S. P. Mandali's Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for U.G.

Program: BSc (Microbiology)

Program Code: RUSMIC

(Choice Based Semester and grading System for academic year 2022–2023)

GRADUATE ATTRIBUTES

GA	GA Description
	A student completing Bachelor's Degree in Science program will be
	able to:
GA 1	Recall and explain acquired scientific knowledge in a comprehensive manner
	and apply the skills acquired in their chosen discipline. Interpret scientific
	ideas and relate its interconnectedness to various fields in science.
GA 2	Evaluate scientific ideas critically, analyse problems, explore options for
	practical demonstrations, illustrate work plans and execute them, organise
	data and draw inferences.
GA 3	Explore and evaluate digital information and use it for knowledge
	upgradation. Apply relevant information so gathered for analysis and
	communication using appropriate digital tools.
GA 4	Ask relevant questions, understand scientific relevance, hypothesize a
	scientific problem, construct and execute a project plan and analyse results.
GA 5	Take complex challenges; work responsibly and independently, as well as
	in cohesion with a team for completion of a task. Communicate effectively,
	convincingly and in an articulate manner.
GA 6	Apply scientific information with sensitivity to values of different cultural
	groups. Disseminate scientific knowledge effectively for upliftment of the
	society.
GA 7	Follow ethical practices at work place and be unbiased and critical in
	interpretation of scientific data. Understand the environmental issues and
	explore sustainable solutions for it.
GA 8	Keep abreast with current scientific developments in the specific discipline
DIA	and adapt to technological advancements for better application of scientific
57	knowledge as a lifelong learner

PROGRAM OUTCOMES

РО	Description
	A student completing Bachelor's Degree in Science program in the subject of Microbiology will be able to:
PO 1	Recall, explain and summarize basic concepts related to cytology,
	biochemistry, physiology, genetics and reproduction of prokaryotes and
	compare it with eukaryotes.
PO 2	Appreciate and exemplify the diversity in the microbial world and evaluate their
	ecological role as well as state their significance to humankind.
PO 3	Understand the basic concepts associated with growth and control of
	microorganisms and apply it in pure culture and preservation techniques.
PO 4	Differentiate, classify and characterize microorganisms based on their
	morphological, cultural, biochemical, and molecular properties.
PO 5	Explore, compare and evaluate the role of microorganisms in different natural
	environments as well as plants, animals and humans, and evaluate and
	exemplify their interrelationships.
PO 6	Apply the understanding of microbial processes to diverse science areas such
	as medical, industrial, agricultural and food and evaluate their potential for
	human well-being, for tackling environmental issues and exploring sustainable
	solutions
PO 7	Recall and explain the nature of biomolecules and metabolic processes; the
	role and kinetics of enzymes as well as the thermodynamic laws that drive
	these reactions.
PO 8	Recall the basic working principles of various bioanalytical techniques and
16,	tools and apply them to detect, estimate and structurally evaluate
	biomolecules present in the microbial cells.
PO 9	Understand and explain the nature of genetic material and elaborate the
	molecular mechanisms underlying various genetic processes like replication,
	transcription, translation, gene transfer and recombination in bacteria; and
	explain basic concepts in virology.

PO 10	Apply the basics of genetics and molecular biology to understand and
	evaluate techniques in genetic engineering and also for the use of
	bioinformatic tools for presentation and processing of data.
PO 11	Recognize and explain the role of microorganisms in different diseases,
	attribute pathogenesis mechanisms to their properties and extrapolate it to
	disease diagnosis, treatment and prevention. Outline and recall concepts in
	epidemiology of diseases. Classify and evaluate different chemotherapeutic
	agents.
PO 12	Recall, classify and summarize mechanisms of defense in humans, detail
	out the functioning of our immune system, correlate it to disease and its
	prevention and outline its association to health. Apply immunological
	principles for diagnosis of diseases.
DO 42	Understand and sutting different biochemical machanisms and their
PO 13	Understand and outline different biochemical mechanisms and their
	regulation; retrieve and construct biochemical pathways in microbial
	metabolism of major macromolecules and, recall and integrate the
	bioenergetics of metabolic reactions.
PO 14	Evaluate, exemplify and outline the role of microorganisms in different
	industrial fermentations, summarize technological aspects of bioprocesses,
	recall knowledge about patents, copyright and regulatory practices and QA.
PO 15	Demonstrate key practical skills/competencies in working with microbes for
	their study and use in the laboratory as well as outside, including the use of
	good microbiological practices. Analyze problems involving microbes,
الح	articulate them and devise innovative and creative solutions.
PO 16	Hypothesize, design experiments, construct experimental plans, execute
	them and analyze data with a basic understanding of statistics. Demonstrate
	an ability to be unbiased and critical in interpretation of scientific data
PO 17	Communicate effectively to express scientific ideas and/or their
	experimental data in an effective, precise and concise manner.

PROGRAM OUTLINE

YEAR	SEM	COURSE	COURSE TITLE	CREDITS
		CODE		
		OODE		
		RUSMIC 101	Fundamentals of Microbiology	02
	_	Core course	3,	
		RUSMIC 102	Techniques in Microbiology	02
		Core course)
		RUSMICP101	Practical based on above two	02
FY		Core course	courses	V _
	II	RUSMIC 201	Microbial world: types and	02
		Core course	inter-relations	
		RUSMIC 202	Microbial biomolecules,	02
		Core course	Growth & Control	
		RUSMICP201	Practical based on above two	02
		Core course	courses	
			Microbial taxonomy and	
	III	RUSMIC 301	Introduction to Genetics and	02
		. 20	Molecular Biology	
		RUSMIC 302	Introduction to Experimental	02
	20	RUSIVIIC 302	Microbial Biochemistry	
		RUSMIC 303	Environmental Microbiology	02
SY	71,	RUSMICP301	Practicals based on above	03
2 AM			three courses	03
	IV	IV RUSMIC 401	Microbe interactions and host	02
			responses	
		RUSMIC 402	Introduction to Metabolic	02
		110011110 402	Pathways and Enzymology	
		RUSMIC 403	Applied Microbiology	02

Course Title: Microbial Genetics

COURSE	DESCRIPTION
OUTCOME	
CO 1	Understand and differentiate between population and
	quantitative genetics and compare model organisms used in genetic
	studies.
CO 2	Summarize different natural plasmids and transposons
	present in prokaryotes and be able to compare and contrast
	between different plasmids.
CO 3	Understand the coherence of the molecular mechanisms
	involved in DNA replication and outline different enzymes and
	proteins associated with both prokaryotic and eukaryotic DNA
	replication
CO 4	Identify, interpret and classify mutations in DNA followed by
	mechanism of DNA repair
CO 5	Test the effect of mutagens on bacteria and identify mutants
CO 6	Solve and interpret problems based on mapping of bacterial
	genes using transformation, transduction and conjugation
CO 7	Retrieving basic concepts of homologous recombination and genetic
	exchange among prokaryotes

	Credits/
Code	Lectures
RUSMIC MICROBIAL GENETICS	2.5/60
501	
I Branches of Genetics, Plasmids, Transposor	ns 15
1.1 Overview of branches of Genetics	04
a) Transmission, Molecular,	
b) Population Genetics: Hardy-Weinberg Law-	
principle and violation of assumptions (Mutation	٦,
Migration, Genetic Drift, Natural Selection)	
c) Quantitative Genetics: Characteristics, concept	of
Heritability, QTLs, Response to selection	
1.2 Model Organisms	03
a) Characteristics of a model organism	
b) Examples of select model organisms used in	
study: E.coli, Yeast, Mouse, Caenorhabditis	
elegans, Arabidopsis thaliana	
1.3 Plasmids	04
a) Physical nature	
b) Detection and isolation of plasmids	
c) Plasmid incompatibility and Plasmid curing	
d) Cell to cell transfer of plasmids	
e) Types of plasmids i. Resistance Plasmids	
ii. Plasmids encoding Toxins and other Virulence	
characteristics	
iii. col factor	
iv. Degradative plasmids	
IV. Degradative plasmias	
1.4 Transposable elements in Prokaryotes	04
a) Insertion sequences	
b) Transposons	
i. Types	
ii. Structure and properties	
iii. Mechanism of transposition	
iv. Transposon mutagenesis	
v. Integrons	

II		DNA Replication	15
	2.1	Historical perspective	04
		a) Conservative	
		b) Dispersive	
		c) Semi-conservative	
		d) Bidirectional	
		e) Semi-discontinuous DNA replication	
	2.2	Prokaryotic DNA replication	`04
		Details of molecular mechanism involved in Initiation, Elongation and Termination	
	2.3	Enzymes and proteins associated with DNA replication	04
		a) Primase b) Helicase c) Topoisomerase d) SSB e) DNA polymerases	
		f) Ligases g) Ter and Tus proteins	
	2.4	Eukaryotic DNA replication	02
		a) Molecular details of DNA synthesisb) Replicating the ends of the chromosomes	
	2.5	Rolling circle mode of replication	01
III		Mutation and Repair	15
	3.1	Mutation	10
PAMA	R	 a) Terminology: alleles, homozygous, heterozygous, genotype, phenotype, Somatic mutation, Germline mutation, Gene mutation, Chromosome mutation, phenotypic lag, hotspots and mutator genes b) Fluctuation test. c) Types of mutations: Point mutation, reverse mutation, suppressor mutation, frameshift mutation, conditional lethal mutation, base pair substitution, transition, transversion, missense mutation, nonsense mutation, silent mutation, neutral mutation, pleiotropic mutations. d) Causes of mutation: Natural/spontaneous mutation-replication error, depurination, deamination. Induced mutation: principle and mechanism with illustrative diagrams for — i. Chemical mutagens- base analogues, nitrous acid, hydroxyl amine, intercalating agents and alkylating agents. 	

		iii. Biological mutagen (only examples)	
		e) Ames test	
		f) Detection of mutants	
	3.2	DNA Repair	05
	3.2	a) Mismatch repair	03
		b) Light repair	
		c) Repair of alkylation damage	
		d) Base excision repair	
		e) Nucleotide excision repair	.(^>
		f) SOS repair	
IV		Genetic Exchange	15
	4.1	Gene transfer mechanisms in bacteria & homologous	
		recombination	
		a) Transformation	04
		i. Introduction and History	
		ii. Types of transformation in prokaryotes—Natural	
		transformation in Streptococcus pneumoniae,	
		Hemophilus influenzae and Bacillus subtilis	
		iii. Mapping of bacterial genes using transformation	
		iv. Problems based on transformation.	
		b) Conjugation	05
		i. Discovery of conjugation in bacteria	
		ii. Properties of F plasmid/Sex factor	
		iii. The conjugation machinery	
		iv. Hfr strains, their formation and mechanism of	
		conjugation	
		v. F' factor, origin and behavior of F' strains,	
		Sexduction.	
		vi. Mapping of bacterial genes using conjugation	
		(Wolman and Jacob experiment).	
		vii. Problems based on conjugation	
		c) Transduction	03
		i. Introduction and discovery	
		ii. Generalized transduction	
	(iii. Use of Generalized transduction for mapping	
		genes iv. Specialized transduction	
		v. Problems based on transduction	
		v. i robicina basca on transduction	
	4.2	Recombination in bacteria	03
		a) General/Homologous recombination	
		i. Molecular mechanism	
_		ii. Holliday model of recombination	
		b) Site-specific recombination	
	l		

- a) Peter J. Russell, "Genetics-A molecular approach", 2nd edition, 2006.
- b) Benjamin A. Pierce, "Genetics a conceptual approachl", 3rdedition, 2008, W. H. Freeman and company.
- c) R. H. Tamarin, "Principles of genetics", 2004, Tata McGraw Hill.
- d) D, Nelson and M. Cox, "Lehninger's Principles of biochemistry" 4th edition,2005, Macmillan worth Publishers.
- e) M.Madigan, J. Martinko, J.Parkar, "Brock Biology of microorganisms", 12th edition, 2009, Pearson Education International.
- f) Fairbanks and Anderson, "Genetics", 1999, Wadsworth Publishing Company.
- g) Willey, Sherwood and Woolverton, Prescott's Microbiology, 7th edition, 2013, International edition, McGraw Hill.
- h) Robert Weaver, "Molecular biology", 3rd edition, McGraw Hill international edition.
- i) Nancy Trun and Janine Trempy, "Fundamental bacterial genetics", 2004, Blackwell Publishing.
- j) Snustad, Simmons, "Principles of genetics" 3rd edition, John Wiley & sons, Inc.
- k) Stanier, Ingraham, "General Microbiology",5th edition, Macmillan
- I) Benjamin Lewin, "Genes IX", Jones and Bartlett publishers.
- m) JD Watson, Bake, Bell, Gann, Levine, Losick, "Molecular biology of the gene", 5th edition, Person

Course Title: Medical Microbiology

COURSE OUTCOME	DESCRIPTION
CO 1	Understand modern alternatives to Koch's postulates
CO 2	Summarize the basic aspects of clinical and diagnostic microbiology and implement bacteriological investigations using good laboratory practices
CO 3	Understand, interpret and explain the coherence between pathogenesis mechanisms of microorganisms, clinical manifestation of disease and prophylactic measures of representative bacterial, fungal and parasitic infections in various organ systems
CO 4	Extrapolate the understanding of representative infections of skin, respiratory system, urinary tract, gastro intestinal tract central nervous system to other infections within the same system
CO 5	Given a few key clinical features, design and execute lab diagnostic procedures for any given pathological specimen and test antibiotic susceptibility of the isolated pathogen
CO6	Differentiate between the different classes of antibiotics on the basis of their mechanism of action
CO7	Attribute strategies through which microbes acquire anti-microbial resistance
CO8	Check and evaluate drugs/ antibiotics for their efficacy by demonstrating their action on microorganisms

Course	Unit	Course/ Unit Title	Credits/
Code			Lectures
RUSMIC		MEDICAL MICROBIOLOGY	2.5/60
502			
I		Study of Infectious diseases-I	15
	1.1	Associating Microbes to disease	02
		a) Koch's Postulate and modern alternatives to it b) Molecular Koch's postulates	
	1.2	Introduction to Clinical and diagnostic Microbiology	05
		 a) Phases of diagnostic cycle- Pre analytic, analytic and post analytic b) Introduction to Molecular and immunological methods 	
	1.3	Study of Infectious Diseases-I (With Emphasis on Characteristics of the Aetiological Agent, Pathogenesis & clinical features, Laboratory Diagnosis and Prevention)	08
		Respiratory diseases: a) Strep throat by <i>S. pyogenes</i> b) Diphtheria c) Common cold d) Tuberculosis e) Pneumonia caused by <i>K. pneumoniae</i>	
II	7	Study of Infectious Diseases II (With emphasis on cultural characteristics of the aetiological agent, pathogenesis, laboratory diagnosis and prevention)	15
	2.1	Study of skin infections	05
ann		 a) Leprosy b) Pyogenic skin infections caused by <i>Pseudomonas</i>, S. pyogenes and S. aureus. c) Fungal infections- Oral Thrush, Dermatophytosis 	
	2.2	Study of gastrointestinal tract infections	08
		 a) Enteric fever- Salmonella b) Shigellosis c) Infections due to pathogenic <i>E. coli</i> strains d) Rotavirus diarrhoea e) Dysentery due to Entamoeba histolytica 	

	2.3	. Study of urinary tract infections	02
		a) Predisposing factors	
		b) List of causative agents	
		c) Pathogenesis and laboratory diagnosis	
		c) Tathogenesis and laboratory diagnosis	
III		Study of Infectious Diseases III	15 🎤
•••		(With emphasis on cultural characteristics of the	10
		aetiological agent, pathogenesis, laboratory diagnosis and	
		prevention)	
	3.1	Study of vector-borne infections	03
		a) Rickettsial diseases	
		b) Malaria	
		b) Walana	
	3.2	Study of sexually transmitted infectious diseases	07
		a) Syphilis	
		b) AIDS	
		c) Gonorrhea	
	3.3	Study of central nervous system infectious diseases	05
		a) Tetanus	
		b) Polio	
		c) Meningococcal meningitis	
IV		Chemotherapy of infectious agents	15
10	4.1	Introduction to Chemotherapeutic agents	03
		a) Attributes of an ideal chemotherapeutic agent and	
		related definitions	
		b) Selection and testing of antibiotics for bacterial	
		isolates by Kirby-Bauer method and other assays	
		(E-test & Checker Board Assay)	
	4.2	Mode of action of antibiotics	08
		a) Cell wall (Beta-lactams- Penicillin and	
	7	Cephalosporins, Carbapenems)	
		b) Cell Membrane (Polymyxin and Imidazole)	
	X	c) Protein Synthesis Aminoglycosides (Streptomycin),	
		Macrolide (Erythromycin), Tetracycline and	
4	7,	Chloramphenicol	
		d) Nucleic acid (Quinolones, Nalidixic acid,	
		Rifamycin)	
25		e) Enzyme inhibitors (Sulfa drugs, Trimethoprim)	
	4.3	List of common antibiotics	01
		used for treating viral, fungal and parasitic diseases, New	
		antibiotics	
	4.4	Mechanisms of drug resistance	03
		Its evolution, pathways and origin	
L	1	ino ovolation, patriwayo ana ongin	

- a) Brenda Wilson, Abigail Salyer And Dixie Whitt, Bacterial Pathogenesis A molecular approach 3rdEd ASM press 2011
- b) Gary. W. Procop, Dierdre Church et al, Koneman's Color Atlas and Textbook of Diagnostic Microbiology, Seventh Ed, Walters Kluwer, 2017
- c) Willey, Sherwood and Woolverton, Prescott's Microbiology, 9th edition, 2013, International edition, McGraw Hill.
- d) Brooks, Carroll, et al, Jawetz, Melnick & Adelberg's Medical Microbiology, 26th Ed McGraw Hill Lange 2013
- e) Ananthanarayan and Panicker's, Textbook of Microbiology, 10th edition, Ed by Reba Kanugo, Universities Press, 2017
- f) Goering, Dockerel et al, Mim's Medical microbiology, 5th Ed 2013, Saunders

Course code	PRACTICALS	3 Credits
RUSMICP 501	PRACTICAL 1	
	 UV survival curve – determination of exposure time leading to 90% reduction 	
	2. Isolation of mutants using UV mutagenesis	, (²)
	 Replica plate technique for selection & characterization of mutants – auxotroph & antibiotic resistant 	
	Isolation and detection of plasmid DNA.	
	Preparation of competent cells and transformation	
	Demonstration of conjugation.	
	Assignment on sample collection, transport and processing of any one pathological sample	
	8. Rapid detection of infection in samples from CNS	
	Rapid Direct tests for identification of pathogens-	
	a. Acid fast staining of M. tuberculosis/ M.leprae.	
	b. Metachromatic granule staining for C.diphtheriae	
	c. Catalase test	
	d. Bile solubility test	
	e. Slide coagulase test for S.aureus	
	f. Spot indole test	
	g. Oxidase test	
	h. Modern methods for identification of pathogens.	
	10. Identification of isolates obtained from following samples by	
	morphological, cultural and biochemical properties from-	
	a. Nasal/ throat swabs (URT infection)	
	b. Sputum (LRT infection)	
	c. Skin swab/ pus (Skin infection)	
2 Alla	 d. Identification of Candida species using the germ tube test and growth on HiChrom agar 	
	e. Stool (GI tract infection)	
	f. Urine (UTI infection) 11. Demonstration of malarial parasite in blood film	

- 12. Selection and testing of antibiotics using the Kirby-Bauer method
- 13. Determination of MIC of an antibiotic by E-test
- 14. Synergistic action of two drugs
- 15. Determination of MBC of an antibiotic.
- 16. Detection of β lactamase in *S.aureus*.
- 17. Role of plasmids in antibiotic resistance through curing of the PANNARAIN RUIA AUTO NONO IS CO plasmid

Course Title: Microbial Biochemistry Part I

COURSE OUTCOME	DESCRIPTION
CO 1	Understand the membrane architecture & critique the modes of solute
	transportation.
CO 2	Compare & contrast the mechanism of ATP synthesis in Prokaryotes &
	Eukaryotes.
CO 3	Summarize & differentiate the catabolic pathways of carbohydrates &
	deconstruct its amphibolic nature.
CO 4	Outline & evaluate the different fermentative pathways in bacteria.
CO 5	Paraphrase the anabolic pathways for carbohydrate synthesis.
CO 6	Organize the tally sheet of energetics for different catabolic substrates
	and solve problems based on these.
CO 7	Execute & evaluate the experimental aspects of metabolic reactions &
	differentiate organisms on the basis of their metabolic differences.
AMMAR	

Course	Unit	Course/ Unit Title	Credits/
Code			Lectures
RUSMIC		MICROBIAL BIOCHEMISTRY PART I	2.5/60
503			
I		Biological Membranes & Transport	15
	1.1	Composition and architecture of membrane	02
		a) Lipids	
		b) Integral & peripheral proteins & interactions with	
		lipids	
		c) Permeability and outer membrane- a barrier	
		d) Aquaporins	
		e) Mechanosensitive channels	
	1 2	Mothodo of studying solute transport	02
	1.2	Methods of studying solute transport a) Using whole cells	02
		b) Using Liposomes	
		c) Using Proteoliposome	
		c) Using Proteonposome	
	1.3	Solute transport across membrane	08
		a) Passive transport facilitated by membrane	
		proteins.	
		b) Transporters grouped into Superfamilies' '	
		c) Co transport across plasma membrane (Uniport,	
		Antiport, Symport)	
		d) Active transport & electrochemical gradient	
		e) Ion gradient provides energy for secondary Active	
		transport e.g. Lactose transport	
		f) ATPases and transport	
	2	g) ABC transporters e.g. Histidine transporth) Shock sensitive system – Role of binding proteins	
		e.g. Maltose uptake	
		i) Phosphotransferase system	
		j) Schematic representation of various Membrane	
~ ~	7,	transport mechanisms in. <i>E. coli</i>	
		·	
01,	1.4	Other examples of solute transport	03
07		a) Iron transport: A special problem	
		b) Bacterial protein export	
		c) Bacterial membrane fusion central to many	
		biological processes	
II		Bioenergetics and Bioluminescence	15
	2.1	Biochemical mechanism of generating ATP	01
		a) Substrate level	

		h) Ovidetive			
		b) Oxidative			
		c) Photo Phosphorylation			
	2.2	Electron transport chain	03		
	a) Universal Electron acceptors that transfer				
		Electrons to ETC.			
		b) Carriers in ETC			
		i. Hydrogen carriers – Flavoproteins, Quinones			
		ii. Electron carriers-Iron sulphur proteins,	/()		
		Cytochromes			
		c) Mitochondrial ETC			
		i. Biochemical anatomy of mitochondria			
		ii. Complexes in Mitochondrial ETC			
		iii. Schematic representation of Mitochondrial			
		ETC			
	2.3	Prokaryotic ETC	03		
		a) Organization of electron carriers in bacteria			
		b) Generalised electron transport pathway in bacteria			
		c) Different terminal oxidases			
		d) Branched bacterial ETC			
		e) Pattern of electron flow in E. coli– aerobic an			
		anaerobic			
		f) Pattern of electron flow in Azotobacter vinelandii			
	0.4	ATD	0.4		
	2.4	ATP synthesis	04		
		a) Explanation of terms – Proton motive force, Proton			
		Coupling sites, P: O ratio, Redox potential			
		b) Free energy released during electron transfer from			
		to O _{2.}			
		c) Chemiosmotic theory			
		d) Structure & function of Mitochondrial ATP			
	1	synthase (No Kinetics)			
		e) Mechanism by Rotational catalysis			
	7	f) Structure of bacterial ATP synthase			
	2	g) Inhibitors of ETC, Inhibitors of ATPase,			
	X	Uncouplers, Ionophores			
	Y				
	2.5	Other modes of generation of electrochemical energy	02		
		a) ATP hydrolysis			
12/2		b) Oxalate formate exchange			
OX	1	c) Product efflux, Definition- Lactate efflux			
		d) Bacteriorhodopsin - Definition, Significance,			
		Function as proton pump			
	2.6	Bioluminescence	02		
		a) Brief survey of bioluminescent systems			
	1	b) Biochemistry of light emission			
	1	c) Schematic diagram			
i	1	,	Ī		
		d) Significance / Application			

III		Methods of Studying Metabolism & Catabolism of Carbohydrates	15
	3.1	Experimental Analysis of metabolism	03
	3.1	 a) Goals of the study b) Levels of organization at which metabolism is studied. c) Metabolic probes d) Use of radioisotopes in biochemistry i. Pulse labelling ii. Assay & study of radio respirometry –to differentiate EMP & ED e) Use of biochemical mutants. f) Sequential induction technique 	
	3.2	Catabolism of Carbohydrates	12
		 a) Breakdown of polysaccharides – glycogen, starch, cellulose. b) Breakdown of oligosaccharides – lactose, maltose, sucrose, cellobiose c) Utilization of monosaccharides – fructose, Galactose. d) Major pathways- i. Glycolysis (EMP) & its regulation ii. HMP Pathway & Significance of the pathway iii. ED pathway, iv. TCA cycle, Significance & its regulation v. Anaplerotic reactions vi. Glyoxylate bypass, vii. Incomplete TCA in anaerobic bacteria viii. Amphibolic role of EMP and TCA cycle ix.Energetics of Glycolysis, ED and TCA-Balance sheet and efficiency calculation 	
IV	7	Fermentative Pathway & Anabolism of Carbohydrates	15
	4.1	Fermentative pathways (With structures and enzymes)	04
P.AMI		 a) Lactic acid fermentation – i. Homofermentors ii. Heterofermentors iii. Bifidobacterium pathway (Schematic) b) Alcohol fermentation i. by ED pathway in bacteria ii. by EMP in yeasts 	
	4.2	Other modes of fermentations in microorganisms	05
		a) Mixed acidb) Butanediolc) Butyric acid	

	d) Butanol-acetone e) Propionic acid (Acrylate pathway and succinate propionate pathway)	
4.3	Anabolism of Carbohydrates	06
	 a) General pattern of metabolism leading to synthesis of a cell from Glucose b) Gluconeogenesis c) Biosynthesis of Glycogen d) Biosynthesis of Peptidoglycan e) Role of carriers in synthesis of LPS and capsule 	KGK

- a) Stanier R. Y., Ingraham. J. L, Wheelis. M. L, Painter. P. R., General Microbiology, 5th edition, 1987, The Macmillan press Ltd.
- b) Conn, E.E., P. K. Stumpf, G.Bruening and R. Y. Doi, Outlines of Biochemistry, 5th edition, 1987. John Wiley &Sons. New York.
- c) Gottschalk, G., Bacterial Metabolism, 2nd edition, 1985, Springer Verlag.
- d) White, D., The Physiology and Biochemistry of Prokaryotes, 3rd edition, 1995, Oxford University Press.
- e) Nelson, D. L. and M.M. Cox, Lehninger, Principles of biochemistry. 4th edition, 2005, W. H. Freeman and Company.
- f) Rose, A.H. Chemical Microbiology, 3rd edition, 1976, Butterworth-Heinemann.
- g) Zubay, G. L, Principles of Biochemistry, 4th edition, 1996, Wm. C. Brown publishers
- h) Mathews, C.K., K.E. van Holde, D.R. Appling, S.J. Anthony-Cahill, Biochemistry, 4th edition, 2012, Pearson.
- i) Wilson and Walker, Principles & techniques of Biochemistry & Molecular Biology, 7th edition, 2010, Cambridge University Press.
- j) Madigan, M.T. and J.M. Martinko, Brock Biology of Microorganisms, 11th edition, 2006, Pearson Prentice Hall;
- k) Cohen, G.N., Microbial Biochemistry. 2nd edition, 2006, Springer.

Course Title: Bioprocess Technology

COURSE	DESCRIPTION			
OUTCOME				
CO 1	Understand and execute the process for isolation and strain			
	improvement of industrially important microorganisms			
CO 2	Outline the types and significance of sterilization process in			
	fermentation industry			
CO 3	Design the process of Inoculum development at various levels of scale-			
	up			
CO 4	Understand the assembly and working of typical fermenters and apply			
	the knowledge to operate fermenters in microbiological industries			
CO 5	Understand, attribute and apply methods of recovery and purification of			
	fermentation products			
CO 6	Recall, infer and apply methods in industrial effluent treatment and			
	correlate it to environment protection			
CO 7	Understand and use spectroscopic techniques in Biological analysis			
CO 8	Recognize the significant role of different organizations in genesis of			
0	Intellectual Property Rights, categorize and use different types of			
NAI	intellectual property rights in protection of intangible properties			

Course	Unit	Course/ Unit Title	Credits/
Code			Lectures
RUSMIC		BIOPROCESS TECHNOLOGY	2.5 /60
504			
I		Upstream Processing	15
	1.1	Strains and Strain Improvement of industrial	11
		microorganisms	
		a) Isolation of industrially important microorganisms	
		b) Improvement of industrial microorganisms	
		i. Selection of induced mutants for primary metabolites	
		ii. Isolation of induced mutants for secondary	
		metabolites	
	1.2	Sterilization	04
	1.2	a) Introduction to the concept of media sterilization and	U4
		Nabla factor	
		b) Design and methods of batch sterilization	
		c) Design and methods of continuous sterilization	
II		Fermenter equipment and control	15
	2.1	Design of fermenter	05
		a) Inoculum development	
		b) Basics of fermenter	
		i. Aseptic operation and containment	
		ii. Body construction	
		iii. Aeration and agitation	
		 c) Achievement and maintenance of aseptic condition i. Valves- function in general and examples 	
		ii. Steam Traps- function in general and examples	
		ii. Votcam Traps Tunction in general and examples	
	2.2	Types of fermenters	05
		a) Acetator	
	Y	b) Cavitator	
		c) Tower fermenter	
7.0	7,	d) Cylindro conical fermenters	
CRAIT		e) Air lift fermenters	
01,		i. Outer loop fermenters	
QX		ii. Inner loop fermenters	
X		f) Cyclone column	
		g) Packed tower (generator) h) Rotating disc fermenters	
		i) Bubble cap fermenters	
	2.3	Control of Variables	05
		a) Types of variables	
		b) Sensing and control of	

	1		
		i. pH	
		ii. Temperature	
		iii. Dissolved oxygen	
		iv. Flow measurement	
		v. Pressure	
		vi. Inlet/ Exit gas analysis	
		· · · · · · · · · · · · · · · · · · ·	
		vii. Foam sensing	
III		Downstream processing	15
	3.1	Downstream processing	12
		a. Recovery & Purification of fermentation products:	
		i. Introduction	
		ii. Precipitation	
		iii. Filtration - theory, filter-aids, batch filters (Plate	
		and frame filters), continuous filters (Rotary	
		vacuum),	
		iv. Centrifugation: flocculating agent, range of	
		centrifuges - Basket, tubular bowl.	
		b. Cell disruption methods: Physico-chemical.	
		c. Liquid – Liquid extraction, Solvent recovery,	
		d. Chromatography –lon exchange &Adsorption	
		e. Membrane processes – Ultrafiltration, reverse	
		osmosis, liquid membranes.	
		f. Drying, Crystallization, Whole broth processing	
	3.2	Environmental aspects	3
		a) Modern methods of effluent treatment	
		b) Carbon Credits	
IV		Bioinstrumentation And IPR	15
	4.4	Disingthous autotion	0
	4.1	Bioinstrumentation Principles, working and applications of:	8
	-	a) Spectrophotometry (I. R)	
		b) Atomic absorption (AAS) & Atomic Emission	
		spectroscopy (Flame photometry)	
		c) Mass Spectroscopy- MALDI ToF, ESI	
	7/		
	4.2	Intellectual Property Rights	7
" [1].		a) Introduction to Intellectual Property	1
		b) Genesis of IPR - GATT, WTO, TRIPS, World	3
		Intellectual Property Organization (WIPO)	
		c) Types of Intellectual Property – Patents, Copyright,	3
		Trademark, Trade secret, Plant varieties protection	3
		act, Industrial Designs, Geographical Indications	

- a) Casida L. E., "Industrial Microbiology" (2009) Reprint, New Age International (P)Ltd, Publishers, New Delhi
- b) Stanbury P. F., Whitaker A. & Hall S. J., (1997), "Principles of Fermentation Technology", 2nd Edition, Aditya Books Pvt. Ltd, New Delhi.
- c) H. A. Modi, (2009). _ 'Fermentation Technology "Vols 1 & 2, Pointer Publications, India
- d) Okafor Nduka (2007) _ 'Modern Industrial Microbiology and Biotechnology ", Science Publications Enfield, NH, USA.
- e) G Y Shitole and Ram Sable (2012) Environmental Degradation Issues and Challenges (Research publication)
- f) Crueger W. and Crueger A. (2000) "Biotechnology -"A Textbook of Industrial Microbiology", 2nd Edition, Panima Publishing Corporation, New Delhi.
- g) Principles and Techniques of Biochemistry and Molecular Biology by Wilson/Walker 7th Edition
- h) Brian McNeil & Linda M. Harvey, Practical Fermentation Technology, John Wiley and Sons. Pvt. Ltd. (2008).
- i) WIPO Publication No. 450(E) ISBN 978-92-805-1555-0
 https://www.wipo.int/edocs/pubdocs/en/intproperty/450/wipo_pub_450.pdf

	PRACTICALS	3 Credits
RUSMICP502	PRACTICAL 2	
	Isolation and detection of Mitochondria	
	Isolation and study of Bioluminescent organisms	
	Study of oxidative and fermentative metabolism	, (³)
	Carbohydrate fermentation tests	
	Mixed acid fermentations- Detection of organic acids by TLC	
	Study of Homo and Hetero fermentation in Lactic acid bacteria	
	7. Detection of enzyme phosphatase	
	Quantitative assay of Phosphatase	
	9. Stormy fermentation	
	10. Strip Plate Technique	
	11. Streak Plate Technique	
	12. Gradient plate technique for isolation of mutants.	
	 Production and detection of vitamin B12 by bioautography. 	
	Demonstration of IR spectroscopy and analysis of IR spectrum of one compound	
	15. Demonstration of GC-MS/ LC-MS	

Modality of Assessment:

Theory Examination Pattern:

A. Internal Assessment- 40%- 40 Marks per paper

Sr No	Evaluation type	Marks
1	One Assignment/Case study/Project/ Presentation	20
2	One class Test (multiple choice questions / objective)	20
	TOTAL	40

B. External Examination- 60%- 60 Marks per paper **Semester End Theory Examination:**

- 1. Duration These examinations shall be of **two hours** duration.
- 2. Theory question paper pattern:

 - a. There shall be **four** questions each of **15** marks on each unit.b. All questions shall be compulsory with internal choice within the questions.

Paper Pattern:

Questions	Options	Marks	Total marks	Questions on
Q.1) A)	Any 2 out of 3	10		
Q.1) B)	Any 1 set out of 2 (i & ii or i & ii)	03 & 02	15	Unit I
Q.2) A)	Any 2 out of 3	10		
Q.2) B)	Any 1 set out of 2 (i & ii or i & ii)	03 & 02	15	Unit II
Q.3) A)	Any 2 out of 3	10		
Q.3) B)	Any 1 set out of 2 (i & ii or i & ii)	03 & 02	15	Unit III
Q.4) A)	Any 2 out of 3	10		
Q.4) B)	Any 1 set out of 2 (i & ii or i & ii)	03 & 02	15	Unit IV

Practical Examination Pattern:

A. Internal Examination: 40%-80 Marks

Practical		I	II		
Particulars	Paper I	Paper II	Paper III	Paper IV	
Journal	05	05	05	05	
Experimental tasks	15	15	15	15	
Total	20	20	20	20	

B. External Examination: 60%- 120 Marks

Semester End Practical Examination:

Particulars	Practical I	Practical II
Laboratory work	50	50
Spots/Quiz/Viva	10	10
Total	60	60

PRACTICAL BOOK/JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination. In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Coordinator / In charge of the department; failing which the student will not be allowed to appear for the practical examination.

Overall Examination and Marks Distribution Pattern Semester V

Course 501			502		503			504			Grand Total		
7,6	In	Ex	Total	ln	Ex	Total	In	Ex	Total	In	Ex	Total	
Theory	40	60	100	40	60	100	40	60	100	40	60	100	400
Practical	20	30	50	20	30	50	20	30	50	20	30	50	200

Course Title: Gene Manipulation, Bioinformatics, & Virology

COURSE	DESCRIPTION
OUTCOME	
CO 1	Understand and explain the fundamentals of gene manipulation
CO 2	Implement bioinformatics tools for genetic analysis and structure building
CO 3	Correlate structure and function of important cell components of prokaryotic and eukaryotic cells
CO 4	Recalling and categorising various genes and proteins involved in functioning of prokaryotic and eukaryotic structures
CO 5	Summarizing the structure, classification, enumeration, cultivation and life cycle of viruses.
CO 6	Recognise and compare the commonly used terms like cancer, prions, viroids and their replication mechanisms
CO 7	Independently illustrate regulation of lytic and lysogenic pathway of lambda phage
CO 8	Test the presence of coliphages and execute experiments for their enumeration

Course	Unit	Course/ Unit Title	Credits/
Code			Lectures
RUSMIC		GENE MANIPULATION, BIOINFORMATICS,	2.5/60
601		&VIROLOGY	C_{\sim}
I		Gene Manipulation	15
	1.1	Basic Principles of Gene Manipulation	12
		a) Cutting and joining DNA: Restriction	
		endonucleases, Ligases, Linkers and Adapters	
		b) Cloning vectors: Characteristics of a good vector,	
		Plasmid vectors, Bacteriophage λ, Expression	
		vectors	
		c) Cloning strategies: Genomic libraries, cDNA	
		libraries, PCR	
	1.2	Emerging techniques in Genome sciences	03
		a) Microarray technologies	
		b) Karyotyping	
		c) CRISPR-based technologies and applications	
II		Bioinformatics & Cell Biology	15
	2.1	Bioinformatics	06
		a) Introduction i. Definition, aims, tasks and applications of	
		Bioinformatics.	
		ii. Overview of prominent Databases, tools	
		and their uses	
	7	iii. Importance, Types and classification of	
	2	databases	
		iv. Nucleic acid sequence databases- EMBL, GenBank, Ensembl	
AMI		v. Protein sequence databases-PIR, SWISS-	
MI.		PROT, TrEMBL	
		vi. Protein structure databases: PDB, Cn3D.	
(~)		vii. Pathway analysis: KEGG.	
		b) Applications:	
		i. Transcriptome, Metabolomics,	
		Pharmacogenomics,	
		ii. Phylogenetic analysis, Phylogenetic tree, Annotation, SNPs	

	1		
		iii. Sequence alignment global v/s local	
		alignment, FASTA file format, BLAST.	
		iv. Genomics- structural, functional and	
		comparative genomics.	
		·	
		v. e. Proteomics- structural and functional	
		proteomics.	
	2.2	Cell Biology of Prokaryotes and Eukaryotes	09
		a) Revision of structure and function of Cell wall,	
		capsule, flagella and endospore of prokaryotes	
		b) Cytoskeleton and cell motility	
		i. Prokaryotic cytoskeleton: ftsZ and its role in	
		cell division	
		ii. Structure and function: Microtubules,	
		Microfilaments, Intermediate filaments	
		iii. Microtubular organelles – Cilia, Flagella	
		and centrioles	
		iv. Molecular motors: Myosins, Kinesins,	
		Dyenin	
Ш		Basic Virology	15
	3.1	Viral architecture	04
		a) Capsid, viral genome and envelope	
		b) Structure of TMV, T4, Influenza virus, HIV	
	3.2	Viral classification	02
		X Y	
	3.3	The viral replication cycle	04
		a) attachment,	
		b) penetration,	
		c) uncoating,	
		d) types of viral genome and their replication,	
		e) assembly,	
	7	f) maturation and release	
	0		
	3.4	Life cycle of viruses	05
	, Y	a) T4 phage,	
		b) TMV,	
In.		c) Influenza Virus and	
		d) HIV	
Q_{ij}			
IV		Advanced Virology	15
	4.1	Cultivation of viruses	05
		a) Cell culture techniques,	
		b) embryonated egg,	
		c) laboratory animals,	
		d) Cell culture methods:	

		e) Equipment required for animal cell culture, f) Isolation of animal tissue	
	4.2	Visualization and enumeration of virus particles	03
		a) Measurement of infectious units	
		i. Plaque assay	
		ii. Fluorescent focus assay	
		iii. Infectious centre assay	. (^>
		iv. Transformation assay	
		v. Endpoint dilution assay.	
		b) Measurement of virus particles and their	
		components	~
		i. Electron microscopy	
		ii. Atomic force microscopy	
		iii. Haemagglutination	
		iii. Measurement of viral enzyme activity.	
	4.3	Regulation of lytic and lysogenic pathway of lambda	03
		phage	
	4.4	Role of viruses in cancer	02
		a) Definitions,	
		b) characteristics of cancer cell,	
		c) cancer multi step process,	
		d) Human DNA tumor viruses-	
		i. EBV,	
		ii. Kaposi's sarcoma virus,	
		iii. Hepatitis B and C virus,	
		iv.Papilloma Virus	
	4.5	Prions and viroids	02
	-		
2AM	R		
SULL			

- a) R. H. Tamarin, (2004), "Principles of genetics", Tata McGraw Hill.
- b) M. Madigan, J. Martinko, J. Parkar, (2009), "Brock Biology of microorganisms", 12th ed., Pearson Education International.
- c) Fairbanks and Anderson, (1999), "Genetics", Wadsworth Publishing Company.
- d) Prescott, Harley and Klein, "Microbiology" 7th edition McGraw Hill international edition.
- e) Edward Wagner and Martinez Hewlett, (2005) "Basic Virology", 2nd edition, Blackwell Publishing
- f) Teri Shors, (2009), "Understanding viruses", Jones and Bartlett publishers.
- g) S.Ignacimuthu, (2005), "Basic Bioinformatics", Narosa publishing house.)
- h) Robert Weaver, (2008), "Molecular biology", 3rd ed. McGraw Hill international edition.
- i) Primrose and Twyman, (2001), "Principles of gene manipulation and genomics", 6thed, Blackwell Publishing
- j) Arthur Lesk, (2009), "Introduction to Bioinformatics", 3rd Edition, Oxford University Press
- k) Snustad, Simmons, "Principles of genetics", 3rdedn. John Wiley & sons, Inc.
- I) Lodish, Scott." Molecular cell biology,7th edn, Macmillan higher education, International ed.
- m) Flint, Enquist, Racanillo and Skalka, "Principles of virology", (2009)3rdedn. ASM press
- n) T. K. Attwood & D. J. Parry-Smith, (2003), "Introduction to bioinformatics", Pearson education
- o) Benjamin Lewin, (2014) 9th edition, "Genes IX", Jones and Bartlett publishers.
- p) JD Watson, Baker (2004) 5thedn. "Molecular biology of the gene", CSHL Press and Benjamin Cummings
- q) Jonathan Pevsner, Bioinformatics and Functional Genomics, 3rd Edition, 2015, Wiley Blackwell
- r) Jin Xiong, Essential Bioinformatics, 1st Edition, 2006, Cambridge University Press

Course Title: Immunology

COURSE OUTCOME	DESCRIPTION
CO 1	Evaluate molecules for their antigenicity and explain role of haptens in
	elucidating molecular nature of antigens
CO 2	Outline mechanisms of antigen processing and presentation and the
	molecules involved thereof
CO 3	Understand the mechanisms of receptor-ligand interactions between
	cells involved in acquired as well as innate immune mechanisms
CO 4	Retrieve the process of T and B cell activation and proliferation in
	response to antigenic stimuli
CO 5	Summarize and compare the effector responses- Humoral Immunity &
	Cell Mediated Immunity
CO 6	Extrapolate the role of immune system in disease: Unregulated
	response- Hypersensitivity; exemplify the different types
CO 7	Understand the mechanism of Antigen-Antibody interaction & illustrate
	and execute immunological techniques for disease diagnosis
CO 8	Apply the concept of immunity for protection from disease by
	development of vaccine

Course	Unit	Course/ Unit Title	Credits/
Code/			Lectures
Unit			
RUSMIC		IMMUNOLOGY	2.5/60
602		IMMONOLOGI	2.3700
602			/
ı		Antigens and Antigen- antibody reactions	15
	1.1	Overview of innate and acquired immunity, cells and organs in immune responses	02
	1.2	Antigens	05
		 a) Immunogenicity versus antigenicity b) Factors that influence immunogenicity, Contribution of the biological system to immunogenicity c) Epitopes / antigen determinants (only concepts) d) Haptens and antigenicity e) Immunogenicity of some natural substances – native globular proteins, polysaccharides, lipids, nucleic acids Types of antigens – heterophile antigens, isophile antigens, sequestered antigens, super antigens, bacterial and viral antigens 	
	1.3	Antigen-Antibody reactions	08
2 AM	RA	 a) Generation of Antibodies for experimental systems-Monoclonal antibodies b) Western Blotting c) Immunoprecipitation based assays d) Agglutination, passive agglutination, agglutination inhibition, e) Solid Phase assays- Radioimmunoassay (RIA), Enzyme immunoassays (EIA), f) Immunofluorescence, Immunohistochemistry g) Flow Cytometry, Fluorescence Activated Cell Sorting 	
II		Antigen presentation and Activation of Immune cells	15
	2.1	MHC complex and MHC molecules	03
		a) Structure of class I, and class II molecules; class III molecules	

		b) Peptide – MHC interaction	
	2.1	Antigen processing and presentation	02
		a) Antigen presentation- professional and nonprofessional cells b) Antigen processing and presentation	
	2.2	Receptor Ligand interactions and activation in T cells	05
		 a) TcR, (alpha-beta, gamma-delta TcR), TcR-CD3 complex structure & functions, Accessory molecules. b) T cell activation, T cell differentiation, Subsets of T cells (TH1, TH2, TH17, T reg), Formation of 	
		Memory cells	
	2.3	Receptor Ligand interactions and activation in B cells	05
		 a) B- cell receptors, Receptor associated molecules, receptor clustering. Antigen processing by B cells B cell activation and differentiation –Antigen recognition and presentation by B cells, Formation of germinal centres and memory cells. b) B-cell responses to Thymus dependent and independent antigens 	
III		Acquired Immune Responses and Innate Immune Mechanisms	15
	3.1	Cytokines	02
	2	a) Properties, types and functions b) Cytokines secreted by Th1 and Th2 cells	
	3.2	Humoral Response	04
		a) Introduction of Humoral response, Primary and secondary responses b) Affinity maturation and somatic hyper mutation, Ig diversity, class switching	
25	3.3	Cell mediated effector response	03
		a) Generation and target destruction by Cytotoxic T cells. b) Killing mechanism of NK cells.	
	3.4	Innate Immune mechanisms	04
		a) Role of PAMPs and PRRs in phagocytosis eg LPS	

		b) Role of cytokines and chemokines in phagocytosis	
		c) Induced proteins by PRR signalling	
		d) Innate immunity and septic shock	
		, , ,	
	3.5	Interactions between Innate and Acquired immunity	02
IV		Vaccines, Immunohematology And	15
		Hypersensitivity	
	4.1	Vaccines	05
		a) Active and passive immunization	
		b) Types of vaccines - Killed and attenuated	. 💙
		vaccines, Whole organism vaccines, Purified	
		macromolecules as vaccines, recombinant	
		viral vector vaccines, DNA vaccines	
		c) Use of adjuvants in vaccine	
		d) New vaccine strategies, Ideal vaccine	
	4.2	Immunohematology	05
	7.2	<u> </u>	03
		a) Human blood group systems, ABO, secretors	
		and non-secretors, Bombay Blood group	
		b) Rhesus system and list of other blood group	
		systems.	
	4.0	c) Haemolytic disease of new born, Coombs test.	0.5
	4.3	Hypersensitivity	05
		Coombs and Gell's classification Type I to Type IV	
		hypersensitivity - Mechanism and manifestation.	

References:

- a) Thomas J. Kindt, Barbara A. Osborne, Richard A. Goldsby, Kuby Immunology, 6th ed, W. H. Freeman & Company 2005
- b) Oven, Punt, Stranford, Kuby Immunology,7th ed W.H. Freeman, 2013
- c) Sulabha Pathak, Urmi Palan, Immunology: Essential and Fundamental, 3rd Ed, Anshan Ltd, 2011
- d) Davis, Dulbecco, Eisen and Ginsberg, Microbiology, 4th ed, Lippincott Williams and Wilkins, 1990.
- e) Fahim Halim Khan, The Elements of Immunology, Pearson Education, 2009

COURSE	PRACTICALS	3
CODE		Credits
DUOLUG	DD AOTIO AL 4	
RUSMIC P601	PRACTICAL 1	
	1. Isolation of genomic DNA of E. coli and measurement of its	
	concentration by UV-VIS.	
	Restriction digestion of plasmid DNA	/()
	Demonstration of PCR	(//
	Bioinformatics practical On Line Practical	
	 a. Visiting NCBI and EMBL websites & list services available, 	
	software tools available and databases maintained	
	b. Visiting & exploring various databases mentioned in syllabus	
	i. Using BLAST and FASTA for sequence analysis	
	ii. Fish out homologs for given specific sequences (by teacher	
	 decide sequence of some relevance to their syllabus and 	
	related to some biological problem e.g. evolution of a	
	specific protein in bacteria, predicting function of unknown	
	protein from a new organism based on its homology)	
	iii. Six frame translation of given nucleotide sequence	
	iv. Restriction analysis of given nucleotide sequence	
	 v. Pair-wise alignment and multiple alignment of a given protein sequences 	
	vi. Formation of phylogenetic tree	
	5. Enrichment of coliphages from sewage	
	Enumeration of phages- Phage assay (pilot & proper).	
	Demonstration of chick embryo inoculation	
	8. Antigen Preparation: 'O'& 'H' antigen preparation of	
	Salmonella. Confirmation by slide agglutination	
	Electrophoresis of serum.	
	Demonstration of soluble antigens by precipitation reaction.	
	11. Immunodiagnostics- Dreyer's drop Widal test	
	12. Diagnosis of syphilis- TRUST antigen kit	
	13. Demonstration of ELISA	
11.	14. Blood grouping – Direct & Reverse typing	
Ula.	15. Major and minor compatibility test	
25	16. Determination of Isoagglutinin titre	
	17. Coomb's Direct test	

Course Code: RUSMIC 603

Course Title: Microbial Biochemistry Part II

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	
CO 1	Categorize lipids into different classes based on their structure
CO 2	Map the steps in the biochemical pathway for metabolism of lipids
CO 3	Outline pathways for biochemical synthesis, degradation and recycling
	of nucleic acids
CO 4	Explain mechanisms of catabolism of protein and synthesis of amino
	acid synthesis in the cell
CO 5	Compare and contrast between various levels of metabolic regulation
CO 6	Explain process of prokaryotic photosynthesis and attribute it to
	photosynthetic pigments, photochemical apparatus and light and dark
	reactions
CO 7	Compare and contrast metabolism of different inorganic compounds
	and outline the concept of Lithotrophy
CO 8	Execute and implement enzyme assays and testing of metabolic
	processes

DETAILED SYLLABUS

Course Code	Unit	Course/ Unit Title	Credits/ Lectures
RUSMIC 603		MICROBIAL BIOCHEMISTRY PART II	2.5/60
I		Lipid Metabolism & Catabolism Of Hydrocarbons	15
	1.1	General introduction to Lipids	02
		 a) Lipids and their functions b) Action of lipases on triglycerides /tripalmitate c) Phospholipids and their properties d) Common phosphoglycerides in bacteria 	
	1.2	Catabolism of Lipids	05
		 a) Oxidation of saturated fatty acid- β oxidation pathway, Energetics of β oxidation of Palmitic acid b) Oxidation of propionic acid. c) Degradation of poly beta hydroxy butyrate 	
	1.3	Anabolism of Lipids	05
		 a) Biosynthesis of straight chain even carbon saturated fatty acid (palmitic acid) b) Biosynthesis of phosphoglycerides in bacteria c) Biosynthesis of PHB 	
	1.4	Catabolism of aliphatic hydrocarbons	03
	25	 a) Oxidation of saturated aliphatic hydrocarbon (nalkane) b) Omega oxidation pathway- c) Pathway in Corynebacterium and yeast d) Pathway in Pseudomonas 	
II	2.1	Metabolism Of Proteins And Nucleic Acids Protein catabolism	15 05
PANI	2.1	a) Enzymatic degradation of proteins b) Metabolic fate of amino acids (schematic only c) Metabolism of single amino acids — i. Deamination reactions ii. Decarboxylation iii. Transamination e) Fermentation of single amino acid -Glutamic acid by Clostridium f) Fermentation of pair of amino acids -Stickland reaction	03

	2.2	Amino acid synthesis	04
		a) Schematic representation of amino acid families	
		b) Synthesis of amino acids of Aspartate family	
	2.3	Nucleic acid Catabolism	03
		a) Degradation of purine nucleotides up to uric acid	
		formation	
		b) Recycling of purine and pyrimidine nucleotides by	
		salvage pathway	
	2.4	Anabolism of Nucleic Acids	03
		a) Metabolic origin of atoms in purine and pyrimidine	
		ring	
		b) Biosynthesis of pyrimidine nucleotides.	
		c) Biosynthesis of purine nucleotides.	
		d) Formation of deoxyribonucleotides.	
		e) Synthesis of nucleotide diphosphates and	
		triphosphates.	
		f) Role of nucleotides (high energy triphosphates)	
		Matabalia Bagulatian	15
III	3.1	Metabolic Regulation	15 01
	3.1	Overview and major modes of regulation	UI
		Examples of cellular control mechanism acting at various levels of metabolism (tabulation only)	
		levels of metabolism (tabulation only)	
	3.2	Allosteric proteins	04
		a) Definition	<u> </u>
		b) Allosteric enzymes - Role of allosteric enzymes	
		using ATCase as example (no kinetic study)	
		c) Regulatory allosteric proteins	
		i. Interaction of proteins with DNA	
		ii. Structure of DNA Binding proteins	
		iii. Examples - Lac repressor, Trp repressor,	
		CAP protein	
		iv. Definition and examples of alarmones	
		, , , , , , , , , , , , , , , , , , , ,	
	3.3	Regulation of gene expression (Transcription)	06
"		a) Introduction to operon model	
		b) Common patterns of regulation of transcription –	
		General concept of positive and negative	
O_{X}		regulation of operons i. Lac operon - Mechanism of regulation - Induction	
		- Catabolite repression	
· ·		ii Trp operon - End Product Repression	
		- Attenuation	
		c) Regulation of gene expression	
		i. Multiple Sigma Factors	
		ii. Riboswitches	
	<u> </u>		

	3.4	Regulation of enzyme activity (Post translational regulation)	04
		 a) End-Product Inhibition and Mechanism of End Product Inhibition in branched pathways with examples i. Isofunctional enzymes ii. Concerted feedback inhibition iii. Sequential feedback inhibition iv. Cumulative Feedback inhibition v. Combined activation and inhibition b) Covalent modifications of enzymes i. General examples without structure ii. Monocyclic cascade &inter-convertible enzyme definition iii. Glutamine synthetase system of E.coli iv. Regulation by proteolytic cleavage 	
		Prokaryotic Photosynthesis & Inorganic Metabolism	15
	4.1	Prokaryotic photosynthesis	09
IV	4.2	a) Early studies on photosynthesis i. Light and dark reactions ii. Bacterial photosynthesis iii. Hill reaction b) Phototrophic prokaryotes -Oxygenic, Anoxyphototrophs examples only c) Photosynthetic pigments d) Location of photochemical apparatus e) Photophosphorylation f) Light reactions in i. Purple photosynthetic bacteria ii. Green sulphur bacteria ii. Gyanobacteria (with details) g) Dark reaction i. Calvin Benson cycle ii. Reductive TCA	06
	4.2	Inorganic Metabolism	06
PAN		a) Assimilatory pathways- i. Assimilation of nitrate, ii. Ammonia fixation – Glutamate dehydrogenase, iii. Glutamine synthetase, GS-GOGAT, Carbamoyl phosphate synthetase iv. Biological nitrogen fixation (Mechanism for N2 fixation and protection of nitrogenase) v. Assimilation of sulphate	03
		b) Dissimilatory pathways- i. Nitrate as an electron acceptor (Denitrification in <i>Paracoccus denitrificans</i>)	2

ii. Sulphate as an electron acceptor c) Lithotrophy– Enlist organisms and products formed oxidation of Hydrogen, carbon monoxide, Ammonia, Nitrite, Sulphur, Iron.	1
--	---

References:

- Stanier, R. Y., M. Doudoroff and E. A. Adelberg. General Microbiology, 5th edition, The Macmillan press Ltd
- b) Conn, E.E., P. K. Stumpf, G. Bruening and R. Y. Doi. 1987. Outlines of Biochemistry, 5th edition, 1987. John Wiley & Sons. New York.
- c) Gottschalk, G., (1985), Bacterial Metabolism, 2nd edition, Springer Verlag
- d) White, D., (1995), The Physiology and Biochemistry of Prokaryotes, 3rd edition, Oxford University Press
- e) Nelson, D. L. and M.M. Cox (2005), Lehninger, Principles of biochemistry. 4th edition, W. H. Freeman and Company.
- f) Salle, A.J. Fundamental Principles of Bacteriology, 7thedn McGraw Hill Book Co.
- g) Cohen, G.N. (2011). Microbial Biochemistry. 2ndedn, Springer
- h) Madigan, M.T. and J.M. Martinko 2006. Brock Biology of Microorganisms. Pearson Prentice Hall:
- i) Biochemistry 3rd edition, Mathew, Van Holde and Ahern, Pearson Education
- j) Zubay, G. L (1996), Biochemistry, 4th edition, Wm. C. Brown publishers
- k) Principles of Biochemistry, Lehninger, 5thednW. H. Freeman and Company

Course Code: RUSMIC 604

Course Title: Industrial Microbiology

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	
CO 1	Understand and outline the processes of fermentation for the bulk
	production of primary and secondary metabolites and summarize the
	significance of each step
CO 2	Outline the production of commercially important fermentation products
	like fermented foods, alcoholic beverages, SCP, probiotics etc.
CO 3	Extrapolate the examples studied to design and execute conventional
	fermentation processes and be able to collaborate to set up an
	enterprise
CO 4	Explain the principles underlying Bioassays and differentiate and
	compare the methods of Biological assays
CO 5	Test and evaluate activity of fermentation products using
	microbiological assays
CO 6	Summarize factors responsible for contamination during production of
008	
	sterile products, execute preventive measures against contamination
CO 7	Evaluate effectiveness of sterilization procedures and assess the
"Whi	Microbiological Quality of pharmaceutical products
CO 8	Outline the salient features of quality management and Good
57	Manufacturing Practices

DETAILED SYLLABUS

Course Code	Unit	Course/ Unit Title	Credits/ Lectures
RUSMIC 604		INDUSTRIAL MICROBIOLOGY	2.5 /60
I		Industrial Fermentations: I	15
		a) Types of alcoholic beverage.	1
		b) Beer –Ale and Lager	3
		c) Wine –Red and white & Champagne	4
		d) Vinegar (acetator& Generator)	4 2 3
		e) Bioethanol production-	3
		-From feedstock to fermentable sugars- Zymomonas mobilis as an alternate ethanol	
		producer	
		f) Acetone Butanol Fermentation	2
		, ricolario Balanci i cimo nanci	_
II		Industrial Fermentations: II	15
	2.1	Production of secondary metabolites-	04
		Antibiotics- Penicillin& Semisynthetic Penicillins	
	2.2	Production of primary metabolites-	00
		a) Vitamin B ₁₂ from <i>Propionibacterium</i> & <i>Pseudomonas</i>	03 01
		 b) Amino acids- Methods for manufacture, Glutamic Acid (direct) 	UT
		c) Organic acids- Citric acid	02
		d) Enzymes- Uses of enzymes in industry, Production	04
		of Fungal amylase by solid substrate fermentation,	•
		Stabilization of enzymes- Immobilization techniques	
		e) Biotransformation of steroids	01
		9	
III	8	Industrial Fermentations: III	15
	3.1	a) Mushroom cultivation	03
	N	b) SCP- Substrates used, Organisms and safety	03
	W.	c) Fermented foods- Bread, Fermented cassava,	00
7/1		Kombucha tea	03
		 d) Mold modified foods- Types (list only), Production of Soya sauce 	02
		e) Lactic acid starter cultures, Probiotics, Prebiotics and	02 04
		Synbiotics	0 4
IV		Bioassays & Quality Assurance	15
	4.1	Bioassays	05
		a) Comparison of Chemical and Biological assays	
		b) Microbiological assays- Test organisms, types of	
		assay methods and factors affecting.	
		c) Modern methods for assay of fermentation products	

4.2	QA, QC, GMP	07
	 a) Definitions- Manufacture, Quality, Quality Control, In-Process Control, Quality Assurance, Good Manufacturing Practices. b) Chemicals & Pharmaceutical production: The five variables, Raw materials, in process Items, Finished Products, Labels and Labelling, Packaging materials, Documentation, Regulations. c) Control of Microbial contamination during manufacture: Premises and contamination control Manufacture of sterile products, Clean and Aseptic Area, Important publications related to QA 	
4.3	Sterilization Control and Sterility Assurance	03
	a) Bio-burden determinations	
	b) Environmental monitoring	
	c) Sterilization Monitors – Physical, Chemical and	
	Biological indicators	
	d) Sterility Testing	

References:

- a) Crueger W. and Crueger A. (2000) "Biotechnology -"A Textbook of Industrial Microbiology",
 2nd Edition, Panima Publishing Corporation, New Delhi.
- b) Casida L. E., "Industrial Microbiology 2009 Reprint, New Age International (P) Ltd, Publishers, New Delhi
- c) H. A. Modi, 2009. 'Fermentation Technology "Vol: 1 & 2, Pointer Publications, India
- d) Prescott and Dunn's 'Industrial Microbiology' (1982) 4th Edition, McMillan Publishers
- e) Hugo & Russell's, Pharmaceutical Microbiology Blackwell Science, Seventh Edition
- f) Peppler, H. J. and Perlman, D. (1979), "Microbial Technology". Vol 1 & 2, Academic Press.
- g) Michael J. Waites, 2001 —Industrial Microbiology: An Introduction, Blackwell Science Publications
- h) Naduka Okafor, -Modern Industrial Microbiology, Science Publications, 2007
- i) R. W. Hutkins, "Microbiology and Technology of Fermented Foods (2006) Blackwell Publications p067-105
- i) https://www.dairyscience.info/index.php/cheese-starters/49-cheese-starters.html
- k) Marth and Steele, "Applied Dairy Microbiology", Lactic acid starter cultures, (2001)
- I) Probiotics and Prebiotics https://www.spg.pt/wp-content/uploads/2015/11/2011-Probiotics_FINAL_20110116.pdf

COURSE CODE	PRACTICALS	3
		Credits
RUSMICP602	Practical Based on 603	
	Qualitative detection of Lipase	
	2. Estimation of proteins by Lowry's method	
	3. Qualitative detection of Protease	,(^)
	4. Assay of enzyme Protease	
	5. Study the breakdown of amino acids – Lysine	
	decarboxylase and Deaminase activity 6. Estimation of uric acid	
	7. To study catabolite repression	
	8. Study of Hill reaction	
	9. Study of Philiteaction 9. Study of photosynthesis in microalgae	
	10. Study of Lithotrophs – Nitrification	
	11. Alcohol tolerance for yeast.	
	12. Sugar tolerance for yeast.	
	13. Inoculum Development for alcohol fermentation	
	14. Alcohol fermentation.: -Efficiency of fermentation	
	15. Chemical estimation –Sugar by Cole's Ferricyanide	
	method	
	16. Chemical estimation –Alcohol Estimation-	
	Dichromate method	
	17. GC demonstration of ethanol	
	18. Production of fungal amylase using solid substrate	
	fermentation	
	19. Immobilization of yeast invertase	
	20. Mushroom cultivation	
	21. Production of Spirulina SCP	
	22. Bioassay of an antibiotic Ampicillin	
	23. Bioassay of Cyanocobalamin.	
	24. Chemical assay of Ampicillin	
	25. Sterility testing of water for injection.	

Modality of Assessment:

Theory Examination Pattern:

A. Internal Assessment- 40%- 40 Marks per paper

Sr No	Evaluation type	Marks
1	One Assignment/Case study/Project/ Presentation	20
2	One class Test (multiple choice questions / objective)	20
	TOTAL	40

B. External Examination- 60%- 60 Marks per paper

Semester End Theory Examination:

- 1. Duration These examinations shall be of two hours duration.
- 2. Theory question paper pattern:
 - a. There shall be four questions each of 15 marks on each unit.
 - b. All questions shall be compulsory with internal choice within the questions.

Paper Pattern:

Questions	Options	Marks	Total marks	Questions on	
Q.1) A)	Any 2 out of 3	10			
Q.1) B)	Any 1 set out of 2 (i & ii or i & ii)	03 & 02	15	Unit I	
Q.2) A)	Any 2 out of 3	10			
Q.2) B)	Any 1 set out of 2 (i & ii or i & ii)	03 & 02	15	Unit II	
Q.3) A)	Any 2 out of 3	10			
Q.3) B)	Any 1 set out of 2 (i & ii or i & ii)	03 & 02	15	Unit III	
Q.4) A)	Any 2 out of 3	10			
Q.4) B)	Any 1 set out of 2 (i & ii or i & ii)	03 & 02	15	Unit IV	

Practical Examination Pattern:

A. Internal Examination: 40%-80 Marks

Practical		I	II			
Particulars	Paper I	Paper II	Paper III	Paper IV		
Journal	05	05	05	05		
Experimental tasks	15	15	15	15		
Total	20	20	20	20		

B. External Examination: 60%- 120 Marks

Semester End Practical Examination:

Particulars	Practical I	Practical II
Laboratory work	50	50
Spots/Quiz/Viva	10	10
Total	60	60

PRACTICAL BOOK/JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination. In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Coordinator / In charge of the department; failing which the student will not be allowed to appear for the practical examination.

Overall Examination and Marks Distribution Pattern Semester VI

Course 601			602		603			604			Grand Total		
	ln	Ex	Total	In	Ex	Total	In	Ex	Total	In	Ex	Total	
Theory	40	60	100	40	60	100	40	60	100	40	60	100	400
Practical	20	30	50	20	30	50	20	30	50	20	30	50	200