

AC/II(22-23).3.RUS9

S. P. Mandali's Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for S.Y

Program: BSc (Microbiology)

Program Code: RUSMIC

(Credit Based Semester and Grading System for academic year 2023-24)

GRADUATE ATTRIBUTES

GA	GA Description
	A student completing Bachelor's Degree in Science program will be
	able to:
GA 1	Recall and explain acquired scientific knowledge in a comprehensive manner
	and apply the skills acquired in their chosen discipline. Interpret scientific
	ideas and relate its interconnectedness to various fields in science.
GA 2	Evaluate scientific ideas critically, analyse problems, explore options for
	practical demonstrations, illustrate work plans and execute them, organise
	data and draw inferences.
GA 3	Explore and evaluate digital information and use it for knowledge
	upgradation. Apply relevant information so gathered for analysis and
	communication using appropriate digital tools.
GA 4	Ask relevant questions, understand scientific relevance, hypothesize a
	scientific problem, construct and execute a project plan and analyse results.
GA 5	Take complex challenges; work responsibly and independently, as well as
	in cohesion with a team for completion of a task. Communicate effectively,
	convincingly and in an articulate manner.
GA 6	Apply scientific information with sensitivity to values of different cultural
	groups. Disseminate scientific knowledge effectively for upliftment of the
	society.
GA 7	Follow ethical practices at work place and be unbiased and critical in
	interpretation of scientific data. Understand the environmental issues and
"IL	explore sustainable solutions for it.
GA 8	Keep abreast with current scientific developments in the specific discipline
67	and adapt to technological advancements for better application of scientific
	knowledge as a lifelong learner

PROGRAM OUTCOMES

РО	Description		
	A student completing Bachelor's Degree in Science program in the subject of Microbiology will be able to:		
PO 1	Recall, explain and summarize basic concepts related to cytology,		
	biochemistry, physiology, genetics and reproduction of prokaryotes and		
	compare it with eukaryotes.		
PO 2	Appreciate and explain the diversity in the microbial world and evaluate		
	their ecological role as well as state their significance to humankind.		
PO 3	Elucidate the basic concepts associated with growth and control of		
	microorganisms and apply it in pure culture and preservation		
	techniques.		
PO 4	Differentiate, classify and characterize microorganisms based on their		
	morphological, cultural, biochemical, and molecular properties.		
PO 5	Explore, compare and evaluate the role of microorganisms as symbionts		
	in other life forms.		
PO 6	Apply the understanding of microbial processes to diverse science		
	areas such as medical, industrial, agricultural and food sciences and		
	evaluate their potential for human well-being, for tackling environmental		
	issues and exploring sustainable solutions		
PO 7	Explain the nature of biomolecules and metabolic processes; the role		
11	and kinetics of enzymes as well as the thermodynamic laws that drive		
	these reactions.		
PO 8	Summarize the basic working principles of various bioanalytical		
4	techniques and tools and apply them to detect, estimate and		
	structurally evaluate biomolecules present in the microbial cells.		
PO 9	Explain the nature of genetic material and elaborate the molecular		
	mechanisms underlying various genetic processes like replication,		

	transcription, translation, gene transfer and recombination in bacteria; and explain basic concepts in virology.
PO 10	Apply the basics of genetics and molecular biology to understand and
	evaluate techniques in genetic engineering and also for the use of
	bioinformatic tools for presentation and processing of data.
PO 11	Recognize and explain the role of microorganisms in different
	diseases, attribute pathogenesis mechanisms to their properties and
	extrapolate it to disease diagnosis, treatment and prevention. Outline
	and recall concepts in epidemiology of diseases. Classify and
	evaluate different chemotherapeutic agents.
PO 12	Classify and summarize mechanisms of defense in humans, detail out
	the functioning of our immune system, correlate it to disease and its
	prevention and outline its association to health. Apply immunological
	principles for diagnosis of diseases.
PO 13	Understand and outline different biochemical mechanisms and their
	regulation; retrieve and construct biochemical pathways in microbial
	metabolism of major macromolecules and, recall and integrate the
	bioenergetics of metabolic reactions.
PO 14	Evaluate, exemplify and outline the role of microorganisms in different
7,	industrial fermentations, summarize technological aspects of
16	bioprocesses, recall knowledge about patents, copyright and
COM	regulatory practices and QA.
PO 15	Demonstrate key practical skills/competencies in working with
	microbes for their study and use in the laboratory as well as outside,
	including the use of good microbiological practices. Analyze problems

	involving microbes, articulate them and devise innovative and creative solutions.
PO 16	Hypothesize, design experiments, construct experimental plans, execute them and analyze data with a basic understanding of statistics. Demonstrate an ability to be unbiased and critical in interpretation of scientific data
PO 17	Communicate effectively to express scientific ideas and/or their experimental data in an effective, precise and concise manner.
RAMA	RAMPRUIARUTIONOMIC

PROGRAM OUTLINE

YEAR	SEM	COURSE	COURSE TITLE	CREDITS
		CODE		<u>~</u>
	ı	RUSMIC 101	Fundamentals of Microbiology	02
	•	Core course	Tundamentals of wholoblology	02
		RUSMIC 102	Techniques in Microbiology	02
		Core course	reciniquee in inicialicia gy	UZ
		RUSMICP101	Practical based on above two	02
FY		Core course	courses	UZ
	II	RUSMIC 201	Microbial world: types and	02
		Core course	inter-relations	UZ
		RUSMIC 202	Microbial biomolecules,	02
		Core course	Growth & Control	UZ
		RUSMICP201	Practical based on above two	02
		Core course	courses	UZ
	Ш	118	Microbial taxonomy and	
		RUSMIC 301	Introduction to Genetics and	02
		4	Molecular Biology	
	7	RUSMIC 302	Introduction to Experimental	02
		110011110 002	Microbial Biochemistry	
SY	71/	RUSMIC 303	Environmental Microbiology	02
PAM		RUSMICP301	Practicals based on above	03
			three courses	
	IV	RUSMIC 401	Microbe interactions and host	02
			responses	
		RUSMIC 402	Introduction to Metabolic	02
			Pathways and Enzymology	

		RUSMIC 403	Applied Microbiology	02
		RUSMICP401	Practicals based on above three courses	03
	٧	RUSMIC 501	Microbial Genetics	2.5
		RUSMIC 502	Medical Microbiology	2.5
		RUSMICP501	Practical Based on Above Two Courses	3
		RUSMIC 503	Microbial Biochemistry: Part-l	2.5
		RUSMIC 504	Bioprocess Technology	2.5
		RUSMICP502	Practical Based on Above Two Courses	3
TY	VI	RUSMIC 601	Genetics, Bioinformatics & Virology	2.5
		RUSMIC 602	Immunology	2.5
		RUSMICP601	Practical Based on Above Two Courses	3
		RUSMIC 603	Microbial Biochemistry Part II	2.5
		RUSMIC 604	Industrial Microbiology	2.5
		RUSMICP602	Practical Based on Above Two Courses	3
2 AM	ARP			

Course Code: RUSMIC 301

Course Title: MICROBIAL TAXONOMYAND INTRODUCTION TO GENETICS AND MOLECULAR BIOLOGY

COURSE OUTCOME	DESCRIPTION		
CO 1	Differentiate between vast pool of microbes on the basis of		
	morphological, cultural, biochemical and genetic characteristics		
CO 2	Demonstrate application of techniques in microbial taxonomy		
CO 3	Construct and Interpret Microbial Phylogeny.		
CO 4	Apply Classical Genetics and Neo Mendelian Genetics Principles		
CO 5	Discriminate the structure of DNA and RNA and the different forms of		
	DNA		
CO6	Apply Knowledge of Gene Expression in Bacteria		
Apply Knowledge of Gene Expression in Bacteria			

Course	Unit	Course/ Unit Title	Credits/
Code/			Lectures
Unit			4.
RUSMIC		MICROBIAL TAXONOMY AND	2 / 45
301		INTRODUCTION TO GENETICS AND	4 /
		MOLECULAR BIOLOGY	
		mozzoszym Biożosi	
ı		Techniques in Microbial Taxonomy	15
•		recrimques in which obtain raxonomy	13
	1.1	Introduction to microbial Taxonomy and Taxonomic	01
		ranks	
	1.2	Techniques for studying Microbial Taxonomy	08
		a) Microscopic & macroscopic morphology and	
		biochemical characteristics,	
		b) Chemical Analysis	
		c) Serological analysis	
		d) Genetic & molecular analysis: i. Nucleic acid	
		sequencing and finger printing ii. G+C content iii.	
		Nucleic acid hybridization iv. Amino acid	
		sequencing	
		e) Community DNA analysis	
	1.3	Introduction to Microbial Phylogeny	05
		a) Phylogenetic Trees	
	02	i. Types	
		ii. Construction (an overview)	
	71	b) Numerical Taxonomy	
	1.4	Bergey's Manual of Systematic Bacteriology	01
		a) Understanding classification and identification	
61		schemes for bacteria using Bergey's manual	
II		Classical Genetics (Mendelian & Neomendelian)	15
		& Nucleic acid structure	
	2.1	Mendelian genetics:	04

		a) Genotype and Phenotype	
		b) Mendel's Experiments design	
		c) Monohybrid cross and dihybrid cross, Mendelian	
		Laws of inheritance	
		a) Trihybrid Cross	
	2.2	Non-Mendelian genetics	05
	2.2	a) Multiple alleles	(00)
		b) Modification of dominance relationships	
		c) Incomplete dominance	
		d) Codominance (both with their molecular	
		explanations)	
		e) Essential and lethal genes	
		f) Gene expression and effect of environment	
		g) Maternal effect	
		h) Gene interactions and modified Mendelian	
		ratios	
	2.3	Structure of DNA:	03
		Different 3D forms and unusual structures	
		DNA methylation	
	2.4	Structure of chromosomes	01
	2.5	Structure of RNA	02
III		Gene Expression in Bacteria	15
	3.1	Central dogma of Molecular Biology	01
	3.2	Transcription in prokaryotes	06
	\mathcal{A}^{X}	a) RNA biosynthesis	
		b) Prokaryotic transcription	
		i. Prokaryotic promoters	
7/1	7,	ii. Initiation, elongation and termination	
	3.3	Translation	06
		a) Components of protein synthesis apparatus:	
		Genetic code, mRNA, Ribosomes	
		b) Degeneracy of genetic code	
		c) Protein synthesis	

3.4	Comparison of eukaryotic & prokaryotic transcription & translation	01
3.5	Introduction to the concept of Omics: Genomics and Proteomics	01

2AMMARAIN

- a) Prescott"s Microbiology, Joanne M. Willey, Linda M. Sherwood, Christopher J.Woolverton, Edition, 7th Edition, 2011, McGraw Hill International
- b) Madigan, Martinko, Dunlap and Clark, Brock Biology of Microorganisms, 12thedition, 2009, Pearson Education
- c) Peter J. Russell, "iGenetics A molecular approach", 3rd edition, 2010, Benjamin Cummings.7
- d) Stanier R.Y. And Other, MacMillan General Microbiology, 5th edition,1987, MACMILLAN PRESS LTD
- e) D. Nelson & M. Cox, Lehninger"s Principles Of Biochemistry,4th Edition ,2005, (W.H.Freeman& Co., (LPE)
- f) James Watson, Molecular Biology of Gene, 5th edition,2004, Pearson Benjamin Cummings CSHL Press.
- g) Benjamin A Pierce, Genetics: A conceptual approach ,2002, W.H. Freeman

Course Code: RUSMIC 302

Course Title: INTRODUCTION TO EXPERIMENTAL MICROBIAL BIOCHEMISTRY

COURSE	DESCRIPTION		
OUTCOME			
CO 1	Design experiments & analyse the experimental data statistically.		
CO 2	Implement the use of web directories & databases for		
	biochemical studies		
CO 3	Recall & compare the different cell disintegration methods &		
	elaborate the working principles of centrifugation, electrophoretic		
	& chromatographic techniques used for studying cell analytes.		
CO 4	Illustrate the principles of protein separation & purification.		
CO 5	Compare the utility & perform the techniques for the estimation of		
	biomolecules.		
CO 6	Explain the principle, instrumentation & application of different		
0	laboratory instruments used in biochemical studies.		
CO 7	Design an experiment for extraction, purification & estimation of		
"LA"	biomolecules, & evaluate the statistical relevance of the data		
OFFI	generated.		

Course Code	Unit	Course/ Unit Title	Credits/ Lectures
RUSMIC 302		INTRODUCTION TO EXPERIMENTAL MICROBIAL BIOCHEMISTRY	2/45
I		Designing and Analysis of experimental data, General laboratory techniques: Electrochemical sensors	15
	1.1	Designing experiments:	02
		a) Aims of laboratory experiments b) Outline of Scientific method c) Experimental design d) Analytical considerations and experimental error	
	1.2	Analysis of experimental data:	07
	ARA	 a) Data presentation: Dot diagram, Bar diagram, Histogram, Frequency curve, Calibration methods: Linear regression, Internal standards b) Assessment of precision -Mean, Median, Mode, Standard deviation, coefficient of variation and variance c) Assessment of performance of an analytical technique -performance indicators d) Poisson and Normal distribution e) Assessment of accuracy& Validation of analytical data population statistics, confidence limit and confidence interval; Students t factor, Q test, F test, ANOVA 	
	1.3	Using computers in biochemistry	02
Sylv		Using web directories, biological databases and tools (eg. NCBI, EMBL)	
	1.4	General and routine laboratory procedures:	04
_		Theoretical and practical aspects of: a) Preparation and use of buffers b) Electrochemical sensors: pH meter	

		c) Oxygen electrode	
		d) Biosensors	
II		Fractionation of microbial cells and separation	15
		techniques	
	0.4	Disinta westion of calls	00/
	2.1	Disintegration of cells	02
		a) Physical methods	/() [×]
		b) Chemical methods	\ /
	2.2	Separation Techniques	03
		a) Centrifugation techniques:	
		i. Basic principles of sedimentation	
		ii. Types of centrifuges and their use: preparative &	
		analytical, ultracentrifuges	
		iii. Differential, Density Gradient & isopycnic	
		centrifugation	
		b) Electrophoretic techniques:	03
		i. General Principles	
		ii. Factors affecting electrophoresis	
		iii.Support media- Agarose gels and PAGE	
		c) Chromatographic Techniques:	07
		i.General principles	
		ii Types and applications- Partition, adsorption, ion	
		exchange, affinity and size exclusion	
		iii. Modes- Paper, TLC, HPLC, GC, Reverse Phase	
III	28	Purification & Estimation of biomolecules	15
	3.1	Separation and purification of proteins	03
7/1	7,	a) Criteria for purity	
BII.		b) Methods of separation/ concentration of	
		proteins based on:	
(~)		i. Size and mass	
		ii. Polarity	
		iii. Solubility	
		iv. Specific binding sites	
		v. Concentration of proteins - Dialysis,	
		Ultrafiltration	

	c) Choice of methods	
3.2	Estimation of Biomolecules	12
	a) Visible and UV spectrophotometry i. Principles ii. Instrumentation iii. Applications b) Preparation of bacteria for analysis c) Methods for chemical analysis (Basic principles of all methods to be covered) i. Methods of elemental analysis: Carbon by Slyke's method, Nitrogen by Microkjelhdahl method, Phosphorus by Fiske-Subbarow method ii. Estimation of Carbohydrates by Phenol and Anthrone Method iii. Estimation of Reducing Sugars iv. Estimation of Proteins v. Estimation of Amino acids vi. Extraction of Lipids and estimation of total lipid vii. Estimation of Nucleic acids	01 08

- a) Norris & Ribbon, Methods in Microbiology, Vol.5B, Edition, 1971, Academic Press
- b) J. Jayaraman, Laboratory Manual in Biochemistry, 2003, New Age International Publishers
- c) D. Nelson & M. Cox, Lehninger's Principles Of Biochemistry,4th Edition, 2005, W.H.Freeman & Co., (LPE)
- d) B.K. Mahajan. Jaypee brothers, Methods in biostatistics for medical & research workers. 6thedition, Medical Publishers (P) ltd.
- e) Rodney Boyer, Modern experimental biochemistry by 3rd Edition ,2000, Benjamin Cummings
- f) I.H. Segel, Biochemical calculations, 2nd Edition 2004, Wiley India
- g) Wilson and Walker, Principles and Techniques of Biochemistry and Molecular Biology 7th Ed ,2010. Cambridge University Press
- h) Stanier R.Y. And Other, General Microbiology, 5th edition, 1989 MacMillan Press.
- i) Plummer David, An Introduction to Practical Biochemistry ,1979, TMH
- j) Wayne Daniel, Biostatistics: A Foundation for Analysis in Health Sciences, 10th edition, 2013, Wiley.

Course Code: RUSMIC 303 Course Title: ENVIRONMENTAL MICROBIOLOGY

COURSE OUTCOME	DESCRIPTION		
CO 1	Comprehend the distribution and characterization of microbes in various habitats/ecosystems		
CO 2	Elaborate role of air as a medium of microbial dispersion		
CO 3	Differentiate between microbial flora of marine and freshwater environments		
CO 4	Execute microbiological techniques for studying microbiota of air, aquatic and terrestrial environments		
CO 5	Conduct routine bacteriological analysis techniques for assessing water quality and attribute the results to sources of contamination		
CO 6	Retrieve steps in sewage treatment and check effectivity of treatment processes		
CO 7	Implement microbiological analysis of a soil ecosystem with an understanding of the most appropriate technique		
CO 8	Apply basic principles of environmental microbiology for understanding and solving environmental problems –bioremediation		

Code	Unit	Course/ Unit Title	Credits/
Code RUSMI		ENVIRONMENTAL MICROBIOLOGY	Lectures 2/45
C 303		LITTING THE MICHOSIGE OF THE	
I		Air & Fresh Water Microbiology	15
	1.1	Air Microbiology	05
		a) Origin, distribution, number and kinds of microorganisms in air, Factors affecting microbial survival in air	
		 b) Enumeration of microorganisms in air: Impingement in liquids, Impaction on solids, Filtration, Sedimentation, Centrifugation, Electrostatic Precipitation. 	
		c) Air borne pathogens and diseases, droplets and droplet nuclei	
		d) Air sanitation- methods and application	
	1.2	Fresh water microbiology	10
	1	a) General: Groups of natural waters, factors affecting kinds of microorganisms found in aquatic environments and nutrient cycles in aquatic environments	
.5	JAP	b) Fresh Water environments and microorganisms found in Lakes, ponds, rivers, marshes, bogs and springs	
all		 c) Potable water: Definition, water purification and pathogens transmitted through water. 	
67		d) Microorganisms as indicators of water quality	
		e) Bacteriological examination of water-sampling, routine analysis, SPC, membrane filter technique, Standards for water quality	

II		Marine and Sewage Microbiology	15
	2.1	Marine Microbiology	05
		a) Characteristics of marine environments	/.
		b) Diversity& characteristics of marine microorganisms and their importance	,GV
		c) Ecosystems of Deep-sea Hydrothermal vents and Subterranean Water	
	2.2	Sewage Microbiology	10
		a) Types of waste water	
		b) Characteristics of waste water	
		 c) Modern waste water treatment: Primary, Secondary and tertiary treatment (oxidation ponds, activated sludge, trickling filters, anaerobic digestor). 	
		d) Removal of pathogens by sewage treatment Processes	
		e) Sludge Processing	
		f) Disposal of Solid Waste, Modern Sanitary Landfills, Composting	
III		Soil & Geo Microbiology	15
	3.1	Soil Microbiology	03
	JAP	a) Soil – Definition, composition, function, Textural Triangle Types of Soil microorganisms & their activities	
W.	3.2	Methods of studying soil microorganisms	05
67,		a) Sampling	
		b) Cultural methods	
		c) Physiological methods	
		d) Immunological methods (Tabulation of the immunological methods)	

	e) NA based method	
	f) Radioisotope technique	
3.3	Geo Microbiology 03	
	a) Carbon cycle	
	b) Nitrogen cycle	
	c) Sulphur cycle	
	d) Phosphorus cycle	
3.4	Biodegradation and Bioremediation 4	
	a) Microbial leaching	
	b) Metal transformations	
	c) Petroleum degradation	
	d) Degradation of xenobiotics	

- a) Raina M. Maier, Ian L. Pepper, Charles P. Gerba, Environmental Microbiology, 2nd Edition, 2010, Academic Press
- b) A.J. Salle, Fundamental Principles of Bacteriology, 7th Editon,1974, Tata McGraw Hill Publishing Company
- c) Air Quality Standards NAAQS Manual, Volume I, 2011
- d) Joanne M. Willey, Linda M. Sherwood, Christopher J.Woolverton Prescott's Microbiology, 8th Edition, 2011, McGraw Hill International Edition
- e) Frobisher, Hinsdill, Crabtree, Goodheart, Fundamentals of Microbiology, 9th Edition, 1974, Saunders College Publishing
- f) Barbara Kolwzan, Waldemar Adamiak (E Book) Oficyna Wydawnicza Politechniki Wroclawskiej, Wroclaw, 2006
- g) N.S Subba Rao, Introduction to Environmental Microbiology –Soil Microbiology -4th Edition ,2000, Oxford and IBH Publishing Co. Pvt Ltd
- h) Michael T. Madigan & J.M. Martin, Brock's Biology of Microorganisms 13th Ed. International edition 2012, Pearson Prentice Hall.

Course code	PRACTICALS	3 CREDITS
RUSMICP301	PRACTICAL-1	CKEDITS
	Isolation and identification of a bacterial isolate	
	2. Problems on Mendelian genetics	4.
	3. Extraction of DNA from onion and <i>E. coli</i>	(³)
	4. Problems on genetic code	
	5. Construction of phylogenetic tree.	
RUSMICP302	PRACTICAL -2	
	Introduction to experimental design	
	2. Lab common sense workshop	,
	3. Biostatistics problems	
	4. Study of pH meter and preparation of buffers	
	5. Density gradient centrifugation	
	6. Demonstration of agarose gel electrophoresis	
	7. Demonstration of PAGE	
	8. Separation of amino acids using paper	
	chromatography	
	9. Separation of carbohydrates using TLC	
	10. Demonstration of column chromatography	
	11. Demonstration of HPLC, HPTLC and GC	
.5	12. Determination of λmax	
	13. Verification of Beer's law and determination of	
25	extinction coefficient	
	14. Large scale cultivation of bacteria /yeast/ fungi	
UL,	15. Determination of Dry and wet Weight	
<i>M</i> .	16. Disintegration of cells using physical & chemical	
	methods and separation of biomolecules	
	17. Estimation of Amino acids by Ninhydrin method	
	18. Estimation of Proteins by Biuret method	
	19. Bradford's Method for protein estimation	

	20. Estimation of Reducing Sugars by DNSA method
	21. Estimation of RNA by orcinol method
	22. Estimation of DNA by diphenylamine method
	Note: All the above methods will also be analyzed using
	statistical methods covered in theory
RUSMICP303	PRACTICAL-3
	Enumeration of microorganisms in air and study its
	load after fumigation
	Determination of microbial load using air impinger
	Study of halophilic and haloduric bacteria from marine
	samples
	Routine analysis of water
	Use of membrane filter technique for bacteriological
	analysis of water
	6. Rapid detection of <i>E.coli</i> by MUG technique-Demo
	7. Visit to a Sewage treatment plant
	BOD of untreated and treated sewage
	Buried slide technique to study soil flora
	10. Enrichment and isolation of Cellulose degraders,
	Sulphate reducers and Phosphate solubilizers from
	soil
.5	11. Setting up Winogradsky's Column
	12. Developing compost pits

Modality of Assessment

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks per paper

Sr No	Evaluation type	Ma	arks
1	One Assignment/Case study/Project/ Presentation	2	20
2	One class Test (multiple choice questions / objective)		20
	TOTAL	4	10

B) External Examination- 60%- 60 Marks per paper

Semester End Theory Examination:

- 1. Duration These examinations shall be of two hours duration.
- 2. Theory question paper pattern:
 - a. There shall be three questions each of 20 marks one on each unit.
 - b. All questions shall be compulsory with internal choice within the questions.

Paper Pattern:

Question	Options	Marks	Questions Based on
Q.1) A)	Any 3 out of 5	15	11.74
Q.1) B)	Any 1 set out of 2 (i & ii or i & ii)	03 &02	Unit I
Q.2) A)	Any 3 out of 5	15	115411
Q.2) B)	Any 1 set out of 2 (i & ii or i & ii)	03 &02	Unit II
Q.3) A)	Any 3 out of 5	15	11.20 111
Q.3) B)	Any 1 set out of 2 (i & ii or i & ii)	03 &02	Unit III
	TOTAL	60	

Practical Examination Pattern:

A) Internal Examination: 40%-60 Marks

Particulars	Paper I	Paper II	Paper III
Journal	05	05	05
Experimental tasks	15	15	15
Total	20	20	20

B) External Examination: 60%- 90 Marks

Semester End Practical Examination:

Particulars	Paper I	Paper II	Paper III
Laboratory work	25	25	25
Spots/Quiz/Viva	05	05	05
Total	30	30	30

PRACTICAL BOOK/JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.

In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Co-ordinator / Incharge of the department; failing which the student will not be allowed to appear for the practical examination.

Overall Examination & Marks Distribution Pattern Semester III

Course	301		302			303			Grand Total	
	Internal	External	Total	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	40	60	100	300
Practicals	20	30	50	20	30	50	20	30	50	150

Course Code: RUSMIC 401

Course Title: Microbe Interactions and Host Responses

COURSE	DESCRIPTION
OUTCOME	
CO 1	Summarize microbial interactions with plants, animals and other
	microorganisms
CO 2	Evaluate the ecological, medical and evolutionary significance of
	microbial interactions with plants, animals and other microorganisms
CO 3	Outline the strategies through which pathogens develop infections and
	demonstrate presence of some virulence factors in known isolates
CO 4	Categorize cases of diseases on the basis of the epidemiological
	concepts and terminologies and explain the transmission of diseases
CO 5	Apply the principles and practices of epidemiological studies in solving
	public health issues
CO6	Explain the key components of innate and acquired immune system
	and summarize their role in overcoming disease
C07	Differentiate between immunoglobulins and explain their function in
"Whi	immunity

Course	Unit	Course/ Unit Title	Credits/
Code/			Lectures
Unit			
RUSMIC		MICROBE INTERACTIONS AND HOST	2/45
401		RESPONSES	
I		Microbial interactions with plants, animals and	15
		other microbes	
	1.1	Microbial associations with plants	08
		a) Phyllosphere	
		b) Rhizosphere & Rhizoplane	
		c) Mycorrhizae	
		d) Nitrogen fixation: Biochemistry of nitrogen	
		fixation, nodulation in Rhizobia, Azolla-Anabena	
		symbiosis, Actinorhizae, Stem nodulating	
		Rhizobia	
		e) Fungal & Bacterial endophytes	
		f) Plant pathogens -Fungal, bacterial and viral	
		diseases	
	1.2	Microbial interactions with animals	05
		a) Microbial symbionts in invertebrates	
		b) Bacterial flora in the Rumen	
		c) Microbe- insect interactions	
		d) Introduction to Zoonotic diseases	
	1.3	Microbe - Microbe interactions	02
	0	a) Lichen	
		b) Endosymbionts of Protozoa	
		c) Parasitism in microbes	
		Microbial invasion in Human hosts	15
	2.1	Virulence Mechanisms	08
		a) Bacterial virulence factors	
		 Adherence factors 	
		ii. Invasion of host cells and tissues	
		iii. Toxins- Exotoxins and Endotoxins	
		iv. Enzymes	

		v. Evading host defense- Antigenic variation,	
		Antiphagocytic factors and Intracellular	
		pathogenicity	
		vi. Iron sequestration	
		vii. The role of Biofilms	
		b) Measuring bacterial virulence: Infective dose &	
		Lethal dose, limulus amoebocyte assay	
		c) Pathogenic properties of viruses, fungi and	
		protozoa	
	2.2	Introduction to epidemiological concepts	07
		a) Reservoirs of infection	
		b) Modes of disease transmission	
		c) Nosocomial infections	
		d) Epidemiological terminology: epidemic, endemic,	
		pandemic, sporadic, incidence rate, prevalence	
		rate, mortality, morbidity	
		e) Controlling epidemics: Controlling reservoirs,	
		controlling transmission- Immunization strategies-	
		passive and active, Surveillance	
		passive and active, our veniance	
III		Host responses to infection	15
	2.4		0.4
	3.1	Cells, Tissues and Organs of the Immune System	04
		a) Cells of the immune system- Lymphoid and Myeloid	
		cells, NK cells	
		b) Organs of the immune system- Introduction to	
		primary and secondary lymphoid organs and their	
		roles	
	3.2	Immune responses- Innate defense mechanisms	04
	1	a) Phagocytosis – Recognition, Destruction,	
		b) Inflammation- Acute and Chronic	
7/1	7,	c) Fever	
		d) Molecular defenses- IFN, complement, ACP	
	3.3	Immune responses- Acquired Defense	07
$\langle \sim \rangle$		a) Outline and characteristics of Adaptive Immune	
		response	
		b) Immunoglobulins – basic and fine structure	
		c) Immunoglobulin classes and biological activities	
		d) Antigenic determinants on immunoglobulins –	
1			
		isotypes, allotypes, idiotypes	

e) Protective functions of antibodies- Opsonization, Complement mediated lysis, viral neutralization and toxin neutralization f) Introduction to Cell mediated immunity	

- a) Willey, Sherwood and Woolverton, Prescott's Microbiology, 9th edition, 2013, International edition, McGraw Hill.
- b) Michael T. Madigan & J.M. Martin, Brock's Biology of Microorganisms 13th Ed. International edition 2012, Pearson Prentice Hall.
- c) Stanier, General microbiology 5th edition ,1987, Macmillan publication
- d) Tortora, Funke and Case, Microbiology: An Introduction, 10th Edition, 2010, Pearson.
- e) Kathleen Park Talaro & Arthur Talaro Foundations in Microbiology International edition 2002, McGraw Hill.
- f) Jacquelyn Black, Laura Black, Microbiology, Principles and Explorations, 9th Ed, 2015,
 Wiley
- g) Brooks, Carroll, et al, Jawetz, Melnick & Adelberg's Medical Microbiology, 26th Ed McGraw Hill Lange 2013
- h) https://www.eurofins.com.au/biopharma-services/testing-solutions/sterile-products-testing/endotoxin-or-lal-test/
- i) Ingraham and Ingraham, Introduction to Microbiology, by 2nd Ed ,2000, Brooks/Cole
- j) Thomas J. Kindt, Barbara A. Osborne, Richard A. Goldsby, Kuby Immunology, 6th ed, W. H. Freeman & Company 2005

Course Code: RUSMIC 402

Course Title: INTRODUCTION TO METABOLIC PATHWAYS AND ENZYMOLOGY

COURSE	DESCRIPTION
OUTCOME	c O ·
CO 1	Demonstrate comprehension of metabolic concepts and classifications,
	and differentiate between various metabolic strategies. Recall the
	importance of Omics in biochemical research.
CO 2	Analyze the regulatory points within metabolic pathways.
CO 3	Retrieve information regarding enzyme properties and categories.
	Illustrate models of enzyme-substrate interaction and identify the
	significance of cofactors and coenzymes.
_	
CO 4	Evaluate enzyme kinetics and assess changes in activity under
	different variables.
CO 5	Explain the principles of Bioenergetics and attribute the function of
	energy currency molecules.
CO 6	Apply the laws of thermodynamics to microbial metabolism.
CO 7	Execute experimental protocols for enzyme purification and conduct
	studies on enzyme kinetics.

Course Code	Unit	Course/ Unit Title	Credits/ Lectures
RUSMI		INTRODUCTION TO METABOLIC	2/45
			2/45
C 402		PATHWAYS AND ENZYMOLOGY	
		Introduction to Metabolism	15
	1.1	Introduction to biochemical reactions:	04
		a) Key reactions involved in metabolism.	
		b) Weak interactions involved in determining the	
		structures and functions of macromolecules.	
	1.2	Introduction to metabolism:	06
		a) Metabolism- Catabolism & Anabolism	
		b) Types of Metabolic pathways	
		c) Metabolic networks, use of different software	
		d) Primary and secondary metabolism	
		e) Energy and reducing power requirements	
	1.3	Metabolic strategies: Managing metabolic network	04
		a) Role of enzymes, enzyme clustering &	
		multienzyme complexes	
		b) Functional coupling	
		c) Compartmentalization in cells	
	1.4	Introduction to omics: Metabolome & Metabolomics	01
II		Enzymology	15
	2.1	Introduction to enzymes:	06
		a) General properties of enzymes	
		b) How do enzymes accelerate reactions?	
Ca.		c) Classification of enzymes	
		d) Enzyme kinetics: Rate law for a simple catalyzed	
		reaction, Michaelis-Menten equation and its	
		derivation, other plots to determine velocity of reactions	
	2.2	Modifying enzyme catalysis rates	05

	3.3		gical oxidation-reduction reactions	04
			donor	
	21	c)	Multi-roles of ATP inorganic phosphoryl group	
	0	b)	Types of energy –rich compounds	
	•	7	ATP	
		a)	Structure of ATP, phosphoryl group transfer and	
	3.2	AIPa	nd it's role	05
	0.0	ATD		65
		(C)	Difference between ΔG & ΔGo"	
		,	Thermodynamic quantities, standard –free energy	
			Energy transformations	
	J. I			00
	3.1	Ricen	ergetics & thermodynamics:	06
III			Principles of Bioenergetics	15
		u)	morganic coractors	
			Inorganic cofactors	
		· ·	Water soluble coenzymes (NAD, Nicotinic acid) Fat soluble vitamins and their examples.	
		1	coenzymes (in tabular form)	
		a)	Different types and reactions catalyzed by	
	0			•
	2.3	Coenz	ymes& Co-factors:	04
		f)	Monod, Wyman and Chageux model	
		•	Koshland- Nemethy and Filmer model	
			Random and ping-pong reactions	, (^)
		d)	Multi-substrate reactions- Ordered,	4,
		c)	Allosteric effects in enzyme catalyzed reactions	
			inhibitors	
			competitive, Non-competitive and uncompetitive	
		· ·	Effect of Inhibitors- Reversible and irreversible,	
		(a)	Effect of temperature and pH	

- a) Principles of Biochemistry by Geoffery Zubay (1988) 4th Edition Wm.C. Brown Publishers
- b) Outlines Of Biochemistry,5/E,Conn P.Stumpf, G.Bruening & R.Doi,John Wiley & Sons, New York 1995
- c) Fundamentals of Enzymology: Cell and Molecular Biology of Catalytic Proteins 3rd Edition Nicholas Price and Lewis Stevens
- d) Lehninger: Principles Of Biochemistry,4th Ed., D. Nelson & M. Cox, W.H.Freeman & Co., (LPE)
- e) A biologist's Physical Chemistry by John Gareth Morris.
- f) Concepts of Biochemistry, Rodney Boyer
- g) Stanier, General microbiology 5th edition ,1987, Macmillan publication
- h) Principles of Biochemistry by Robert Horton (2011) 5th Edition Pearson Publishers.

Course Code: RUSMIC 403 Course Title: APPLIED MICROBIOLOGY

COURSE OUTCOME	DESCRIPTION
CO 1	Analyse the importance of microbes in fermentation industry and compare the techniques used for their screening
CO 2	Compare different types of fermentations and fermentation processes used for industrial productions
CO 3	Explain the role of components used in industrial fermentation media
CO 4	Summarize the general principles of food spoilage by microorganisms and compare methods used for food preservation
CO 5	Execute experimental procedures for detection of microbes in food and dairy products and comment on its quality
CO 6	Identify the sources of microorganisms in milk and explain the significance of pasteurization techniques
CO7	Outline and analyze the manufacturing processes of different fermented dairy products
CO 8	Apply contamination control, preservation methods, and quality control procedures to foods and dairy products

Course	Unit	Course/ Unit Title	Credits/
Code			Lectures
RUSMIC		APPLIED MICROBIOLOGY	2/45
403			1.0
I		Industrial Microbiology	15
	1.1	Strains of industrially important microorganisms	04
		a) Desirable characteristics of an industrial strain	
		b) Principles and methods of primary and	
		secondary screening	
	1.2	Types of fermentations:	02
		a) Aerobic	
		b) Anaerobic	
		c) Solid state fermentation	
	1.3	Types of fermentation processes:	02
		a) Surface and Submerged	
		b) Batch, continuous, fed-batch fermentation	
		process	
	1.4	Media for industrial fermentations	05
		a) Production and Inoculum media	
		b) Media components: - Carbon source, nitrogen	
	71	source, amino acids and vitamins, minerals,	
		water, buffers, antifoam agents, precursors,	
	67	inhibitors and inducers	
	1.5	Inoculum development	02
II		Food Microbiology	15
6/1/1	2.1	Introduction:	01
		Significance, food as a substrate and	
		sources of microorganisms in food	
	2.2	Intrinsic and extrinsic factors affecting the	02
	2.2	microbial growth in food	02
	2.3	General Principles of spoilage	04
			7 -

sh foods: fruits and vegetables,	
ultry and seafood	
s of food preservation 04	
h method and example of foods	
	,
e, low temperature, drying,	
ntation), Asepsis, introduction to	
ises 1	
tion of microorganisms in food: 3	
ural, microscopic, physical,	
passay methods	
niry Microbiology 15	
omposition, sources of 2	
milk	
milk 3	
mink 3	
JHT 3	
JΗT	
JΗT	
JΗT	
oduction and spoilage of: 7	
oduction and spoilage of: 7 eddar and Cottage cheese	
oduction and spoilage of: 7 deddar and Cottage cheese milks	
oduction and spoilage of: 7 eddar and Cottage cheese milks	
oduction and spoilage of: 7 eddar and Cottage cheese milks milk 3	
oduction and spoilage of: 7 deddar and Cottage cheese milks fimilk 3 form tests	
oduction and spoilage of: reddar and Cottage cheese milks milk orm tests yical analysis of milk : SPC,	
	tion of microorganisms in food: dural, microscopic, physical, coassay methods airy Microbiology 15

- a) Fundamental Food Microbiology by Bibek Ray, Arun Bhunia (2007), 4th edition CRC Press
- b) Food Microbiology by Frazier 5th ed (1971), McGraw-Hill Education.
- c) Modern Food Microbiology by James Jay 6th ed(2000), Springer US.
- d) Applied Dairy Microbiology by Marth & Steele(2001), CRC Press
- e) BIS standards, FSSAI
- f) Casida L. E., "Industrial Microbiology" 2009 Reprint, New Age International (P) Ltd, Publishers, New Delhi
- g) Stanbury P. F., Whitaker A. & Hall--S. J., 1997, "Principles of Fermentation, Technology", 2nd Edition, Aditya Books Pvt. Ltd, New Delhi.
- h) Prescott and Dunn's ""Industrial Microbiology"".1982 4th Edition, McMillan Publishers
- i) H. A. Modi, 2009. ""Fermentation Technology"" Vol 2, Pointer Publications, India.
- j) Milk and milk products. C. H. Eckles 1943 edition
- k) Sukumar De, Outlines of dairy technology, 1st edition, 1983, O.U.P
- I) James Jay Frazier 5th. Ed Okafor Waites & Morgan

Course code	PRACTICALS	3 Credits
RUSMICP 401	PRACTICAL-1	
	1. Isolation of Rhizobium from root nodules	
	2. Demonstration of fungi and algae in lichens	COV
	3. Study of virulence factors – Enzymes – Streptokinase,	
	Coagulase, Hemolysin, Lecithinase	
	4. Demonstration of biofilm formation by pathogens on catheters	
	5. Assignment on classical stages, signs and symptoms of any one microbial disease	
	6. Staining of blood film to demonstrate different types of leucocytes	
	7. Phagocytosis (Demonstration)	
	8. Study of plant microbe interactions: Screening for Auxin production (PGP from Rhizosphere)	
	9. Case studies and problems on Epidemiology	
	10. How to develop epidemiological surveys	
RUSMICP 402	PRACTICAL-2	
	1. Using KEGG, Ecocyc, metacyc, biocyc and Brenda for	
	understanding metabolic networking	
	2. Qualitative detection of	
	a. Amylase	
	b. Lipase	
	c. Protease	
	d. DNase	
	e. Catalase	
	f. Oxidase	

	g. Carbohydrate fermentation	
	h. Dehydrogenase	
	3. Production and purification of an enzyme	
	4. Assay of an enzyme and determination of enzyme units	
	5. Determination of km and Vmax of an enzyme	COV
	Effect of environment on enzyme activity:	
	a. Effect of temperature	
	b. Effect of pH	
	c. Effect of enzyme concentration	
	7. Effect of inhibitors	
RUSMICP	PRACTICAL-3	
403	Isolation of antibiotic producers from soil- Wilkin's overlay	
	method.	
	metrod.	
	Determination of microbial counts in food using dip slide	
	technique (demonstration)	
	3. Isolation of food spoilage agent	
	4. Determination of TDT and TDP	
	5. Determination of Salt and sugar tolerance	
	6. Determination of MIC of a preservative	
	7. Visit to Food/Dairy industry	
	8. Rapid platform tests of raw and pasteurized milk.	
QAII"	9. Microbiological analysis of raw and pasteurized Milk.	
	10. Microbiological analysis of Butter, Cheese.	
	11. Surface and submerged fermentation.	
	12. Testing a packaged meat product for its microbial load.	

Modality of Assessment

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks per paper

Sr No	Evaluation type		Marks
1	One Assignment/Case study/Project/ Presentation		20
2	One class Test (multiple choice questions / objective)		20
	TOTAL	0	40

B) External Examination- 60%- 60 Marks per paper

Semester End Theory Examination:

- 1. Duration These examinations shall be of two hours duration.
- 2. Theory question paper pattern:
 - a. There shall be three questions each of 20 marks one on each unit.
 - b. All questions shall be compulsory with internal choice within the questions.

Paper Pattern:

Question	Options	Marks	Questions Based on		
Q.1) A)	Any 3 out of 5	15			
Q.1) B)	Any 1 set out of 2 (i & ii or i & ii)	03 &02	Unit I		
Q.2) A)	Any 3 out of 5	15	11-411		
Q.2) B)	Any 1 set out of 2 (i & ii or i & ii)	03 &02	Unit II		
Q.3) A)	Any 3 out of 5	15	11.20 111		
Q.3) B)	Any 1 set out of 2 (i & ii or i & ii)	03 &02	Unit III		
	TOTAL	60			

Practical Examination Pattern:

A) Internal Examination: 40%- 60 Marks

Particulars	Paper I	Paper II	Paper III
Journal	05	05	05
Experimental tasks	15	15	15
Total	20	20	20

B) External Examination: 60%- 90 Marks

Semester End Practical Examination:

Particulars	Paper I	Paper II	Paper III		
Laboratory work	25	25	25		
Spots/Quiz/Viva	05	05	05		
Total	30	30	30		

PRACTICAL BOOK/JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.

In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Co-ordinator / Incharge of the department; failing which the student will not be allowed to appear for the practical examination.

Overall Examination & Marks Distribution Pattern Semester IV

Course	401			4	102		4	03		Grand Total
	Internal	External	Total	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	40	60	100	300
Practicals	20	30	50	20	30	50	20	30	50	150
