S. P. Mandali's Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for S.Y

Program: BSc (Microbiology)

Program Code: RUSMIC

(Credit Based Semester and Grading System for academic year 2021–2022)

PROGRAM OUTCOMES

РО	PO Description
	A student completing Bachelor's Degree in Science program will be
	able to:
PO 1	Recall and explain acquired scientific knowledge in a comprehensive
	manner and apply the skills acquired in their chosen discipline.
	Interpret scientific ideas and relate its interconnectedness to various
	fields in science.
PO 2	Evaluate scientific ideas critically, analyse problems, explore options
	for practical demonstrations, illustrate work plans and execute them,
	organise data and draw inferences.
PO 3	Explore and evaluate digital information and use it for knowledge
	upgradation. Apply relevant information so gathered for analysis and
	communication using appropriate digital tools.
PO 4	Ask relevant questions, understand scientific relevance, hypothesize
	a scientific problem, construct and execute a project plan and
	analyse results.
PO 5	Take complex challenges; work responsibly and independently, as
	well as in cohesion with a team for completion of a task.
	Communicate effectively, convincingly and in an articulate manner.
PO 6	Apply scientific information with sensitivity to values of different
	cultural groups. Disseminate scientific knowledge effectively for
16	upliftment of the society.
PO 7	Follow ethical practices at work place and be unbiased and critical in
27	interpretation of scientific data. Understand the environmental issues
	and explore sustainable solutions for it.
PO 8	Keep abreast with current scientific developments in the specific
	discipline and adapt to technological advancements for better
	application of scientific knowledge as a lifelong learner

PROGRAM SPECIFIC OUTCOMES

PSO	Description
	A student completing Bachelor's Degree in Science program in the subject of Microbiology will be able to:
PSO 1	Recall, explain and summarize basic concepts related to cytology,
	biochemistry, physiology, genetics and reproduction of prokaryotes and
	compare it with eukaryotes.
PSO 2	Appreciate and exemplify the diversity in the microbial world and evaluate
	their ecological role as well as state their significance to humankind.
PSO 3	Understand the basic concepts associated with growth and control of
	microorganisms and apply it in pure culture and preservation techniques.
PSO 4	Differentiate, classify and characterize microorganisms based on their
	morphological, cultural, biochemical, and molecular properties.
PSO 5	Explore, compare and evaluate the role of microorganisms in different natural
	environments as well as plants, animals and humans, and evaluate and
	exemplify their interrelationships.
PSO 6	Apply the understanding of microbial processes to diverse science areas
	such as medical, industrial, agricultural and food and evaluate their potential
	for human well-being, for tackling environmental issues and exploring
	sustainable solutions
PSO 7	Recall and explain the nature of biomolecules and metabolic processes; the
	role and kinetics of enzymes as well as the thermodynamic laws that drive
	these reactions.
PSO 8	Recall the basic working principles of various bioanalytical techniques and
16	tools and apply them to detect, estimate and structurally evaluate
	biomolecules present in the microbial cells.
PSO 9	Understand and explain the nature of genetic material and elaborate the
	molecular mechanisms underlying various genetic processes like replication,
	transcription, translation, gene transfer and recombination in bacteria; and
	explain basic concepts in virology.

PSO 10	Apply the basics of genetics and molecular biology to understand and evaluate techniques in genetic engineering and also for the use of
	bioinformatic tools for presentation and processing of data.
PSO 11	Recognize and explain the role of microorganisms in different diseases,
F30 11	attribute pathogenesis mechanisms to their properties and extrapolate it to
	disease diagnosis, treatment and prevention. Outline and recall concepts in
	epidemiology of diseases. Classify and evaluate different chemotherapeutic agents.
PSO 12	Recall, classify and summarize mechanisms of defense in humans, detail
	out the functioning of our immune system, correlate it to disease and its
	prevention and outline its association to health. Apply immunological
	principles for diagnosis of diseases.
PSO 13	Understand and outline different biochemical mechanisms and their
	regulation; retrieve and construct biochemical pathways in microbial
	metabolism of major macromolecules and, recall and integrate the
	bioenergetics of metabolic reactions.
PSO 14	Evaluate, exemplify and outline the role of microorganisms in different
	industrial fermentations, summarize technological aspects of bioprocesses,
	recall knowledge about patents, copyright and regulatory practices and QA.
PSO 15	Demonstrate key practical skills/competencies in working with microbes for
	their study and use in the laboratory as well as outside, including the use of
	good microbiological practices. Analyze problems involving microbes,
1/2	articulate them and devise innovative and creative solutions.
PSO 16	Hypothesize, design experiments, construct experimental plans, execute
25	them and analyze data with a basic understanding of statistics. Demonstrate
	an ability to be unbiased and critical in interpretation of scientific data
PSO 17	Communicate effectively to express scientific ideas and/or their
	experimental data in an effective, precise and concise manner.

PROGRAM OUTLINE

YEAR	SEM	COURSE	COURSE TITLE	CREDITS
		CODE		
	I	RUSMIC 101	Fundamentals of Microbiology	02
		RUSMIC 102	Microorganisms – in the lab and in nature	02
FY		RUSMICP101	Practicals based on above two courses	02
	II	RUSMIC 201	Microbial world: types and inter-relations	02
		RUSMIC 202	Techniques in Microbiology	02
		RUSMICP201	Practicals based on above two courses	02
	III	RUSMIC 301	Microbial taxonomy and Introduction to Genetics and Molecular Biology	02
		RUSMIC 302	Introduction to Experimental Microbial Biochemistry	02
	4	RUSMIC 303	Environmental Microbiology	02
SY	P	RUSMICP301	Practicals based on above three courses	03
	IV	RUSMIC 401	Microbe interactions and host responses	02
		RUSMIC 402	Introduction to Metabolic Pathways and Enzymology	02
		RUSMIC 403	Applied Microbiology	02
		RUSMICP401	Practicals based on above three courses	03

V	RUSMIC 501 RUSMIC 502 RUSMICP501	Microbial Genetics Medical Microbiology Practical Based on Above Two	2.5 2.5
			2.5
	RUSMICP501	Practical Based on Above Two	
		Courses	3
	RUSMIC 503	Microbial Biochemistry: Part-I	2.5
	RUSMIC 504	Bioprocess Technology	2.5
	RUSMICP502	Practical Based on Above Two Courses	3
VI	RUSMIC 601	Genetics, Bioinformatics & Virology	2.5
	RUSMIC 602	Immunology	2.5
	RUSMICP601	Practical Based on Above Two Courses	3
	RUSMIC 603	Microbial Biochemistry Part II	2.5
	RUSMIC 604	Industrial Microbiology	2.5
	RUSMICP602	Practical Based on Above Two Courses	3
RPS	ARUIA		
-		RUSMIC 504 RUSMICP502 VI RUSMIC 601 RUSMIC 602 RUSMICP601 RUSMIC 603 RUSMIC 604	RUSMIC 504 RUSMIC 504 RUSMICP502 Practical Based on Above Two Courses Genetics, Bioinformatics & Virology RUSMIC 602 RUSMIC 602 RUSMICP601 RUSMICP601 RUSMIC 603 RUSMIC 603 RUSMIC 604 RUSMIC 604 RUSMIC 604 RUSMICP602 RUSMICP602 RUSMICP602 RUSMICP602 RUSMICP602 RUSMICP602

Course Title: Microbial World: types and inter-relations

Academic year 2020-21

COURSE OUTCOME	DESCRIPTION
CO 1	Understand the structure, cultivation and significance of viruses
CO 2	Explain and compare the features of Rickettsia, Chlamydia and
	Myxobacteria
CO 3	Summarize the characteristics and infer significance of
	Actinomycetes and Archaebacteria
CO 4	Categorize microorganisms like Protozoa, Algae and Fungi into
	different groups based on their characteristics
CO 5	Infer the medical and industrial significance of Protozoa, Algae and
	Fungi
CO 6	Explain the types and role of normal flora on human body and infer
	its significance
CO 7	Organizing the events of development of infection in human system
0	and summarize the factors affecting host immune system

Course	Unit	Course/ Unit Title	Credits/
Code/			Lectures
Unit			
RUSMIC		MICROBIAL WORLD: TYPES AND	2/45
201		INTER-RELATIONS	1,0
I		Microbial world (Viruses Rickettsia, Actinomycetes and Archaea)	15
	1.1	Viruses	07
		 a) Historical highlights, General properties of viruses, prions, viroids b) Structure of viruses-capsids, envelopes, genomes-TMV, Influenza, and T4 as representatives c) Cultivation of viruses- overview 	
	1.2	Rickettsia, Chlamydia, Mycoplasma	02
		General features and medical significance	
	1.3	Actinomycetes	02
		 a) General features b) Examples- Nocardia and Streptomyces c) Importance: ecological, commercial and medical 	
	1.4	Archaea	02
		a) Introduction- Major Archaeal physiological groups, b) Archaeal cell wall, lipids and membranes c) Ecological importance	
	1.5	Cyanobacteria& Myxobacteria	02
II		Microbial World (algae, fungi, yeasts, slime molds, protozoa)	15
	2.1	Protozoa	04
Sby		 a) General characteristics b) Major categories of Protozoa based on motility, reproduction c) Medically important Protozoa d) Life cycle of Entamoeba 	
	2.2	Algae	05
		a) Characteristics of algae: morphology, Pigments, reproduction	

		 b) Cultivation of algae c) Major groups of Algae –an overview d) Biological, Medical and economic importance e) Differences between Algae and Cyanobacteria f) Medical, ecological &Commercial application 	
	2.3	Fungi and Yeast	05
		a) Characteristics: structure, Reproduction b) Cultivation of fungi and yeasts c) Major fungal divisions- overview d) Life cycle of yeast e) Biological and economical importance	1 K.C.K
	2.4	Slime molds and Myxomycetes	01
III		Microbe- Human interactions	15
	3.1	Normal flora of the human body	04
	3.2	a) Skin, Nose &Nasopharynx, Oropharynx, Respiratory tract, Eye, External ear b) Mouth, Stomach, Small intestine, Large intestine c) Genitourinary tract d) Gnotobiotic animals e) Introduction to the concept of microbiome Development of infection a) Portal of entry and infectious dose b) Attaching to host c) Surviving defenses d) Virulence factors e) Process of infection f) Portal of exit g) Patterns of an infection- localized, systemic, focal, mixed, primary, secondary, acute and chronic infections	07
	3.3	h) Signs and symptoms of disease Host defense against infection: Overview	04
2 AM	, 5.0	a) Factors affecting host defense: Species resistance, racial resistance and Individual resistance b) Introduction to innate and adaptive defences, Barriers at portal of entry: Physical barriers, Chemical defenses, genetic resistance.	

- a) Willey, Sherwood and Woolverton, Prescott's Microbiology, 9th edition, 2013, International edition, McGraw Hill.
- b) Michael T. Madigan & J.M. Martin, Brock's Biology of Microorganisms 13th Ed. International edition 2012, Pearson Prentice Hall.
- c) Tortora, Funke and Case, Microbiology: An Introduction, 10th Edition, 2010, Pearson.
- d) Kathleen Park Talaro & Arthur Talaro Foundations in Microbiology International edition 2002, McGraw Hill.
- e) Jacquelyn Black, Laura Black, Microbiology, Principles and Explorations, 9th Ed, 2015, Wiley
- f) Michael J. Pelczar Jr., E.C.S. Chan, Noel R. Krieg, Microbiology 5th Edition, 1986, Tata McGraw Hill Publishing Company

Course Title: Techniques in Microbiology

Academic year 2020-21

COURSE	DESCRIPTION
OUTCOME	
CO 1	Understand and explain the growth pattern with the phases of
	growth for bacteria.
CO 2	Summarize the physical, chemical &cultivation-based methods for
	enumeration of microorganisms.
CO 3	Recall & exemplify the mechanisms of physical & chemical
	antimicrobial agents.
CO 4	Infer the significance of different preservation techniques &
	emphasize the role of Culture collection centers.
CO 5	Understand & explain the concept and need of biosafety levels.
CO 6	Summarize the modern microscopic techniques & explain the
	molecular methods for detection of microorganisms.
CO 7	Execute & perform the techniques used for enumeration of
	microorganisms & evaluate the microbicidal action of physical &
Sa,	chemical agents.

Course Code/ Unit	Unit	Course/ Unit Title	Credits/ Lectures
RUSMIC 202		TECHNIQUES IN MICROBIOLOGY	2/45
I		Microbial Growth	15
	1.1	Growth Curve & Mathematical Expression of	05
		Growth Curve	
		a) Definition of Growth, Growth phases	
		b) Determining growth constant & growth rate	
	1.2	Measurement of Growth a) Direct microscopic count	07
		i) Breed's count, ii) Petroff-Hausser counting chamber iii) Haemocytometer b) Viable count using Spread plate and Bour plate.	
		b) Viable count using Spread plate and Pour plate technique	
		c) Measurements of cell constituents.	
		 d) Turbidity measurements Brown's opacity tubes and spectrophotometer 	
		techniques	
		e) Coulter Counter	
	1.3	Factors affecting growth pattern	03
II	4	Control of Microorganisms	15
	2.1	Definition of terms	01
	2.2	Physical agents for control of microorganisms (mode of action, advantages, disadvantages and applications)	06
	Y	a) High temperature-moist heat and dry heat	
Ch.		b) Low temperatures	
		c) Radiation	
		d) Osmotic pressure	
		e) Desiccation	
		f) Physical removal of microorganisms using bacteriological filters	
	2.3	Chemical agents for control of microorganisms (mode of action, advantages, disadvantages and	04

		applications of all major groups of antimicrobial agents)	
	2.4	Evaluation of Chemical disinfectants	01
	2.5	Chemotherapeutic & antimicrobial agents- types & examples (tabular form)	01
	2.6	Biosafety in Microbiology	02
		a) Biosafety general principles and terminology with equipment b) Biological containment and laboratory safety levels	
III		Modern techniques in Microbiology	15
	3.1	Modern Microscopy	03
		a) Fluorescence microscopy b) Confocal Microscopy	
	3.2	Molecular methods of microbe detection	10
		 a) Identification and quantification using nucleic acid probes and labeled antibodies (Eg: ELISA & its Types, FISH) b) Microbial activity measurements using radioisotopes and microelectrodes c) PCR, Electrophoretic techniques, Hybridization techniques, Blotting techniques 	
	3.3	Introduction to Omics- What is Metagenomics, community DNA analysis	02

- a) Microbiology TMH 5th Edition by Michael J.Pelczar Jr., E.C.S. Chan ,Noel R. Krieg
- b) A.J.Salle, Fundamental Principles of Bacteriology, 1984, McGraw Hill Book Company Inc.
- c) Prescott, Hurley Klein-Microbiology, 5th edition, International edition 2002, McGraw Hill.
- d) Prescott's Microbiology, 7th Edition; Joanne M. Willey, Linda M. Sherwood, Christopher J.Woolverton, 2011, McGraw Hill International
- e) Michael T.Madigan & J.M. Martin, Brock, Biology of Microorganisms 11th Ed. International edition, 2006, Pearson Prentice Hall.
- f) Principles and Techniques of Biochemistry and Molecular Biology by Keith Wilson and John Walker, 7th edition, 2010, Cambridge University Press.

Course code	PRACTICALS	2 Credits
RUSMICP 201	PRACTICAL-1	
Unit-I	 Demonstration of Bacteriophages in sewage Isolation of Actinomycetes from soil and Slide Culture technique for Actinomycetes Biogas production using methanogens Cultivation of algae 	CK.
Unit-II	 Isolation of yeast, and other fungi Fungal Wet mounts & Study of Morphological Characteristics Mucor, Rhizopus, Aspergillus, Penicillium Slide culture of fungi Cultivation of fungi- static and shaker conditions Permanent slides of Algae, Protozoa Demonstration of protozoa in hay infusion 	
Unit-III	 Normal flora of the skin, oral cavity and intestine. Role of fomites Cough plate technique 	
RUSMICP 202	PRACTICAL-2	
Unit-I	 Study of growth curve of bacteria Enumeration of microorganisms using Haemocytometer & Breed's Count Enumeration of microorganisms Brown's opacity tubes Viable count: Spread plate and pour plate 	
Unit-II	 Demonstration of efficiency of autoclave Effect of UV Light on bacteria Effect of surface tension on bacterial growth Study of Oligodynamic action Effect of dyes, phenolic compounds and chemotherapeutic agents on bacteria- disc diffusion method Demonstration of MIC of an antibacterial agent 	
Unit-III	 Introduction to laboratory equipment for electrophoresis, PCR Assignment on any modern method used in microbial detection 	

Modality of Assessment

Theory Examination Pattern:

A. Internal Assessment- 40%- 40 Marks per paper

Sr No	Evaluation type	Marks
1	One Assignment/Case study/Project/ Presentation	15
2	One class Test (multiple choice questions / objective)	20
3	Active participation in routine class instructional deliveries	05
	TOTAL	40

B. External Examination- 60%- 60 Marks per paper

Semester End Theory Examination:

- 1. Duration These examinations shall be of two hours duration.
- 2. Theory question paper pattern:
 - a. There shall be three questions each of 20 marks one on each unit.
 - b. All questions shall be compulsory with internal choice within the questions.

Paper Pattern:

Question	Options	Marks	Questions Based on
Q.1) A)	Any 3 out of 5	15	11.51
Q.1) B)	Any 1 set out of 2 (i & ii or i & ii)	03 &02	Unit I
Q.2) A)	Any 3 out of 5	15	1 la:4 II
Q.2) B)	Any 1 set out of 2 (i & ii or i & ii)	03 &02	Unit II
Q.3) A)	Any 3 out of 5	15	1110:4111
Q.3) B)	Any 1 set out of 2 (i & ii or i & ii)	03 &02	Unit III
	TOTAL	60	

Practical Examination Pattern:

A. Internal Examination: 40%- 40 Marks

Particulars	Paper I	Paper II
Journal	05	05
Experimental tasks	10	10
Participation	05	05
Total	20	20

B. External Examination: 60%- 60 Marks

Semester End Practical Examination:

Particulars	Paper I	Paper II
Laboratory work	25	25
Spots/Quiz/Viva	05	05
Total	30	30

PRACTICAL BOOK/JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.

In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Co-ordinator / Incharge of the department; failing which the student will not be allowed to appear for the practical examination.

Overall Examination & Marks Distribution Pattern

Semester II

Course 201				2	02		Grand Total
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practicals	20	30	50	20	30	50	100

Owing to the pandemic situation prevailing in 2020 and continuing in 2021, the external examinations (Semester End) may be conducted online as per the instructions/circulars received from the University of Mumbai and Maharashtra State notifications from time to time. The conventional mode of external examination will commence again only after the declaration of normalcy by the Government authorities.

Course Title: MICROBIAL TAXONOMYAND INTRODUCTION TO GENETICS AND MOLECULAR BIOLOGY

COURSE	DESCRIPTION
OUTCOME	DESCRIPTION OF
CO 1	Differentiate between vast pool of microbes on the basis of
	morphological, cultural, biochemical and genetic characteristics
CO 2	Understand, apply and evaluate techniques in microbial taxonomy
CO 3	Construct phylogenetic trees using simple computational tools
CO 4	Recall Mendelian genetics and critique the deviations from Mendelian
	genetics
CO 5	Discriminate the structure of DNA and RNA focusing on the different
	forms of DNA
CO6	Understand the central dogma of molecular genetics
CO7	Explain prokaryotic transcription and translation process and interpret
	the significance of the important events from initiation to the
College	termination of the process
C08	Extrapolate the role of omics in molecular biology studies

Course	Unit	Course/ Unit Title	Credits/
Code/			Lectures
Unit			
RUSMIC		MICROBIAL TAXONOMY AND	2 / 45
301		INTRODUCTION TO GENETICS AND	1,0
		MOLECULAR BIOLOGY	
I		Techniques in Microbial Taxonomy	15
	1.1	Introduction to microbial Taxonomy and Taxonomic	01
		ranks	
	1.2	Techniques for studying Microbial Taxonomy	08
		a) Microscopic & macroscopic morphology and	
		biochemical characteristics,	
		b) Chemical Analysis	
		c) Serological analysis	
		d) Genetic & molecular analysis: i. Nucleic acid	
		sequencing and finger printing ii. G+C content iii.	
		Nucleic acid hybridization iv. Amino acid	
		sequencing	
		e) Community DNA analysis	
	1.3	Introduction to Microbial Phylogeny	05
		a) Phylogenetic Trees	
	-	i. Types	
	OX	ii. Construction (an overview)	
		b) Numerical Taxonomy	
	1.4	Bergey's Manual of Systematic Bacteriology	01
		a) Understanding classification and identification	
QAIN'		schemes for bacteria using Bergey's manual	
II		Classical Genetics (Mendelian & Neomendelian)	15
		& Nucleic acid structure	
	2.1	Mendelian genetics:	04
		a) Genotype and Phenotype	
		b) Mendel's Experiments design	

		c) Monohybrid cross and dihybrid cross, Mendelian	
		Laws of inheritance	
		d) Trihybrid Cross	
	2.2	Non-Mendelian genetics	05
		a) Multiple alleles	
		b) Modification of dominance relationships	
		c) Incomplete dominance	
		d) Codominance (both with their molecular	
		explanations)	
		e) Essential and lethal genes	
		f) Gene expression and effect of environment	
		g) Maternal effect	
		h) Gene interactions and modified Mendelian ratios	
	2.3	Structure of DNA:	03
		Different 3D forms and unusual structures	
		DNA methylation	
	2.4	Structure of chromosomes	01
	2.5	Structure of RNA	02
III		Gene Expression in Bacteria	15
	3.1	Central dogma of Molecular Biology	01
	3.2	Transcription in prokaryotes	06
		a) RNA biosynthesis	
		b) Prokaryotic transcription	
		i. Prokaryotic promoters	
		ii. Initiation, elongation and termination	
	3.3	Translation	06
		a) Components of protein synthesis apparatus:	
7/1	2,	Genetic code, mRNA, Ribosomes	
)	b) Degeneracy of genetic code	
QP!		c) Protein synthesis	
	3.4	Comparison of eukaryotic & prokaryotic	01
		transcription & translation	
	3.5	Introduction to the concept of Omics:	01

- a) Prescott's Microbiology, Joanne M. Willey, Linda M. Sherwood, Christopher J.Woolverton, Edition, 7th Edition, 2011, McGraw Hill International
- b) Madigan, Martinko, Dunlap and Clark, Brock Biology of Microorganisms, 12thedition, 2009, Pearson Education
- c) Peter J. Russell, "iGenetics A molecular approach", 3rd edition, 2010, Benjamin Cummings.7
- d) Stanier R.Y. And Other, MacMillan General Microbiology, 5th edition,1987, MACMILLAN PRESS LTD
- e) D. Nelson & M. Cox, Lehninger"s Principles Of Biochemistry,4th Edition ,2005, (W.H.Freeman& Co., (LPE)
- f) James Watson, Molecular Biology of Gene, 5th edition,2004, Pearson Benjamin Cummings CSHL Press.
- g) Benjamin A Pierce, Genetics: A conceptual approach 2002, W.H. Freeman

Course Title: INTRODUCTION TO EXPERIMENTAL MICROBIAL BIOCHEMISTRY

Academic year 2020-21

COURSE	DESCRIPTION
OUTCOME	DEGGKIII TIGIT
CO 1	Understand the process of designing experiments & analyse the
	experimental data statistically.
CO 2	Implement the use of web directories & databases for
	biochemical studies
CO 3	Recall & compare the different cell disintegration methods &
	elaborate the working principles of centrifugation,
	electrophoretic & chromatographic techniques used for studying
	cell analytes.
CO 4	Illustrate the principles of protein separation & purification.
CO 5	Compare the utility & perform the techniques for the estimation
	of biomolecules.
CO 6	Understand the principle, instrumentation & application of
"HVI	different laboratory instruments used in biochemical studies.
CO 7	Design an experiment for extraction, purification & estimation of
	biomolecules, & evaluate the statistical relevance of the data
	generated.

Course Code	Unit	Course/ Unit Title	Credits/ Lectures
RUSMIC 302		INTRODUCTION TO EXPERIMENTAL MICROBIAL BIOCHEMISTRY	2/45
I		Designing and Analysis of experimental data, General laboratory techniques: Electrochemical sensors	15
	1.1	Designing experiments:	02
		a) Aims of laboratory experiments b) Outline of Scientific method c) Experimental design d) Analytical considerations and experimental error	
	1.2	Analysis of experimental data:	07
	RA	 a) Data presentation: Dot diagram, Bar diagram, Histogram, Frequency curve, Calibration methods: Linear regression, Internal standards b) Assessment of precision -Mean, Median, Mode, Standard deviation, coefficient of variation and variance c) Assessment of performance of an analytical technique -performance indicators d) Poisson and Normal distribution e) Assessment of accuracy& Validation of analytical data population statistics, confidence limit and confidence interval; Students t factor, Q test, F test, ANOVA 	
	1.3	Using computers in biochemistry	02
AMI		Using web directories, biological databases and tools (eg. NCBI, EMBL)	
	1.4	General and routine laboratory procedures:	04
_		Theoretical and practical aspects of: a) Preparation and use of buffers b) Electrochemical sensors: pH meter c) Oxygen electrode d) Biosensors	

II		Fractionation of microbial cells and separation techniques	15
	2.1	Disintegration of cells	02
		a) Physical methods	
		b) Chemical methods	
	2.2	Separation Techniques	03
		a) Centrifugation techniques: i.Basic principles of sedimentation ii.Types of centrifuges and their use: preparative & analytical, ultracentrifuges iii.Differential, Density Gradient & isopycnic centrifugation	
		b) Electrophoretic techniques: i.General Principles ii.Factors affecting electrophoresis iii.Support media- Agarose gels and PAGE	03
		c) Chromatographic Techniques: i. General principles ii. Types and applications- Partition, adsorption, ion exchange, affinity and size exclusion iii. Modes- Paper, TLC, HPLC, GC, Reverse Phase	07
III		Purification & Estimation of biomolecules	15
	3.1	Separation and purification of proteins	03
Q.AMM	RRA	a) Criteria for purity b) Methods of separation/ concentration of proteins based on: i. Size and mass ii. Polarity iii. Solubility iv. Specific binding sites v. Concentration of proteins - Dialysis, Ultrafiltration c) Choice of methods	

3.2	Estimation of Biomolecules	12
3.2	a) Visible and UV spectrophotometry i. Principles ii. Instrumentation iii. Applications b) Preparation of bacteria for analysis c) Methods for chemical analysis (Basic principles of all methods to be covered) i. Methods of elemental analysis: Carbon by Slyke's method, Nitrogen by Microkjelhdahl method, Phosphorus by Fiske-Subbarow method ii. Estimation of Carbohydrates by Phenol and Anthrone Method	12 03 01 08
	iii. Estimation of Reducing Sugars iv. Estimation of Proteins	
	v. Estimation of Amino acids	
	vi. Extraction of Lipids and estimation of total lipid	
	vii. Estimation of Nucleic acids	

- a) Norris & Ribbon, Methods in Microbiology, Vol.5B, Edition,1971, Academic Press
- b) J. Jayaraman, Laboratory Manual in Biochemistry, 2003, New Age International Publishers
- c) D. Nelson & M. Cox, Lehninger's Principles Of Biochemistry,4th Edition, 2005, W.H.Freeman & Co., (LPE)
- d) B.K. Mahajan. Jaypee brothers, Methods in biostatistics for medical & research workers. 6thedition, Medical Publishers (P) ltd.
- e) Rodney Boyer, Modern experimental biochemistry by 3rd Edition ,2000, Benjamin Cummings
- f) 1.H. Segel, Biochemical calculations, 2nd Edition 2004, Wiley India
- g) Wilson and Walker, Principles and Techniques of Biochemistry and Molecular Biology 7th Ed, 2010. Cambridge University Press
- h) Stanier R.Y. And Other, General Microbiology, 5th edition, 1989 MacMillan Press.
- i) Plummer David, An Introduction to Practical Biochemistry, 1979, TMH
- j) Wayne Daniel, Biostatistics: A Foundation for Analysis in Health Sciences, 10th edition, 2013, Wiley.

Course Title: ENVIRONMENTAL MICROBIOLOGY

Academic year 2020-21

COURSE OUTCOME	DESCRIPTION				
CO 1	Understand the distribution and characterization of microbes in various habitats/ecosystems				
CO 2	Explain role of air as a medium of microbial dispersion				
CO 3	Differentiate between microbial flora of marine and freshwater environments				
CO 4	Execute microbiological techniques for studying microbiota of air, aquatic and terrestrial environments				
CO 5	Implement routine bacteriological analysis techniques for assessing water quality and attribute the results to sources of contamination				
CO 6	Recall steps in sewage treatment and check effectivity of treatment processes				
CO 7	Implement microbiological analysis of a soil ecosystem with an understanding of the most appropriate technique				
CO 8	Apply basic principles of environmental microbiology for understanding and solving environmental problems –bioremediation				

Course Code	Unit	Course/ Unit Title	Credits/ Lectures
RUSMI		ENVIRONMENTAL MICROBIOLOGY	2/45
C 303			C
I		Air & Fresh Water Microbiology	15
	1.1	Air Microbiology	05
		a) Origin, distribution, number and kinds of microorganisms in air, Factors affecting microbial survival in air	
		 b) Enumeration of microorganisms in air: Impingement in liquids, Impaction on solids, Filtration, Sedimentation, Centrifugation, Electrostatic Precipitation. 	
		 c) Air borne pathogens and diseases, droplets and droplet nuclei 	
		d) Air sanitation- methods and application	
	1.2	Fresh water microbiology	10
		a) General: Groups of natural waters, factors affecting kinds of microorganisms found in aquatic environments and nutrient cycles in aquatic environments	
	R	 Fresh Water environments and microorganisms found in Lakes, ponds, rivers, marshes, bogs and springs 	
	714	 c) Potable water: Definition, water purification and pathogens transmitted through water. 	
		d) Microorganisms as indicators of water quality	
51		 e) Bacteriological examination of water-sampling, routine analysis, SPC, membrane filter technique, Standards for water quality 	

II		Marine and Sewage Microbiology	15				
	2.1	2.1 Marine Microbiology					
		a) Characteristics of marine environments					
		b) Diversity& characteristics of marine microorganisms and their importance	COV				
		c) Ecosystems of Deep-sea Hydrothermal vents and Subterranean Water					
	2.2	Sewage Microbiology	10				
		a) Types of waste water					
		b) Characteristics of waste water					
		 c) Modern waste water treatment: Primary, Secondary and tertiary treatment (oxidation ponds, activated sludge, trickling filters, anaerobic digestor). 					
		d) Removal of pathogens by sewage treatment Processes					
		e) Sludge Processing					
		f) Disposal of Solid Waste, Modern Sanitary Landfills, Composting					
III		Soil & Geo Microbiology	15				
	3.1	Soil Microbiology	03				
	RP	a) Soil – Definition, composition, function, Textural Triangle					
		b) Types of Soil microorganisms & their activities					
Oblia	3.2	Methods of studying soil microorganisms	05				
		a) Sampling					
		b) Cultural methods					
		c) Physiological methods					
		d) Immunological methods (Tabulation of the immunological methods)					

	e) NA based method	
	f) Radioisotope technique	
3.3	Geo Microbiology	03
	a) Carbon cycle	
	b) Nitrogen cycle	
	c) Sulphur cycle	
	d) Phosphorus cycle	1.GV
3.4	Biodegradation and Bioremediation	4
	a) Microbial leaching	
	b) Metal transformations	
	c) Petroleum degradation	
	d) Degradation of xenobiotics	

- a) Raina M. Maier, Ian L. Pepper, Charles P. Gerba, Environmental Microbiology, 2nd Edition, 2010, Academic Press
- b) A.J. Salle, Fundamental Principles of Bacteriology, 7th Editon,1974, Tata McGraw Hill Publishing Company
- c) Air Quality Standards NAAQS Manual, Volume I, 2011
- d) Joanne M. Willey, Linda M. Sherwood, Christopher J.Woolverton Prescott's Microbiology, 8th Edition, 2011, McGraw Hill International Edition
- e) Frobisher, Hinsdill, Crabtree, Goodheart, Fundamentals of Microbiology, 9th Edition, 1974, Saunders College Publishing
- f) Barbara Kolwzan, Waldemar Adamiak (E Book) Oficyna Wydawnicza Politechniki Wroclawskiej, Wroclaw, 2006
- g) N.S Subba Rao, Introduction to Environmental Microbiology –Soil Microbiology -4th Edition ,2000, Oxford and IBH Publishing Co. Pvt Ltd
- h) Michael T. Madigan & J.M. Martin, Brock's Biology of Microorganisms 13th Ed. International edition 2012, Pearson Prentice Hall.

Course code	PRACTICALS	3
		CREDITS
RUSMICP301	PRACTICAL-1	
	Isolation and identification of a bacterial isolate	
	2. Problems on Mendelian genetics	
	3. Extraction of DNA from onion and <i>E. coli</i>	1,0
	Problems on genetic code	
	Construction of phylogenetic tree.	
RUSMICP302	PRACTICAL -2	
_	Introduction to experimental design	
	Lab common sense workshop	
	Biostatistics problems	
	4. Study of pH meter and preparation of buffers	
	5. Density gradient centrifugation	
	6. Demonstration of agarose gel electrophoresis	
	7. Demonstration of PAGE	
	8. Separation of amino acids using paper	
	chromatography	
	9. Separation of carbohydrates using TLC	
	10. Demonstration of column chromatography	
	11. Demonstration of HPLC, HPTLC and GC	
	12. Determination of λmax	
	13. Verification of Beer's law and determination of	
24	extinction coefficient	
	14. Large scale cultivation of bacteria /yeast/ fungi	
"(-7)	15. Determination of Dry and wet Weight	
All.	16. Disintegration of cells using physical & chemical	
	methods and separation of biomolecules	
r	17. Estimation of Amino acids by Ninhydrin method	
	18. Estimation of Proteins by Biuret method	
	19. Bradford's Method for protein estimation	
	20. Estimation of Reducing Sugars by DNSA method	

1. Enumeration of microorganisms in air and study its load after fumigation 2. Determination of microbial load using air impinger 3. Study of halophilic and haloduric bacteria from marine samples 4. Routine analysis of water 5. Use of membrane filter technique for bacteriological analysis of water 6. Rapid detection of <i>E.coli</i> by MUG technique-Demo 7. Visit to a Sewage treatment plant 8. BOD of untreated and treated sewage 9. Buried slide technique to study soil flora 10. Enrichment and isolation of Cellulose degraders, Sulphate reducers and Phosphate solubilizers from soil 11. Setting up Winogradsky's Column
load after fumigation 2. Determination of microbial load using air impinger 3. Study of halophilic and haloduric bacteria from marine samples 4. Routine analysis of water 5. Use of membrane filter technique for bacteriological analysis of water 6. Rapid detection of <i>E.coli</i> by MUG technique-Demo 7. Visit to a Sewage treatment plant 8. BOD of untreated and treated sewage 9. Buried slide technique to study soil flora 10. Enrichment and isolation of Cellulose degraders, Sulphate reducers and Phosphate solubilizers from soil
 Determination of microbial load using air impinger Study of halophilic and haloduric bacteria from marine samples Routine analysis of water Use of membrane filter technique for bacteriological analysis of water Rapid detection of <i>E.coli</i> by MUG technique-Demo Visit to a Sewage treatment plant BOD of untreated and treated sewage Buried slide technique to study soil flora Enrichment and isolation of Cellulose degraders, Sulphate reducers and Phosphate solubilizers from soil
 Study of halophilic and haloduric bacteria from marine samples Routine analysis of water Use of membrane filter technique for bacteriological analysis of water Rapid detection of <i>E.coli</i> by MUG technique-Demo Visit to a Sewage treatment plant BOD of untreated and treated sewage Buried slide technique to study soil flora Enrichment and isolation of Cellulose degraders, Sulphate reducers and Phosphate solubilizers from soil
 samples 4. Routine analysis of water 5. Use of membrane filter technique for bacteriological analysis of water 6. Rapid detection of <i>E.coli</i> by MUG technique-Demo 7. Visit to a Sewage treatment plant 8. BOD of untreated and treated sewage 9. Buried slide technique to study soil flora 10. Enrichment and isolation of Cellulose degraders, Sulphate reducers and Phosphate solubilizers from soil
 Routine analysis of water Use of membrane filter technique for bacteriological analysis of water Rapid detection of <i>E.coli</i> by MUG technique-Demo Visit to a Sewage treatment plant BOD of untreated and treated sewage Buried slide technique to study soil flora Enrichment and isolation of Cellulose degraders, Sulphate reducers and Phosphate solubilizers from soil
 Use of membrane filter technique for bacteriological analysis of water Rapid detection of <i>E.coli</i> by MUG technique-Demo Visit to a Sewage treatment plant BOD of untreated and treated sewage Buried slide technique to study soil flora Enrichment and isolation of Cellulose degraders, Sulphate reducers and Phosphate solubilizers from soil
analysis of water 6. Rapid detection of <i>E.coli</i> by MUG technique-Demo 7. Visit to a Sewage treatment plant 8. BOD of untreated and treated sewage 9. Buried slide technique to study soil flora 10. Enrichment and isolation of Cellulose degraders, Sulphate reducers and Phosphate solubilizers from soil
 7. Visit to a Sewage treatment plant 8. BOD of untreated and treated sewage 9. Buried slide technique to study soil flora 10. Enrichment and isolation of Cellulose degraders, Sulphate reducers and Phosphate solubilizers from soil
 8. BOD of untreated and treated sewage 9. Buried slide technique to study soil flora 10. Enrichment and isolation of Cellulose degraders, Sulphate reducers and Phosphate solubilizers from soil
 9. Buried slide technique to study soil flora 10. Enrichment and isolation of Cellulose degraders, Sulphate reducers and Phosphate solubilizers from soil
Enrichment and isolation of Cellulose degraders, Sulphate reducers and Phosphate solubilizers from soil
Sulphate reducers and Phosphate solubilizers from soil
soil
11. Setting up Winogradsky's Column
12. Developing compost pits
AMMARAIN

Modality of Assessment

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks per paper

Sr No	Evaluation type	Marks
1	One Assignment/Case study/Project/ Presentation	15
2	One class Test (multiple choice questions / objective)	20
3	Active participation in routine class instructional deliveries	05
	TOTAL	40

B) External Examination- 60%- 60 Marks per paper

Semester End Theory Examination:

- 1. Duration These examinations shall be of two hours duration.
- 2. Theory question paper pattern:
 - a. There shall be three questions each of 20 marks one on each unit.
 - b. All questions shall be compulsory with internal choice within the questions.

Paper Pattern:

Question	Options	Marks	Questions Based on
Q.1) A)	Any 3 out of 5	15	
Q.1) B)	Any 1 set out of 2 (i & ii or i & ii)	03 &02	Unit I
Q.2) A)	Any 3 out of 5	15	Llate II
Q.2) B)	Any 1 set out of 2 (i & ii or i & ii)	03 &02	Unit II
Q.3) A)	Any 3 out of 5	15	11.2010
Q.3) B)	Any 1 set out of 2 (i & ii or i & ii)	03 &02	Unit III
	TOTAL	60	

Practical Examination Pattern:

A) Internal Examination: 40%- 60 Marks

Particulars	Paper I	Paper II	Paper III
Journal	05	05	05
Experimental tasks	10	10	10
Participation	05	05	05
Total	20	20	20

B) External Examination: 60%- 90 Marks

Semester End Practical Examination:

Particulars	Paper I	Paper II	Paper III
Laboratory work	25	25	25
Spots/Quiz/Viva	05	05	05
Total	30	30	30

PRACTICAL BOOK/JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.

In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Co-ordinator / Incharge of the department; failing which the student will not be allowed to appear for the practical examination.

Overall Examination & Marks Distribution Pattern Semester III

Course	3	301		3	302		3	03		Grand Total
	Internal	External	Total	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	40	60	100	300
Practicals	20	30	50	20	30	50	20	30	50	150

Owing to the pandemic situation prevailing in 2020 and continuing in 2021, the external examinations (Semester End) may be conducted online as per the instructions/circulars received from the University of Mumbai and Maharashtra State notifications from time to time. The conventional mode of external examination will commence again only after the declaration of normalcy by the Government authorities.

Course Title: Microbe Interactions and Host Responses

COURSE	DESCRIPTION
OUTCOME	
CO 1	Exemplify microbial interactions with plants, animals and other
	microorganisms
CO 2	Evaluate the ecological, medical and evolutionary significance of
	microbial interactions with plants, animals and other microorganisms
CO 3	Outline the strategies through which pathogens develop infections
	and demonstrate presence of some virulence factors in known
	isolates
CO 4	Understand the concepts and terminologies used in epidemiology and
	correlate disease transmission to disease control
CO 5	Apply the understanding of epidemiology studies in solving public
	health concerns
CO6	Understand the key components of innate and acquired immune
	system and summarize their role in overcoming disease
007	Compare the different types of improved builting and an density of the in-
CO7	Compare the different types of immunoglobulins and understand their
	function in protection

Course Code/ Unit	Unit	Course/ Unit Title	Credits/ Lectures
RUSMIC		MICROBE INTERACTIONS AND HOST	2/45
401		RESPONSES	
I		Microbial interactions with plants, animals and	15
		other microbes	
	1.1	Microbial associations with plants	08
	1.2	 a) Phyllosphere b) Rhizosphere & Rhizoplane c) Mycorrhizae d) Nitrogen fixation: Biochemistry of nitrogen fixation, nodulation in <i>Rhizobia</i>, <i>Azolla-Anabena</i> symbiosis, Actinorhizae, Stem nodulating <i>Rhizobia</i> e) Fungal & Bacterial endophytes f) Plant pathogens -Fungal, bacterial and viral diseases Microbial interactions with animals a) Microbial symbionts in invertebrates b) Bacterial flora in the Rumen c) Microbe- insect interactions 	05
		d) Introduction to Zoonotic diseases	
	1.3	Microbe - Microbe interactions	02
II	RI	a) Lichen b) Endosymbionts of Protozoa c) Parasitism in microbes Microbial invasion in Human hosts	15
	2.1	Virulence Mechanisms	08
2A		a) Bacterial virulence factors i. Adherence factors ii. Invasion of host cells and tissues iii. Toxins- Exotoxins and Endotoxins iv. Enzymes v. Evading host defense- Antigenic variation, Antiphagocytic factors and Intracellular pathogenicity	

		vi Iron coguestration	1
		vi. Iron sequestration vii. The role of Biofilms	
		b) Measuring bacterial virulence: Infective dose &	
		Lethal dose, limulus amoebocyte assay	
		c) Pathogenic properties of viruses, fungi and	
		protozoa	
		p1010200	
	2.2	Introduction to epidemiological concepts	07
		a) Reservoirs of infection	
		b) Modes of disease transmission	
		c) Nosocomial infections	
		d) Epidemiological terminology: epidemic, endemic,) *
		pandemic, sporadic, incidence rate, prevalence	
		rate, mortality, morbidity	
		e) Controlling epidemics: Controlling reservoirs,	
		controlling transmission- Immunization strategies-	
		passive and active, Surveillance	
III		Host responses to infection	15
	3.1	Cells, Tissues and Organs of the Immune System	04
		a) Cells of the immune system- Lymphoid and Myeloid	
		cells, NK cells	
		b) Organs of the immune system- Introduction to	
		primary and secondary lymphoid organs and their	
		roles	
	3.2	Immune responses- Innate defense mechanisms	04
		a) Phagocytosis – Recognition, Destruction,	
		b) Inflammation- Acute and Chronic	
		c) Fever	
		d) Molecular defenses- IFN, complement, ACP	
	3.3	Immune responses- Acquired Defense	07
		a) Outline and characteristics of Adaptive Immune	
		response	
		b) Immunoglobulins – basic and fine structure	
		c) Immunoglobulin classes and biological activities	
		d) Antigenic determinants on immunoglobulins –	
		isotypes, allotypes, idiotypes	
		e) Protective functions of antibodies- Opsonization,	
		Complement mediated lysis, viral neutralization and	
		toxin neutralization	
		f) Introduction to Cell mediated immunity	

- a) Willey, Sherwood and Woolverton, Prescott's Microbiology, 9th edition, 2013, International edition, McGraw Hill.
- b) Michael T. Madigan & J.M. Martin, Brock's Biology of Microorganisms 13th Ed. International edition 2012, Pearson Prentice Hall.
- c) Stanier, General microbiology 5th edition ,1987, Macmillan publication
- d) Tortora, Funke and Case, Microbiology: An Introduction, 10th Edition, 2010, Pearson.
- e) Kathleen Park Talaro & Arthur Talaro Foundations in Microbiology International edition 2002, McGraw Hill.
- f) Jacquelyn Black, Laura Black, Microbiology, Principles and Explorations, 9th Ed, 2015,
 Wiley
- g) Brooks, Carroll, et al, Jawetz, Melnick &Adelberg's Medical Microbiology, 26th Ed McGraw Hill Lange 2013
- h) https://www.eurofins.com.au/biopharma-services/testing-solutions/sterile-products-testing/endotoxin-or-lal-test/
- i) Ingraham and Ingraham, Introduction to Microbiology, by 2nd Ed ,2000, Brooks/Cole
- j) Thomas J. Kindt, Barbara A. Osborne, Richard A. Goldsby, Kuby Immunology, 6th ed, W. H. Freeman & Company 2005

Course Code: RUSMIC 402

Course Title: INTRODUCTION TO METABOLIC PATHWAYS AND ENZYMOLOGY

Academic year 2020-21

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
CO 1	Understand the concepts and types of metabolism. Compare the
	metabolic strategies & recall the role of Omics in biochemical studies
CO 2	Explain the regulatory junctions of metabolic pathways.
CO 3	Recall the properties & classes of enzymes. Illustrate enzyme-
	substrate interaction models & recognize the significance of cofactors
	& coenzymes.
CO 4	Evaluate enzyme kinetics & the change in activity in presence of
	variables.
CO 5	Explain the principles of Bioenergetics & attribute the role of energy
	currency molecule
CO 6	Understand & apply the laws of thermodynamics to microbial
	metabolism.
CO 7	Implement experimental procedures for enzyme purification and
WAL	enzyme kinetics studies

DETAILED SYLLABUS

Course Code	Unit	Course/ Unit Title	Credits/ Lectures
RUSMI		INTRODUCTION TO METABOLIC	2/45
C 402		PATHWAYS AND ENZYMOLOGY	
ı		Introduction to Metabolism	15
	1.1	Introduction to biochemical reactions:	04
		a) Key reactions involved in metabolism. b) Weak interactions involved in determining the structures and functions of macromolecules.	
	1.2	Introduction to metabolism:	06
		a) Metabolism- Catabolism & Anabolism	
		b) Types of Metabolic pathways	
		c) Metabolic networks, use of different software	
		d) Primary and secondary metabolism	
		e) Energy and reducing power requirements	
	1.3	Metabolic strategies: Managing metabolic network	04
		a) Role of enzymes, enzyme clustering &	
		multienzyme complexes	
		b) Functional coupling	
		c) Compartmentalization in cells	
	1.4	Introduction to omics: Metabolome & Metabolomics	01
II		Enzymology	15
	2.1	Introduction to enzymes:	06
2ANA		 a) General properties of enzymes b) How do enzymes accelerate reactions? c) Classification of enzymes d) Enzyme kinetics: Rate law for a simple catalyzed reaction, Michaelis-Menten equation and its derivation, other plots to determine velocity of reactions 	

	2.2 Modifying enzyme catalysis rates		05
		 a) Effect of temperature and pH b) Effect of Inhibitors- Reversible and irreversible, competitive, Non-competitive and uncompetitive inhibitors c) Allosteric effects in enzyme catalyzed reactions d) Multi-substrate reactions- Ordered, Random and ping-pong reactions e) Koshland- Nemethy and Filmer model f) Monod, Wyman and Chageux model 	
	2.3	Coenzymes& Co-factors:	04
		 a) Different types and reactions catalyzed by coenzymes (in tabular form) b) Water soluble coenzymes (NAD, Nicotinic acid) c) Fat soluble vitamins and their examples. d) Inorganic cofactors 	
III		Principles of Bioenergetics	15
	3.1	Bioenergetics & thermodynamics:	06
		 a) Energy transformations b) Thermodynamic quantities, standard –free energy c) Difference between ΔG & ΔGo" 	
	3.2	ATP and it's role	05
	RA	 a) Structure of ATP, phosphoryl group transfer and ATP b) Types of energy –rich compounds c) Multi-roles of ATP inorganic phosphoryl group donor 	
DA	3.3	Biological oxidation-reduction reactions	04

References:

- a) Principles of Biochemistry by Geoffery Zubay (1988) 4th Edition Wm.C. Brown Publishers
- b) Outlines Of Biochemistry,5/E,Conn P.Stumpf, G.Bruening & R.Doi,John Wiley & Sons, New York 1995
- c) Fundamentals of Enzymology: Cell and Molecular Biology of Catalytic Proteins 3rd Edition Nicholas Price and Lewis Stevens
- d) Lehninger: Principles Of Biochemistry,4th Ed., D. Nelson & M. Cox, W.H.Freeman & Co., (LPE)
- e) A biologist's Physical Chemistry by John Gareth Morris.
- f) Concepts of Biochemistry, Rodney Boyer
- g) Stanier, General microbiology 5th edition ,1987, Macmillan publication
- h) Principles of Biochemistry by Robert Horton (2011) 5th Edition Pearson Publishers.

Course Code: RUSMIC 403

Course Title: APPLIED MICROBIOLOGY

Academic year 2020-21

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION		
CO 1	Understand and explain the significance of microbes in fermentation industry and compare the techniques used for their screening		
CO 2	Compare different types of fermentations and fermentation processes used for industrial productions		
CO 3	Exemplify components used in industrial fermentation media with an understanding of its role in the process		
CO 4	Summarize the general principles of food spoilage by microorganisms and compare methods used for food preservation		
CO 5	Execute experimental procedures for detection of microbes in food and dairy products and comment on its quality		
CO 6	Recall the sources of microorganisms in milk and explain the significance of pasteurization techniques		
CO7	Outline and analyze the manufacturing processes of different fermented dairy products		
CO 8	Apply knowledge of contamination, preservation, and quality control in food and dairy product manufacturing industries		
AMMAS			

DETAILED SYLLABUS

Course Code	Unit	Course/ Unit Title	Credits/ Lectures
RUSMIC		APPLIED MICROBIOLOGY	2/45
403			
I		Industrial Microbiology	15
	1.1	Strains of industrially important microorganisms	04
		a) Desirable characteristics of an industrial strain b) Principles and methods of primary and secondary screening	
	1.2	Types of fermentations:	02
		a) Aerobicb) Anaerobicc) Solid state fermentation	
	1.3	Types of fermentation processes:	02
		a) Surface and Submerged b) Batch, continuous, fed-batch fermentation process	
	1.4	Media for industrial fermentations	05
		 a) Production and Inoculum media b) Media components: - Carbon source, nitrogen source, amino acids and vitamins, minerals, water, buffers, antifoam agents, precursors, inhibitors and inducers 	
	1.5	Inoculum development	02
II	Y	Food Microbiology	15
	2.1	Introduction:	01
2AM		Significance, food as a substrate and sources of microorganisms in food	
	2.2	Intrinsic and extrinsic factors affecting the microbial growth in food	02
	2.3	General Principles of spoilage	04
		Spoilage of fresh foods: fruits and vegetables, eggs, meat, poultry and seafood	

	2.4	General principles of food preservation	04
		(principle of each method and example of foods only)	
		High temperature, low temperature, drying, radiations	
		and food additives and preservatives (tabular	
		representation), Asepsis, introduction to HACCP,	
		Regulation	
	2.5	Food borne diseases	1)
	2.6	Methods of detection of microorganisms in food:	3
		Overview of cultural, microscopic, physical, chemical	
		and bioassay methods	
		~0.	
III		Dairy Microbiology	15
	3.1	Milk- Definition, composition, sources of	2
		contamination of milk	
	3.2	Pasteurization of milk	3
		LTHT, HTST, UHT	
	3.3	Milk products: production and spoilage of:	7
		a) Yoghurt	
		b) Butter	
		c) Cheese-Cheddar and Cottage cheese	
		d) Fermented milks	
	3.4	Quality control of milk	3
		a) Rapid platform tests	
		b) Microbiological analysis of milk : SPC, Coliform	
	. 5	count, LPC, Psychrophiles, Thermophilic count,	
		DRT	

References:

- a) Fundamental Food Microbiology by Bibek Ray, Arun Bhunia (2007), 4th edition CRC Press
- b) Food Microbiology by Frazier 5th ed (1971), McGraw-Hill Education.
- c) Modern Food Microbiology by James Jay 6th ed(2000), Springer US.
- d) Applied Dairy Microbiology by Marth & Steele(2001), CRC Press
- e) BIS standards, FSSAI
- f) Casida L. E., "Industrial Microbiology" 2009 Reprint, New Age International (P) Ltd, Publishers, New Delhi
- g) Stanbury P. F., Whitaker A. & Hall--S. J., 1997, "Principles of Fermentation, Technology", 2nd Edition, Aditya Books Pvt. Ltd, New Delhi.
- h) Prescott and Dunn's ""Industrial Microbiology"".1982 4th Edition, McMillan Publishers
- i) H. A. Modi, 2009. ""Fermentation Technology"" Vol 2, Pointer Publications, India.
- j) Milk and milk products. C. H. Eckles 1943 edition
- k) Sukumar De, Outlines of dairy technology, 1st edition, 1983, O.U.P.
- l) James Jay Frazier 5th. Ed Okafor Waites & Morgan

Course	PRACTICALS	3
code		Credits
RUSMICP	PRACTICAL-1	
401		
	1. Isolation of <i>Rhizobium</i> from root nodules	1,0
	2. Demonstration of fungi and algae in lichens	
	3. Study of virulence factors – Enzymes – Streptokinase,	
	Coagulase, Hemolysin, Lecithinase	
	4. Demonstration of biofilm formation by pathogens on catheters	
	5. Assignment on classical stages, signs and symptoms of any one	
	microbial disease	
	6. Staining of blood film to demonstrate different types of	
	leucocytes	
	7. Phagocytosis (Demonstration)	
	8. Study of plant microbe interactions: Screening for Auxin production (PGP from Rhizosphere)	
	9. Case studies and problems on Epidemiology	
	10. How to develop epidemiological surveys	
RUSMICP 402	PRACTICAL-2	
	1. Using KEGG, Ecocyc, metacyc, biocyc and Brenda for	
7.5	understanding metabolic networking	
	2. Qualitative detection of	
	a. Amylase	
	b. Lipase	
	c. Protease	
	d. DNase	
	e. Catalase	

	f. Oxidase	
	g. Carbohydrate fermentation	
	h. Dehydrogenase	
	3. Production and purification of an enzyme	
	4. Assay of an enzyme and determination of enzyme units	
	5. Determination of km and Vmax of an enzyme	40
	6. Effect of environment on enzyme activity:	
	a. Effect of temperature	
	b. Effect of pH	
	c. Effect of enzyme concentration	
	7. Effect of inhibitors	
RUSMICP	PRACTICAL-3	
403		
	Isolation of antibiotic producers from soil- Wilkin's overlay	
	method.	
	2. Determination of microbial counts in food using dip slide	
	technique (demonstration)	
	3. Isolation of food spoilage agent	
	4. Determination of TDT and TDP	
	5. Determination of Salt and sugar tolerance	
	6. Determination of MIC of a preservative	
	7. Visit to Food/Dairy industry	
	8. Rapid platform tests of raw and pasteurized milk.	
81x.	9. Microbiological analysis of raw and pasteurized Milk.	
	10. Microbiological analysis of Butter, Cheese.	
	11. Surface and submerged fermentation.	
	12. Testing a packaged meat product for its microbial load.	

Modality of Assessment

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks per paper

Sr No	Evaluation type	Marks
1	One Assignment/Case study/Project/ Presentation	15
2	One class Test (multiple choice questions / objective)	20
3	Active participation in routine class instructional deliveries	05
	TOTAL	40

B) External Examination- 60%- 60 Marks per paper

Semester End Theory Examination:

- 1. Duration These examinations shall be of **two hours** duration.
- 2. Theory question paper pattern:a. There shall be three questions each of 20 marks one on each unit.
 - All questions shall be compulsory with internal choice within the questions.

Paper Pattern:

Question	Options	Marks	Questions Based on
Q.1) A)	Any 3 out of 5	15	
Q.1) B)	Any 1 set out of 2 (i & ii or i & ii)	03 &02	Unit I
Q.2) A)	Any 3 out of 5	15	l lait II
Q.2) B)	Any 1 set out of 2 (i & ii or i & ii)	03 &02	Unit II
Q.3) A)	Any 3 out of 5	15	
Q.3) B)	Any 1 set out of 2 (i & ii or i & ii)	03 &02	Unit III
	TOTAL	60	

Practical Examination Pattern:

A) Internal Examination: 40%- 60 Marks

Particulars	Paper I	Paper II	Paper III
Journal	05	05	05
Experimental tasks	10	10	10
Participation	05	05	05
Total	20	20	20

B) External Examination: 60%- 90 Marks

Semester End Practical Examination:

Particulars	Paper I	Paper II	Paper III
Laboratory work	25	25	25
Spots/Quiz/Viva	05	05	05
Total	30	30	30

PRACTICAL BOOK/JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.

In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Co-ordinator / Incharge of the department; failing which the student will not be allowed to appear for the practical examination.

Overall Examination & Marks Distribution Pattern Semester IV

Course	401			402			403			Grand Total
	Internal	External	Total	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	40	60	100	300
Practicals	20	30	50	20	30	50	20	30	50	150

Owing to the pandemic situation prevailing in 2020 and continuing in 2021, the external examinations (Semester End) may be conducted online as per the instructions/circulars received from the University of Mumbai and Maharashtra State notifications from time to time. The conventional mode of external examination will commence again only after the declaration of normalcy by the Government authorities.