S. P. Mandali's Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for T.Y.

Program: BSc (Applied Component Biotechnology)

Program Code: RUSACBT

(Credit Based Semester and Grading System for academic year 2022–2023)

GRADUATE ATTRIBUTES

GA	GA Description			
	A student completing Bachelor's Degree in Science program			
	will be able to:			
GA 1	Recall and explain acquired scientific knowledge in a			
	comprehensive manner and apply the skills acquired in their			
	chosen discipline. Interpret scientific ideas and relate its			
	interconnectedness to various fields in science.			
GA 2	Evaluate scientific ideas critically, analyse problems, explore			
	options for practical demonstrations, illustrate work plans and			
	execute them, organise data and draw inferences.			
GA 3	Explore and evaluate digital information and use it for knowledge			
	upgradation. Apply relevant information so gathered for analysis			
	and communication using appropriate digital tools.			
GA 4	Ask relevant questions, understand scientific relevance,			
	hypothesize a scientific problem, construct and execute a project			
	plan and analyse results.			
GA 5	Take complex challenges; work responsibly and independently,			
	as well as in cohesion with a team for completion of a task.			
	Communicate effectively, convincingly and in an articulate			
7	manner.			
GA 6	Apply scientific information with sensitivity to values of different			
	cultural groups. Disseminate scientific knowledge effectively for			
	upliftment of the society.			
GA 7	Follow ethical practices at work place and be unbiased and			
2	critical in interpretation of scientific data. Understand the			
•	environmental issues and explore sustainable solutions for it.			
GA 8	Keep abreast with current scientific developments in the specific			
	discipline and adapt to technological advancements for better			
	application of scientific knowledge as a lifelong learner			

PROGRAM OUTCOMES

РО	Description		
	A student completing coursework in Applied Component-		
	Biotechnology for Bachelor's Degree in Science program		
	will be able to:		
PO 1	Recall basic concepts and principles of Genetic engineering and Industrial Biotechnology		
PO 2	Apply knowledge of genetic engineering to understand the		
	developments in improvement of characteristics of animal and		
	plants for benefit of mankind		
PO 3	Extrapolate the understanding of microbial properties and their modification for applications in various fields of biotechnology		
PO 4	Analyse sequence data for DNA and protein using bioinformatics		
	tools		
PO 5	Evaluate the merits and demerits of various tools and techniques		
	used in genetic engineering as well as Plant and Animal		
	Biotechnology		
PO 6	Understand scientific relevance of biotechnological advances and		
	practices and critically evaluate them on social, legal and ethical		
	grounds		
AMMAR			

PROGRAM OUTLINE

	SEM	COURSE CODE	COURSE TITLE	CREDITS
TY	V	RUSACBT501	Concepts in biotechnology	2
		RUSACBT	Practical Based on Above	2
		P501	Courses	()
	VI	RUSACBT601	Applied biotechnology	2
		RUSACBT	Practical Based on Above	2
		P601	Course	
		QUIAAI		

Course Code: RUSACBT 501

Course Title: Concepts in Biotechnology

Academic year 2022-23

COURSE OUTCOMES:

COURSE	DESCRIPTION	
OUTCOME		
CO 1	Recognise and develop a broader perspective on the scope and	
	branches of modern biotechnology	
CO 2	Explain and summarise the principles that form the basis for	
	recombinant DNA technology and use them in genetic	
	engineering	
CO 3	Understand and apply general principles of generating	
	transgenic plants, animals and microbes	
CO 4	Recognise and apply the principles of bioinformatics	
CO 5	Demonstrate working knowledge in techniques like PCR,	
	genetic mapping, gene isolation and cloning, DNA	
	sequencing, and bioinformatics	
CO 6	Explain the different types of fermentations and their significance	
	and illustrate the overall design of different types of fermenters	
	used in production of biotechnological products	
CO 7	Recognize, attribute and evaluate the importance of social,	
	legal and ethical implications of biotechnology and apply the	
	knowledge in different situations involving GMO's or genome	
4	editing	

DETAILED SYLLABUS

Course Code	Sub- Unit	Course/ Unit Title	Credits/ Lectures
RUSACBT 501	Ome	CONCEPTS IN BIOTECHNOLOGY	2/60
I		Importance of Biotechnology and Tools in Genetic Engineering	15
	1.1	Introduction to Biotechnology	03
		 a) History of Biotechnology – Traditional and Modern Biotechnology. b) Biotechnology as an interdisciplinary area c) Global impact and current excitements of Biotechnology- (Health care, Agriculture, human genome project, environment), Biodiversity and its preservation. 	
	1.2	Tools in Genetic Engineering	12
		 a) Basic requirements: Electrophoresis, agarose gel electrophoresis, Pulse field gel electrophoresis (PFGE), SDS-PAGE, 2D gel electrophoresis b) Mass Spectrometry – Introduction to new terminologies (MALDI, ESI), Spectrophotometry - UV and Visible, PCR and types of PCR c) Blotting Techniques: Southern, Northern and Western blotting, DNA sequencing, Probes, ELISA, RIA, Nick translation and in situ Hybridization. 	45
II S		Techniques in Genetic Engineering	15
	2.1	Cutting and joining of DNA	05
RAM		 a) Exonucleases, Endonucleases, Restriction Endonucleases (Type I, II, III). Examples of some enzymes – DNA ligases, Alkaline Phosphatases, DNA polymerase b) Use of Linkers and Adaptors 	
	2.2	Cloning Vectors	05
		 a) Properties of good vector b) Cloning and Expression vectors. c) E. coli vectors – Plasmid, Cosmid, Phagmid 	

	I	d) Pactorianhago vactora Lambdo and M12	
		d) Bacteriophage vectors – Lambda and M13	
		e) Introduction to different vectors - Shuttle vectors,	
		Yeast vectors (YAC), Bacterial Artificial	
		Chromosome (BAC), Animal and Plant Vectors	
	2.3	Steps in gene cloning	05
		a) Isolation of desired gene, cDNA library, Genomic	
		library, Introduction of vector in to suitable	
		bacterial host (various transformation methods).	/() [*]
		b) Selection of recombinant clones, selection of	
		clones containing recombinant vector, selection of	
		clones containing specific DNA inserts, colony	
		hybridization test.	
		Trybhaization test.	
III		Animal Biotechnology and Bioinformatics	15
		3, and 2 13,	
	3.1	Introduction Animal Biotechnology	03
		 a) Basic Principles of mammalian cell culture 	
		b) Establishment of cell line	
		c) Continuous cell lines	
		d) Media and equipment for animal cell culture	
	3.2	Methods in Animal Biotechnology	05
		a) Methods of transfection	
		b) Embryonic stem cell transfer	
		c) Targeted gene transfer methods	
		d) Methods of detection of transgenics and trans	
		gene	
		e) Invitro fertilization	
		e) invitro rerunzation	
	2 2 4	Applications of Animal Dietachyslassy	02
	3.3	Applications of Animal Biotechnology	03
		a) Hybridoma technology	
	/ ~'	b) Transgenic animals	
	>>	c) Animal cloning	
1/2	3.4	Introduction to Bioinformatics	04
11/1		a) Introduction to Genomics, Proteomics and	<u> </u>
		Bioinformatics	
(L)		b) Genomic and Protein data base	
		c) Introduction to data similarity search BLAST and	
		FASTA	
		IASIA	
1			

IV		Plant Biotechnology and Industrial Biotechnology	15
	4.1	Introduction to Plant Biotechnology	04
		 a) Basic techniques in PTC: Plant tissue culture, 	
		Suspension culture, Organ culture and Callus	
		culture	
		b) Applications of PTC: Regeneration of plant,	
		Germplasm bank, Artificial seeds	CX
	4.2	Methods in Plant Biotechnology	04
		a) Agro-mediated gene transfer	
		b) Agro-infection methods	
		c) Direct gene transfer methods	
		d) Method for integration of transgene	
		e) Methods for confirmation of transgenic plants	
	4.3	Introduction to Industrial Biotechnology	04
		a) Major types of Bioreactors	
		b) Submerged and solid-state fermentation	
		c) Fermentation media	
		d) Fermentation control	
		e) Downstream processing	
		X O	
	4.4	IPR and Bioterrorism	03
		a) IPR: Types of IPR, Patent requirements, Indian	
		patenting Law, Procedure of filing a patent,	
		Patenting and biotechnology	
		b) Bioterrorism	

References:

- a) B. D. Singh. Biotechnology. Kalyani Publishers.
- b) R.Ian.Freshney Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications. Science Publishers. Sixth Edition.
- c) S.Ignacimuthu Basic Bioinformatics. Alpha Science International Ltd.
- d) T.K.Attwood Introduction to Bioinformatics. Pearson Education Ltd.
- e) Sant Saran Bhojwani Pant Tissue Culture: An Introductory Text. Springer.
- f) Wulf Crueger Biotechnology: Textbook of Industrial Microbiology. 2nd Edition, Panima Publication Corporation, New Delhi.
- g) Nduka Okafor. Modern Industrial Microbiology and Biotechnology. Science Publishers.
- h) P.F.Stanbury Principles of Fermentation Technology. Academic Press. Second edition

- S. N. Jogdand. Advances in Biotechnology. 2005. 5t Edition i)
- j) H A Modi, "Fermentation Technology", 2009, Volume 1 and 2, Pointer Publications, India.
- k) IPR: WIPO Publication No. 450(E) ISBN 978-92-805-1555-0
- PANTARAITA RUITONONOUS COLLIFEETE
 PANTARRAITA RUITA AUTONOUS COLLIFEETE
 PANTARRAITA RUITA RUITA AUTONOUS COLLIFEETE
 PANTARRAITA RUITA RUIT I) Bioterrorism - CDC Emergency Preparedness, https://emergency.cdc.gov/bioterrorism/

Course	Course/ Unit Title Credits/		
Code	Lectures		
RUSACBTP	CONCEPTS IN BIOTECHNOLOGY- 2/6		
501	Practicals	lectures	
	Basic techniques in Microbiology	(6)	
	2. Preparation of culture media, M9 and LB medium		
	3. Isolation of plasmid DNA from E. coli		
	 Restriction digestion of DNA and study of restriction gene map.)	
	5. Gel electrophoresis of DNA		
	Isolation of genomic DNA (bacterial / yeast or onion)		
	7. PAGE for proteins.		
	8. Plant Tissue culture		
	9. Western blot technique		
	10. Transformation in bacterial cultures.		
	11. Cloning and expression of bacterial gene		
	12. PCR		
	13. Quantification of DNA and Protein using U.V		
	absorption		
	14. Demonstration of use of Bioinformatic tools		

Modality of Assessment

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1	One Assignment/Case study/Project/ Presentation	15
2	One class Test (multiple choice questions / objective)	20
3	Active participation in routine class instructional deliveries	05
	TOTAL	40

B) External Examination- 60%- 60 Marks

Semester End Theory Examination:

- 1. Duration These examinations shall be of two hours duration.
- 2. Theory question paper pattern:
 - a. There shall be four questions each of 15 marks on each unit.
 - b. All questions shall be compulsory with internal choice within the questions.

Paper Pattern:

Questions	Options	Marks	Total marks	Questions on
Q.1) A)	Any 2 out of 3	10		
Q.1) B)	Any 1 set out of 2 (i & ii or i & ii)	03 & 02	15	Unit I
Q.2) A)	Any 2 out of 3	10		
Q.2) B)	Any 1 set out of 2 (i & ii or i & ii)	03 & 02	15	Unit II
Q.3) A)	Any 2 out of 3	10		
Q.3) B)	Any 1 set out of 2 (i & ii or i & ii)	03 & 02	15	Unit III
Q.4) A)	Any 2 out of 3	10		
Q.4) B)	Any 1 set out of 2 (i & ii or i & ii)	03 & 02	15	Unit IV

Practical Examination Pattern:

A) Internal Examination: 40%- 40 Marks

Particulars	Marks
Journal	05
Experimental tasks	15
Group Activity	15
Participation	05
Total	40

B) External Examination: 60%- 60 Marks

Semester End Practical Examination:

Particulars	Marks
Laboratory work	50
Spots/Quiz/Viva	10
Total	60

PRACTICAL BOOK/JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.

In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Co-ordinator / Incharge of the department; failing which the student will not be allowed to appear for the practical examination.

Overall Examination & Marks Distribution Pattern

Semester V

Course	RUSACBT501		
	Internal	External	Total
Theory	40	60	100
Practicals	40	60	100

Owing to the pandemic situation prevailing in 2020 and continuing in 2021, the external examinations (Semester End) may be conducted online as per the instructions/circulars received from the University of Mumbai and Maharashtra State notifications from time to time. The conventional mode of external examination will commence again only after the declaration of normalcy by the Government authorities.

Course Code: RUSACBT 601

Course Title: Applied Biotechnology

Academic year 2022-23

COURSE OUTCOMES:

COURSE	DESCRIPTION	
OUTCOME		
CO 1	Understand and apply basic principles of biotechnology to fields	
	like food, beverage, pharmaceutical, and dairy industry and	
	explain the role of microbes in their production	
CO 2	Recognise and evaluate the application of microbes as	
	biofertilizers and biopesticides.	
CO 3	Recall the role of genetically modified plants and animals and	
	attributing the different values and discussions involved	
	around genetically modified organisms	
CO 4	Explain the importance of biofuels and their manufacture	
CO 5	Exemplify and apply the principles of gene manipulation for	
	bioremediation of xenobiotics	
CO 6	Explain the principles underlying working of biochips and	
	biosensors	
CO 7	Exemplify on the use of microbes and mammalian cells for the	
	production of pharmaceutical products	
CO 8	Organize and develop skills to execute an industrial fermentation	
	process with necessary precautions and summarize significance of	
	each step	

DETAILED SYLLABUS

Course Code	Sub- Unit	Course/ Unit Title	Credits/ Lectures
RUSACBT 601		APPLIED BIOTECHNOLOGY	2/60
I	I Industrial Biotechnology		15
	1.1	Exploitation of Microorganisms to produce primary and	03
		secondary metabolites: Amino acids (lysine) Antibiotics- Penicillin	KO.
	1.2	Alcoholic beverages (Wine), Dairy products (Cheese and Yogurt) Organic acids (citric acid)	04
	1.3	Introduction to SCP –Yeast, Spirulina, Mushroom	03
	1.4	Synthesis of Biopolymers – biogums, bioplastic	02
	1.5	Enzyme Technology: Methods of enzyme Immobilization & their applications	03
		Application of enzymes in detergent, leather, wool industry and food, dairy industry	
II		Agricultural and Livestock Biotechnology	15
	2.1	Production of Biofertilizers- Types, carriers and application methods	04
	2.2	Biopesticides – Bacillus thuringiensis – Mode of action, Production & application, list of other examples	03
	2.3	Development of Insect, pathogen and herbicide resistant plants, golden rice, drought, salt and oxidative stress resistant plant, plants as bioreactors	05
MAK	2.4	Application of transgenic animals, animal bioreactors, Introduction to molecular farming (pharming)	03
) III		Environmental Biotechnology	15
C	3.1	Sources of biomass, Biological fuel generation -ethanol and methane from biomass, Hydrogen production, Biodiesel, Algal oils	05
	3.2	Bioremediation: Methods of bioremediation, Bioremediation of hydrocarbons, dyes, paper and pulp industry, heavy metals, xenobiotics	05

	3.3	Vermicomposting and bioleaching, biosensors and biochips	05
IV		Biotechnology in Healthcare	15
	4.1	Disease prevention – vaccines: conventional vaccines, purified antigen vaccines, recombinant vaccines. DNA vaccines	04
	4.2	Disease Diagnosis – Probes, monoclonal antibodies and detection of genetic disease	02
	4.3	Disease treatment – Products from recombinant organisms, interferons, growth factors, antisense nucleotides as therapeutic agents, monoclonal antibodies	04
	4.4	Drug discovery, drug delivery and targeting, artificial tissue / organ, gene therapy, enzyme therapy, Genome variation and pharmacogenomics (introduction only)	03
	4.5	Forensic medicine	02

References:

- a) Bernard R Glick and Jack J Pasternak. Molecular Biotechnology: Principles and Applications of recombinant DNA. 3rd Edition.
- b) B. D. Singh. Biotechnology. Kalyani Publishers.
- c) S. N. Jogdand. Advances in Biotechnology. 2005. 5t Edition.
- d) S. B. Primrose. Modern Biotechnology 1989. Blackwell Scientific Publ.
- e) Primrose and others. Principles of Gene manipulations. 6th edition. 2004 Blackwell Science.
- f) Aluizino Borent and others. Understanding Biotechnology. 2004 Pearson Education.
- g) James Watson and Others. Recombinant DNA. 2001. Scientific American Books.
- h) Keith Wilson, John Walker. Principles Techniques of Biochemistry and Molecular Biology.2010 Cambridge University Press.
- i) Michael J. Waiteset al. Industrial Microbiology: An Introduction. Blackwell Science Ltd. 2001
- j) Marth and Steele. Applied Dairy Microbiology: 2nd Edition
- k) Henry J Peppler, Microbial Technology: Microbial processes, Vol.1, Academic Press, 1979
- I) Nduka Okafor, Modern Industrial microbiology and biotechnology, 2007, Science Publishers
- m) Principles of Pharmacology, David E Golan, 2007, LWW
- n) Phillip L. Gomez and James M. Robinson, Vaccine Manufacturing, (2018)
- o) Stephan Kabasci, Bio-based plastics: Materials and Applications, Wiley Publications (2014)

Course	Course/ Unit Title	Credits/
Code		Lectures
RUSACBTP	APPLIED BIOTECHNOLOGY - Practicals	2/60
601		
	 Production of wine Preparation of yoghurt Production of yeast SCP and estimation of protein content Production of Microbial polysaccharide and determination of yield. Isolation and cultivation of Azotobacter, Rhizobium, Phosphate solubilizers and preparation of biofertilizers. Immobilization of Saccharomyces cerevisiae using alginate and invertase assay. Cultivation of Edible mushroom Detection of enzyme activity in detergents Enrichment of phenol degraders and estimation of phenol degraded Detection of disorders using kits Demonstration of ELISA 	

Modality of Assessment

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1	One Assignment/Case study/Project/ Presentation	20
2	One class Test (multiple choice questions / objective)	20
	TOTAL	40

B) External Examination- 60%- 60 Marks

Semester End Theory Examination:

- 1. Duration These examinations shall be of **two hours** duration.
- 2. Theory question paper pattern:
 - a. There shall be four questions each of 15 marks on each unit.
 - b. All questions shall be compulsory with internal choice within the questions.

Paper Pattern:

Questions	Options	Marks	Total marks	Questions on
Q.1) A)	Any 2 out of 3	10		
Q.1) B)	Any 1 set out of 2 (i & ii or i & ii)	03 & 02	15	Unit I
Q.2) A)	Any 2 out of 3	10		
Q.2) B)	Any 1 set out of 2 (i & ii or i & ii)	03 & 02	15	Unit II
Q.3) A)	Any 2 out of 3	10		
Q.3) B)	Any 1 set out of 2 (i & ii or i & ii)	03 & 02	15	Unit III
Q.4) A)	Any 2 out of 3	10		
Q.4) B)	Any 1 set out of 2 (i & ii or i & ii)	03 & 02	15	Unit IV

Practical Examination Pattern:

A) Internal Examination: 40%- 40 Marks

Particulars	Marks
Journal	05
Experimental tasks	15
Group Activity	20
Total	40

B) External Examination: 60%- 60 Marks

Semester End Practical Examination:

Particulars	Marks
Laboratory work	50
Spots/Quiz/Viva	10
Total	60

PRACTICAL BOOK/JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.

In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Co-ordinator / Incharge of the department; failing which the student will not be allowed to appear for the practical examination.

Overall Examination & Marks Distribution Pattern

Semester VI

Course	RUSA		
71	Internal	External	Total
Theory	40	60	100
Practicals	40	60	100

Owing to the pandemic situation prevailing in 2020 and continuing in 2021, the external examinations (Semester End) may be conducted online as per the instructions/circulars received from the University of Mumbai and Maharashtra State notifications from time to time. The conventional mode of external examination will commence again only after the declaration of normalcy by the Government authorities.