S. P. Mandali's Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for U.G.

Program: BSc (Microbiology)

Program Code: RUSMIC

(Choice Based Semester and grading System for academic year 2022–2023)

GRADUATE ATTRIBUTES

GA	GA Description
	A student completing Bachelor's Degree in Science program will be
	able to:
GA 1	Recall and explain acquired scientific knowledge in a comprehensive manner
	and apply the skills acquired in their chosen discipline. Interpret scientific
	ideas and relate its interconnectedness to various fields in science.
GA 2	Evaluate scientific ideas critically, analyse problems, explore options for
	practical demonstrations, illustrate work plans and execute them, organise
	data and draw inferences.
GA 3	Explore and evaluate digital information and use it for knowledge
	upgradation. Apply relevant information so gathered for analysis and
	communication using appropriate digital tools.
GA 4	Ask relevant questions, understand scientific relevance, hypothesize a
	scientific problem, construct and execute a project plan and analyse results.
GA 5	Take complex challenges; work responsibly and independently, as well as
	in cohesion with a team for completion of a task. Communicate effectively,
	convincingly and in an articulate manner.
GA 6	Apply scientific information with sensitivity to values of different cultural
	groups. Disseminate scientific knowledge effectively for upliftment of the
	society.
GA 7	Follow ethical practices at work place and be unbiased and critical in
	interpretation of scientific data. Understand the environmental issues and
	explore sustainable solutions for it.
GA 8	Keep abreast with current scientific developments in the specific discipline
Dill	and adapt to technological advancements for better application of scientific
57	knowledge as a lifelong learner

PROGRAM OUTCOMES

РО	Description
	A student completing Bachelor's Degree in Science program in the subject of Microbiology will be able to:
PO 1	Recall, explain and summarize basic concepts related to cytology,
	biochemistry, physiology, genetics and reproduction of prokaryotes and
	compare it with eukaryotes.
PO 2	Appreciate and exemplify the diversity in the microbial world and evaluate their
	ecological role as well as state their significance to humankind.
PO 3	Understand the basic concepts associated with growth and control of
	microorganisms and apply it in pure culture and preservation techniques.
PO 4	Differentiate, classify and characterize microorganisms based on their
	morphological, cultural, biochemical, and molecular properties.
PO 5	Explore, compare and evaluate the role of microorganisms in different natural
	environments as well as plants, animals and humans, and evaluate and
	exemplify their interrelationships.
PO 6	Apply the understanding of microbial processes to diverse science areas such
	as medical, industrial, agricultural and food and evaluate their potential for
	human well-being, for tackling environmental issues and exploring sustainable
	solutions
PO 7	Recall and explain the nature of biomolecules and metabolic processes; the
	role and kinetics of enzymes as well as the thermodynamic laws that drive
	these reactions.
PO 8	Recall the basic working principles of various bioanalytical techniques and
16,	tools and apply them to detect, estimate and structurally evaluate
	biomolecules present in the microbial cells.
PO 9	Understand and explain the nature of genetic material and elaborate the
	molecular mechanisms underlying various genetic processes like replication,
	transcription, translation, gene transfer and recombination in bacteria; and
	explain basic concepts in virology.

PO 10	Apply the basics of genetics and molecular biology to understand and
	evaluate techniques in genetic engineering and also for the use of
	bioinformatic tools for presentation and processing of data.
PO 11	Recognize and explain the role of microorganisms in different diseases,
	attribute pathogenesis mechanisms to their properties and extrapolate it to
	disease diagnosis, treatment and prevention. Outline and recall concepts in
	epidemiology of diseases. Classify and evaluate different chemotherapeutic
	agents.
PO 12	Recall, classify and summarize mechanisms of defense in humans, detail
	out the functioning of our immune system, correlate it to disease and its
	prevention and outline its association to health. Apply immunological
	principles for diagnosis of diseases.
DO 42	Understand and sutting different his showing I mach onigne and their
PO 13	Understand and outline different biochemical mechanisms and their
	regulation; retrieve and construct biochemical pathways in microbial
	metabolism of major macromolecules and, recall and integrate the
	bioenergetics of metabolic reactions.
PO 14	Evaluate, exemplify and outline the role of microorganisms in different
	industrial fermentations, summarize technological aspects of bioprocesses,
	recall knowledge about patents, copyright and regulatory practices and QA.
PO 15	Demonstrate key practical skills/competencies in working with microbes for
	their study and use in the laboratory as well as outside, including the use of
	good microbiological practices. Analyze problems involving microbes,
الح	articulate them and devise innovative and creative solutions.
PO 16	Hypothesize, design experiments, construct experimental plans, execute
	them and analyze data with a basic understanding of statistics. Demonstrate
	an ability to be unbiased and critical in interpretation of scientific data
PO 17	Communicate effectively to express scientific ideas and/or their
	experimental data in an effective, precise and concise manner.

PROGRAM OUTLINE

YEAR	SEM	COURSE	COURSE TITLE	CREDITS
		CODE		
		OODE		
		RUSMIC 101	Fundamentals of Microbiology	02
	-	Core course	3,	
		RUSMIC 102	Techniques in Microbiology	02
		Core course)
		RUSMICP101	Practical based on above two	02
FY		Core course	courses	V _
	II	RUSMIC 201	Microbial world: types and	02
		Core course	inter-relations	
		RUSMIC 202	Microbial biomolecules,	02
		Core course	Growth & Control	
		RUSMICP201	Practical based on above two	02
		Core course	courses	
			Microbial taxonomy and	
	III	RUSMIC 301	Introduction to Genetics and	02
		. 20	Molecular Biology	
		RUSMIC 302	Introduction to Experimental	02
		RUSIVIIC 302	Microbial Biochemistry	
		RUSMIC 303	Environmental Microbiology	02
SY	71	RUSMICP301	Practicals based on above	03
SVI			three courses	03
	IV	IV RUSMIC 401	Microbe interactions and host	02
			responses	
		RUSMIC 402	Introduction to Metabolic	02
		110011110 402	Pathways and Enzymology	
		RUSMIC 403	Applied Microbiology	02

Course Code: RUSMIC 301

Course Title: MICROBIAL TAXONOMYAND INTRODUCTION TO GENETICS AND MOLECULAR BIOLOGY

COURSE	DESCRIPTION
OUTCOME	
CO 1	Differentiate between vast pool of microbes on the basis of
	morphological, cultural, biochemical and genetic characteristics
CO 2	Understand, apply and evaluate techniques in microbial taxonomy
CO 3	Construct phylogenetic trees using simple computational tools
CO 4	Recall Mendelian genetics and critique the deviations from Mendelian
	genetics
CO 5	Discriminate the structure of DNA and RNA focusing on the different
	forms of DNA
CO6	Understand the central dogma of molecular genetics
CO7	Explain prokaryotic transcription and translation process and interpret
	the significance of the important events from initiation to the termination
	of the process
CO8	Extrapolate the role of omics in molecular biology studies

Course Code/ Unit	Unit	Course/ Unit Title	Credits/ Lectures
RUSMIC		MICROBIAL TAXONOMY AND	2 / 45
301		INTRODUCTION TO GENETICS AND	1.0
		MOLECULAR BIOLOGY	
I		Techniques in Microbial Taxonomy	15
	1.1	Introduction to microbial Taxonomy and Taxonomic	01
		ranks	
	1.2	Techniques for studying Microbial Taxonomy	08
		a) Microscopic & macroscopic morphology and	
		biochemical characteristics,	
		b) Chemical Analysis	
		c) Serological analysis	
		d) Genetic & molecular analysis: i. Nucleic acid	
		sequencing and finger printing ii. G+C content iii.	
		Nucleic acid hybridization iv. Amino acid	
		sequencing	
		e) Community DNA analysis	
	1.3	Introduction to Microbial Phylogeny	05
		a) Phylogenetic Trees	
		i. Types	
		ii. Construction (an overview)	
		b) Numerical Taxonomy	
15	1.4	Bergey's Manual of Systematic Bacteriology	01
		a) Understanding classification and identification	
QAII"		schemes for bacteria using Bergey's manual	
II		Classical Genetics (Mendelian & Neomendelian)	15
		& Nucleic acid structure	
	2.1	Mendelian genetics:	04
		a) Genotype and Phenotype	
		b) Mendel's Experiments design	

		c) Monohybrid cross and dihybrid cross, Mendelian	
		Laws of inheritance	
		a) Trihybrid Cross	
	2.2	Non-Mendelian genetics	05
		a) Multiple alleles	
		b) Modification of dominance relationships	
		c) Incomplete dominance	, () ^v
		d) Codominance (both with their molecular	
		explanations)	
		e) Essential and lethal genes	
		f) Gene expression and effect of environment	,
		g) Maternal effect	
		h) Gene interactions and modified Mendelian	
		ratios	
	2.3	Structure of DNA:	03
		Different 3D forms and unusual structures	
		DNA methylation	
	2.4	Structure of chromosomes	01
	2.5	Structure of RNA	02
III		Gene Expression in Bacteria	15
•••	3.1	Central dogma of Molecular Biology	01
	3.2	Transcription in prokaryotes	06
	0.2	a) RNA biosynthesis	
		b) Prokaryotic transcription	
		i. Prokaryotic promoters	
		ii. Initiation, elongation and termination	
	(2)	, °	
	3.3	Translation	06
	7)	a) Components of protein synthesis apparatus:	
		Genetic code, mRNA, Ribosomes	
10/1		b) Degeneracy of genetic code	
67		c) Protein synthesis	
	3.4	Comparison of eukaryotic & prokaryotic	01
		transcription & translation	
	3.5	Introduction to the concept of Omics:	01
		Genomics and Proteomics	

- a) Prescott"s Microbiology, Joanne M. Willey, Linda M. Sherwood, Christopher J.Woolverton, Edition, 7th Edition, 2011, McGraw Hill International
- b) Madigan, Martinko, Dunlap and Clark, Brock Biology of Microorganisms, 12thedition, 2009, Pearson Education
- c) Peter J. Russell, "iGenetics A molecular approach", 3rd edition, 2010, Benjamin Cummings.7
- d) Stanier R.Y. And Other, MacMillan General Microbiology, 5th edition,1987, MACMILLAN PRESS LTD
- e) D. Nelson & M. Cox, Lehninger"s Principles Of Biochemistry,4th Edition ,2005, (W.H.Freeman& Co., (LPE)
- f) James Watson, Molecular Biology of Gene, 5th edition,2004, Pearson Benjamin Cummings CSHL Press.
- g) Benjamin A Pierce, Genetics: A conceptual approach ,2002, W.H. Freeman

Course Code: RUSMIC 302 Course Title: INTRODUCTION TO EXPERIMENTAL MICROBIAL BIOCHEMISTRY

COURSE OUTCOME	DESCRIPTION
CO 1	Understand the process of designing experiments & analyse the
	experimental data statistically.
CO 2	Implement the use of web directories & databases for
	biochemical studies
CO 3	Recall & compare the different cell disintegration methods &
	elaborate the working principles of centrifugation, electrophoretic
	& chromatographic techniques used for studying cell analytes.
CO 4	Illustrate the principles of protein separation & purification.
CO 5	Compare the utility & perform the techniques for the estimation of
	biomolecules.
CO 6	Understand the principle, instrumentation & application of
0	different laboratory instruments used in biochemical studies.
CO 7	Design an experiment for extraction, purification & estimation of
VL,	biomolecules, & evaluate the statistical relevance of the data
SUL	generated.

Course Code	Unit	Course/ Unit Title	Credits/ Lectures
RUSMIC		INTRODUCTION TO EXPERIMENTAL	2/45
302		MICROBIAL BIOCHEMISTRY	
I		Designing and Analysis of experimental data, General laboratory techniques: Electrochemical sensors	15
	1.1	Designing experiments:	02
		a) Aims of laboratory experiments b) Outline of Scientific method c) Experimental design d) Analytical considerations and experimental error	
	1.2	Analysis of experimental data:	07
	RA	 a) Data presentation: Dot diagram, Bar diagram, Histogram, Frequency curve, Calibration methods: Linear regression, Internal standards b) Assessment of precision -Mean, Median, Mode, Standard deviation, coefficient of variation and variance c) Assessment of performance of an analytical technique -performance indicators d) Poisson and Normal distribution e) Assessment of accuracy& Validation of analytical data population statistics, confidence limit and confidence interval; Students t factor, Q test, F test, ANOVA 	
	1.3	Using computers in biochemistry	02
AM		Using web directories, biological databases and tools (eg. NCBI, EMBL)	
	1.4	General and routine laboratory procedures:	04
		Theoretical and practical aspects of: a) Preparation and use of buffers b) Electrochemical sensors: pH meter c) Oxygen electrode d) Biosensors	

II		Fractionation of microbial cells and separation techniques	15
	2.1	Disintegration of cells	02
		a) Physical methods	
		b) Chemical methods	
	2.2	Separation Techniques	03
		a) Centrifugation techniques: i. Basic principles of sedimentation ii. Types of centrifuges and their use: preparative & analytical, ultracentrifuges iii. Differential, Density Gradient & isopycnic centrifugation	
		b) Electrophoretic techniques: i.General Principles ii.Factors affecting electrophoresis iii.Support media- Agarose gels and PAGE	03
		c) Chromatographic Techniques: i.General principles ii.Types and applications- Partition, adsorption, ion exchange, affinity and size exclusion iii.Modes- Paper, TLC, HPLC, GC, Reverse Phase	07
III		Purification & Estimation of biomolecules	15
	3.1	Separation and purification of proteins	03
Q.AMP	RRA	 a) Criteria for purity b) Methods of separation/ concentration of proteins based on: i. Size and mass ii. Polarity iii. Solubility iv. Specific binding sites v. Concentration of proteins - Dialysis,	

3.2	Estimation of Biomolecules	12
	a) Visible and UV spectrophotometry i. Principles	03
	ii. Instrumentation	
	iii. Applications	
	b) Preparation of bacteria for analysis	01
	c) Methods for chemical analysis (Basic principles of all methods to be covered)	08
	i. Methods of elemental analysis: Carbon by Slyke's method, Nitrogen by Microkjelhdahl method, Phosphorus by Fiske-Subbarow method	
	ii. Estimation of Carbohydrates by Phenol and Anthrone Method	
	iii. Estimation of Reducing Sugars	
	iv. Estimation of Proteins	
	v. Estimation of Amino acids	
	vi. Extraction of Lipids and estimation of total lipid	
	vii. Estimation of Nucleic acids	

- a) Norris & Ribbon, Methods in Microbiology, Vol.5B, Edition, 1971, Academic Press
- b) J. Jayaraman, Laboratory Manual in Biochemistry, 2003, New Age International Publishers
- c) D. Nelson & M. Cox, Lehninger's Principles Of Biochemistry,4th Edition, 2005, W.H.Freeman & Co., (LPE)
- d) B.K. Mahajan. Jaypee brothers, Methods in biostatistics for medical & research workers. 6thedition, Medical Publishers (P) ltd.
- e) Rodney Boyer, Modern experimental biochemistry by 3rd Edition ,2000, Benjamin Cummings
- f) 1.H. Segel, Biochemical calculations, 2nd Edition 2004, Wiley India
- g) Wilson and Walker, Principles and Techniques of Biochemistry and Molecular Biology 7th Ed, 2010. Cambridge University Press
- h) Stanier R.Y. And Other, General Microbiology, 5th edition, 1989 MacMillan Press.
- i) Plummer David, An Introduction to Practical Biochemistry, 1979, TMH
- j) Wayne Daniel, Biostatistics: A Foundation for Analysis in Health Sciences, 10th edition, 2013, Wiley.

Course Code: RUSMIC 303 Course Title: ENVIRONMENTAL MICROBIOLOGY

COURSE OUTCOME	DESCRIPTION					
CO 1	Understand the distribution and characterization of microbes in various habitats/ecosystems					
CO 2	Explain role of air as a medium of microbial dispersion					
CO 3	Differentiate between microbial flora of marine and freshwater environments					
CO 4	Execute microbiological techniques for studying microbiota of air, aquatic and terrestrial environments					
CO 5	Implement routine bacteriological analysis techniques for assessing water quality and attribute the results to sources of contamination					
CO 6	Recall steps in sewage treatment and check effectivity of treatment processes					
CO 7	Implement microbiological analysis of a soil ecosystem with an understanding of the most appropriate technique					
CO 8	Apply basic principles of environmental microbiology for understanding and solving environmental problems –bioremediation					

Course Code	Unit	Course/ Unit Title	Credits/ Lectures
RUSMI		ENVIRONMENTAL MICROBIOLOGY	2/45
C 303			
I		Air & Fresh Water Microbiology	15
	1.1	Air Microbiology	05
		a) Origin, distribution, number and kinds of microorganisms in air, Factors affecting microbial survival in air	
		 b) Enumeration of microorganisms in air: Impingement in liquids, Impaction on solids, Filtration, Sedimentation, Centrifugation, Electrostatic Precipitation. 	
		 c) Air borne pathogens and diseases, droplets and droplet nuclei 	
		d) Air sanitation- methods and application	
	1.2	Fresh water microbiology	10
		a) General: Groups of natural waters, factors affecting kinds of microorganisms found in aquatic environments and nutrient cycles in aquatic environments	
	R	 b) Fresh Water environments and microorganisms found in Lakes, ponds, rivers, marshes, bogs and springs 	
	71	 c) Potable water: Definition, water purification and pathogens transmitted through water. 	
		d) Microorganisms as indicators of water quality	
61		e) Bacteriological examination of water-sampling, routine analysis, SPC, membrane filter technique, Standards for water quality	

II		Marine and Sewage Microbiology	15
	2.1	Marine Microbiology	05
		a) Characteristics of marine environments	
		b) Diversity& characteristics of marine microorganisms and their importance	CCV
		c) Ecosystems of Deep-sea Hydrothermal vents and Subterranean Water	
	2.2	Sewage Microbiology	10
		a) Types of waste water	
		b) Characteristics of waste water	
		 c) Modern waste water treatment: Primary, Secondary and tertiary treatment (oxidation ponds, activated sludge, trickling filters, anaerobic digestor). 	
		d) Removal of pathogens by sewage treatment Processes	
		e) Sludge Processing	
		f) Disposal of Solid Waste, Modern Sanitary Landfills, Composting	
III		Soil & Geo Microbiology	15
	3.1	Soil Microbiology	03
	JRP.	a) Soil – Definition, composition, function, Textural Triangle Types of Soil microorganisms & their activities	
VA)	3.2	Methods of studying soil microorganisms	05
01		a) Sampling	
		b) Cultural methods	
		c) Physiological methods	
		d) Immunological methods (Tabulation of the immunological methods)	
		e) NA based method	

	f) Radioisotope technique	
3.3	Geo Microbiology	03
	a) Carbon cycle	
	b) Nitrogen cycle	
	c) Sulphur cycle	
	d) Phosphorus cycle	_ /</th
		, (^)
3.4	Biodegradation and Bioremediation	4
	a) Microbial leaching	
	b) Metal transformations	
	c) Petroleum degradation	
	d) Degradation of xenobiotics	

- a) Raina M. Maier, Ian L. Pepper, Charles P. Gerba, Environmental Microbiology, 2nd Edition, 2010, Academic Press
- b) A.J. Salle, Fundamental Principles of Bacteriology, 7th Editon,1974, Tata McGraw Hill Publishing Company
- c) Air Quality Standards NAAQS Manual, Volume I, 2011
- d) Joanne M. Willey, Linda M. Sherwood, Christopher J.Woolverton Prescott's Microbiology, 8th Edition, 2011, McGraw Hill International Edition
- e) Frobisher, Hinsdill, Crabtree, Goodheart, Fundamentals of Microbiology, 9th Edition, 1974, Saunders College Publishing
- f) Barbara Kolwzan, Waldemar Adamiak (E Book) Oficyna Wydawnicza Politechniki Wroclawskiej, Wroclaw, 2006
- g) N.S Subba Rao, Introduction to Environmental Microbiology –Soil Microbiology -4th Edition ,2000, Oxford and IBH Publishing Co. Pvt Ltd
- h) Michael T. Madigan & J.M. Martin, Brock's Biology of Microorganisms 13th Ed. International edition 2012, Pearson Prentice Hall.

Course code		3 CREDITS				
RUSMICP301		PRACTICAL-1				
	1.	Isolation and identification of a bacterial isolate				
	2.	Problems on Mendelian genetics				
	3.	Extraction of DNA from onion and E. coli				
	4.	Problems on genetic code				
	5.	Construction of phylogenetic tree.				
RUSMICP302		PRACTICAL -2				
	1.	Introduction to experimental design				
	2.	Lab common sense workshop				
	3.	Biostatistics problems				
	4.	Study of pH meter and preparation of buffers				
	5.	Density gradient centrifugation				
	6.	Demonstration of agarose gel electrophoresis				
	7.	Demonstration of PAGE				
	8.	Separation of amino acids using paper				
		chromatography				
	9.	Separation of carbohydrates using TLC				
	10.	Demonstration of column chromatography				
	11.	Demonstration of HPLC, HPTLC and GC				
	12.	12. Determination of λmax				
	13.					
		extinction coefficient				
25	14.	Large scale cultivation of bacteria /yeast/ fungi				
	15.	Determination of Dry and wet Weight				
W.	16.	Disintegration of cells using physical & chemical				
B.		methods and separation of biomolecules				
	17.	Estimation of Amino acids by Ninhydrin method				
	18.	Estimation of Proteins by Biuret method				
	19.	Bradford's Method for protein estimation				
	20.	Estimation of Reducing Sugars by DNSA method				
	21.	Estimation of RNA by orcinol method				

	Note: All the above methods will also be analyzed using				
	statistical methods covered in theory				
RUSMICP303	PRACTICAL-3				
	Enumeration of microorganisms in air and study its				
	load after fumigation				
	Determination of microbial load using air impinger				
	Study of halophilic and haloduric bacteria from marine				
	samples				
	Routine analysis of water				
	5. Use of membrane filter technique for bacteriological				
	analysis of water				
	6. Rapid detection of <i>E.coli</i> by MUG technique-Demo				
	7. Visit to a Sewage treatment plant				
	8. BOD of untreated and treated sewage				
	Buried slide technique to study soil flora				
	10. Enrichment and isolation of Cellulose degraders,				
	Sulphate reducers and Phosphate solubilizers from				
	soil				
	11. Setting up Winogradsky's Column				
	12. Developing compost pits				
•					
MARRA					

Modality of Assessment

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks per paper

Sr No	Evaluation type	Marks
1	One Assignment/Case study/Project/ Presentation	20
2	One class Test (multiple choice questions / objective)	20
	TOTAL	40

B) External Examination- 60%- 60 Marks per paper

Semester End Theory Examination:

- 1. Duration These examinations shall be of two hours duration.
- 2. Theory question paper pattern:
 - a. There shall be three questions each of 20 marks one on each unit.
 - b. All questions shall be compulsory with internal choice within the questions.

Paper Pattern:

Question	Options	Marks	Questions Based on
Q.1) A)	Any 3 out of 5	15	
Q.1) B)	Any 1 set out of 2 (i & ii or i & ii)	03 &02	Unit I
Q.2) A)	Any 3 out of 5	15	11.5.11
Q.2) B)	Any 1 set out of 2 (i & ii or i & ii)	03 &02	Unit II
Q.3) A)	Any 3 out of 5	15	I lait III
Q.3) B)	Any 1 set out of 2 (i & ii or i & ii)	03 &02	Unit III
	TOTAL	60	

Practical Examination Pattern:

A) Internal Examination: 40%- 60 Marks

Particulars	Paper I	Paper II	Paper III
Journal	05	05	05
Experimental tasks	15	15	15
Total	20	20	20

B) External Examination: 60%- 90 Marks

Semester End Practical Examination:

Particulars	Paper I	Paper II	Paper III
Laboratory work	25	25	25
Spots/Quiz/Viva	05	05	05
Total	30	30	30

PRACTICAL BOOK/JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.

In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Co-ordinator / Incharge of the department; failing which the student will not be allowed to appear for the practical examination.

Overall Examination & Marks Distribution Pattern Semester III

Course	301		3	302		3	03		Grand Total	
	Internal	External	Total	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	40	60	100	300
Practicals	20	30	50	20	30	50	20	30	50	150

Course Code: RUSMIC 401 Course Title: Microbe Interactions and Host Responses

COURSE OUTCOME	DESCRIPTION
CO 1	Exemplify microbial interactions with plants, animals and other
	microorganisms
CO 2	Evaluate the ecological, medical and evolutionary significance of
	microbial interactions with plants, animals and other microorganisms
CO 3	Outline the strategies through which pathogens develop infections and
	demonstrate presence of some virulence factors in known isolates
CO 4	Understand the concepts and terminologies used in epidemiology and
	correlate disease transmission to disease control
CO 5	Apply the understanding of epidemiology studies in solving public
	health concerns
CO6	Understand the key components of innate and acquired immune
	system and summarize their role in overcoming disease
CO7	Compare the different types of immunoglobulins and understand their
	function in protection

Course Code/ Unit	Unit	Course/ Unit Title	Credits/ Lectures
RUSMIC		MICROBE INTERACTIONS AND HOST	2/45
401		RESPONSES	
I		Microbial interactions with plants, animals and	15
		other microbes	
	1.1	Microbial associations with plants	08
	1.2	 a) Phyllosphere b) Rhizosphere & Rhizoplane c) Mycorrhizae d) Nitrogen fixation: Biochemistry of nitrogen fixation, nodulation in <i>Rhizobia</i>, <i>Azolla-Anabena</i> symbiosis, Actinorhizae, Stem nodulating <i>Rhizobia</i> e) Fungal & Bacterial endophytes f) Plant pathogens -Fungal, bacterial and viral diseases Microbial interactions with animals a) Microbial symbionts in invertebrates b) Bacterial flora in the Rumen c) Microbe- insect interactions 	05
		d) Introduction to Zoonotic diseases	
	1.3	Microbe - Microbe interactions	02
II a	8-1	a) Lichen b) Endosymbionts of Protozoa c) Parasitism in microbes Microbial invasion in Human hosts	15
II .	,		15
MI,	2.1	Virulence Mechanisms	08
Sk.		 a) Bacterial virulence factors Adherence factors Invasion of host cells and tissues Toxins- Exotoxins and Endotoxins Enzymes Evading host defense- Antigenic variation, Antiphagocytic factors and Intracellular pathogenicity 	

		vi. Iron sequestration	1
		vii. The role of Biofilms	
		b) Measuring bacterial virulence: Infective dose &	
		Lethal dose, limulus amoebocyte assay	
		c) Pathogenic properties of viruses, fungi and	
		protozoa	
		protozoa	
	2.2	Introduction to epidemiological concepts	07
		a) Reservoirs of infection	
		b) Modes of disease transmission	
		c) Nosocomial infections	
		d) Epidemiological terminology: epidemic, endemic,) `
		pandemic, sporadic, incidence rate, prevalence	
		rate, mortality, morbidity	
		e) Controlling epidemics: Controlling reservoirs,	
		controlling transmission- Immunization strategies-	
		passive and active, Surveillance	
III		Host responses to infection	15
	3.1	Cells, Tissues and Organs of the Immune System	04
		a) Cells of the immune system- Lymphoid and Myeloid	
		cells, NK cells	
		b) Organs of the immune system- Introduction to	
		primary and secondary lymphoid organs and their	
		roles	
	3.2	Immune responses- Innate defense mechanisms	04
		a) Phagocytosis – Recognition, Destruction,	
		b) Inflammation- Acute and Chronic	
		c) Fever	
		d) Molecular defenses- IFN, complement, ACP	
	3.3	Immune responses- Acquired Defense	07
		a) Outline and characteristics of Adaptive Immune	
		response	
MI.		b) Immunoglobulins – basic and fine structure	
		c) Immunoglobulin classes and biological activities	
		d) Antigenic determinants on immunoglobulins –	
		isotypes, allotypes, idiotypes	
		e) Protective functions of antibodies- Opsonization,	
		Complement mediated lysis, viral neutralization and	
		toxin neutralization	
		f) Introduction to Cell mediated immunity	

- a) Willey, Sherwood and Woolverton, Prescott's Microbiology, 9th edition, 2013, International edition, McGraw Hill.
- b) Michael T. Madigan & J.M. Martin, Brock's Biology of Microorganisms 13th Ed. International edition 2012, Pearson Prentice Hall.
- c) Stanier, General microbiology 5th edition ,1987, Macmillan publication
- d) Tortora, Funke and Case, Microbiology: An Introduction, 10th Edition, 2010, Pearson.
- e) Kathleen Park Talaro & Arthur Talaro Foundations in Microbiology International edition 2002, McGraw Hill.
- f) Jacquelyn Black, Laura Black, Microbiology, Principles and Explorations, 9th Ed, 2015, Wiley
- g) Brooks, Carroll, et al, Jawetz, Melnick & Adelberg's Medical Microbiology, 26th Ed McGraw Hill Lange 2013
- h) https://www.eurofins.com.au/biopharma-services/testing-solutions/sterile-products-testing/endotoxin-or-lal-test/
- i) Ingraham and Ingraham, Introduction to Microbiology, by 2nd Ed ,2000, Brooks/Cole
- j) Thomas J. Kindt, Barbara A. Osborne, Richard A. Goldsby, Kuby Immunology, 6th ed, W. H. Freeman & Company 2005

Course Code: RUSMIC 402 Course Title: INTRODUCTION TO METABOLIC PATHWAYS AND ENZYMOLOGY

COURSE	DESCRIPTION
OUTCOME	
CO 1	Understand the concepts and types of metabolism. Compare the
	metabolic strategies & recall the role of Omics in biochemical studies
CO 2	Explain the regulatory junctions of metabolic pathways.
CO 3	Recall the properties & classes of enzymes. Illustrate enzyme-substrate
	interaction models & recognize the significance of cofactors &
	coenzymes.
CO 4	Evaluate enzyme kinetics & the change in activity in presence of
	variables.
CO 5	Explain the principles of Bioenergetics & attribute the role of energy
	currency molecule
CO 6	Understand & apply the laws of thermodynamics to microbial
	metabolism.
CO 7	Implement experimental procedures for enzyme purification and
JA!	enzyme kinetics studies

Course Code	Unit	Course/ Unit Title	Credits/ Lectures
RUSMI		INTRODUCTION TO METABOLIC	2/45
C 402		PATHWAYS AND ENZYMOLOGY	
I		Introduction to Metabolism	15
	1.1	Introduction to biochemical reactions:	04
		a) Key reactions involved in metabolism.b) Weak interactions involved in determining the structures and functions of macromolecules.	
	1.2	Introduction to metabolism:	06
		 a) Metabolism- Catabolism & Anabolism b) Types of Metabolic pathways c) Metabolic networks, use of different software d) Primary and secondary metabolism e) Energy and reducing power requirements 	
	1.3	Metabolic strategies: Managing metabolic network	04
	1.4	a) Role of enzymes, enzyme clustering & multienzyme complexes b) Functional coupling c) Compartmentalization in cells Introduction to omics: Metabolome & Metabolomics	01
	1		15
II	2.1	Enzymology Introduction to enzymes:	06
2ANIT		a) General properties of enzymes b) How do enzymes accelerate reactions? c) Classification of enzymes d) Enzyme kinetics: Rate law for a simple catalyzed reaction, Michaelis-Menten equation and its derivation, other plots to determine velocity of reactions	

	2.2	Modifying enzyme catalysis rates	05
		 b) Effect of Inhibitors- Reversible and irreversible, competitive, Non-competitive and uncompetitive 	<u> </u>
		c) Allosteric effects in enzyme catalyzed reactions	
		 d) Multi-substrate reactions- Ordered, Random and ping-pong reactions 	, (5) ^v
		e) Koshland- Nemethy and Filmer model	
		f) Monod, Wyman and Chageux model	
	2.3	Coenzymes& Co-factors:	04
		a) Different types and reactions catalyzed by	
		coenzymes (in tabular form)	
		b) Water soluble coenzymes (NAD, Nicotinic acid)	
		c) Fat soluble vitamins and their examples.d) Inorganic cofactors	
		d) morganic coractors	
III		Principles of Bioenergetics	15
	3.1	Bioenergetics & thermodynamics:	06
		a) Energy transformations	
		b) Thermodynamic quantities, standard –free energy	
		c) Difference between ΔG & ΔGo"	
	3.2	ATP and it's role	05
		a) Structure of ATP, phosphoryl group transfer and	
		ATP	
	25	b) Types of energy –rich compounds	
		 c) Multi-roles of ATP inorganic phosphoryl group donor 	
VIA.	3.3	Biological oxidation-reduction reactions	04

- a) Principles of Biochemistry by Geoffery Zubay (1988) 4th Edition Wm.C. Brown Publishers
- b) Outlines Of Biochemistry,5/E,Conn P.Stumpf, G.Bruening & R.Doi,John Wiley & Sons, New York 1995
- c) Fundamentals of Enzymology: Cell and Molecular Biology of Catalytic Proteins 3rd Edition Nicholas Price and Lewis Stevens
- d) Lehninger: Principles Of Biochemistry,4th Ed., D. Nelson & M. Cox, W.H.Freeman & Co., (LPE)
- e) A biologist's Physical Chemistry by John Gareth Morris.
- f) Concepts of Biochemistry, Rodney Boyer
- g) Stanier, General microbiology 5th edition ,1987, Macmillan publication
- h) Principles of Biochemistry by Robert Horton (2011) 5th Edition Pearson Publishers.

Course Code: RUSMIC 403

Course Title: APPLIED MICROBIOLOGY

COURSE OUTCOME	DESCRIPTION		
CO 1	Understand and explain the significance of microbes in fermentation industry and compare the techniques used for their screening		
CO 2	Compare different types of fermentations and fermentation processes used for industrial productions		
CO 3	Exemplify components used in industrial fermentation media with an understanding of its role in the process		
CO 4	Summarize the general principles of food spoilage by microorganisms and compare methods used for food preservation		
CO 5	Execute experimental procedures for detection of microbes in food and dairy products and comment on its quality		
CO 6	Recall the sources of microorganisms in milk and explain the significance of pasteurization techniques		
CO7	Outline and analyze the manufacturing processes of different fermented dairy products		
CO 8	Apply knowledge of contamination, preservation, and quality control in food and dairy product manufacturing industries		
AMMAR			

Course Code	Unit	Course/ Unit Title	Credits/ Lectures
RUSMIC		APPLIED MICROBIOLOGY	2/45
403			. (~)
I		Industrial Microbiology	15
	1.1	Strains of industrially important microorganisms	04
		a) Desirable characteristics of an industrial strain b) Principles and methods of primary and secondary screening	
	1.2	Types of fermentations:	02
		a) Aerobicb) Anaerobicc) Solid state fermentation	
	1.3	Types of fermentation processes:	02
		a) Surface and Submerged b) Batch, continuous, fed-batch fermentation process	
	1.4	Media for industrial fermentations	05
	SAL	a) Production and Inoculum media b) Media components: - Carbon source, nitrogen source, amino acids and vitamins, minerals, water, buffers, antifoam agents, precursors, inhibitors and inducers	
7	1.5	Inoculum development	02
II		Food Microbiology	15
	2.1	Introduction:	01
2Alla		Significance, food as a substrate and sources of microorganisms in food	
	2.2	Intrinsic and extrinsic factors affecting the microbial growth in food	02
	2.3	General Principles of spoilage	04
		Spoilage of fresh foods: fruits and vegetables, eggs, meat, poultry and seafood	

	2.4	General principles of food preservation	04
		(principle of each method and example of foods only)	
		High temperature, low temperature, drying, radiations	
		and food additives and preservatives (tabular	
		representation), Asepsis, introduction to HACCP,	
		Regulation	
	2.5	Food borne diseases	(1)
	2.6	Methods of detection of microorganisms in food:	3
		Overview of cultural, microscopic, physical, chemical	
		and bioassay methods	
III		Dairy Microbiology	15
	3.1	Milk- Definition, composition, sources of	2
		contamination of milk	
	3.2	Pasteurization of milk	3
		LTHT, HTST, UHT	
	3.3	Milk products: production and spoilage of:	7
		a) Yoghurt	
		b) Butter	
		c) Cheese-Cheddar and Cottage cheese	
		d) Fermented milks	
	3.4	Quality control of milk	3
		a) Rapid platform tests	
		b) Microbiological analysis of milk : SPC, Coliform	
		count, LPC, Psychrophiles, Thermophilic count,	
		DRT	

- a) Fundamental Food Microbiology by Bibek Ray, Arun Bhunia (2007), 4th edition CRC Press
- b) Food Microbiology by Frazier 5th ed (1971), McGraw-Hill Education.
- c) Modern Food Microbiology by James Jay 6th ed(2000), Springer US.
- d) Applied Dairy Microbiology by Marth & Steele(2001), CRC Press
- e) BIS standards, FSSAI
- f) Casida L. E., "Industrial Microbiology" 2009 Reprint, New Age International (P) Ltd, Publishers, New Delhi
- g) Stanbury P. F., Whitaker A. & Hall--S. J., 1997, "Principles of Fermentation, Technology", 2nd Edition, Aditya Books Pvt. Ltd, New Delhi.
- h) Prescott and Dunn's ""Industrial Microbiology"".1982 4th Edition, McMillan Publishers
- i) H. A. Modi, 2009. ""Fermentation Technology"" Vol 2, Pointer Publications, India.
- j) Milk and milk products. C. H. Eckles 1943 edition
- k) Sukumar De, Outlines of dairy technology, 1st edition, 1983, O.U.P.
- I) James Jay Frazier 5th. Ed Okafor Waites & Morgan

Course	PRACTICALS	3		
code		Credits		
RUSMICP 401	PRACTICAL-1			
	1. Isolation of <i>Rhizobium</i> from root nodules			
	2. Demonstration of fungi and algae in lichens	60°		
	3. Study of virulence factors – Enzymes – Streptokinase,			
	Coagulase, Hemolysin, Lecithinase			
	4. Demonstration of biofilm formation by pathogens on catheters			
	5. Assignment on classical stages, signs and symptoms of any one microbial disease			
	6. Staining of blood film to demonstrate different types of leucocytes			
	7. Phagocytosis (Demonstration)			
	8. Study of plant microbe interactions: Screening for Auxin production (PGP from Rhizosphere)			
	9. Case studies and problems on Epidemiology			
	10. How to develop epidemiological surveys			
RUSMICP 402	PRACTICAL-2			
	1. Using KEGG, Ecocyc, metacyc, biocyc and Brenda for			
	understanding metabolic networking			
70	2. Qualitative detection of			
	a. Amylase			
	b. Lipase			
	c. Protease			
	d. DNase			
	e. Catalase			
	f. Oxidase			

	g. Carbohydrate fermentation	
	h. Dehydrogenase	
	3. Production and purification of an enzyme	
	4. Assay of an enzyme and determination of enzyme units	
	5. Determination of km and Vmax of an enzyme	. (2)
	6. Effect of environment on enzyme activity:	
	a. Effect of temperature	
	b. Effect of pH	
	c. Effect of enzyme concentration	
	7. Effect of inhibitors	
RUSMICP	PRACTICAL-3	
403		
	Isolation of antibiotic producers from soil- Wilkin's overlay	
	method.	
	2. Determination of microbial counts in food using dip slide	
	technique (demonstration)	
	3. Isolation of food spoilage agent	
	4. Determination of TDT and TDP	
	5. Determination of Salt and sugar tolerance	
	6. Determination of MIC of a preservative	
	7. Visit to Food/Dairy industry	
7/1	8. Rapid platform tests of raw and pasteurized milk.	
DAI	9. Microbiological analysis of raw and pasteurized Milk.	
(h)	10. Microbiological analysis of Butter, Cheese.	
	11. Surface and submerged fermentation.	
	12. Testing a packaged meat product for its microbial load.	

Modality of Assessment

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks per paper

Sr No	Evaluation type	Marks
1	One Assignment/Case study/Project/ Presentation	20
2	One class Test (multiple choice questions / objective)	20
	TOTAL	40

B) External Examination- 60%- 60 Marks per paper

Semester End Theory Examination:

- 1. Duration These examinations shall be of **two hours** duration.
- 2. Theory question paper pattern:
 - a. There shall be three questions each of 20 marks one on each unit.
 - b. All questions shall be compulsory with internal choice within the questions.

Paper Pattern:

Question	Options	Marks	Questions Based on	
Q.1) A)	Any 3 out of 5	15		
Q.1) B)	Any 1 set out of 2 (i & ii or i & ii)	03 &02	Unit I	
Q.2) A)	Any 3 out of 5	15	11.20	
Q.2) B)	Any 1 set out of 2 (i & ii or i & ii)	03 &02	Unit II	
Q.3) A)	Any 3 out of 5	15	1164111	
Q.3) B)	Any 1 set out of 2 (i & ii or i & ii)	03 &02	Unit III	
	TOTAL	60		

Practical Examination Pattern:

A) Internal Examination: 40%- 60 Marks

Particulars	Paper I	Paper II	Paper III		
Journal	05	05	05		
Experimental tasks	15	15	15		
Total	20	20	20		

B) External Examination: 60%- 90 Marks

Semester End Practical Examination:

Particulars	Paper I	Paper II	Paper III			
Laboratory work	25	25	25			
Spots/Quiz/Viva	05	05	05			
Total	30	30	30			

PRACTICAL BOOK/JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.

In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Co-ordinator / Incharge of the department; failing which the student will not be allowed to appear for the practical examination.

Overall Examination & Marks Distribution Pattern Semester IV

Course	401			402			403			Grand Total
	Internal	External	Total	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	40	60	100	300
Practicals	20	30	50	20	30	50	20	30	50	150