S. P. Mandali's Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for T.Y.

Program: BSc (Applied Component Biotechnology)

Program Code: RUSACBT

(Credit Based Semester and Grading System for academic year 2023–2024)

GRADUATE ATTRIBUTES

GA	GA Description			
	A student completing Bachelor's Degree in Science program			
	will be able to:			
GA 1	Recall and explain acquired scientific knowledge in a			
	comprehensive manner and apply the skills acquired in their			
	chosen discipline. Interpret scientific ideas and relate its			
	interconnectedness to various fields in science.			
GA 2	Evaluate scientific ideas critically, analyse problems, explore			
	options for practical demonstrations, illustrate work plans and			
	execute them, organise data and draw inferences.			
GA 3	Explore and evaluate digital information and use it for knowledge			
	upgradation. Apply relevant information so gathered for analysis			
	and communication using appropriate digital tools.			
GA 4	Ask relevant questions, understand scientific relevance,			
	hypothesize a scientific problem, construct and execute a project			
	plan and analyse results.			
GA 5	Take complex challenges; work responsibly and independently,			
	as well as in cohesion with a team for completion of a task.			
	Communicate effectively, convincingly and in an articulate			
-	manner.			
GA 6	Apply scientific information with sensitivity to values of different			
P	cultural groups. Disseminate scientific knowledge effectively for			
	upliftment of the society.			
GA 7	Follow ethical practices at work place and be unbiased and			
5-1	critical in interpretation of scientific data. Understand the			
•	environmental issues and explore sustainable solutions for it.			
GA 8	Keep abreast with current scientific developments in the specific			
	discipline and adapt to technological advancements for better			
	application of scientific knowledge as a lifelong learner			

PROGRAM OUTCOMES

РО	Description			
	A student completing coursework in Applied Component-			
	Biotechnology for Bachelor's Degree in Science program			
	will be able to:			
PO 1	Recall basic concepts and principles of Genetic engineering and Industrial Biotechnology			
PO 2	Apply knowledge of genetic engineering to understand the			
	developments in improvement of characteristics of animal and			
	plants for benefit of mankind			
PO 3	Extrapolate the understanding of microbial properties and their modification for applications in various fields of biotechnology			
PO 4	Analyse sequence data for DNA and protein using bioinformatics			
	tools			
PO 5	Evaluate the merits and demerits of various tools and techniques			
	used in genetic engineering as well as Plant and Animal			
	Biotechnology			
PO 6	Understand scientific relevance of biotechnological advances and			
	practices and critically evaluate them on social, legal and ethical			
	grounds			
RAMMARI				

COURSE OUTLINE

	SEM	COURSE CODE	COURSE TITLE	CREDITS
TY	V	RUSACBT501	Concepts in biotechnology	2
		RUSACBT	Practical Based on Above	2
		P501	Courses	, (2)
	VI	RUSACBT601	Applied biotechnology	2
		RUSACBT	Practical Based on Above	2
		P601	Course	
		APUIRAU		

Course Code: RUSACBT 501

Course Title: Concepts in Biotechnology

Academic year 2022-23

COURSE OUTCOMES:

COURSE	DESCRIPTION	
OUTCOME		
CO 1	Recognise and develop a broader perspective on the scope and	
	branches of modern biotechnology	
CO 2	Explain and summarise the principles that form the basis for	
	recombinant DNA technology and use them in genetic engineering	
CO 3	Analyze and apply general principles of generating	
	transgenic plants, animals and microbes	
CO 4	Recognise and apply the principles of bioinformatics	
CO 5	Demonstrate and apply working knowledge in techniques like PCR,	
	genetic mapping, gene isolation and cloning, DNA	
	sequencing, and bioinformatics	
CO 6	Explain the different types of fermentations and their significance and	
	illustrate the overall design of different types of fermenters used in	
	production of biotechnological products	
CO 7	Attribute and evaluate the importance of social, legal and ethical	
	implications of biotechnology and apply the knowledge in different	
	situations involving GMO's or genome editing	

DETAILED SYLLABUS

Course	Sub-	Course/ Unit Title	Credits/
Code	Unit		Lectures
RUSACBT		CONCEPTS IN BIOTECHNOLOGY	2/60
501			
I		Importance of Biotechnology and Tools in	15
		Genetic Engineering	
	1.1	Introduction to Biotechnology	03
		a) History of Biotechnology – Traditional and	
		Modern Biotechnology.	
		b) Biotechnology as an interdisciplinary area	
		c) Global impact and current excitements of	
		Biotechnology- (Health care, Agriculture, human	
		genome project, environment), Biodiversity and	
		its preservation.	
	1.2	Tools in Genetic Engineering	12
		Toolo III Genetic Engineering	
		a) Basic requirements: Electrophoresis, agarose gel	
		electrophoresis, Pulse field gel electrophoresis	
		(PFGE), SDS-PAGE, 2D gel electrophoresis	
		b) Mass Spectrometry – Introduction to new	
		terminologies (MALDI, ESI), Spectrophotometry -	
		UV and Visible, PCR and types of PCR	
		c) Blotting Techniques: Southern, Northern and	
		Western blotting, DNA sequencing, Probes,	
	. •	ELISA, RIA, Nick translation and in situ	
		Hybridization.	
	OK	Table in the Constitution of the Constitution	4.5
II S		Techniques in Genetic Engineering	15
	2.1	Cutting and joining of DNA	05
		a) Exonucleases, Endonucleases, Restriction	
19.		Endonucleases (Type I, II, III). Examples of some	
		enzymes – DNA ligases, Alkaline Phosphatases,	
Y -'		DNA polymerase	
		b) Use of Linkers and Adaptors	
	2.2	Cloning Vectors	05
		a) Properties of good vector	
		b) Cloning and Expression vectors.	
		c) E. coli vectors – Plasmid, Cosmid, Phagmid	

		d) Bacteriophage vectors – Lambda and M13	
		,	
		,	
		Yeast vectors (YAC), Bacterial Artificial	
		Chromosome (BAC), Animal and Plant Vectors	
	2.3	Steps in gene cloning	05
	2.3	Steps in gene cioning	03
		a) Isolation of desired gene, cDNA library, Genomic	
		library, Introduction of vector in to suitable	
		bacterial host (various transformation methods).	
		b) Selection of recombinant clones, selection of	
		clones containing recombinant vector, selection of	
		clones containing specific DNA inserts, colony	
		hybridization test.	
		i,juna_aman_team	
III		Animal Biotechnology and Bioinformatics	15
	3.1	Introduction Animal Biotechnology	03
		a) Basic Principles of mammalian cell culture	
		b) Establishment of cell line	
		c) Continuous cell lines	
		 d) Media and equipment for animal cell culture 	
	3.2	Methods in Animal Biotechnology	05
		a) Methods of transfection	
		 b) Embryonic stem cell transfer 	
		 c) Targeted gene transfer methods 	
		 d) Methods of detection of transgenics and trans 	
		gene	
		e) Invitro fertilization	
	3.3	Applications of Animal Biotechnology	03
		a) Hybridoma technology	
	(2)	b) Transgenic animals	
7		c) Animal cloning	
	3.4	Introduction to Bioinformatics	04
		 a) Introduction to Genomics, Proteomics and 	
		Bioinformatics	
		b) Genomic and Protein data base	
		c) Introduction to data similarity search BLAST and	
		FASTA	
	l		

IV		Plant Biotechnology and Industrial	15
		Biotechnology	
	4.1	Introduction to Plant Biotechnology	04
		 a) Basic techniques in PTC: Plant tissue culture, 	
		Suspension culture, Organ culture and Callus	
		culture	
		b) Applications of PTC: Regeneration of plant,	
		Germplasm bank, Artificial seeds	4.
			C
	4.2	Methods in Plant Biotechnology	04
		a) Agro-mediated gene transfer	
		b) Agro-infection methods	X
		c) Direct gene transfer methods	
		d) Method for integration of transgene	
		e) Methods for confirmation of transgenic plants	
	4.3	Introduction to Industrial Biotechnology	04
		a) Major types of Bioreactors	
		b) Submerged and solid-state fermentation	
		c) Fermentation media	
		d) Fermentation control	
		e) Downstream processing	
		40	
	4.4	IPR and Bioterrorism	03
		 a) IPR: Types of IPR, Patent requirements, Indian 	
		patenting Law, Procedure of filing a patent,	
		Patenting and biotechnology	
		b) Bioterrorism	

References:

- a) B. D. Singh. Biotechnology. Kalyani Publishers.
- b) R.Ian.Freshney Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications. Science Publishers. Sixth Edition.
- c) S.Ignacimuthu Basic Bioinformatics. Alpha Science International Ltd.
- d) T.K.Attwood Introduction to Bioinformatics. Pearson Education Ltd.
- e) Sant Saran Bhojwani Pant Tissue Culture: An Introductory Text. Springer.
- f) Wulf Crueger Biotechnology: Textbook of Industrial Microbiology. 2nd Edition, Panima Publication Corporation, New Delhi.
- g) Nduka Okafor. Modern Industrial Microbiology and Biotechnology. Science Publishers.
- h) P.F.Stanbury Principles of Fermentation Technology. Academic Press. Second edition

- S. N. Jogdand. Advances in Biotechnology. 2005. 5t Edition i)
- j) H A Modi, "Fermentation Technology", 2009, Volume 1 and 2, Pointer Publications, India.
- k) IPR: WIPO Publication No. 450(E) ISBN 978-92-805-1555-0
- I) Bioterrorism CDC Emergency Preparedness, https://emergency.cdc.gov/bioterrorism/

Course	Course/ Unit Title	Credits/
Code		Lectures
RUSACBTP	CONCEPTS IN BIOTECHNOLOGY-	2/60
501	Practicals	lectures
	Basic techniques in Microbiology	(6)
	2. Preparation of culture media, M9 and LB medium	
	3. Isolation of plasmid DNA from E. coli	
	4. Restriction digestion of DNA and study of)
	restriction gene map.	
	Gel electrophoresis of DNA	
	6. Isolation of genomic DNA (bacterial / yeast or	
	onion)	
	7. PAGE for proteins.	
	8. Plant Tissue culture	
	Western blot technique	
	10. Transformation in bacterial cultures.	
	11. Cloning and expression of bacterial gene	
	12. PCR	
	13. Quantification of DNA and Protein using U.V	
	absorption	
	14. Demonstration of use of Bioinformatic tools	

Modality of Assessment

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1	One Assignment/Case study/Project/ Presentation	15
2	One class Test (multiple choice questions / objective)	20
3	Active participation in routine class instructional deliveries	05
	TOTAL	40

B) External Examination- 60%- 60 Marks

Semester End Theory Examination:

- 1. Duration These examinations shall be of two hours duration.
- 2. Theory question paper pattern:
 - a. There shall be four questions each of 15 marks on each unit.
 - b. All questions shall be compulsory with internal choice within the questions.

Paper Pattern:

Questions	Options	Marks	Total marks	Questions on
Q.1) A)	Any 2 out of 3	10		
Q.1) B)	Any 1 set out of 2 (i & ii or i & ii)	03 & 02	15	Unit I
Q.2) A)	Any 2 out of 3	10		
Q.2) B)	Any 1 set out of 2 (i & ii or i & ii)	03 & 02	15	Unit II
Q.3) A)	Any 2 out of 3	10		
Q.3) B)	Any 1 set out of 2 (i & ii or i & ii)	03 & 02	15	Unit III
Q.4) A)	Any 2 out of 3	10		11 3 07
Q.4) B)	Any 1 set out of 2 (i & ii or i & ii)	03 & 02	15	Unit IV

Practical Examination Pattern:

A) Internal Examination: 40%- 40 Marks

Particulars	Marks
Journal	05
Experimental tasks	15
Group Activity	15
Participation	05
Total	40

B) External Examination: 60%- 60 Marks

Semester End Practical Examination:

Particulars	Marks
Laboratory work	50
Spots/Quiz/Viva	10
Total	60

PRACTICAL BOOK/JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.

In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Co-ordinator / Incharge of the department; failing which the student will not be allowed to appear for the practical examination.

Overall Examination & Marks Distribution Pattern

Semester V

Course	RUSACBT501		
	Internal	External	Total
Theory	40	60	100
Practicals	40	60	100

Course Code: RUSACBT 601

Course Title: Applied Biotechnology

Academic year 2022-23

COURSE OUTCOMES:

COURSE	DESCRIPTION			
OUTCOME				
CO 1	Explain and apply basic principles of biotechnology to fields like food,			
	beverage, pharmaceutical, and dairy industry and explain the role of			
	microbes in their production			
CO 2	Evaluate microbes as candidates for biofertilizers and biopesticides.			
CO 3	Evaluate the role of genetically modified plants and animals in modern			
	agricultural practices and use the same for human welfare			
CO 4	Categorize and compare various biofuels			
CO 5	Apply the principles of gene manipulation for bioremediation of			
	xenobiotics			
CO 6	Explain the principles underlying working of biochips and biosensors			
CO 7	Categorize vaccines and Explain the use of Biotechnological products in			
	prevention, diagnosis and treatment of diseases			
CO 8	Summarize modern concepts and methods of pharmacology, and analyze			
	samples using knowledge of Forensic medicine			
PANNAR				

DETAILED SYLLABUS

Course Code	Sub- Unit	Course/ Unit Title	Credits/ Lectures
RUSACBT 601		APPLIED BIOTECHNOLOGY	2/60
I		Industrial Biotechnology	
	1.1	Exploitation of Microorganisms to produce primary and	03
		secondary metabolites: Amino acids (lysine) Antibiotics- Penicillin	KOV
	1.2	Alcoholic beverages (Wine), Dairy products (Cheese and Yogurt) Organic acids (citric acid)	04
	1.3	Introduction to SCP –Yeast, Spirulina, Mushroom	03
	1.4	Synthesis of Biopolymers – biogums, bioplastic	02
	1.5	Enzyme Technology: Methods of enzyme Immobilization & their applications	03
		Application of enzymes in detergent, leather, wool industry and food, dairy industry	
		X	
II		Agricultural and Livestock Biotechnology	15
	2.1	Production of Biofertilizers- Types, carriers and application methods	04
	2.2	Biopesticides – Bacillus thuringiensis – Mode of action, Production & application, list of other examples	03
	2.3	Development of Insect, pathogen and herbicide resistant plants, golden rice, drought, salt and oxidative stress resistant plant, plants as bioreactors	05
CALLA	2.4	Application of transgenic animals, animal bioreactors, Introduction to molecular farming (pharming)	03
		Environmental Biotechnology	15
C	3.1	Sources of biomass, Biological fuel generation -ethanol and methane from biomass, Hydrogen production, Biodiesel, Algal oils	05
	3.2	Bioremediation: Methods of bioremediation, Bioremediation of hydrocarbons, dyes, paper and pulp industry, heavy metals, xenobiotics	05

	3.3	Vermicomposting and bioleaching, biosensors and biochips	05
IV		Biotechnology in Healthcare	15
	4.1	Disease prevention – vaccines: conventional vaccines, purified antigen vaccines, recombinant vaccines. DNA vaccines	04
	4.2	Disease Diagnosis – Probes, monoclonal antibodies and detection of genetic disease	02-
	4.3	Disease treatment – Products from recombinant organisms, interferons, growth factors, antisense nucleotides as therapeutic agents, monoclonal antibodies	04
	4.4	Drug discovery, drug delivery and targeting, artificial tissue / organ, gene therapy, enzyme therapy, Genome variation and pharmacogenomics (introduction only)	03
	4.5	Forensic medicine	02

References:

- a) Bernard R Glick and Jack J Pasternak. Molecular Biotechnology: Principles and Applications of recombinant DNA. 3rd Edition.
- b) B. D. Singh. Biotechnology. Kalyani Publishers.
- c) S. N. Jogdand. Advances in Biotechnology. 2005. 5t Edition.
- d) S. B. Primrose. Modern Biotechnology 1989. Blackwell Scientific Publ.
- e) Primrose and others. Principles of Gene manipulations. 6th edition. 2004 Blackwell Science.
- f) Aluizino Borent and others. Understanding Biotechnology. 2004 Pearson Education.
- g) James Watson and Others. Recombinant DNA. 2001. Scientific American Books.
- h) Keith Wilson, John Walker. Principles Techniques of Biochemistry and Molecular Biology.2010 Cambridge University Press.
- i) Michael J. Waiteset al. Industrial Microbiology: An Introduction. Blackwell Science Ltd. 2001
- j) Marth and Steele. Applied Dairy Microbiology: 2nd Edition
- k) Henry J Peppler, Microbial Technology: Microbial processes, Vol.1, Academic Press, 1979
- I) Nduka Okafor, Modern Industrial microbiology and biotechnology, 2007, Science Publishers
- m) Principles of Pharmacology, David E Golan, 2007, LWW
- n) Phillip L. Gomez and James M. Robinson, Vaccine Manufacturing, (2018)
- o) Stephan Kabasci, Bio-based plastics: Materials and Applications, Wiley Publications (2014)

Course	Course/ Unit Title	Credits/
Code		Lectures
RUSACBTP	APPLIED BIOTECHNOLOGY - Practicals	2/60
601		
	Production of wine Proporation of weathurt	7,0
	2. Preparation of yoghurt3. Production of yeast SCP and estimation of protein content	
	Production of Microbial polysaccharide and determination of yield.	
	 Isolation and cultivation of Azotobacter, Rhizobium, Phosphate solubilizers and preparation of biofertilizers. 	
	Immobilization of Saccharomyces cerevisiae using alginate and invertase assay.	
	7. Cultivation of Edible mushroom	
	Detection of enzyme activity in detergents	
	Enrichment of phenol degraders and estimation of phenol degraded	
	10. Detection of disorders using kits	
AMMAR	11. Demonstration of ELISA	

Modality of Assessment

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1	One Assignment/Case study/Project/ Presentation	20
2	One class Test (multiple choice questions / objective)	20
	TOTAL	40

B) External Examination- 60%- 60 Marks

Semester End Theory Examination:

- 1. Duration These examinations shall be of **two hours** duration.
- 2. Theory question paper pattern:
 - a. There shall be four questions each of 15 marks on each unit.
 - All questions shall be compulsory with internal choice within the questions.

Paper Pattern:

Questions	Options	Marks	Total marks	Questions on	
Q.1) A)	Any 2 out of 3	10			
Q.1) B)	Any 1 set out of 2 (i & ii or i & ii)	03 & 02	15	Unit I	
Q.2) A)	Any 2 out of 3	10			
Q.2) B)	Any 1 set out of 2 (i & ii or i & ii)	03 & 02	15	Unit II	
Q.3) A)	Any 2 out of 3	10			
Q.3) B)	Any 1 set out of 2 (i & ii or i & ii)	03 & 02	15	Unit III	
Q.4) A)	Any 2 out of 3	10			
Q.4) B)	Any 1 set out of 2 (i & ii or i & ii)	03 & 02	15	Unit IV	

Practical Examination Pattern:

A) Internal Examination: 40%- 40 Marks

	Particulars	Marks	
	Journal	05	
	Experimental tasks	15	/.
	Group Activity	20	
	Total	40	
in	ation: 60%- 60 Marks		-0//
Pı	actical Examination:		
	Particulars	Marks	

B) External Examination: 60%- 60 Marks

Semester End Practical Examination:

Particulars	Marks
Laboratory work	50
Spots/Quiz/Viva	10
Total	60

PRACTICAL BOOK/JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.

In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Co-ordinator / Incharge of the department; failing which the student will not be allowed to appear for the practical examination.

Overall Examination & Marks Distribution Pattern

Semester VI

Course	RUSACBT601		
71	Internal	External	Total
Theory	40	60	100
Practicals	40	60	100