
	acid bacteria	
	7. Detection of enzyme phosphatase	
	8. Quantitative assay of Phosphatase	
	9. Stormy fermentation	
	10. Strip Plate Technique	
	11. Streak Plate Technique	
	12. Gradient plate technique for isolation of mutants.	
	 Production and detection of vitamin B12 by bioautography. 	
	 Demonstration of IR spectroscopy and analysis of IR spectrum of one compound 	
	15. Demonstration of GC-MS/ LC-MS	

Modality of Assessment:

Theory Examination Pattern:

A. Internal Assessment- 40%- 40 Marks per paper

Sr No	Evaluation type	Marks
1	One Assignment/Case study/Project/ Presentation	20
2	One class Test (multiple choice questions / objective)	20
	TOTAL	40

B. External Examination- 60%- 60 Marks per paper Semester End Theory Examination:

- 1. Duration These examinations shall be of **two hours** duration.
- 2. Theory question paper pattern:
 - a. There shall be four questions each of 15 marks on each unit.
 - b. All questions shall be compulsory with internal choice within the questions.

Paper Pattern:

Questions	Options	Marks	Total marks	Questions on	
Q.1) A)	Any 2 out of 3	10			
Q.1) B)	Any 1 set out of 2 (i & ii or i & ii)	03 & 02	15	Unit I	
Q.2) A)	Any 2 out of 3	10			
Q.2) B)	Any 1 set out of 2 (i & ii or i & ii)	03 & 02	15	Unit II	
Q.3) A)	Any 2 out of 3	10			
Q.3) B)	Any 1 set out of 2 (i & ii or i & ii)	03 & 02	15	Unit III	
Q.4) A)	Any 2 out of 3	10			
Q.4) B)	Any 1 set out of 2 (i & ii or i & ii)	03 & 02	15	Unit IV	

Practical Examination Pattern:

A. Internal Examination: 40%- 80 Marks

Practical		I	I	
Particulars	Paper I	Paper II	Paper III	Paper IV
Journal	05	05	05	05
Experimental tasks	15	15	15	15
Total	20	20	20	20
			S	
B. External Examinati	on: 60%- 120 I	Marks	N	
B. External Examinati				

B. External Examination: 60%- 120 Marks

Semester End Practical Examination:

Particulars	Practical I	Practical II
Laboratory work	50	50
Spots/Quiz/Viva	10	10
Total	60	60

PRACTICAL BOOK/JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.

In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Coordinator / In charge of the department; failing which the student will not be allowed to appear for the practical examination.

Overall Examination and Marks Distribution Pattern Semester V

Course 501			502			503		504			Grand Total		
0	In	Ex	Total	In	Ex	Total	In	Ex	Total	In	Ex	Total	
Theory	40	60	100	40	60	100	40	60	100	40	60	100	400
Practical	20	30	50	20	30	50	20	30	50	20	30	50	200

, ctr

Course Code: RUSMIC 601

Course Title: Gene Manipulation, Bioinformatics, & Virology

COURSE	DESCRIPTION
OUTCOME	
CO 1	Understand and explain the fundamentals of gene manipulation
CO 2	Implement bioinformatics tools for genetic analysis and structure building
CO 3	Correlate structure and function of important cell components of prokaryotic and eukaryotic cells
CO 4	Recalling and categorising various genes and proteins involved in functioning of prokaryotic and eukaryotic structures
CO 5	Summarizing the structure, classification, enumeration, cultivation and life cycle of viruses.
CO 6	Recognise and compare the commonly used terms like cancer, prions, viroids and their replication mechanisms
CO 7	Independently illustrate regulation of lytic and lysogenic pathway of lambda phage
CO 8	Test the presence of coliphages and execute experiments for their enumeration

Course Code	Unit	Course/ Unit Title	Credits/ Lectures
RUSMIC		GENE MANIPULATION, BIOINFORMATICS,	2.5/60
601		&VIROLOGY	
I		Gene Manipulation	15
	1.1	Basic Principles of Gene Manipulation	12
		 a) Cutting and joining DNA: Restriction endonucleases, Ligases, Linkers and Adapters b) Cloning vectors: Characteristics of a good vector, Plasmid vectors, Bacteriophage λ, Expression vectors c) Cloning strategies: Genomic libraries, cDNA 	
	1.2	libraries, PCR Emerging techniques in Genome sciences	03
	1.2	a) Microarray technologies	UJ
		b) Karyotyping	
		c) CRISPR-based technologies and applications	
I		Bioinformatics & Cell Biology	15
	2.1	Bioinformatics	06
		 a) Introduction Definition, aims, tasks and applications of Bioinformatics. Overview of prominent Databases, tools and their uses 	
	2	iii. Importance, Types and classification of databases iv. Nucleic acid sequence databases- EMBL,	
N		GenBank, Ensembl v. Protein sequence databases-PIR, SWISS- PROT, TrEMBL	
2An		 vi. Protein structure databases: PDB, Cn3D. vii. Pathway analysis: KEGG. b) Applications: 	
*		i. Transcriptome, Metabolomics, Pharmacogenomics,	
		ii. Phylogenetic analysis, Phylogenetic tree, Annotation, SNPs	

		iii. Sequence alignment global v/s local	
		alignment, FASTA file format, BLAST.	
		iv. Genomics- structural, functional and	
		comparative genomics.	
		v. e. Proteomics- structural and functional	
		proteomics.	
	2.2	Cell Biology of Prokaryotes and Eukaryotes	09
		a) Revision of structure and function of Cell wall,	10
		capsule, flagella and endospore of prokaryotes	
		b) Cytoskeleton and cell motility	
		i. Prokaryotic cytoskeleton: ftsZ and its role in	
		cell division	•
		ii. Structure and function: Microtubules,	
		Microfilaments, Intermediate filaments	
		iii. Microtubular organelles – Cilia, Flagella	
		and centrioles	
		iv. Molecular motors: Myosins, Kinesins,	
		Dyenin	
III		Basic Virology	15
	3.1	Viral architecture	04
		a) Capsid, viral genome and envelope	
		b) Structure of TMV, T4, Influenza virus, HIV	
	3.2	Viral classification	02
	•		•-
	3.3	The viral replication cycle	04
		a) attachment,	
		b) penetration,	
		c) uncoating,	
		d) types of viral genome and their replication,	
		e) assembly,	
	7	f) maturation and release	
	3.4	Life cycle of viruses	05
	V	a) T4 phage,	
		b) TMV,	
112		c) Influenza Virus and	
		d) HIV	
IV		Advanced Virology	15
	4.1	Cultivation of viruses	05
	-7.1	a) Cell culture techniques,	
		b) embryonated egg,	
		c) laboratory animals,	
		d) Cell culture methods:	
		e) Equipment required for animal cell culture,	

	f) Isolation of animal tissue	
4.2	Visualization and enumeration of virus particles	03
	a) Measurement of infectious units	
	i. Plaque assay	
	ii. Fluorescent focus assay	
	iii. Infectious centre assay	
	iv. Transformation assay	
	v. Endpoint dilution assay.	
	b) Measurement of virus particles and their	
	components	
	i. Electron microscopy	
	ii. Atomic force microscopy	
	iii. Haemagglutination	
	iii. Measurement of viral enzyme activity.	
4.3	5 , , , , , , ,	03
	phage	
4.4	Role of viruses in cancer	02
	a) Definitions,	
	b) characteristics of cancer cell,	
	c) cancer multi step process,	
	d) Human DNA tumor viruses-	
	i. EBV,	
	ii. Kaposi's sarcoma virus,	
	iii. Hepatitis B and C virus,	
	iii. Hepatitis B and C virus,	
4.5	iii. Hepatitis B and C virus, iv. Papilloma Virus	02

- a) R. H. Tamarin, (2004), "Principles of genetics", Tata McGraw Hill.
- b) M. Madigan, J. Martinko, J. Parkar, (2009), "Brock Biology of microorganisms", 12th ed., Pearson Education International.
- c) Fairbanks and Anderson, (1999), "Genetics", Wadsworth Publishing Company.
- d) Prescott, Harley and Klein, "Microbiology" 7th edition McGraw Hill international edition.
- e) Edward Wagner and Martinez Hewlett, (2005) "Basic Virology", 2nd edition, Blackwell Publishing
- f) Teri Shors, (2009), "Understanding viruses", Jones and Bartlett publishers.

- g) S.Ignacimuthu, (2005), "Basic Bioinformatics", Narosa publishing house.
- h) Robert Weaver, (2008), "Molecular biology", 3rd ed. McGraw Hill international edition.
- i) Primrose and Twyman, (2001), "Principles of gene manipulation and genomics", 6thed, Blackwell Publishing
- j) Arthur Lesk, (2009), "Introduction to Bioinformatics", 3rd Edition, Oxford University Press
- k) Snustad, Simmons, "Principles of genetics", 3rdedn. John Wiley & sons, Inc.
- I) Lodish, Scott." Molecular cell biology,7th edn, Macmillan higher education, International ed.
- m) Flint, Enquist, Racanillo and Skalka, "Principles of virology", (2009)3rdedn. ASM press
- n) T. K. Attwood & D. J. Parry-Smith, (2003), "Introduction to bioinformatics", Pearson education
- o) Benjamin Lewin, (2014) 9th edition, "Genes IX", Jones and Bartlett publishers.
- p) JD Watson, Baker (2004) 5thedn. "Molecular biology of the gene", CSHL Press and Benjamin Cummings
- q) Jonathan Pevsner, Bioinformatics and Functional Genomics, 3rd Edition, 2015, Wiley Blackwell
- r) Jin Xiong, Essential Bioinformatics, 1st Edition, 2006, Cambridge University Press

Course Code: RUSMIC 602

Course Title: Immunology

COURSE OUTCOME	DESCRIPTION
CO 1	Evaluate molecules for their antigenicity and explain role of haptens in
	elucidating molecular nature of antigens
CO 2	Outline mechanisms of antigen processing and presentation and the
	molecules involved thereof
CO 3	Understand the mechanisms of receptor-ligand interactions between
	cells involved in acquired as well as innate immune mechanisms
CO 4	Retrieve the process of T and B cell activation and proliferation in
	response to antigenic stimuli
CO 5	Summarize and compare the effector responses- Humoral Immunity 8
	Cell Mediated Immunity
CO 6	Extrapolate the role of immune system in disease: Unregulated
	response- Hypersensitivity; exemplify the different types
CO 7	Understand the mechanism of Antigen-Antibody interaction & illustrate
	and execute immunological techniques for disease diagnosis
CO 8	Apply the concept of immunity for protection from disease by
S	development of vaccine
AMAR	
~	

Course Code/ Unit	Unit	Course/ Unit Title	Credits/ Lectures
RUSMIC 602		IMMUNOLOGY	2.5/60
l		Antigens and Antigen- antibody reactions	15
	1.1	Overview of innate and acquired immunity, cells and organs in immune responses	02
	1.2	Antigens	05
		 a) Immunogenicity versus antigenicity b) Factors that influence immunogenicity, Contribution of the biological system to immunogenicity c) Epitopes / antigen determinants (only concepts) d) Haptens and antigenicity e) Immunogenicity of some natural substances – native globular proteins, polysaccharides, lipids, nucleic acids Types of antigens – heterophile antigens, isophile antigens, sequestered antigens, super antigens, bacterial and viral antigens 	
	1.3	Antigen-Antibody reactions	08
2 AM	R	 a) Generation of Antibodies for experimental systems- Monoclonal antibodies b) Western Blotting c) Immunoprecipitation based assays d) Agglutination, passive agglutination, agglutination inhibition, e) Solid Phase assays- Radioimmunoassay (RIA), Enzyme immunoassays (EIA), f) Immunofluorescence, Immunohistochemistry g) Flow Cytometry, Fluorescence Activated Cell Sorting 	
Ш		Antigen presentation and Activation of Immune cells	15
	2.1	MHC complex and MHC molecules	03
		 a) Structure of class I, and class II molecules; class III molecules b) Peptide – MHC interaction 	

	2.1	Antigen processing and presentation	02
		a) Antigen presentation- professional and	
		nonprofessional cells	
		b) Antigen processing and presentation	
	2.2	Receptor Ligand interactions and activation in T cells	05
		 a) TcR, (alpha-beta, gamma-delta TcR), TcR-CD3 complex structure & functions, Accessory molecules. 	
		 b) T cell activation, T cell differentiation, Subsets of T cells (TH1, TH2, TH17, T reg), Formation of Memory cells 	
			05
	2.3	Receptor Ligand interactions and activation in B cells	05
		a) B- cell receptors, Receptor associated	
		molecules, receptor clustering. Antigen	
		processing by B cells B cell activation and	
		differentiation –Antigen recognition and presentation by B cells, Formation of germinal	
		centres and memory cells.	
		b) B-cell responses to Thymus dependent and	
		independent antigens	
III		Acquired Immune Responses and Innate Immune Mechanisms	15
	3.1	Cytokines	02
		 a) Properties, types and functions b) Cytokines secreted by Th1 and Th2 cells 	
	3.2	Humoral Response	04
	5.2	a) Introduction of Humoral response, Primary and	04
	0	secondary responses	
		 b) Affinity maturation and somatic hyper mutation, Ig diversity, class switching 	
			02
<u></u>	3.3	Cell mediated effector response	03
25		 Generation and target destruction by Cytotoxic T cells. 	
		b) Killing mechanism of NK cells.	
	3.4	Innate Immune mechanisms	04
		a) Role of PAMPs and PRRs in phagocytosis eg LPS	
		b) Role of cytokines and chemokines in phagocytosis	
		 c) Induced proteins by PRR signalling 	

		d) Innate immunity and septic shock	
	3.5	Interactions between Innate and Acquired immunity	02
IV		Vaccines, Immunohematology And Hypersensitivity	15
	4.1	Vaccines	05
		 a) Active and passive immunization b) Types of vaccines - Killed and attenuated vaccines, Whole organism vaccines, Purified macromolecules as vaccines, recombinant viral vector vaccines, DNA vaccines c) Use of adjuvants in vaccine d) New vaccine strategies, Ideal vaccine 	LE G
	4.2	Immunohematology	05
		 a) Human blood group systems, ABO, secretors and non-secretors, Bombay Blood group b) Rhesus system and list of other blood group systems. c) Haemolytic disease of new born, Coombs test. 	
	4.3	Hypersensitivity	05
		Coombs and Gell's classification Type I to Type IV hypersensitivity - Mechanism and manifestation.	

References:

- a) Thomas J. Kindt, Barbara A. Osborne, Richard A. Goldsby, Kuby Immunology, 6th ed, W. H. Freeman & Company 2005
- b) Oven, Punt, Stranford, Kuby Immunology,7th ed W.H. Freeman, 2013
- c) Sulabha Pathak, Urmi Palan, Immunology: Essential and Fundamental, 3rd Ed, Anshan Ltd, 2011
- d) Davis, Dulbecco, Eisen and Ginsberg, Microbiology, 4th ed, Lippincott Williams and Wilkins, 1990.
- e) Fahim Halim Khan, The Elements of Immunology, Pearson Education, 2009

COURSE	PRACTICALS	3
CODE		Credits
RUSMIC P601	PRACTICAL 1	
	1. Isolation of genomic DNA of <i>E. coli</i> and measurement of its	
	concentration by UV-VIS.	
	2. Restriction digestion of plasmid DNA	
	3. Demonstration of PCR	10
	4. Bioinformatics practical On Line Practical	
	a. Visiting NCBI and EMBL websites & list services available,	
	software tools available and databases maintained	
	b. Visiting & exploring various databases mentioned in syllabus	
	i. Using BLAST and FASTA for sequence analysis	
	ii. Fish out homologs for given specific sequences (by teacher	
	 decide sequence of some relevance to their syllabus and 	
	related to some biological problem e.g. evolution of a	
	specific protein in bacteria, predicting function of unknown	
	protein from a new organism based on its homology)	
	iii. Six frame translation of given nucleotide sequence	
	iv. Restriction analysis of given nucleotide sequence	
	v. Pair-wise alignment and multiple alignment of a given	
	protein sequences	
	vi. Formation of phylogenetic tree	
	Enrichment of coliphages from sewage	
	Enumeration of phages- Phage assay (pilot & proper).	
	Demonstration of chick embryo inoculation	
	8. Antigen Preparation: 'O'& 'H' antigen preparation of	
	Salmonella. Confirmation by slide agglutination	
	9. Electrophoresis of serum.	
	10. Demonstration of soluble antigens by precipitation reaction.	
	11. Immunodiagnostics- Dreyer's drop Widal test	
	12. Diagnosis of syphilis- TRUST antigen kit	
	13. Demonstration of ELISA	
7	14. Blood grouping – Direct & Reverse typing	
	15. Major and minor compatibility test	
	16. Determination of Isoagglutinin titre	
	17. Coomb's Direct test	

Course Code: RUSMIC 603

Course Title: Microbial Biochemistry Part II

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
CO 1	Categorize lipids into different classes based on their structure
CO 2	Map the steps in the biochemical pathway for metabolism of lipids
CO 3	Outline pathways for biochemical synthesis, degradation and recycling of nucleic acids
CO 4	Explain mechanisms of catabolism of protein and synthesis of amino acid synthesis in the cell
CO 5	Compare and contrast between various levels of metabolic regulation
CO 6	Explain process of prokaryotic photosynthesis and attribute it to photosynthetic pigments, photochemical apparatus and light and dark reactions
CO 7	Compare and contrast metabolism of different inorganic compounds and outline the concept of Lithotrophy
CO 8	Execute and implement enzyme assays and testing of metabolic processes
ANN	

DETAILED SYLLABUS

Course Code	Unit	Course/ Unit Title	Credits/ Lectures
RUSMIC 603		MICROBIAL BIOCHEMISTRY PART II	2.5/60
I		Lipid Metabolism & Catabolism Of Hydrocarbons	15
	1.1	General introduction to Lipids	02
		 a) Lipids and their functions b) Action of lipases on triglycerides /tripalmitate c) Phospholipids and their properties d) Common phosphoglycerides in bacteria 	
	1.2	Catabolism of Lipids	05
		 a) Oxidation of saturated fatty acid- β oxidation pathway, Energetics of β oxidation of Palmitic acid b) Oxidation of propionic acid. c) Degradation of poly beta hydroxy butyrate 	
	1.3	Anabolism of Lipids	05
		 a) Biosynthesis of straight chain even carbon saturated fatty acid (palmitic acid) b) Biosynthesis of phosphoglycerides in bacteria c) Biosynthesis of PHB 	
	1.4	Catabolism of aliphatic hydrocarbons	03
		 a) Oxidation of saturated aliphatic hydrocarbon (n-alkane) b) Omega oxidation pathway- c) Pathway in Corynebacterium and yeast d) Pathway in Pseudomonas 	
<u> </u>	X	Metabolism Of Proteins And Nucleic Acids	15
7	2.1	a) Enzymatic degradation of proteins	05
2AM		 b) Metabolic fate of amino acids (schematic only c) Metabolism of single amino acids – i. Deamination reactions ii. Decarboxylation iii. Transamination e) Fermentation of single amino acid -Glutamic acid by Clostridium f) Fermentation of pair of amino acids -Stickland reaction 	

	2.2	Amino acid synthesis	04
		a) Schematic representation of amino acid families	
		b) Synthesis of amino acids of Aspartate family	
	2.3	Nucleic acid Catabolism	03
		a) Degradation of purine nucleotides up to uric acid	
		formation	
		 b) Recycling of purine and pyrimidine nucleotides by solvage pathway 	
		salvage pathway	
	2.4	Anabolism of Nucleic Acids	03
	2.4	a) Metabolic origin of atoms in purine and pyrimidine	03
		ring	
		b) Biosynthesis of pyrimidine nucleotides.	
		c) Biosynthesis of purine nucleotides.	
		d) Formation of deoxyribonucleotides.	
		e) Synthesis of nucleotide diphosphates and	
		triphosphates.	
		f) Role of nucleotides (high energy triphosphates)	
		Metabolic Regulation	15
	3.1	Overview and major modes of regulation	01
		Examples of cellular control mechanism acting at various	
		levels of metabolism (tabulation only)	
	3.2	Allosteric proteins	04
		a) Definition	
		b) Allosteric enzymes - Role of allosteric enzymes	
		using ATCase as example (no kinetic study)	
		c) Regulatory allosteric proteins	
		i. Interaction of proteins with DNA	
		ii. Structure of DNA Binding proteins	
		iii. Examples - Lac repressor, Trp repressor,	
		CAP protein	
		iv. Definition and examples of alarmones	
	2.2	Population of gone expression (Transprintion)	06
	3.3	a) Introduction to operon model	06
112		b) Common patterns of regulation of transcription –	
24.		General concept of positive and negative	
		regulation of operons	
~		i. Lac operon - Mechanism of regulation - Induction	
		- Catabolite repression	
		ii Trp operon - End Product Repression	
		- Attenuation	
		c) Regulation of gene expression	
		i. Multiple Sigma Factors	
	1	ii. Riboswitches	1

	3.4	Regulation of enzyme activity (Post translational regulation)	04
		 a) End-Product Inhibition and Mechanism of End Product Inhibition in branched pathways with examples 	
		i. Isofunctional enzymes ii. Concerted feedback inhibition	
		iii. Sequential feedback inhibition	<u> </u>
		iv. Cumulative Feedback inhibition	
		v. Combined activation and inhibitionb) Covalent modifications of enzymes	
		i. General examples without structure	
		ii. Monocyclic cascade &inter-convertible enzyme	
		definition iii. Glutamine synthetase system of <i>E.coli</i>	
		iv. Regulation by proteolytic cleavage	
		Prokaryotic Photosynthesis & Inorganic Metabolism	15
	4.1	Prokaryotic photosynthesis	09
IV		a) Early studies on photosynthesis	
		i. Light and dark reactions	
		ii. Bacterial photosynthesis iii. Hill reaction	
		b) Phototrophic prokaryotes -Oxygenic, Anox	
		phototrophs examples only	
		c) Photosynthetic pigments	
		d) Location of photochemical apparatus	
		e) Photophosphorylation	
		f) Light reactions in	
		i. Purple photosynthetic bacteria	
		ii. Green sulphur bacteria ii. Cyanobacteria (with details)	
	7	g) Dark reaction	
	\mathbf{O}	i. Calvin Benson cycle	
	\sim	ii. Reductive TCA	
	4.2	Inorganic Metabolism	06
N,		a) Assimilatory pathways-	03
		i. Assimilation of nitrate,	
25		ii. Ammonia fixation – Glutamate dehydrogenase,	
		iii. Glutamine synthetase, GS-GOGAT, Carbamoyl	
		phosphate synthetase iv. Biological nitrogen fixation (Mechanism for N2	
		fixation and protection of nitrogenase)	
		v. Assimilation of sulphate	
		b) Dissimilatory pathways-	2
		i. Nitrate as an electron acceptor	

eus denitrificans) acceptor ms and products formed 1 pon monoxide, Iron.
--

References:

2AMMARA

- a) Stanier, R. Y., M. Doudoroff and E. A. Adelberg. General Microbiology, 5th edition, The Macmillan press Ltd
- b) Conn, E.E., P. K. Stumpf, G. Bruening and R. Y. Doi. 1987. Outlines of Biochemistry, 5th edition, 1987. John Wiley & Sons. New York.
- c) Gottschalk, G., (1985), Bacterial Metabolism, 2nd edition, Springer Verlag
- d) White, D., (1995), The Physiology and Biochemistry of Prokaryotes, 3rd edition, Oxford University Press
- e) Nelson, D. L. and M.M. Cox (2005), Lehninger, Principles of biochemistry. 4th edition, W.H. Freeman and Company.
- f) Salle, A.J. Fundamental Principles of Bacteriology, 7thedn McGraw Hill Book Co.
- g) Cohen, G.N. (2011). Microbial Biochemistry. 2ndedn, Springer
- h) Madigan, M.T. and J.M. Martinko 2006. Brock Biology of Microorganisms. Pearson Prentice Hall;
- i) Biochemistry 3rd edition, Mathew, Van Holde and Ahern, Pearson Education
- j) Zubay, G. L (1996), Biochemistry, 4th edition, Wm. C. Brown publishers
- k) Principles of Biochemistry, Lehninger, 5thednW. H. Freeman and Company

Course Code: RUSMIC 604

Course Title: Industrial Microbiology

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
CO 1	Understand and outline the processes of fermentation for the bull
	production of primary and secondary metabolites and summarize the
	significance of each step
CO 2	Outline the production of commercially important fermentation products
	like fermented foods, alcoholic beverages, SCP, probiotics etc.
CO 3	Extrapolate the examples studied to design and execute conventiona
	fermentation processes and be able to collaborate to set up ar
	enterprise
CO 4	Explain the principles underlying Bioassays and differentiate and
	compare the methods of Biological assays
00 F	Test and occurs activity of formantation products using
CO 5	Test and evaluate activity of fermentation products using
	microbiological assays
CO 6	Summarize factors responsible for contamination during production o
	sterile products, execute preventive measures against contamination
CO 7	Evaluate effectiveness of sterilization procedures and assess the
JA.	Microbiological Quality of pharmaceutical products
CO 8	Outline the salient features of quality management and Good
> .	Manufacturing Practices

RAMNARAIN RUIA AUTONOMOUS COLLEGE, SYLLABUS FOR TYBSC MICROBIOLOGY 2024-2025

DETAILED SYLLABUS

Course Code	Unit	Course/ Unit Title	Credits/ Lectures
RUSMIC 604		INDUSTRIAL MICROBIOLOGY	2.5 /60
I		Industrial Fermentations: I	15
		a) Types of alcoholic beverage.	1
		b) Beer –Ale and Lager	3
		c) Wine –Red and white & Champagne	4
		d) Vinegar (acetator& Generator)	2 3
		e) Bioethanol production-	3
		-From feedstock to fermentable sugars	
		- Zymomonas mobilis as an alternate ethanol	
		f) Acetone Butanol Fermentation	2
		1) Acetone Bulanoi Fermentation	Z
I		Industrial Fermentations: II	15
	2.1	Production of secondary metabolites-	04
		Antibiotics- Penicillin& Semisynthetic Penicillins	
	2.2	Production of primary metabolites-	00
		a) Vitamin B ₁₂ from <i>Propionibacterium</i> & <i>Pseudomonas</i>	03
		 b) Amino acids- Methods for manufacture, Glutamic Acid (direct) 	01
		Acid (direct) c) Organic acids- Citric acid	02
		d) Enzymes- Uses of enzymes in industry, Production	02
		of Fungal amylase by solid substrate fermentation,	04
		Stabilization of enzymes- Immobilization techniques	
		e) Biotransformation of steroids	01
			• •
		Industrial Fermentations: III	15
	3.1	a) Mushroom cultivation	03
		 b) SCP- Substrates used, Organisms and safety 	03
	5	c) Fermented foods- Bread, Fermented cassava,	• -
	7	Kombucha tea	03
	_	d) Mold modified foods- Types (list only), Production of	00
6.		Soya sauce	02
\sim		 e) Lactic acid starter cultures, Probiotics, Prebiotics and Synbiotics 	04
IV		Bioassays & Quality Assurance	15
	4.1	Bioassays	05
		a) Comparison of Chemical and Biological assays	
		b) Microbiological assays- Test organisms, types of	
		assay methods and factors affecting.	
		c) Modern methods for assay of fermentation products	

4.2	QA, QC, GMP	07
	 a) Definitions- Manufacture, Quality, Quality Control, In- Process Control, Quality Assurance, Good Manufacturing Practices. b) Chemicals & Pharmaceutical production: The five variables, Raw materials, in process Items, Finished Products, Labels and Labelling, Packaging materials, Documentation, Regulations. c) Control of Microbial contamination during manufacture: Premises and contamination control Manufacture of sterile products, Clean and Aseptic Area, Important publications related to QA 	F.St.
4.3	Sterilization Control and Sterility Assurance	03
	 a) Bio-burden determinations b) Environmental monitoring c) Sterilization Monitors – Physical, Chemical and Biological indicators d) Sterility Testing 	

References:

- a) Crueger W. and Crueger A. (2000) "Biotechnology -"A Textbook of Industrial Microbiology", 2nd Edition, Panima Publishing Corporation, New Delhi.
- b) Casida L. E., "Industrial Microbiology 2009 Reprint, New Age International (P) Ltd, Publishers, New Delhi
- c) H. A. Modi, 2009. 'Fermentation Technology "Vol: 1 & 2, Pointer Publications, India
- d) Prescott and Dunn's 'Industrial Microbiology' (1982) 4th Edition, McMillan Publishers
- e) Hugo & Russell's, Pharmaceutical Microbiology Blackwell Science, Seventh Edition
- f) Peppler, H. J. and Perlman, D. (1979), "Microbial Technology". Vol 1 & 2, Academic Press.
- g) Michael J. Waites, 2001 Industrial Microbiology: An Introduction, Blackwell Science Publications
- h) Naduka Okafor, --Modern Industrial Microbiology, Science Publications, 2007
- R. W. Hutkins, "Microbiology and Technology of Fermented Foods (2006) Blackwell Publications p067-105
- j) https://www.dairyscience.info/index.php/cheese-starters/49-cheese-starters.html
- k) Marth and Steele, "Applied Dairy Microbiology", Lactic acid starter cultures, (2001)
- I) Probiotics and Prebiotics <u>https://www.spg.pt/wp-content/uploads/2015/11/2011-Probiotics_FINAL_20110116.pdf</u>

COURSE CODE	PRACTICALS	3 Credits
RUSMICP602	Practical Based on 603	
	1. Qualitative detection of Lipase	
	2. Estimation of proteins by Lowry's method	
	3. Qualitative detection of Protease	
	4. Assay of enzyme Protease	
	5. Study the breakdown of amino acids - Lysine	
	decarboxylase and Deaminase activity	
	6. Estimation of uric acid	
	7. To study catabolite repression	
	8. Study of Hill reaction	
	9. Study of photosynthesis in microalgae	
	10. Study of Lithotrophs – Nitrification	
	11. Alcohol tolerance for yeast.	
	12. Sugar tolerance for yeast.	
	13. Inoculum Development for alcohol fermentation	
	14. Alcohol fermentation .: - Efficiency of fermentation	
	15. Chemical estimation –Sugar by Cole's Ferricyanide	
	method	
	16. Chemical estimation –Alcohol Estimation-	
	Dichromate method	
	17. GC demonstration of ethanol	
	18. Production of fungal amylase using solid substrate	
	fermentation	
	19. Immobilization of yeast invertase	
	20. Mushroom cultivation	
	21. Production of Spirulina SCP	
	22. Bioassay of an antibiotic Ampicillin	
	23. Bioassay of Cyanocobalamin.	
Δ	24. Chemical assay of Ampicillin	
JPL.	25. Sterility testing of water for injection.	
t		1
AL.		
と		

Modality of Assessment:

Theory Examination Pattern:

A. Internal Assessment- 40%- 40 Marks per paper

Evaluation type	Marks
One Assignment/Case study/Project/ Presentation	20
One class Test (multiple choice questions / objective)	20
TOTAL	40
	One class Test (multiple choice questions / objective)

B. External Examination- 60%- 60 Marks per paper

Semester End Theory Examination:

- 1. Duration These examinations shall be of **two hours** duration.
- 2. Theory question paper pattern:
 - a. There shall be four questions each of 15 marks on each unit.
 - b. All questions shall be compulsory with internal choice within the questions.

Pape	r P	atte	rn
i ape	71 1	auc	

r aper r attern:									
Questions	Options	Options Marks Total mark		s Questions on					
Q.1) A)	Any 2 out of 3	10		11.541					
Q.1) B)	Any 1 set out of 2 (i & ii or i & ii)	03 & 02	15	Unit I					
Q.2) A)	Any 2 out of 3	10							
Q.2) B)	Any 1 set out of 2 (i & ii or i & ii)	03 & 02	15	Unit II					
Q.3) A)	Any 2 out of 3	10							
Q.3) B)	Any 1 set out of 2 (i & ii or i & ii)	03 & 02	15	Unit III					
Q.4) A)	Any 2 out of 3	10							
Q.4) B)	Any 1 set out of 2 (i & ii or i & ii)	03 & 02	15	Unit IV					
AY-									

Practical Examination Pattern:

A. Internal Examination: 40%- 80 Marks

Practical		I	I	I					
Particulars	Paper I	Paper II	Paper III	Paper IV					
Journal	05	05	05	05					
Experimental tasks	15	15	15	15					
Total	20	20	20	20					
B. External Examination: 60%- 120 Marks Semester End Practical Examination:									

B. External Examination: 60%- 120 Marks

Semester End Practical Examination:

Particulars	Practical I	Practical II
Laboratory work	50	50
Spots/Quiz/Viva	10	10
Total	60	60

PRACTICAL BOOK/JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination. In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Coordinator / In charge of the department; failing which the student will not be allowed to appear for the practical examination.

Overall Examination and Marks Distribution Pattern Semester VI

Course		60	1	602				60	603		604		Grand Total
	In	Ex	Total	In	Ex	Total	In	Ex	Total	In	Ex	Total	
Theory	40	60	100	40	60	100	40	60	100	40	60	100	400
Practical	20	30	50	20	30	50	20	30	50	20	30	50	200