AC/I(21-22).2(II).RPS9

S. P. Mandali's

Ramnarain Ruia Autonomous College

Syllabus for MSc Part I

Program: MSc

Program Code: Microbiology

(Choice Based Credit System for academic year 2022–2023)

PROGRAM OUTCOMES

In the post graduate courses, S.P.Mandali's Ramnarain Ruia Autonomous College is committed to impart conceptual and procedural knowledge in specific subject areas that would build diverse creative abilities in the learner. The College also thrives to make its Science post graduates research/ job ready as well as adaptable to revolutionary changes happening in this era of Industry 4.0.

РО	PO Description
	A student completing Master's Degree in Science program
	will be able to:
PO 1	Demonstrate in depth understanding in the relevant science
	discipline. Recall, explain, extrapolate and organize conceptual
	scientific knowledge for execution and application and also to
	evaluate its relevance.
PO 2	Critically evaluate, analyze and comprehend a scientific problem.
	Think creatively, experiment and generate a solution
	independently, check and validate it and modify if necessary.
PO 3	Access, evaluate, understand and compare digital information
	from various sources and apply it for scientific knowledge
	acquisition as well as scientific data analysis and presentation.
PO 4	Articulate scientific ideas, put forth a hypothesis, design and
	execute testing tools and draw relevant inferences. Communicate
	the research work in appropriate scientific language.
PO 5	Demonstrate initiative, competence and tenacity at the
	workplace. Successfully plan and execute tasks independently as
	well as with team members. Effectively communicate and
\mathcal{N}	present complex information accurately and appropriately to
K.	different groups.
PO 6	Use an objective, unbiased and non-manipulative approach in
	collection and interpretation of scientific data and avoid
	plagiarism and violation of Intellectual Property Rights.
	Appreciate and be sensitive to environmental and sustainability
	issues and understand its scientific significance and global
	relevance.

design scientific solutions to problems. Exemplify projectuse management skills and lead a team for planninexecution of a task.PO 8Understand cross disciplinary relevance of sodevelopments and relearn and reskill so as to adtechnological advancements.	ng and
execution of a task.PO 8Understand cross disciplinary relevance of so developments and relearn and reskill so as to ad	cientific
PO 8Understandcrossdisciplinaryrelevanceofsodevelopmentsandrelearnandreskillsoastoad	
developments and relearn and reskill so as to ad	
	αρι ισ
MMARINALIA	

PROGRAM SPECIFIC OUTCOMES

PSO	Description
	A student completing Master's Degree in Science program in the
	subject of Microbiology will be able to:
PSO 1	Recall the basic concepts of gene expression and regulation, exemplify
	cytoplasmic inheritance and transposons. Analyse the genetics
	underlying cancer and cell cycle. Solve problems based on allelic and genotypic frequencies
PSO 2	Apply the principles of thermodynamics to understand stability of
F 30 2	biological molecules, execute experiments for their detection and
	estimation in samples. Summarize the metabolism of one and two
	carbon compounds by microorganisms
PSO 3	Attribute pathogenesis of diseases to virulence mechanisms, outline the
	pathogenesis, transmission and treatment of emerging bacterial and
	viral infections. Recognize the role of microbiome in the overall
	physiology of humans.
PSO 4	Acquire skills to work in a clinical laboratory. Execute antibiotic
	susceptibility assays and evaluate efficacy in context of antibiotic
	resistance. Also, implement diagnostic tests for infectious diseases.
	Recall aspects in epidemiological study designs and public health
	surveillance and detect agents that could be associated with
	bioterrorism.
PSO 5	Formulate a hypothesis, design a research project, execute the
	experiments including appropriate calibrations and controls, implement
	appropriate methods for data collection and analyse data with
$\mathcal{V}_{\mathcal{A}}$	appropriate statistical tools.
PSO 6	Recall the structure and functions of cell membrane and cytoskeleton
	as well as the concept of protein trafficking and transport. Compare
	various transport mechanisms, and analyse the significance of cell to
	cell communication. Explain the process of development and
	organogenesis in higher animals and correlate it to genes with specific
	reference to Drosophila.

PSO 7	Execute extraction, purification and analysis of various biomolecules
	Compare the mechanisms of enzyme catalysis of different classes of
	enzymes and solve problems on enzyme kinetics. Recall different ce
	signalling mechanisms. Outline the biochemistry of degradation of
	various xenobiotics by microorganisms
PSO 8	Recall methods used to study microbial ecology and execute analys
	of samples from varied environments. Extrapolate potential
	extremophilic proteins to industrial applications, attribute problems lik
	biofouling and biocorrosion to microbial activity. Recall the role
	microbes in soil and demonstrate their role in plant growth. Outline
	appreciate and apply the principles of solid and hazardous was
	management and appreciate various regulations enacted with respe
	to biosafety.
PSO 9	Access appropriate biological databases and apply variou
	bioinformatics tools for varied analysis, recall concepts of synthet
	biology and systems biology. Extrapolate understanding
	contemporary tools in Molecular Biotechnology for DNA sequencing
	mutagenesis and protein expression studies. Execute experiments for
	preparation of nanoparticles and their analysis
PSO 10	Understand and evaluate the significance of viral genetics
	representative bacterial viruses and apply it in rDNA technology. Reca
	and extrapolate the types of animal and plant viruses, describe the
	mechanisms of infections, control and treatment. Explain and give a
	overview of emerging & re-emerging viral infections responsible fe
	causing pandemics. Outline the mechanism of tumorigenesis t
	oncogenic viruses.
PSO 11	Recall detailed mechanisms of innate and adaptive immunity, and
K.	emphasize the molecular interactions that help distinction of self from
	non self in immune mechanisms. Outline the mechanisms of immune
	tolerance and exemplify reasons for autoimmune diseases as well as
	cancer. Apply principles of immunoassays for execution of diagnosis of
	disorders and diseases. Summarize and illustrate concepts in
	immunotherapy. Extrapolate basics of vaccine development to comba
	emerging infections

PSO 12	Understand and implement different concepts in microbial approaches to quality control and management in industries. Check food and water samples for microbiological quality as per prescribed standards and maintain records. Recall concepts and monitor processes in food industry, bottled water manufacturing units and monitor processes and products of pharmaceutical industry with emphasis on BIS regulations, regulatory frameworks, GMP and HACCP, GLP, ISO standards and validation.
PSO 13	Recall and explain the principle and working of techniques like spectroscopy, chromatography, hyphenated techniques, PCR based assays, microarrays, electrophoresis, X ray diffraction and SPR and compare all the different types included under each technique. Understand and extrapolate these concepts to analyse biological samples for biomolecular composition and/or structure.
PSO 14	Understand, explain and Apply concepts in bioinformatics, proteomics, high throughput screening and pharmacogenomics for discovering new drugs
PSO 15	Recall and apply various concepts in modern Biotechnology like gene therapy, stem cell technology, 16SrRNA sequencing in fields like diagnostics, therapeutics and genetic counselling. Summarize and evaluate the biotechnological potential of fungi and algae for production of commercial products like pharmaceutics, pigments, enzymes, biofuels etc. and in processes like bioremediation and wastewater treatment. Summarize and interpret the laws for IPR, biodiversity conservation and recall the perspectives of bioethics. Implement patent searches and outline prerequisites and steps in patentability.
PSO 16	Categorize biofuels and outline fermentation technologies for their manufacture. Exemplify enzymes with industrial potential and recall and explore technologies like immobilization for their application in industrial products. Explain techniques in protein engineering for increasing activity and specificity.

PSO 17	Outline work plans and execute tasks independently and to
	completion. Coordinate and cooperate with team members for
	execution of experiments. Maintain records, make reports and interpret
	them for making summaries. Communicate information accurately and
	effectively. Follow ethical practices at workplace, take initiative, exhibit
	competency and imbibe other professional skills.
PSO 18	Apply theoretical concepts effectively and think innovatively to

PSO 18 Apply theoretical concepts effectively and think innovatively to translate ideas to research projects and projects to products. Understand the significance of microbiology as a science that has transdisciplinary relevance and immense potential to improve quality of life for all humankind.

PROGRAM OUTLINE (2022-24)

YEAR	SEM	COURSE CODE	COURSE TITLE	CREDITS
		RPSMIC 101	MICROBIAL GENETICS	04
		(Core Course)	Practical based on Microbial Genetics	02
		RPSMIC 102	MICROBIAL BIOCHEMISTRY	04
		(Core Course)	Practical based on Microbial Biochemistry	02
		RPSMIC 103	MEDICAL MICROBIOLOGY AND HUMAN MICROBIOME	04
		(Core Course)	Practical based on Medical Microbiology and Human Microbiome	02
	I	RPSMIC 104/ RPSBCH104/ RPSBTK104	CLINICAL MICROBIOLOGY and EPIDEMIOLOGY/ PLANT BIOCHEMISTRY/ CLINICAL DATA MANAGEMENT	04
MSc I		(Discipline Specific Elective)	Practical based on Clinical Microbiology and Epidemiology/ Plant Biochemistry/ Clinical Data Management	02
		RPSMIC 105 (Ability Enhancement Course)	EMOTIONAL WELL-BEING THROUGH LOGIC-BASED THINKING	02
	$\langle \mathcal{O} \rangle$	RPSMIC 201	CELL BIOLOGY	04
R		(Core Course)	Practical based on Cell Biology	02
		RPSMIC 202 (Core	MICROBIAL BIOCHEMISTRY	04
			Course)	Practical based on Microbial Biochemistry II
		RPSMIC 203 (Core	ENVIRONMENTAL MICROBIOLOGY	04
		Course)	Practical based on	02

RPSMIC 204/ RPSBCH204/ RPSBTK204 (Discipline Specific Elective) TO QUALITY MANAGEMENT/ NUTRACEUTICALS AND FUNCTIONAL FOODS/ NANOTECHNOLOGY 04 Practical based on Microbial Approaches to Quality Management/ Nutraceuticals and Functional Foods/ Nanotechnology 02 RPSMIC 205 (Ability Enhancement Course) RESEARCH METHODOLOGY 02	RPSMIC 204/ TO QUALITY MANAGEMENT/ 04 RPSBCH204/ RPSBCH204/ FUNCTIONAL FOODS/ 04 RPSBTK204 NANOTECHNOLOGY 04 (Discipline Practical based on Microbial 04 Specific Approaches to Quality 02 Elective) Management/ Nutraceuticals 02 and Functional Foods/ Nanotechnology 02 RPSMIC 205 (Ability RESEARCH METHODOLOGY 02	RPSMIC 204/ RPSBCH204/ RPSBTK204 (Discipline Specific Elective) TO QUALITY MANAGEMENT/ NUTRACEUTICALS AND FUNCTIONAL FOODS/ NANOTECHNOLOGY 04 Practical based on Microbial Approaches to Quality Management/ Nutraceuticals and Functional Foods/ Nanotechnology 02 RPSMIC 205 (Ability Enhancement Course) RESEARCH METHODOLOGY 02			Environmental Microbiology	
RPSMIC 204/ RPSBCH204/ (Discipline Specific Elective) NUTRACEUTICALS AND FUNCTIONAL FOODS/ NANOTECHNOLOGY 04 Practical based on Microbial Approaches to Quality Management/ Nutraceuticals and Functional Foods/ Nanotechnology 02 RPSMIC 205 (Ability Enhancement Course) RESEARCH METHODOLOGY 02	RPSMIC 204/ RPSBCH204/ RPSBTK204 (Discipline Specific Elective) NUTRACEUTICALS AND FUNCTIONAL FOODS/ NANOTECHNOLOGY 04 Practical based on Microbial Approaches to Quality Management/ Nutraceuticals and Functional Foods/ Nanotechnology 02 RPSMIC 205 (Ability Enhancement Course) RESEARCH METHODOLOGY 02	RPSMIC 204/ RPSBCH204/ (Discipline Specific Elective) NUTRACEUTICALS AND FUNCTIONAL FOODS/ NANOTECHNOLOGY 04 Practical based on Microbial Approaches to Quality Management/ Nutraceuticals and Functional Foods/ Nanotechnology 02 RPSMIC 205 (Ability Enhancement Course) RESEARCH METHODOLOGY 02			MICROBIAL APPROACHES	
RPSBTK204 (Discipline Specific Elective) NANOTECHNOLOGY Practical based on Microbial Approaches to Quality Management/ Nutraceuticals and Functional Foods/ Nanotechnology 02 RPSMIC 205 (Ability Enhancement Course) RESEARCH METHODOLOGY 02	RPSBTK204 (Discipline Specific Elective) NANOTECHNOLOGY Practical based on Microbial Approaches to Quality Management/ Nutraceuticals and Functional Foods/ Nanotechnology 02 RPSMIC 205 (Ability Enhancement Course) RESEARCH METHODOLOGY 02	RPSBTK204 (Discipline Specific Elective) NANOTECHNOLOGY Practical based on Microbial Approaches to Quality Management/ Nutraceuticals and Functional Foods/ Nanotechnology 02 RPSMIC 205 (Ability Enhancement Course) RESEARCH METHODOLOGY 02		RPSMIC 204/		04
(Discipline Specific Elective)Practical based on Microbial Approaches to Quality Management/ Nutraceuticals and Functional Foods/ Nanotechnology02RPSMIC 205 (Ability Enhancement Course)RESEARCH METHODOLOGY02	(Discipline Specific Elective)Practical based on Microbial Approaches to Quality Management/ Nutraceuticals and Functional Foods/ Nanotechnology02RPSMIC 205 (Ability Enhancement Course)RESEARCH METHODOLOGY02	(Discipline Specific Elective) Practical based on Microbial Approaches to Quality Management/ Nutraceuticals and Functional Foods/ Nanotechnology 02 RPSMIC 205 (Ability Enhancement Course) RESEARCH METHODOLOGY 02		RPSBCH204/	FUNCTIONAL FOODS/	
Specific Approaches to Quality 02 Elective) Management/ Nutraceuticals and Functional Foods/ Nanotechnology 02 RPSMIC 205 (Ability Enhancement Course) RESEARCH METHODOLOGY 02	Specific Approaches to Quality 02 Elective) Management/ Nutraceuticals and Functional Foods/ Nanotechnology 02 RPSMIC 205 (Ability Enhancement Course) RESEARCH METHODOLOGY 02	Specific Approaches to Quality 02 Elective) Management/ Nutraceuticals and Functional Foods/ Nanotechnology 02 RPSMIC 205 (Ability Enhancement Course) RESEARCH METHODOLOGY 02		RPSBTK204	NANOTECHNOLOGY	
Elective) Management/ Nutraceuticals and Functional Foods/ Nanotechnology 02 RPSMIC 205 (Ability Enhancement Course) RESEARCH METHODOLOGY 02	Elective) Management/ Nutraceuticals and Functional Foods/ Nanotechnology 02 RPSMIC 205 (Ability Enhancement Course) RESEARCH METHODOLOGY 02	Elective) Management/ Nutraceuticals and Functional Foods/ Nanotechnology 02 RPSMIC 205 (Ability Enhancement Course) RESEARCH METHODOLOGY 02			Practical based on Microbial	
and Functional Foods/ Nanotechnology 02 RPSMIC 205 (Ability Enhancement Course) RESEARCH METHODOLOGY 02	and Functional Foods/ Nanotechnology 02 RPSMIC 205 (Ability Enhancement Course) RESEARCH METHODOLOGY 02	and Functional Foods/ Nanotechnology 02 RPSMIC 205 (Ability Enhancement Course) RESEARCH METHODOLOGY 02		-		CX
RPSMIC 205 (Ability Enhancement Course) Nanotechnology 02	RPSMIC 205 (Ability Enhancement Course) RESEARCH METHODOLOGY 02	RPSMIC 205 (Ability Enhancement Course) Nanotechnology 02		Elective)	-	02
RPSMIC 205 (Ability Enhancement Course) RESEARCH METHODOLOGY 02	RPSMIC 205 (Ability Enhancement Course) RESEARCH METHODOLOGY 02	RPSMIC 205 (Ability Enhancement Course) RESEARCH METHODOLOGY 02				
(Ability Enhancement Course) RESEARCH METHODOLOGY	(Ability Enhancement Course) RESEARCH METHODOLOGY	(Ability Enhancement Course) RESEARCH METHODOLOGY		RPSMIC 205	Nanotechnology	
Enhancement Course)	Enhancement Course)	Enhancement Course)				02
Course)	Course)	Course)			RESEARCH METHODOLOGY	
RUIAHUONON	RUIAHUONON	RUIRAN				
	8 Maria	8 WW			NICAN .	
			8AM	RAMPAU		
				RAMPIN		

Course Code: RPSMIC 101 (Core Course) Course Title: Microbial Genetics

Academic year 2022-23

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
CO 1	Recall the basic genetic mechanisms like transcription and translation mechanisms, post translational modifications, levels of gene expression
CO 2	Compare and contrast between prokaryotic and eukaryotic transcription and demonstrate an in depth understanding of gene regulation
CO 3	Implement the knowledge about oncogenes and cancer genetics in research
CO 4	Structure the medical and evolutionary relation of transposition
CO 5	Critique the best model organism for genetic studies
CO 6	Outline the factors leading to changes in genetic structure in a population
CO 7	To apply Hardy-Weinberg's Law and evaluate problems based on genotypic and allelic frequencies
CO 8	Outlining the significance of cytoplasmic inheritance, giving emphasis to the evolutionary relationship of inheritance

Aller.

Course	Unit	DETAILED SYLLABUS Course/ Unit Title	Credits/
Code			Lectures
RPSMIC		MICROBIAL GENETICS	4/60
101			-100
-			
(Core			
Course)			
	I	Gene expression and its regulation	15
	1.1	Gene expressiona) Revision of prokaryote transcription and	05
		 translation b) Transcription process in eukaryotes c) Pre-mRNA processing and Small RNA molecules i. Structure of mRNA ii. Post transcriptional processing of pre-mRNA 1. Addition of 5"cap 2. Addition of Poly(A)tail 3. RNA splicing 4. RNA editing ii. Small RNA molecules 1. RNA interference 	
		2. Types	
		3. Processing	
		4. Function of micro RNAs	
		d) mRNA surveillance	
	1.2.	e) Post translational modification of Proteins Regulation of gene expression	09
	1.2.	a) Control of gene expression in prokaryotes	03
	8	 i. Levels of gene regulation ii. DNA binding proteins iii. Antisense RNA molecules iv. Riboswitches v. Operon (Revision with examples) 	
8 P		 b) Control of gene expression in eukaryotes Regulation through modification of gene structure DNase I hypersensitivity histone modifications chromatin remodelling DNA methylation. ii. Regulation through regulatory molecules Transcriptional activators Co-activators Repressors Enhancers Insulators iii. Regulation through RNA processing & degradation 	06

DETAILED SYLLABUS

		iv. Regulation through RNA interference	
	1.3	Chromosomal Rearrangements and effects on gene	01
		expression	U I
		a) Amplification and deletion of genes	
		b) Inversions that alter gene expression	
		c) Phase variation in <i>Salmonella</i>	
11		Extensions and deviations from Mendelian	15
		Genetics	
	2.1	Mitochondrial Inheritance	04
		a) Mitochondrial genome structure	- N
		b) Ancestral and derived mitochondrial genome	
		c) Mitochondrial DNA of Human, yeast and	
		flowering plants	
		d) Endosymbiotic theory	
		e) General features of replication, transcription and	
		translation of mitochondrial DNA	
		f) Codon usage in Mitochondria	
		g) Damage to Mitochondrial DNA and aging.	
		h) Evolution of mitochondrial DNA	
		i) Mt DNA analysis for study of evolutionary	
		relationships	
	2.2	Chloroplast DNA (cp DNA)	03
		a) Gene structure and organization	
		b) General features of replication, transcription and	
		translation of cp DNA	
		c) Comparison of nuclear, eukaryotic, eubacterial	
	0.0	mitochondrial and chloroplast DNA cp DNA maps	03
	2.3	Examples of extranuclear inheritance a) Leaf Variegation	03
		a) Leaf Variegation b) Poky mutant of Neurospora	
		c) Yeast petite mutant,	
		d) Human genetic diseases	
	2.4	Horizontal Gene Transfer	02
	2.4	Revision of	02
		a) Transformation in bacteria	
		b) Conjugation	
		c) Transduction	
$\overline{\mathcal{H}}$	2.5	Epigenetics (Nature v/s Nurture)	03
OV		a) The concept of Epigenome	
\mathcal{O}		b) Molecular Mechanisms of epigenetic Changes	
		c) Cause of epigenetic effects- Alterations in	
		Chromatin Structure	
		d) Examples of epigenetic effects	
		Transposable genetic elements and population	15
		genetics	
	3.1	Transposable genetic elements	08
		a) Revision of prokaryotic transposable elements	
		b) Transposable Elements in Eukaryotes	
		-	

		i. Ac and Ds Elements in Maize	
		ii. P Elements and Hybrid Dysgenesis in	
		Drosophila	
		iii. Retro-transposons Retrovirus like Elements	
		Retroposons	
		iv. Transposable elements in Humans	
		c) The Genetic and Evolutionary Significance of	
		Transposable Elements	
		d) Transposons and Genome Organization	
		Transposons and Mutation	
		e) Transpositions that alter gene Expression	
		i. Antigenic variation in Trypansomes	
		ii. Mating type switching in yeast	07
	3.2	Population genetics	07
		a) Population and gene pool	
		i. Genotypic and Allelic frequencies	
		ii. Calculation of Genotypic frequencies and	
		Allelic frequencies for autosomal and X linked	
		loci iii. Problems, calculation of allelic and genetypic	
		iii. Problems –calculation of allelic and genotypic	
		frequencies iv. Hardy-Weinberg Law, genotypic frequencies	
		at HWE, Implications of the H-W Law	
		v. H-W proportions for multiple alleles,	
		vi. X-linked alleles	
		vii. Testing for H-W proportions and problems	
		viii. Genetic ill effects of in-breeding	
		b) Changes in the genetic structure of populations:	
		i. Mutation	
		ii. Migration and gene flow	
		iii. Genetic drift	
		iv. Natural selection and problems based on the	
	1	natural forces	
IV		Model organisms and Genetic basis of cancer	15
	4.1	Model organisms	07
		a) Characteristics of an ideal model organism	
		b) Elaborating each model organism	
		i. <i>E. coli</i>	
012		ii. Yeast	
\mathcal{N}		iii. <i>C. elegans</i>	
		iv. <i>A. thaliana</i>	
		v. Mus musculus	_
	4.2	Genetic basis of cancer	08
		a) Forms of Cancer, cancer and the Cell Cycle	
		b) Genetics Basis for Cancer	
		c) Oncogenes	
		d) Tumor-Inducing Retroviruses and Viral	
		Oncogenes	
		e) Cellular Homologs of Viral Oncogenes: The	

	Proto-Oncogenes Mutant Cellular Oncogenes and Cancer	
f)	Chromosome Rearrangement and Cancer	
g)	Tumor Suppressor Genes	
h)	Inherited Cancers and Knudson's Two-Hit	
	Hypothesis Cellular Roles of Tumor Suppressor	
	Proteins Genetic Pathways to Cancer	

REFERENCES:

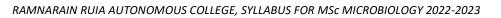
- a) Watson, Baker, Bell, Gann, Levine, Losick, "Molecular Biology of the Gene", 5th Ed, Pearson Education (LPE)
- b) Russell, P.J., "iGenetics- A Molecular Approach", 3rd Ed, Pearson International Edition
- c) Snustad & Simmons, "Principals of Genetics", 3rd Ed, John Wiley & Sons Inc
- d) Pierce, B.A, "Genetics- A Conceptual Approach", 2nd Ed, W.H. Freeman & Co
- e) Gray Micheal et al, "The origin and early evolution of Mitochondria", Genome Biology, 2001,
- f) Gray Micheal, "The origin and evolution of Mitochondrial DNA", Annual Reviews in Cell Biology, 1989, 25-50
- g) Howe Christopher J *et al*, "Evolution of the chloroplast genome", *The Royal Society*, 2003, 358, 99-107
- h) Kelchner, S. A., "The Evolution of Non-Coding Chloroplast DNA and Its Application in Plant Systematics", 2000, Annals of the Missouri Botanical Garden, 87(4), 482.
- i) Ladoukakis Emmanuel *et al "*Evolution and inheritance of animal mitochondrial DNA: rules and exceptions", *Journal of Biological Research*, 2017, 24:2.
- j) Wallace Douglas C., "Mitochondrial DNA in evolution and disease", *Nature*, 2016, 535(7613), 498–500.

PRACTICALS: RPSMIC 101 (Core Course) (60 CONTACT HRS)

- a. β galactosidase assay
- b. Separation of DNA using Agarose Gel Electrophoresis (AGE)
- c. Isolation of genomic DNA from yeast
- d. Problems on population genetics
- e. Transformation of yeast
- f. Artificial transformation of bacteria
- g. Bacterial conjugation
- h. Study of transduction

Course Code: RPSMIC 102 (Core Course) Course Title: Microbial Biochemistry-I

Academic year 2022-23


COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
CO 1	Recall the basics of biochemical calculations like SI units and
	expression of concentration
CO 2	Remember the basics of amino acids and peptides and understand
	further details about secondary structure of polypeptide chain.
CO 3	Differentiate between various polysaccharides like glycoproteins
	and proteoglycans
CO 4	Explain the method of transport of four major biomolecules into the
	cell
CO 5	Execute various chemical methods to characterize the
	biomolecules
CO 6	Understand chemical properties of water to understand aqueous
	biochemistry
CO 7	Understand the biochemical pathways for metabolism of one and
	two carbon compounds

DETAILED SYLLABUS

Course	Unit	Course/ Unit Title	Credits/
Code			Lectures
RPSMIC		MICROBIAL BIOCHEMISTRY I	4/60
102			
_			
(Core			
Course)	_		
	I	Biochemical Calculations and Water	15
	1.1	Biochemical Calculations	04
		a) SI Units Relevant to Biochemistry	
		 Prefixes for Multiples and Fractions of Units Relative molecular mass (Mr) 	
		iii. Stoichiometry	
		b) Various units of expressing and inter-converting	
		concentration of solutions	
		i. Molarity	
		ii. Moles	
		iii. Normality	
		iv. Osmolarity	
		v. Molality	
		vi. Mole fraction	
		vii. Density	
		viii. Specific gravity	
	4.0	(Problem solving under all heads)	44
	1.2	a) Physical properties of water	11
		 a) Physical properties of water i. Water as polar molecule – Hydrogen bonding 	
		ii. Hydrophilic Substances Dissolve in Water	
		iii. The Hydrophobic Effect Causes Nonpolar	
		Substances to Aggregate in Water	
		iv. Water Moves by Osmosis and Solutes Move	
		by Diffusion	
		b) Chemical Properties of Water	
	\sim	i. Ionization of water	
		ii. Acids and Bases Alter the pH	
		iii. Bronsted Concept of conjugate acid–	
		conjugate base pairs	
		iv. Titration curves	
		v. Buffers: preparation, action and their use in	
		Biology vi. Henderson-Hasselbalch equation	
		i. Buffer capacity	
II		Biomolecules	15
••	2.1	Amino acids and Proteins	07
		a) Amino Acids and Peptides (Revision)	÷1
		a. Properties of α -Amino Acids	

		h Acidia and Dacia Cida Chaina	
		b. Acidic and Basic Side Chains	
		c. The Peptide Unit	
		d. Polypeptides	
		b) Protein Structure	
		a. Four Levels of Protein structure – Primary,	
		Secondary, Tertiary and Quaternary	
		b. Conformation of peptide group – Planar	
		Peptide bond	
		c. Ramachandran Plot	
		c) Secondary Structure	
		a. Alpha Helix	
		b. Beta Sheets	$\langle O \rangle$
		c. Beta turns	
		d) Tertiary Structure	
		a. Supersecondary structures or Motifs	
		b. Domains	
		i. Protein structure of Keratin and Collagen	
	2.2	Glycoproteins	04
		a) Revision of Carbohydrates structures	
		a) Glycoconjugates: Proteoglycans, Glycoproteins, and	
		Glycolipids	
	2.3	Lipids	04
	2.0	a) Revision of structure and classification of lipids	V 4
		b) Lipids as Signals, Cofactors, and Pigments	
		D) LIPIUS as Signais, Colactors, and Fighterits	
111			15
III	2.4	One and two Carbon metabolism	15
III	3.1	One and two Carbon metabolism a) Metabolism of one carbon compounds 	15 07
III	3.1	One and two Carbon metabolism a) Metabolism of one carbon compounds a) Methylotrophs	-
111	3.1	One and two Carbon metabolism a) Metabolism of one carbon compounds a) Methylotrophs i. Oxidation of methane, methanol, methylamines	-
111	3.1	One and two Carbon metabolism a) Metabolism of one carbon compounds a) Methylotrophs i. Oxidation of methane, methanol, methylamines ii. Carbon assimilation in methylotrophic bacteria	-
111	3.1	One and two Carbon metabolism a) Metabolism of one carbon compounds a) Methylotrophs i. Oxidation of methane, methanol, methylamines ii. Carbon assimilation in methylotrophic bacteria and yeasts Methanogens	-
	3.1	One and two Carbon metabolism a) Metabolism of one carbon compounds a) Methylotrophs i. Oxidation of methane, methanol, methylamines ii. Carbon assimilation in methylotrophic bacteria and yeasts Methanogens b) Methanogenesis	-
111	3.1	One and two Carbon metabolisma) Metabolism of one carbon compoundsa) Methylotrophsi. Oxidation of methane, methanol, methylaminesii. Carbon assimilation in methylotrophic bacteriaand yeasts Methanogensb) Methanogenesisi. Methanogenesisi. Methanogenesis	-
111	3.1	One and two Carbon metabolism a) Metabolism of one carbon compounds a) Methylotrophs i. Oxidation of methane, methanol, methylamines ii. Carbon assimilation in methylotrophic bacteria and yeasts Methanogens b) Methanogenesis i. Methanogenesis	-
	3.1	One and two Carbon metabolism a) Metabolism of one carbon compounds a) Methylotrophs i. Oxidation of methane, methanol, methylamines ii. Carbon assimilation in methylotrophic bacteria and yeasts Methanogens b) Methanogenesis i. Methanogenesis form H2, CO2, CH3OH, HCOOH, methylamines ii. Energy coupling and biosynthesis in	-
	3.1	One and two Carbon metabolism a) Metabolism of one carbon compounds a) Methylotrophs i. Oxidation of methane, methanol, methylamines ii. Carbon assimilation in methylotrophic bacteria and yeasts Methanogens b) Methanogenesis i. Methanogenesis ii. Methanogenesis ii. Energy coupling and biosynthesis in methanogenic bacteria	-
	3.1	One and two Carbon metabolisma) Metabolism of one carbon compoundsa) Methylotrophsi. Oxidation of methane, methanol, methylaminesii. Carbon assimilation in methylotrophic bacteriaand yeasts Methanogensb) Methanogenesisi. Methanogenesisi. Methanogenesisii. Energy coupling and biosynthesis inmethanogenic bacteriac) Acetogens: autotrophic pathway of acetate synthesis	-
	3.1	One and two Carbon metabolisma) Metabolism of one carbon compoundsa) Methylotrophsi. Oxidation of methane, methanol, methylaminesii. Carbon assimilation in methylotrophic bacteriaand yeasts Methanogensb) Methanogenesisi. Methanogenesis form H2, CO2, CH3OH,HCOOH, methylaminesii. Energy coupling and biosynthesis inmethanogenic bacteriac) Acetogens: autotrophic pathway of acetate synthesisand CO2 fixation,	-
	3.1	One and two Carbon metabolisma) Metabolism of one carbon compoundsa) Methylotrophsi. Oxidation of methane, methanol, methylaminesii. Carbon assimilation in methylotrophic bacteriaand yeasts Methanogensb) Methanogenesisi. Methanogenesis form H2, CO2, CH3OH,HCOOH, methylaminesii. Energy coupling and biosynthesis inmethanogenic bacteriac) Acetogens: autotrophic pathway of acetate synthesisand CO2 fixation,d) Carboxidotrophs:Biochemistryof	-
		One and two Carbon metabolism a) Metabolism of one carbon compounds a) Methylotrophs i. Oxidation of methane, methanol, methylamines ii. Carbon assimilation in methylotrophic bacteria and yeasts Methanogens b) Methanogenesis i. Methanogenesis form H2, CO2, CH3OH, HCOOH, methylamines ii. Energy coupling and biosynthesis in methanogenic bacteria c) Acetogens: autotrophic pathway of acetate synthesis and CO2 fixation, d) Carboxidotrophs: Biochemistry of chemolithoautotrophic metabolism	07
	3.1	One and two Carbon metabolism a) Metabolism of one carbon compounds a) Methylotrophs i. Oxidation of methane, methanol, methylamines ii. Carbon assimilation in methylotrophic bacteria and yeasts Methanogens b) Methanogenesis i. Methanogenesis ii. Methanogenesis form H2, CO2, CH3OH, HCOOH, methylamines ii. Energy coupling and biosynthesis in methanogenic bacteria c) Acetogens: autotrophic pathway of acetate synthesis and CO2 fixation, d) Carboxidotrophs: Biochemistry of chemolithoautotrophic metabolism	-
		One and two Carbon metabolism a) Metabolism of one carbon compounds a) Methylotrophs i. Oxidation of methane, methanol, methylamines ii. Carbon assimilation in methylotrophic bacteria and yeasts Methanogens b) Methanogenesis i. Methanogenesis ii. Energy coupling and biosynthesis in methanogenic bacteria c) Acetogens: autotrophic pathway of acetate synthesis and CO2 fixation, d) Carboxidotrophs: Biochemistry of chemolithoautotrophic metabolism Metabolism of two- carbon compounds a) Acetate	07
		One and two Carbon metabolism a) Metabolism of one carbon compounds a) Methylotrophs i. Oxidation of methane, methanol, methylamines ii. Carbon assimilation in methylotrophic bacteria and yeasts Methanogens b) Methanogenesis i. Methanogenesis i. Methanogenesis form H2, CO2, CH3OH, HCOOH, methylamines ii. Energy coupling and biosynthesis in methanogenic bacteria c) Acetogens: autotrophic pathway of acetate synthesis and CO2 fixation, d) Carboxidotrophs: Biochemistry of chemolithoautotrophic metabolism Metabolism of two- carbon compounds a) Acetate i. TCA	07
		One and two Carbon metabolism a) Metabolism of one carbon compounds a) Methylotrophs i. Oxidation of methane, methanol, methylamines ii. Carbon assimilation in methylotrophic bacteria and yeasts Methanogens b) Methanogenesis i. Methanogenesis ii. Energy coupling and biosynthesis in methanogenic bacteria c) Acetogens: autotrophic pathway of acetate synthesis and CO2 fixation, d) Carboxidotrophs: Biochemistry b) Metabolism of two- carbon compounds	07
		One and two Carbon metabolism a) Metabolism of one carbon compounds a) Methylotrophs i. Oxidation of methane, methanol, methylamines ii. Carbon assimilation in methylotrophic bacteria and yeasts Methanogens b) Methanogenesis i. Methanogenesis ii. Energy coupling and biosynthesis in methanogenic bacteria c) Acetogens: autotrophic pathway of acetate synthesis and CO2 fixation, d) Carboxidotrophs: Biochemistry of chemolithoautotrophic metabolism Metabolism of two- carbon compounds a) Acetate i. TCA ii. Glyoxylate cycle iii. Modified citric acid cycle	07
		One and two Carbon metabolism a) Metabolism of one carbon compounds a) Methylotrophs i. Oxidation of methane, methanol, methylamines ii. Carbon assimilation in methylotrophic bacteria and yeasts Methanogens b) Methanogenesis i. Methanogenesis ii. Energy coupling and biosynthesis in methanogenic bacteria c) Acetogens: autotrophic pathway of acetate synthesis and CO2 fixation, d) Carboxidotrophs: Biochemistry b) Metabolism of two- carbon compounds	07
		One and two Carbon metabolism a) Metabolism of one carbon compounds a) Methylotrophs i. Oxidation of methane, methanol, methylamines ii. Carbon assimilation in methylotrophic bacteria and yeasts Methanogens b) Methanogenesis i. Methanogenesis ii. Energy coupling and biosynthesis in methanogenic bacteria c) Acetogens: autotrophic pathway of acetate synthesis and CO2 fixation, d) Carboxidotrophs: Biochemistry of chemolithoautotrophic metabolism Metabolism of two- carbon compounds a) Acetate i. TCA ii. Glyoxylate cycle iii. Modified citric acid cycle	07
		One and two Carbon metabolism a) Metabolism of one carbon compounds a) Methylotrophs i. Oxidation of methane, methanol, methylamines ii. Carbon assimilation in methylotrophic bacteria and yeasts Methanogens b) Methanogenesis i. Methanogenesis form H2, CO2, CH3OH, HCOOH, methylamines ii. Energy coupling and biosynthesis in methanogenic bacteria c) Acetogens: autotrophic pathway of acetate synthesis and CO2 fixation, d) Carboxidotrophs: Biochemistry of chemolithoautotrophic metabolism Metabolism of two- carbon compounds a) Acetate i. TCA ii. Glyoxylate cycle iii. Modified citric acid cycle iv. Carbon monoxide dehydrogenase pathway and	07
		One and two Carbon metabolism a) Metabolism of one carbon compounds a) Methylotrophs i. Oxidation of methane, methanol, methylamines ii. Carbon assimilation in methylotrophic bacteria and yeasts Methanogens b) Methanogenesis i. Methanogenesis form H2, CO2, CH3OH, HCOOH, methylamines ii. Energy coupling and biosynthesis in methanogenic bacteria c) Acetogens: autotrophic pathway of acetate synthesis and CO2 fixation, d) Carboxidotrophs: Biochemistry of chemolithoautotrophic metabolism Metabolism of two- carbon compounds a) Acetate i. TCA ii. Glyoxylate cycle iii. Modified citric acid cycle iv. Carbon monoxide dehydrogenase pathway and disproportionation to methane	07

	1		
		i. Dicarboxylic acid cycle	
		ii. Glycerate pathway	
		iii. Beta hydroxyaspartate pathway	
		i. Oxalate- as carbon and energy source	
IV		Transport of Biomolecules	15
	4.1	Transport of sugars	04
		a) Transport of D-Glucose and D-Fructose into <i>E. coli</i> cell.	
		 b) Glucose transporters of erythrocytes, various glucose transporters present in humans (GLUT1- GLUT12) 	
	4.2	Transport of Fatty acid	04
		a) Mobilization of triacylglycerols stored in adipose	
		a) modifization of theory giver of theory and the	
		tissue	
	4.3	tissue c) Fatty acid entry into mitochondria via the acyl-	07
	4.3	tissue c) Fatty acid entry into mitochondria via the acyl- carnitine/carnitine transporter	07
	4.3	tissue c) Fatty acid entry into mitochondria via the acyl- carnitine/carnitine transporter Transport of proteins	07
	4.3	tissue c) Fatty acid entry into mitochondria via the acyl- carnitine/carnitine transporter Transport of proteins a) Protein transport	07
	4.3	tissue c) Fatty acid entry into mitochondria via the acyl- carnitine/carnitine transporter Transport of proteins a) Protein transport a. Sec System	07
	4.3	tissue c) Fatty acid entry into mitochondria via the acyl- carnitine/carnitine transporter Transport of proteins a) Protein transport a. Sec System b. The Translocation of Membrane-Bound	07

REFERENCES:

- a) Segel. R, "Biochemical calculations", 3 rd edition John Wiley and Sons, 1995
- b) Lehninger A.L., Cox and Nelson, "Principles of Biochemistry", 4th Edition, CBS Publishers and Distributors Pvt. Ltd. 1994
- c) David White, "The Physiology and Biochemistry of Prokaryotes", 3 rd Edition Oxford University Press 2007
- d) Gottschalk, G., Bacterial Metabolism, 2nd edition, 1985, Springer Verlag.
- e) Laurence A. Moran, H. Robert Horton, K. Gray Scrimgeour, Marc D. Perry, Principles of Biochemistry, 5th Edition, 2012, Pearson
- f) Donald Voet, Judith G. Voet, Charlotte W. Pratt, FUNDAMENTALS OF Biochemistry, 3 rd Edition, 2008 John Wiley and Sons

PRACTICALS: RPSMIC 102 (Core Course) (60 CONTACT HRS)

- a) Preparation of buffers
- b) Determination of pK and PI value for an amino acid
- c) Extraction of total lipids
- d) Identification of fatty acids and other lipids by TLC
- e) Determination of degree of unsaturation of fats and oils
- f) Estimation of total sugars by phenol-sulphuric acid method
- g) Determination of molar absorption coefficient(ε)of I-tyrosine
- h) Determination of the isoelectric point of the given protein
- i) Estimation of polyphenols /tannins by Folin-Denis method
- j) Enrichment, isolation and identification of Methylobacterium
- k) Diffusion studies of molecules across RBCs

Course Code: RPSMIC 103 (Core Course)

Course Title: Medical Microbiology and Human Microbiome Academic year 2022-23

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
CO 1	Elaborate on pathogenesis, mode of transmission, epidemiology
	and therefore modes of prophylaxis of some current and
	emerging diseases
CO 2	Understand nature of regulation of expression of pathogenicity,
	evasion of host defense
CO 3	Recognise and appreciate the importance of biofilms in
	different environments
CO 4	Identify and classify the nature and methods of eradication of
	biofilms, especially those on implants and medical devices
CO 5	Analysing and hypothesizing the effects of Human microbiome on
	different aspects of human physiology

DETAILED SYLLABUS

Course	Sub-	Course/ Unit Title	Credits/
Code	Unit		Lectures
RPSMIC		MEDICAL MICROBIOLOGY AND HUMAN	04/ 60
103		MICROBIOME	
(Core			
Course)			
<u> </u>		Study of Infections – I	15
•		Detailed Study of following infections including Etiology,	
		Transmission, Pathogenesis, Clinical Manifestations,	$\langle \cdot \rangle$
		Lab. diagnosis, Prophylaxis, and Treatment:	
		MOTT (much actoric other than TD) MDD and VDD TD	
		MOTT (mycobacteria other than TB), MDR and XDR TB, Legionellosis, Emerging infections like- Rickettsial	
		infections and C. <i>auris</i> , Conditions caused by	
		Helicobacter pylori, VRE (Vancomycin Resistant	
		enterococci), Listeriosis, Leptospirosis	
		Study of Infections- II	15
••		Detailed Study of following infections including Etiology,	10
		Transmission, Pathogenesis, Clinical Manifestations,	
		Lab. diagnosis, Prophylaxis, and Treatment:	
		Chikungunya, Dengue, Swine flu and Hepatitis - All	
		types, Viral meningitis & encephalitis	
		Virulence regulation and strategies to evade	15
		defense	
	3.1	Revision of Virulence mechanisms in pathogens	02
	3.2	Mechanisms of virulence regulation	04
		a) Types of regulation	
		b) Quorum Sensing	
	3.3	Measuring Virulence	03
	3.4	Bacterial strategies for evading or surviving host defense systems	06
	\sim	a) Biofilms- Structure, development, biofilms on	
		implants and prosthetic devices, Biofilm	
		eradication	
K.		b) Colonization of host surfaces	
		c) Evading host responses	
IV		Study of Human Microbiome	15
	4.1	Human Gut Microbiome	05
		a) Stomach, small and large intestinal microbiome	
		b) Function of the Human Gut Microbiota	
		c) Gut Microbiota in health and disease	
		d) Gut-brain axis	00
	4.2	Human Skin Microbiome a) Diversity of skin microbiome	02

	b) Function of skin microbiomec) Skin Microbiome in diseases	
4.3	Human Oral Microbiome	04
	a) Diversity of oral microbiomeb) Oral microbiome & health	
4.4	Human Urogenital Microbiome	04
	 a) Male and female genital microbiome b) Diversity of urogenital microbiome c) Urogenital microbiome & health 	

REFERENCES:

- a) Ananthnarayan & Paniker, "Textbook of Microbiology", 8th edition, University press 2009
- b) Richard Goering, Hazel Dockerell *et al*, "Mim's Medical Microbiology, 5th ed, Saunders, Elsevier, 2013
- c) David Greenwood *et al*, "Medical Microbiology: A Guide to Microbial Infections: Pathogenesis, Immunity, Laboratory Diagnosis and Control", 17th Edition, Churchill Livingstone/Elsevier, 2012
- d) Julian R. Marchesi, "The Human Microbiota and Microbiome, Advances in Molecular and Cellular Microbiology", CABI press, 2014
- e) Brenda Wilson, Abigail Salyers *et al*, "Bacterial Pathogenesis- A molecular approach", 3rd ed, ASM press, 2011
- f) Jana Jass, Sussane Surma et al, "Medical Biofilms. Detection Prevention and Control", Wiley, 2003
- g) Kendra Rumbaugh, Iqbal Ahmed, "Antibiofilm agents-From Diagnosis to treatment and Prevention", Springer Series on Biofilms Vol 8, Springer, 2014
- h) Indira Kudva, Nancy Cornick *et al,* "Virulence Mechanisms of Bacterial Pathogens", 5th ed, ASM Press, 2016
- i) A brief guide to emerging infectious diseases and zoonoses. WHO.
- j) Nett JE, "Candida auris: An emerging pathogen "incognito", *PLoSPathog*, 2019, 15(4): e1007638. https://doi.org/10.1371/journal.
- k) Spivak ES, Hanson KE, "Candida auris: an emerging fungal pathogen", *J Clin Microbiol*, 2018, 56:e01588-17.
- Abdad MY, Abou Abdallah R, Fournier P-E, Stenos J, Vasoo S, "A concise review of the epidemiology and diagnostics of rickettsioses: Rickettsia and Orienti spp", *J Clin Microbiol*, 2018, 56: e01728-17. https://doi.org/10.1128/JCM.01728-17.
- m) Narendra Rathi And Akanksha Rathi, "Rickettsial Infections: Indian Perspective", *Indian Pediatrics,* 2010, Volume 47.
- n) Haake, D. A., & Levett, P. N., "Leptospirosis in Humans", *Leptospira and Leptospirosis*, 2014, 65–97. doi:10.1007/978-3-662-45059-8_5.

 o) Yunjin Lee, Emily Puumala, Nicole Robbins, and Leah E. Cowen, Antifungal Drug Resistance: Molecular Mechanisms in Candida albicans and Beyond, Chemical Reviews, 2017

PRACTICALS: : RPSMIC 103 (Core Course) (60 CONTACT HRS)

- a) Diagnosis for HIV Trispot/ ELISA for AIDS (Demonstration)
- b) Mono Spot Test for diagnosis of Chikungunya (Demonstration expt.)
- c) Diagnosis of leptospirosis Kit method (Demonstration)
- d) Diagnosis for *Helicobacter pylori* HPSA (Helicobacter pylori) (Demonstration expt.) (kit method)
- e) Study of Quorum Sensing in *C.violaecium*
- f) Study of Quorum sensing inhibitors
- g) Detection of Biofilm formation on different surfaces
- h) Determination of Minimum Biofilm Inhibition Concentration of an antibiotic
- i) Study of biofilms in flow systems

Modality of Assessment for Core Courses:

I) Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks (Except for AECC)

Sr No	Evaluation type	Marks
1	One Review writing/ Review paper presentation/Research paper presentation and Assignment / Long Answer/ Case Study or any other	20
2	Class test	20
	Total	40

B) External Examination- 60%- 60 Marks per paper (Except for AECC)

- 1. Duration- These examinations shall be of two hours and thirty minutes.
- 2. Theory question paper pattern
 - a. There shall be **five** questions each of **12** marks. On each unit there shall be one question and the fifth question will be based on all the three units.
 - b. All questions shall be compulsory with internal choice within the questions.

Paper pattern:

Question	Options	Marks	Questions based on
Q.1)	Any 2 out of 3	12	Unit 1
Q.2)	Any 2 out of 3	12	Unit 2
Q.3)	Any 2 out of 3	12	Unit 3
Q.4)	Any 2 out of 3	12	Unit 4
Q.5) a)	Any 4 out of 5	04	All four units
Q.5) b)	Any 4 out of 5	04	All four units
Q.5) c)	Any 2 out of 3	04	All four units

II) Practical Examination Pattern

	Core 1	Core 2	Core 3
Viva	05	05	05
Quiz	05	05	05
Laboratory work	40	40	40
Total	50	50	50

Journal

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination. In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Co-ordinator / Incharge of the department; failing which the student will not be allowed to appear for the practical examination.

DSE (Discipline Specific Elective) Students have to select any one of the following courses

Course Code: RPSMIC 104

Course Title: Clinical Microbiology and Epidemiology

Academic year 2022-23

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
CO 1	Apply appropriate methodologies to tackle the threat of
	antibiotic resistance
CO 2	Perform and analyze all kinds of clinical microbiological tests associated with antibiotic susceptibility testing
CO 3	Demonstrate a basic understanding of epidemiological strategies,
	study designs and evaluate the data for its statistical relevance.
CO 4	Discuss and understand the strategies to detect & monitor biological agents used for bioterrorism & exemplify the significance of biosecurity.

DETAILED SYLLABUS

Course	Unit	Course/ Unit Title	Credits/
Code			Lectures
RPSMIC		CLINICAL MICROBIOLOGY AND	04/60
104		EPIDEMIOLOGY	
(Discipline			
Specific			
Elective)			
		Clinical Microbiology- General principles	15
1	1.1	General Principles of Clinical Microbiology	15
		a) Laboratory Safety and Preventing the Spread	
		of Disease	
		b) Design of the Clinical Microbiology	
		Laboratory c) Quality in the Clinical Microbiology Laboratory	
		d) Legal and Ethical Issues	
	1.2	Clinical microbiology- Processes and Recent	10
		trends	
		a) Phases of the diagnostic cycle	
		b) Overview of Specimen Collection and Processing	
		c) Specimen management and workup-	
		Overview of classical and modern bacterial	
		Identification Methods and Strategies d) Decontamination, Disinfection, and	
		Sterilization during surgical procedures	
		e) Automation and HTS in diagnosis	
		f) Point of care diagnostics	45
II		Clinical Microbiology- Antibiotic resistance and Antibiotic susceptibility testing	15
	2.1	Antibiotic resistance in microbes	07
	2.1	a) Antimicrobial resistance- General principles	07
	D.Y.C	b) Mechanisms of antibiotic resistance in	
1,		bacteria and fungi - overview	
\mathcal{A}_{Λ}		c) Transfer of antibiotic resistanced) Maintaining antibiotic resistance through	
		Selective Pressure	
VI_A .		e) Methods for detection of resistance	
		f) Antimicrobial stewardship, surveillance of antimicrobial consumption, and its	
		consequences	
	2.2	Antibiotic susceptibility testing	08
		a) General considerations- selection,	
		Indications, b) Pharmacokinetic and pharmacodynamics	
		Principles, Clinical relevance of antibiotic	
		sensitivity tests, Serum killing curves	
		c) Susceptibility Test Methods: Dilution and Disk Diffusion Methods- standardization, QC,	
		Procedures and interpretation	

		 d) Antimicrobial Susceptibility Testing Systems e) Special methods- Bactericidal tests, Testing antibiotic combinations 	
		Epidemiology I	15
	3.1	Introduction to Epidemiology	07
		 a) Historical aspects-definition b) Descriptive Epidemiology-aims and uses c) Recent Applications of Epidemiology d) Introduction e) Observational Versus Experimental approaches in Epidemiology 	
		 f) Overview of study designs used in Epidemiology g) Ecologic Studies h) Cross-Sectional studies i) Case-Control studies 	
	3.2	Public health surveillance	04
		 a) Purpose and characteristics b) Identifying health problems for surveillance c) Collecting data for surveillance d) Analyzing and interpreting data e) Disseminating data and interpretation f) Evaluating and improving surveillance 	
	3.3	Bioterrorism	03
		 a) Introduction b) Threat Agents by category c) Sentinel Laboratory response to bioterrorism d) The Potential for Misuse of Biotechnology e) Some examples of biological agents as warfare – Bacillus anthracis, Yersinia pestis 	
	3.4	Biosecurity	01
		a) Introductionb) Constituents of a Biosecurity hazard	
II	2	EPIDEMIOLOGY II	15
	2.1	Healthcare-associated infections	04
	Y,	 a) Surveillance for HAIs b) Major types of HAIs c) The need for integrated infection control programs 	
	2.2	Molecular and Genetic Epidemiology	07
C V A		 a) Definition – Molecular v/s Genetic epidemiology b) Epidemiologic evidence of genetic factors c) Causes of Familial Aggregation d) Gene Mapping: Segregation and Linkage analysis e) Genome Wide Association Studies (GWAS) Applications of genes in Epidemiologic designs 	
	2.3	Ethics in Research involving Human Participants	03
		a) Introductionb) Historical perspectivec) International Ethical and Research Practice	

	guidelines d) Contemporary examples e) The informed Consent process	
2.4	Epidemiology as a Profession	01

REFERENCES:

- a) Patricia M. Tille, Bailey and Scott's Diagnostic Microbiology, 13th ed, 2014, Mosby Inc.
- b) Dawey et al., Antimicrobial Chemotherapy, 7th ed. 2014, Oxford Univ Press
- c) Ed by Jorgensen et al., Manual of Clinical Microbiology, 11th ed., 2015, ASM Press Volume 1 and 2
- d) Lieseke, Zeibig, Essentials of Medical Laboratory Practice, 2012, F.A. davis Co.
- e) Brenda Wilson, Abigail Salyers et al, "Bacterial Pathogenesis- A molecular approach", 3rd ed, ASM press, 2011
- f) J. Vandepitte, J. Verhaegen et al, "Basic laboratory procedures in clinical bacteriology", 2nd ed, WHO, Geneva, 2003
- g) Gary Procop, Elmer Koneman et al, "Koneman's Color Atlas and Textbook of Diagnostic Microbiology", 7th Edition, Wolters Kluwer, 2017
- h) Principles of epidemiology in public health practices 3rd Ed. (www.cdc.gov/training/products/ss1000)
- i) Ann Aschengrau, George R Seage, Essentials of Epidemiology in Public Health, 3rd Ed.
- j) Robert H. Friis and Thomas A. Sellers, Epidemiology for Public Health Practice, Jones & Bartlett Learning, LLC, 5th ed.
- k) Kenrad E. Nelson, Infectious Disease Epidemiology Theory and Practice, 3rd ed.

PRACTICALS: RPSMIC 104 (Discipline Specific Elective) (60 CONTACT HRS)

- a) QC of laboratory media
- b) QC of laboratory reagents
- c) Use of chromogenic media for detection of antibiotic resistant bacteria
- d) Detection of Beta lactamase producing S.aureus using nitrocefin disc's
- e) Antimicrobial susceptibility testing- disc method according to CLSI guidelines
- f) QA of Antibiotic Susceptibility Test- disc method
- g) Antibiotic Susceptibility Test microdilution methods according to CLSI guidelines
- h) Checkerboard assay
- i) E-test
- j) Octa-disc method for AST
- k) Case Studies of epidemiological strategies
- I) Data analysis of epidemiological surveys
- m) Group project on collecting data for surveillance

Modality of Assessment for RPSMIC 104 (Discipline Specific Elective) Course Title: Clinical Microbiology and Epidemiology

I) Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1	One Review writing/ Review paper presentation/Research paper presentation and Assignment / Long Answer/ Case Study or any other	20
2	Class test	20
	Total	40

B) External Examination- 60%- 60 Marks per paper

- 1. Duration- These examinations shall be of two hours and thirty minutes.
- 2. Theory question paper pattern-
- a. There shall be **five** questions each of **12** marks. On each unit there shall be one question and the fifth question will be based on all the three units.
- b. All questions shall be compulsory with internal choice within the questions.

Paper pattern:

Question	Options	Marks	Questions based on
Q.1)	Any 2 out of 3	12	Unit 1
Q.2)	Any 2 out of 3	12	Unit 2
Q.3)	Any 2 out of 3	12	Unit 3
Q.4)	Any 2 out of 3	12	Unit 4
Q.5) a)	Any 4 out of 5	04	All four units
Q.5) b)	Any 4 out of 5	04	All four units
Q.5) c)	Any 2 out of 3	04	All four units

II) Practical Examination Pattern

	DSE 1
Viva	-
Quiz	25
Laboratory work	25
Total	50

Journal

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination. In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Co-ordinator / Incharge of the department; failing which the student will not be allowed to appear for the practical examination.

Course Code: RPSBCH 104 (Discipline Specific Elective)

Course Title: Plant Biochemistry

Academic year 2022-23

COURSE OUTCOMES:

After completion of the course, a student will be able to achieve these outcomes

COURSE OUTCOME	DESCRIPTION
CO 1	Study the structural details of the plant cell
CO 2	Illustrate the chemistry of different plant pigments in order to explore their isolation, characterization and applications in various fields
CO 3	Explain and understand the biochemistry of photosynthetic process and its relation to man and its environment.
CO 4	Understand the mechanism of Nitrogen fixation and its importance in agricultural production and environment
CO 5	Acquire knowledge about the importance of secondary metabolites and its industrial applications.
CO 6	Identify the class and functions of secondary metabolites and appreciate their role in physiology of plants
CO 7	Know the significance of plant growth regulators in the development of plants
CO8	Understand the basics of plant tissue culture as it is an important tool for both basic and applied aspects of plant-based research
CO9	Become competent to explain relation between Photosynthesis, growth hormones and Plant growth
CO10	Develop skills and knowledge to conduct basic research work in the field of Plant Biochemistry

DETAILED SYLLABUS

Course	Unit	Course/ Unit Title	Credits/
Code			Lectures
RPSBCH		PLANT BIOCHEMISTRY	04/60
104			
(Discipline			
Specific			
Elective)			
	I	Overview of Plant cell structure, plant	15
		pigments & plant metabolism	
	1.1	Plant cell wall (structure), Overview of Leaf structure	3
		a) Upper epidermis	
		b) palisade mesophyll	
		c) spongy mesophyll	
		d) lower epidermise) Guard cells and stomata	
	1.2	Specialized plant cells	3
		a) Parenchyma, Sclerenchyma, Collenchyma,	U
		Xylem and phloem, Bulliform cells	
		b) Concept of apoplast, apoplastic and	
		symplastic pathways	
	1.3	Plant pigments	3
		a) Primary pigment - Chlorophyll (Types and	
		function)	
		b) Role of accessory pigments and their	
		biological significance	
		c) Carotenoids, Xanthophylls, Betalains,	
		Anthocyanins and other flavonoids	
	1.4	Plant Micronutrients	1
	1.5	Nitrogen metabolism	5
		a) Sources of Nitrogen, different forms of	
		nitrogen in plants	
\mathcal{U}_{Λ}		 b) Conversion of nitrate to nitrite & finally to ammonia, biological nitrogen fixation in plants 	
		c) Sulphur metabolism, Phosphorous	
		metabolism	
	II	Photosynthesis, Photorespiration and plant	15
		movements	
	2.1	Photosynthesis	1
	2.2	a) Light reactions: Light harvesting complexes,	2
		Absorption of light, Photophoshorylation:	
		Cyclic and Non-cyclic (Z scheme)	
		b) Dark reactions: Calvin cycle, regulation of	
		Calvin cycle, C4 cycle and CAM pathway,	5
		Synthesis of glucose, starch, sucrose	

	c) Photorespiration, Photoperiodism and	
	photoinhibition	4
	d) Physiology of plant movements	
	i. Physical movements – Xerochasy,	3
	Hydrochasy	
	ii. Vital movements – Protoplasmic	
	streaming, paratonic movements	
	iii. Tactic movements – Chemotaxis,	
	Phototaxis, Thermotaxis	
	iv. Tropic movements – Chemo / geo /	
	hydro / photo / thigmo tropism	
	v. Nastic movements – Seismonasty,	
	Nyctynasty, Photonasty, Chemonasty,	
	Thermonasty	
III	Regulation of plant growth, secondary	15
	metabolites and Sexual reproduction in	
	plants	
3.1	Plant Growth Substances	2
	Structure and Function of Auxins, Gibberellins,	
	Cytokinins, Ethylene and Abscisic Acid	
3.2	Secondary metabolites of plants	4
	Nitrogen containing compounds (Alkaloids),	
	Terpenes & Phenolic compounds – Shikimic acid	
	pathway, Mevalonic acid pathway, MEP Pathway	
3.3	Reproduction in plants	7
	a) Asexual reproduction in gymnosperms.	
	b) Life Cycle of Gymnosperms	
	c) Sexual Reproduction in angiosperms:	
	Structure of plant gametes. Life cycle of	
	angiosperm	
	d) Double fertilization in plants	
	e) Post fertilization events in plants	
3.4	Plant Tissue Culture: Principles & techniques of PTC	2
VI	Phytoremediation	15
4.1	Concept of Phytoremediation: Process and	4
	mechanism contaminant removal,	
	General contaminants of air, water and soil	
4.2	Mechanisms of Phytoremediation	5
	a) Phytoextraction, phytostabilization,	
	phytotransformation, phytostimulation,	
	phytovolatalization and Rhizofiltration	
	b) Enzymes involved in phytoremediation	
4.3	Control of environmental pollution by	6
	Phytoremediation	
	a) Criteria for selection of plants	
	b) Phytoremediation of air, water and soil	
	pollutants and their Case studies	

REFERENCES:

- a) Biochemistry & Molecular Biology of Plants Bob B. Buchanan Wilhelm Gruissem and Russel L. Jones
- b) Plant Biochemistry Heldt H.-W., Piechulla B.
- c) Methods in plant biochemistry and molecular biology Dashek, William V
- d) Plant Secondary Metabolites: Occurrence, Structure and Role in the Human Diet Alan Crozier
- e) Plant Physiology Taiz and Zeiger Sinauer Associates Inc.
- f) Plant Biochemistry Caroline Bowsher, Martin steer, Alyson Tobin Garland science
- g) Plant Biochemistry P.M Dey and J.B. Harborne Academic Press
- h) Biochemical methods S Sadashivam and A Manickam New Age International publishers.

PRACTICALS: RPSBCH 104 (Discipline Specific Elective) (60 CONTACT HRS)

- a) Study of medicinal plants for human health and their health benefits
- b) Extraction of essential oils from plants
- c) Phytochemical analysis Qualitative test
- d) Quantitative estimation of Total Phenolic content
- e) Study of effect of Eutrophication on water quality
- f) Preparation of growth media using plant waste
- g) Total carbohydrate content by Anthrone method
- h) Estimation of Vitamin C Content in plant by dye method.
- i) Effect of phytohormones on plant growth

Modality of Assessment for RPSBCH 104 (Discipline Specific Elective)

Course Title: Plant Biochemistry

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

B) External Examination- 60%- 60 Marks

1. Duration - These examinations shall be of 02 1/2 HOURS duration.

Paper Pattern:

Question	Options	Marks	Questions based on
Q.1.A)	Any 1 out of 2	8	Unit 1
Q.1.B)	Compulsory	7	
Q.2.A)	Any 1 out of 2	8	Unit 2
Q.2.B)	Compulsory	7	
Q.3.A)	Any 1 out of 2	8	Unit 3
Q.3.B)	Compulsory	7	
Q.4.A)	Any 1 out of 2	8	Unit 4
Q.4.B)	Compulsory	7	
	Total	60	

II)Practical Examination Pattern:

A) Internal Examination: 40%- 40 Marks

Particulars	Practical I, II, III & IV
Journal	05
Experimental tasks	15
Total	20

B) External Examination: 60%- 60 Marks

Semester End Practical Examination:

Particulars	Practical I, II, III & IV
Laboratory work	25
Viva	5
Total	30

RPSBTK 104 (Discipline Specific Elective)

Course Title: Clinical Data Management

Academic year 2022-23

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
CO 1	Discuss the ethical issues in human subjects research
CO 2	Imagine and understand the different phases of clinical trials
CO 3	Analyse the roles and responsibilities of the investigator and the institution
CO 4	Examine various regulatory issues related to clinical studies
CO 5	Recall the companies and organizations associated in this field
CO 6	Develop interest on medical writing and design a clinical study report

Course	Unit	Course/ Unit Title	Credits/
Code			Lectures
RPSBTK		CLINICAL DATA MANAGEMENT	04/60
104			
(Discipline			
Specific			
Elective)			cX.
	I	Drug discovery and Preclinical toxicology	15
		Pre-Clinical toxicology: General Principals, Systemic toxicology, (Single dose and repeat dosetoxicity studies), Carcinogenicity, Mutagenicity,Teratogenicity, Reproductive toxicity, Local toxicity, Genotoxicity, animal toxicity requirements	
	II	Introduction to Clinical trials	15
		Introduction to clinical trials, Historical guidelines in clinical research (Nuremberg code, Declaration of Helsinki and Belmonte report), ICH-GCP guidelines (E6-R1), Phases of clinical trials.	
	III	Clinical study design	15
		Clinical study methodology and regulations: Principles, types (single blinding, double blinding, open access, randomized trials and their examples), Design of protocol, CRF, e-CRF, IB, ICF and preparation of trial reports, Regulations involved (ICMR guidelines) and ethics.	
	IV	Medical Writing	15
		Medical Writing: Literature search and medical articles, contract writing, publication, abstracts, bibliography clinical study reports, principles and softwares in CDM	

REFERENCES:

- a) EC R1 guidelines
- b) ICMR ethical guidelines
- c) D & C Rules ScheduleY
- d) Law Of Intellectual Property Rights Shiv Sahai Singh Deep& Deep Publications (p) Ltd
- e) WTO And Intellectual Property Rights By Talwar Sabanna (2007)Serials Publications.
- f) IPR: Unleashing the Knowledge Economy(2003) Prabuddha Ganguli Tata Mcgraw Hill publication

PRACTICALS: RPSBTK 104 (Discipline Specific Elective) (60 CONTACT HRS)

- a) Action query based on various scenarios: vendor data query,eCRF data query, date Mis-Match query in ERCF on AE form and study conclusion form.
- b) design and Raise a query as per given scenario: data missing query,out of sequence data on AE/commed form.missing labs query on visits already performed etc.
- c) Designing eCRF form based on given protocol (only particular sections of protocol will be given)
- d) Designing of eCRF completion guidelines based on given protocol.
- e) Perform Screening process of various drug molecules before performing preclinical toxicity study.
- Perform preclinical toxicity study on cell lines and microorganisms using drugs screened in exp no.5
- g) Various ways to resolve vendor issues.

Modality of Assessment for RPSBTK 104 (Discipline Specific Elective)

Course Title: Clinical Data Management

I) Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1	One Assignment/ Case Study/ Project based/ Written Assignment / Presentation	20
2	Class test (Multiple Choice)	20
	Total	40

B) External Examination- 60%- 60 Marks per paper

- 1. Duration- These examinations shall be of **two hours and thirty minutes**.
- 2. Theory question paper pattern-
- a. There shall be **five** questions each of **12** marks. On each unit there shall be one question and the fifth question will be based on all the three units.
- b. All questions shall be compulsory with internal choice within the questions.

Paper pattern:

Question	Options	Marks	Questions based on
Q.1.A)	Any 1 out of 2	8	Unit 1
Q.1.B)	Compulsory	7	
Q.2.A)	Any 1 out of 2	8	Unit 2
Q.2.B)	Compulsory	7	
Q.3.A)	Any 1 out of 2	8	Unit 3
Q.3.B)	Compulsory	7	
Q.4.A)	Any 1 out of 2	8	Unit 4
Q.4.B)	Compulsory	7	
	Total	60	

II) Practical Examination Pattern

External Examination- 50 Marks Semester End Practical Examination

Particulars	Paper
Laboratory Work	40
Journal	05
Viva	05
Total	50

Overall Examination and Marks Distribution Pattern

Course	DSE						
	Internal	External	Total				
Theory	40	60	100				
Practicals	-	50	50				

Course Code: RPSMIC 105 (Ability Enhancement Course) Course Title: Emotional Well Being through Logic Based Thinking Academic year 2022-23

COURSE OUTCOMES:

CO 1	Understand the connection between thinking patterns, emotions, and behaviour
CO 2	Identify one's faulty thinking patterns (fallacies) and methods for refuting them
CO 3	Replace faulty thinking patterns with positive and rational thinking patterns.
CO 4	Using philosophical antidotes to promote a healthy state of mind

Course Code	Unit	Course/ Unit Title	Credits/
			Lectures
RPSMIC 105		EMOTIONAL WELL BEING THROUGH	02/30
(Ability		LOGICAL WELL BEING	
Enhancement			
Course)			
	I	Relation between Emotions and Thinking	15
	11	 a) Fundamentals of emotional well-being. b) Tracing the thoughts behind an emotional problem. c) Some prominent faulty thinking patterns/fallacies causing harm to oneself and others: i. Demanding perfection ii. World Revolves Around Me iii. Damnation iv. Awfulizing v. Can'tstipation 	15
		patterns	15
		 a) How to refute the fallacies i. Fallacy-Antidotes-Virtues framework b) Some uplifting Antidotal reasoning to overcome the fallacies c) Corresponding Guiding virtues for the fallacies: i. Demanding perfection- Metaphysical security ii. World Revolves Around Me- Empathy iii. Damnation- Respect iv. Awfulizing- Courage v. Can'tstipation- Temperance. 	

REFERENCES:

a) Elliot D Cohen, What Would Aristotle Do: Self-Control through the Power of Reason, Prometheus Books, 2003.

Modality of Assessment:

AECC paper- Semester End examination -50 marks

Overall Examination and Marks Distribution Pattern

Course	1			-	-										
	Cor	'e 1		Cor	e 2		Cor	e 3		DSE	1			CC	
	Internal	External	 Total	Internal	External	Total	Internal	External	Total	Internal	External	Total	Total		Grand
Theory	- 40	60	100	40	60	100	- 40	60	100	40	60	100	50		450
Practicals	-	50	50	-	50	50	-	50	50	-	50	50	00		200
										5	2				

Semester II

Course Code: RPSMIC 201 (Core Course) Course Title: Cell Biology

Academic year 2022-23

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
CO 1	Interpret the structure and analyze the function of cell membrane &
	Cytoskeleton.
CO 2	Discuss the concept of compartmentalization of cell and understand
	the process of membrane transport and protein trafficking.
CO 3	Interpret the phases of Cell cycle & discuss the apoptotic
	mechanisms.
CO 4	Exemplify cell communication strategies in plants & animals.
CO 5	Recall the basics of developmental biology and deconstruct the
	process of meiosis, embryonic cleavage, gastrulation &
	morphogenesis
CO 6	Justify the genetic basis of development in model organisms
CO 7	Analyze the entire genetically predisposed process of development
	in Drosophila.
CO 8	Even to 9 implement the techniques used to study as letterstary 9
CO 8	Execute & implement the techniques used to study cell structure &
$ _{\partial A}$	its components.

Course	Unit	DETAILED SYLLABUS Course/ Unit Title	Credits/
	Unit		
Code			Lectures
RPSMIC		CELL BIOLOGY	4/60
201			
(Core			
Course)			
		Cell structure and cytoskeleton	15
	1.1	Techniques to study cell and cellular structure.	02
	1.2	Cell membrane structure	03
		a) Lipid bilayer	
		b) Membrane proteins	
		c) Spectrins	
		d) Glycophorin	
		e) Multi pass membrane protein	
	1.3	f) Bacteriorhodopsin Cytoskeleton	05
	1.3	a) Cytoskeletal filaments	05
		b) Microtubules	
		c) Actin regulation	
		d) Molecular motors	
		e) Cell behaviour	
	1.4	Cell Junctions and cell adhesion	05
		a) Anchoring	
		b) Adherence junctions	
		c) Desmosomes	
		d) Gap junctions	
		e) Cell-cell adhesion	
		f) Cadherins	45
	2.1	Membrane Transport and Compartmentalization	15 05
	2.1	Membrane Transport (Revision) a) Principles of membrane transport	05
		i. Ion channels	
		ii. electrical properties of membranes	
		b) Types of diffusion	
		i. Passive Diffusion, and Facilitated Diffusion,	
O.V.		ii. Ion channels – Ligand gated and voltage gated	
		channels,	
		c) Active transport – ion pumps (e.g.: Na+-K+ pump)	
	2.2	Intracellular Compartments and protein sorting	07
		a) Compartmentalization of cells	
		b) Transport of molecules between the nucleus and	
		cytosol, peroxisomes, Endoplasmic reticulum c) Transport of proteins into mitochondria and	
		chloroplasts	
	2.3	Intracellular vesicular traffic	03

			
		a) Endocytosis	
		b) Exocytosis	
		c) Transport from the ER through the Golgi apparatus	
		Cell cycle & Cell communication	15
	3.1	Mechanism of cell division	04
		a) M-phase	
		b) Cytokinesis	
	3.2	Cell cycle and Programmed cell death	03
		a) Control system	
		b) Intracellular control of cell cycle events	CX.
		c) Apoptosis	$\langle \langle \rangle \rangle$
		d) Extracellular control of cell growth and apoptosis	
	3.3	Cell communication	03
		a) Extracellular signal molecules	
		b) Nitric oxide gas signal	
		c) Classes of cell-surface receptor proteins	
	3.4	Signalling through enzyme linked cell surface receptors	04
		a) Docking sites	
		b) Ras	
		c) MAP kinase	
		d) PI-3kinase	
		e) TGF	
	3.5	Signalling in plants	01
		a) Serine/ Threonine kinases	
		b) Role of ethylene	
		c) Phytochromes	4.5
IV		Developmental Biology	15
	4.1	The Process of Development in Animals	04
		a) Evo-Devo: The Study of Evolution and Development	
		b) Meiosis- Oogenesis, spermatogenesis and	
		fertilization	
		c) The Embryonic Cleavage Divisions and Blastula	
		Formation	
	4.2	d) Gastrulation and Morphogenesis Genetic Analysis of Development in Model Organisms	01
	4.2	Molecular Analysis of Genes Involved in Development	01
	4.3	Maternal Gene Activity in Development	03
	4.3	Maternal-Effect Genes	03
	4.4	Development of Drosophila	07
	4.4	a) Determination of the Dorsal-Ventral and Anterior-	07
		Posterior Axes in Drosophila Embryos	
		b) Zygotic Gene Activity in Development	
		c) Specification of Cell Types	
		d) Genes of drosophila	
		i. Drosophila signalling genes	
		ii. gradient of nuclear gene regulatory protein	
		iii. Dpp and Sog setup	
		iv. Neural development	
1	1		

REFERENCES:

- a) Albert, Johnson, Lewis, Raff, Roberts and Walter, "Molecular Biology of The Cell", 5th Ed, Garland Science Publishing, 2008
- b) Lodish, Birk, and Zipursky, "Molecular Cell Biology", Freeman Publishing, 2008
- c) Lipowsky and Sackmann, "The Structure and Dynamics of Cell Membrane", 1st Ed, Elsevier, 1995
- d) Dennis Bray, "Cell Movements: from Molecules to Motility", 2nd Ed, Garland Publications, 2001
- e) Snustad & Simmons, "Principles of Genetics", 3rd Ed, John Wiley & Sons Inc, 2002

PRACTICALS: RPSMIC 201 (Core Course) (60 CONTACT HRS)

- a) Study of cell cytology using Phase contrast Microscopy-Demonstration
- b) Study of Cell structure using Confocal Microscopy- Demonstration
- c) Study of Cell structure using Fluorescence Microscopy- Demonstration
- d) Isolation of Chloroplasts.
- e) Isolation of Mitochondria from the cell.
- f) Study of cell viability
- g) Study of Mitosis.
- h) Study of Meiosis
- i) Estimation of NO (Nitric Oxide) produced by Macrophages.
- j) Study of Cell membrane integrity using up take of neutral red.
- k) Observing animal cells under a light microscope (Cheek epithelial cells)
- I) Preparation of liver tissue samples for histochemical analysis
- m) Observing microtubules by immunofluorescent labelling
- n) Separation of blood cells by density gradient centrifugation
- o) Measurement of chlorophyll concentration to analyse plant response to light availability
- p) Effect on plant growth in presence and absence of ethephon
- q) Demonstration of maintaining and cultivating Animal cell lines

Course Code: RPSMIC 202 (Core Course) Course Title: Microbial Biochemistry-II

Academic year 2022-23

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
CO 1	Recall the basics of biochemical techniques for extraction and purification of biomolecules
CO 2	Compare models of regulation of enzyme activity at protein level
CO 3	Understand the details of mechanism of enzyme activity for the representative enzyme from each class
CO 4	Attribute various mechanisms to the response to various environmental stimuli
CO 5	Analyse the mechanism of biodegradation of various xenobiotics by microorganisms
CO 6	Check various properties of amylase enzyme in the laboratory

NH1"

Course	Unit	Course/ Unit Title	Credits/
Code			Lectures
RPSMIC		MICROBIAL BIOCHEMISTRY II	4/60
202			
_			
(Core			
Course)			
I		Analytical Biochemistry	15
	1.1	Methods of purification of proteins	4
		a) Salting out of proteins using ammonium sulphate	
		b) Solvent precipitation of proteins	
		c) Purification of proteins using column	
		chromatography – Ion exchange, Gel filtration,	
		Affinity, HPLC d) Measures of purity – Enzyme units, specific activity	
	1.2	Methods of analysis of proteins	4
	1.4	a) 2D- Gel electrophoresis – SDS PAGE and Isoelectric	
		focusing	
		b) Protein sequencing by Sanger Sequencing, Edman	
		Degradation, Mass spectrometry	
		c) Protein structure determination by X ray diffraction,	
		NMR	
	1.3	Methods of analysis of carbohydrates	2
	1.4	Methods of analysis of lipids	5
		a) Lipid Extraction using organic Solvent	
		b) Adsorption Chromatography	
		c) Gas-Liquid Chromatography-Mass Spectrometry	
II		Enzymology	15
	2.1	Introduction to enzymes	07
		a) Discovery of enzymes	
		b) Enzyme classification – E.C. number of enzymes	
		c) Lowering of activation energy of reaction by enzymes	
	\sim	d) Enzyme Kinetics – Steady state assumption and	
		Michaelis Menten Kinetics	
		e) Lineweaver Burk plot	
O.Y.		f) Reversible enzyme inhibition – Competitive, non	
		competitive, uncompetitive – Mechanism, graph,	
		examples	
		g) Irreversible enzyme inhibition	
	2.2	Enzyme regulation:	04
		a) General properties of allosteric enzymes	
		b) Two themes of allosteric regulations - Concerted	
		model and sequential model	
		Regulation by covalent modification	•
	2.3	Mechanisms of enzyme catalysis	04

RAMNARAIN RUIA AUTONOMOUS COLLEGE, SYLLABUS FOR MSc MICROBIOLOGY 2022-2023

a) Detailed mechanisms of enzyme catalysis: i. RNaseA i. Lysozyme III Cell Signaling in Prokaryotes 15 3.1 Two-component signaling systems - I 10 a) Introduction to two-component signaling systems 10 b) Response to ftwo-component signaling systems 10 components of two-component signaling systems 0 Response to Nitrate and Nitrite: The Nar Regulatory System d) Response to Nitrate and Nitrite: The Nar Regulatory System 0 Response to Inorganic Phosphate Supply: The Pho Regulon e) Response to Carbon Sources: Catabolite Repression - Cra and Cre system 05 a) Response to Carbon Sources: Catabolite Repression - Cra and Cre system 05 d) A Response to Carbon Sources: 15 V Biodegradation of Xenobiotics 15 V Biodegradation and Degradation of Azo Dyes 05 a) Polychlorophenols 05 b) Decolorization and Degradation of Azo Dyes 05 c) Degradation by Fungus of 05 a) Aromatic Pollutants 05 b)		1		
III Cell Signaling in Prokaryotes 15 3.1 Two-component signaling systems - I 10 a) Introduction to two-component signaling systems - Components of two-component signaling systems - Components of two-component signaling systems 10 b) Response by facultative anaerobes to anaerobiosis - c) Response to Nitrate and Nitrite: The Nar Regulatory System 0) d) Response to Nitrogen Supply: The Ntr Regulon - e) Response to Inorganic Phosphate Supply: The Pho Regulon - d) Response to Carbon Sources: Catabolite Repression - Cra and Cre system 05 a) Response to Carbon Sources: Catabolite Repression - Cra and Cre system 05 d) Response to Carbon Sources: Catabolite Repression - Cra and Cre system 05 i) Chemotaxis 15 IV Biodegradation of Xenobiotics 15 4.1 Microbial Degradation of Azo Dyes 0 c) Declorization and Degradation of Azo Dyes 0 d) Bacterial Degradation of Petroleum Hydrocarbons 0 d) Bacterial Degradation of Petroleum Hydrocarbons 05 a) Aromatic Pollutants <td< th=""><th></th><th></th><th>a) Detailed mechanisms of enzyme catalysis:</th><th></th></td<>			a) Detailed mechanisms of enzyme catalysis:	
III Cell Signaling in Prokaryotes 15 3.1 Two-component signaling systems - I 10 a) Introduction to two-component signaling systems - Components of two-component signaling systems 10 b) Response by facultative anaerobes to anaerobiosis - c) Response to Nitrate and Nitrite: The Nar Regulatory System 0 d) Response to Nitrogen Supply: The Ntr Regulon 0 e) Response to Inorganic Phosphate Supply: The Pho Regulon 05 a) Response to Carbon Sources: Catabolite Repression - Cra and Cre system 05 c) Response to Carbon Sources: Catabolite Repression - Cra and Cre system 05 d) Response to Carbon Sources: Catabolite Repression - Cra and Cre system 05 d) Response to Carbon Sources: Catabolite Repression - Cra and Cre system 05 d) Biodegradation of Xenobiotics 15 IV Biodegradation of Azo Dyes 05 a) Polychlorophenols 05 b) Decolorization and Degradation of Azo Dyes 0 c) Degradation of Petroleum Hydrocarbons 05 d) Bacterial Degradation of Petroleum Hydrocarbons 05 </th <th></th> <th></th> <th></th> <th></th>				
3.1 Two-component signaling systems - I 10 a) Introduction to two-component signaling systems - Components of two-component signaling systems b) b) Response by facultative anaerobes to anaerobiosis c) c) Response to Nitrate and Nitrite: The Nar Regulatory System d) d) Response to Nitrogen Supply: The Ntr Regulon e) e) Response to Inorganic Phosphate Supply: The Pho Regulon 3.2 Two-component signaling systems - II 05 a) Response to Carbon Sources: Catabolite Repression - Cra and Cre system b) Chemotaxis 15 IV Biodegradation of Xenobiotics 15 a) Polychlorophenols 05 b) Decolorization and Degradation of Azo Dyes c) c) Degradation of High Molecular Weight Polynuclear Aromatic Hydrocarbons 05 a) Aromatic Pollutants 05 05 a) Aromatic Pollutants 05 05 a) Aromatic Pollutants by White Rot Fungi 05 05 a) Aromatic Pollutants 05 05 05 a) <td< th=""><th></th><th></th><th></th><th></th></td<>				
a) Introduction to two-component signaling systems - Components of two-component signaling systems b) Response by facultative anaerobes to anaerobiosis c) Response to Nitrate and Nitrite: The Nar Regulatory System d) Response to Nitrogen Supply: The Ntr Regulon e) Response to Inorganic Phosphate Supply: The Pho Regulon 3.2 Two-component signaling systems - II 05 a) a) Response to Carbon Sources: Catabolite Repression - Cra and Cre system b) Chemotaxis IV Biodegradation of Xenobiotics a) Polychlorophenols b) Decolorization and Degradation of Azo Dyes c) Degradation of High Molecular Weight Polynuclear Aromatic Hydrocarbons d) Bacterial Degradation of Petroleum Hydrocarbons 4.2 Biodegradation by Fungus of 05 a) Aromatic Pollutants 05 b) Chero-organic Pollutants by White Rot Fungi 05 a) Microbial Degradation of Plastics and Water-Soluble Polymers 05 b) Degradation of PAHs: Organisms and Environmental Compartments 05	111			
Components of two-component signaling systems b) Response by facultative anaerobes to anaerobiosis c) Response to Nitrate and Nitrite: The Nar Regulatory System d) Response to Nitrogen Supply: The Ntr Regulon e) Response to Inorganic Phosphate Supply: The PhoRegulon e) Response to Inorganic Phosphate Supply: The PhoRegulon a) Response to Carbon Sources: Catabolite Repression - Cra and Cre system b) Chemotaxis IV Biodegradation of Xenobiotics a) Polychlorophenols b) Decolorization and Degradation of Azo Dyes c) Degradation of High Molecular Weight Polynuclear Aromatic Hydrocarbons d) Bacterial Degradation of Petroleum Hydrocarbons d) Bacterial Degradation of Petroleum Hydrocarbons d) Bacterial Degradation of Petroleum Hydrocarbons d) Biodegradation of Xenobiotics 05 a) Aromatic Pollutants b) Chloro-organic Pollutants by White Rot Fungi b) Chloro-organic Pollutants by White Rot Fungi b) Degradation of PAHs: Organisms and Environmental Compartments		3.1	Two-component signaling systems - I	10
b) Response by facultative anaerobes to anaerobiosis c) Response to Nitrate and Nitrite: The Nar Regulatory System d) Response to Nitrogen Supply: The Ntr Regulon e) Response to Inorganic Phosphate Supply: The PhoRegulon e) Response to Inorganic Phosphate Supply: The PhoRegulon a) Response to Carbon Sources: Catabolite Repression - Cra and Cre system b) Chemotaxis IV Biodegradation of Xenobiotics 4.1 Microbial Degradation of 05 a) Polychlorophenols b) Decolorization and Degradation of Azo Dyes c) Degradation of High Molecular Weight Polynuclear Aromatic Hydrocarbons d) Bacterial Degradation of Petroleum Hydrocarbons 4.2 Biodegradation by Fungus of b) Chloro-organic Pollutants by White Rot Fungi b) Degradation of PAHs: Organisms and Environmental Compartments			a) Introduction to two-component signaling systems -	
c) Response to Nitrate and Nitrite: The Nar Regulatory System d) Response to Nitrogen Supply: The Ntr Regulon e) Response to Inorganic Phosphate Supply: The Pho Regulon 3.2 Two-component signaling systems - II 0 Response to Carbon Sources: Catabolite Repression - Cra and Cre system b) Chemotaxis 05 IV Biodegradation of Xenobiotics 15 4.1 Microbial Degradation of 05 a) Polychlorophenols b) Decolorization and Degradation of Azo Dyes c) Degradation of High Molecular Weight Polynuclear Aromatic Hydrocarbons 05 4.2 Biodegradation by Fungus of b) Chloro-organic Pollutants b) Chloro-organic Pollutants b) Chloro-organic Pollutants b) Chloro-organic Pollutants b) Chloro-organic Pollutants b) Chloro-organic Pollutants b) Degradation of Plastics and Water-Soluble Polymers b) Degradation of PAHs: Organisms and Environmental Compartments 05			Components of two-component signaling systems	
System d) Response to Nitrogen Supply: The Ntr Regulon e) Response to Inorganic Phosphate Supply: The Pho Regulon 05 3.2 Two-component signaling systems - II 05 a) Response to Carbon Sources: Catabolite Repression - Cra and Cre system 05 b) Chemotaxis 15 4.1 Microbial Degradation of Xenobiotics 15 4.1 Microbial Degradation of Azo Dyes 05 a) Polychlorophenols b) Decolorization and Degradation of Azo Dyes 05 c) Degradation of High Molecular Weight Polynuclear Aromatic Hydrocarbons 05 d) Bacterial Degradation of Petroleum Hydrocarbons 05 a) Aromatic Pollutants 05 b) Chloro-organic Pollutants by White Rot Fungi 05 a) Microbial Degradation of Plastics and Water-Soluble Polymers 05 b) Degradation of PAHs: Organisms and Environmental Compartments 05			b) Response by facultative anaerobes to anaerobiosis	
d) Response to Nitrogen Supply: The Ntr Regulon e) Response to Inorganic Phosphate Supply: The Pho Regulon 3.2 Two-component signaling systems - II 05 a) Response to Carbon Sources: Catabolite Repression – Cra and Cre system b) Chemotaxis IV Biodegradation of Xenobiotics 4.1 Microbial Degradation of 05 a) Polychlorophenols 05 b) Decolorization and Degradation of Azo Dyes 05 c) Degradation of High Molecular Weight Polynuclear Aromatic Hydrocarbons 05 d) Bacterial Degradation of Petroleum Hydrocarbons 05 a) Aromatic Pollutants 05 b) Chloro-organic Pollutants by White Rot Fungi 05 a) Microbial Degradation of Plastics and Water-Soluble Polymers 05 b) Degradation of PAHs: Organisms and Environmental Compartments 05			, , ,	×.
e) Response to Inorganic Phosphate Supply: The Pho Regulon 3.2 Two-component signaling systems - II 05 a) Response to Carbon Sources: Catabolite Repression - Cra and Cre system 05 b) Chemotaxis 15 V Biodegradation of Xenobiotics 15 4.1 Microbial Degradation of Azo Dyes 05 a) Polychlorophenols 05 05 b) Decolorization and Degradation of Azo Dyes 05 c) Degradation of High Molecular Weight Polynuclear Aromatic Hydrocarbons 05 d) Bacterial Degradation of Petroleum Hydrocarbons 05 a) Aromatic Pollutants 05 a) Aromatic Pollutants 05 a) Microbial Degradation of Plastics and Water-Soluble Polymers 05 c) Degradation of PAHs: Organisms and Environmental Compartments 05			-	
Regulon 05 3.2 Two-component signaling systems - II 05 a) Response to Carbon Sources: Catabolite Repression – Cra and Cre system b) Chemotaxis - Cra and Cre system IV Biodegradation of Xenobiotics 15 4.1 Microbial Degradation of 05 a) Polychlorophenols 05 b) Decolorization and Degradation of Azo Dyes 05 c) Degradation of High Molecular Weight Polynuclear Aromatic Hydrocarbons 05 d) Bacterial Degradation of Petroleum Hydrocarbons 05 4.2 Biodegradation by Fungus of 05 a) Aromatic Pollutants b) 05 a) Aromatic Pollutants by White Rot Fungi 05 a) Microbial Degradation of Plastics and Water-Soluble Polymers b) 05				$\langle \mathcal{O} \rangle$
3.2 Two-component signaling systems - II 05 a) Response to Carbon Sources: Catabolite Repression – Cra and Cre system 0 b) Chemotaxis 15 IV Biodegradation of Xenobiotics 15 4.1 Microbial Degradation of 05 a) Polychlorophenols 05 b) Decolorization and Degradation of Azo Dyes 05 c) Degradation of High Molecular Weight Polynuclear Aromatic Hydrocarbons 05 d) Bacterial Degradation of Petroleum Hydrocarbons 05 4.2 Biodegradation by Fungus of 05 a) Aromatic Pollutants 05 b) Chloro-organic Pollutants by White Rot Fungi 05 4.3. Biodegradation of Xenobiotics 05 a) Airomatic Pollutants by White Rot Fungi 05 b) Chloro-organic Pollutants by White Rot Fungi 05 b) Degradation of PAHs: Organisms and Environmental Compartments 05				
IVBiodegradation of Xenobiotics15IVBiodegradation of Xenobiotics154.1Microbial Degradation of05a)Polychlorophenols05b)Decolorization and Degradation of Azo Dyes05c)Degradation of High Molecular Weight Polynuclear Aromatic Hydrocarbons05d)Bacterial Degradation of Petroleum Hydrocarbons05d)Bacterial Degradation of Petroleum Hydrocarbons05d)Biodegradation by Fungus of b)0505a)Aromatic Pollutants b)0505a)Airomatic Pollutants b)0505a)Airopial Degradation of Plastics and Water-Soluble Polymers b)05b)Degradation of PAHs: Organisms and Environmental Compartments05		3.2		05
IVBiodegradation of Xenobiotics154.1Microbial Degradation of054.1Microbial Degradation of05a)Polychlorophenols05b)Decolorization and Degradation of Azo Dyes0c)Degradation of High Molecular Weight Polynuclear Aromatic Hydrocarbons0d)Bacterial Degradation of Petroleum Hydrocarbons05d)Bacterial Degradation of Petroleum Hydrocarbons05ea)Aromatic Pollutants05b)Chloro-organic Pollutants by White Rot Fungi05d)a)Microbial Degradation of Plastics and Water-Soluble Polymers05b)Degradation of PAHs: Organisms and Environmental Compartments05			a) Response to Carbon Sources: Catabolite Repression	
IVBiodegradation of Xenobiotics154.1Microbial Degradation of05a) Polychlorophenols b) Decolorization and Degradation of Azo Dyes c) Degradation of High Molecular Weight Polynuclear Aromatic Hydrocarbons d) Bacterial Degradation of Petroleum Hydrocarbons4.2Biodegradation by Fungus of a) Aromatic Pollutants b) Chloro-organic Pollutants by White Rot Fungi4.3.Biodegradation of Xenobiotics 			– Cra and Cre system	
4.1Microbial Degradation of05a)Polychlorophenols b)Decolorization and Degradation of Azo Dyes c)Degradation of High Molecular Weight Polynuclear Aromatic Hydrocarbons d)Bacterial Degradation of Petroleum Hydrocarbons4.2Biodegradation by Fungus of a)05a)Aromatic Pollutants b)Chloro-organic Pollutants by White Rot Fungi4.3.Biodegradation of Xenobiotics Polymers05a)Microbial Degradation of Plastics and Water-Soluble Polymers05b)Degradation of PAHs: Organisms and Environmental Compartments05			b) Chemotaxis	
4.1Microbial Degradation of05a)Polychlorophenols b)Decolorization and Degradation of Azo Dyes c)Degradation of High Molecular Weight Polynuclear Aromatic Hydrocarbons d)Bacterial Degradation of Petroleum Hydrocarbons4.2Biodegradation by Fungus of a)05a)Aromatic Pollutants b)Chloro-organic Pollutants by White Rot Fungi4.3.Biodegradation of Xenobiotics Polymers05a)Microbial Degradation of Plastics and Water-Soluble Polymers05b)Degradation of PAHs: Organisms and Environmental Compartments05	IV		Biodegradation of Xenobiotics	15
b) Decolorization and Degradation of Azo Dyes c) Degradation of High Molecular Weight Polynuclear Aromatic Hydrocarbons d) Bacterial Degradation of Petroleum Hydrocarbons d) Bacterial Degradation of Petroleum Hydrocarbons d) Bacterial Degradation of Petroleum Hydrocarbons d) Biodegradation by Fungus of 05 a) Aromatic Pollutants 05 b) Chloro-organic Pollutants by White Rot Fungi 05 4.3. Biodegradation of Xenobiotics 05 a) Microbial Degradation of Plastics and Water-Soluble Polymers 05 b) Degradation of PAHs: Organisms and Environmental Compartments 05		4.1		05
c) Degradation of High Molecular Weight Polynuclear Aromatic Hydrocarbons d) Bacterial Degradation of Petroleum Hydrocarbons d) Bacterial Degradation of Petroleum Hydrocarbons 4.2 Biodegradation by Fungus of 05 a) Aromatic Pollutants 05 b) Chloro-organic Pollutants by White Rot Fungi 05 4.3. Biodegradation of Xenobiotics 05 a) Microbial Degradation of Plastics and Water-Soluble Polymers 05 b) Degradation of PAHs: Organisms and Environmental Compartments 05			a) Polychlorophenols	
Aromatic Hydrocarbons Aromatic Hydrocarbons d) Bacterial Degradation of Petroleum Hydrocarbons 05 4.2 Biodegradation by Fungus of 05 a) Aromatic Pollutants b) Chloro-organic Pollutants by White Rot Fungi 05 4.3. Biodegradation of Xenobiotics 05 a) Microbial Degradation of Plastics and Water-Soluble Polymers b) Degradation of PAHs: Organisms and Environmental Compartments			b) Decolorization and Degradation of Azo Dyes	
d) Bacterial Degradation of Petroleum Hydrocarbons 4.2 Biodegradation by Fungus of 05 a) Aromatic Pollutants b) Chloro-organic Pollutants by White Rot Fungi 05 4.3. Biodegradation of Xenobiotics 05 a) Airomatic Pollutants by White Rot Fungi 05 b) Chloro-organic Pollutants by White Rot Fungi 05 4.3. Biodegradation of Xenobiotics 05 a) Microbial Degradation of Plastics and Water-Soluble Polymers 05 b) Degradation of PAHs: Organisms and Environmental Compartments 05			c) Degradation of High Molecular Weight Polynuclear	
4.2 Biodegradation by Fungus of 05 a) Aromatic Pollutants 05 b) Chloro-organic Pollutants by White Rot Fungi 05 4.3. Biodegradation of Xenobiotics 05 a) Microbial Degradation of Plastics and Water-Soluble Polymers 05 b) Degradation of PAHs: Organisms and Environmental Compartments 05			Aromatic Hydrocarbons	
a) Aromatic Pollutants b) Chloro-organic Pollutants by White Rot Fungi 4.3. Biodegradation of Xenobiotics 05 a) Microbial Degradation of Plastics and Water-Soluble Polymers 05 b) Degradation of PAHs: Organisms and Environmental Compartments 05			d) Bacterial Degradation of Petroleum Hydrocarbons	
b) Chloro-organic Pollutants by White Rot Fungi 4.3. Biodegradation of Xenobiotics 05 a) Microbial Degradation of Plastics and Water-Soluble Polymers b) Degradation of PAHs: Organisms and Environmental Compartments Compartments		4.2	Biodegradation by Fungus of	05
4.3. Biodegradation of Xenobiotics 05 a) Microbial Degradation of Plastics and Water-Soluble Polymers Polymers b) Degradation of PAHs: Organisms and Environmental Compartments Compartments			a) Aromatic Pollutants	
 a) Microbial Degradation of Plastics and Water-Soluble Polymers b) Degradation of PAHs: Organisms and Environmental Compartments 			b) Chloro-organic Pollutants by White Rot Fungi	
Polymers b) Degradation of PAHs: Organisms and Environmental Compartments		4.3.	Biodegradation of Xenobiotics	05
b) Degradation of PAHs: Organisms and Environmental Compartments			a) Microbial Degradation of Plastics and Water Soluble	
Compartments			a) Microbial Degradation of Plastics and Water-Soluble	
c) Microbial Degradation of Alkanes			Polymers	
			Polymers b) Degradation of PAHs: Organisms and Environmental	

REFERENCES:

- a) Donald Voet, Judith G. Voet, Charlotte W. Pratt, FUNDAMENTALS OF Biochemistry, 3rd Edition, 2008 John Wiley and Sons
- b) Horton and Moran, "Principles of Biochemistry", 5th Ed, Scrimgeour Pears Rawn, 2011
- c) Lehninger A.L., Cox and Nelson, "Principles of Biochemistry", 4th Ed, CBS Publishers and Distributors Pvt. Ltd. 1994
- d) White D, "The physiology and biochemistry of prokaryotes", 2nd Ed, Oxford University Press, 2000
- e) Shree Nath Singh, "Microbial Degradation of Xenobiotics" Springer, 2012.

PRACTICALS: RPSMIC 202 (Core Course) (60 CONTACT HRS)

- a) Isolation of Amylase from Aspergillus spp and its Purification strategy
- b) Purification of an extracellular enzyme (βamylase) by salting out and dialysis
- c) Extraction of enzyme (βamylase) by precipitation with Acetone
- d) Enzyme kinetics: effect of enzyme concentration, substrate concentration, pH, temperature and inhibitors on enzyme activity,
- e) Demonstration of proteolytic activity
- f) Determination of glucose isomerase present intracellularly in Bacillus sp.
- g) Adaptation of *E. coli* to anaerobiosis
- h) Chemotaxis of *Pseudomonas*
- i) Effect of temperature and water activity on swarming of *Proteus*
- j) Microbial degradation of polycyclic aromatic hydrocarbons (PAHs) enrichment, isolation and screening of bacteria
- k) Aqueous two-phase partitioning
- I) Separation of proteins using Polyacrylamide Gel Electrophoresis (PAGE)

Course Code: RPSMIC 203 (Core Course) Course Title: Environmental Microbiology

Academic year 2022-23

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
CO 1	Recollect basic concepts of microbial ecology
CO 2	Design, execute and implement a protocol for sample collection from a natural environment and its microbiological analysis
CO 3	Discriminate and select the best genomic technique for microbial studies of different environmental samples
CO 4	Demonstrate an in depth understanding of microbial ecology of soil and marine environments
CO 5	Apply the understanding on industrial applications of extremophiles to explore and innovate for newer products
CO 6	Summarize the significance of microbes in elemental cycles
CO 7	Interpret the role of rhizosphere bacteria in plant growth and implement techniques for exploring them for commercial applications
CO 8	Explain and appreciate various regulations enacted with respect to biosafety and hazardous waste management

. WM1 -

Course Unit	Course/ Unit Title	Credits/
Code		Lectures
RPSMIC ENVI	RONMENTAL MICROBIOLOGY	04/60
203		
(Core		
•		
Course)		
	I Ecology	15
	oncepts of Microbial Ecology, Sample	07
	n and processing	
	evision of basic concepts of Microbial	
	ology Concepts	
	Niche	
	Habitat	
	Ecosystem	
	Microbial diversity	
	Interactions between micro-organisms	
vii.	Ecological succession	
b) En	vironmental sample collection and	
pro	ocessing	
i.	Soils and Sediment	
ii.	Water	
	es for microbial analysis	08
,	Iltural Methods	
	ysiological Methods: Measuring microbial tivity in pure culture	
	Stable isotope probing	
	Use of radioisotopes as tracers	
	Adenylate energy charge	
v.	Enzyme assays	
	nctional genomics, Metagenomics &	
	oteomics- based approach	
	munological methods	
	Icleic acid-based methods	
f) Re	combinant DNA Techniques RFLP	
	Denaturing/Temperature gradient	
	Plasmid analysis	
.		
iv.	Reporter genes	
	Reporter genes Rep PCR fingerprinting and Microbial	
	Reporter genes Rep PCR fingerprinting and Microbial diversity	
v.	Rep PCR fingerprinting and Microbial	15
V.	Rep PCR fingerprinting and Microbial diversity	15 03

b) Characterization and stratification of the	
oceans: Vertical and horizontal zones of	
marine habitats	
c) Marine microbes	
i. Characteristics	
ii. Distribution	
iii. Composition & activity	
d) Marine pathogens	
2.2 Extremophiles	08
a) Habitat	00
b) Effect of extreme conditions on cellular	CX
components	
c) membrane structure	
d) nucleic acids	
e) proteins	
f) Adaptation mechanism in microorganisms in	
diverse environments	
g) Study, Industrial Applications and	
Biotechnological applications of proteins from:	
i. Thermophiles	
ii. Psychrophiles	
iii. Halophiles	
iv. Piezophiles	
v. Acidophiles	
vi. Alkaliphiles	
vii. Xerophiles	
viii. Radiation resistant organisms	
ix. Methanogens	
2.3 Mechanisms of metal resistance, Metal	02
transformations, Microbial metal remediation	
2.4 Geomicrobiology	02
a) Biofouling	
b) Biocorrosion	
c) Bioleaching	
III Soil and Agricultural Microbiology	15
3.1 Soil Microbiology	03
a) Litho ecosphere	
i. Soil formation	
i. Soil formation ii. Properties (physical and chemical)	
ii. Properties (physical and chemical)	
ii. Properties (physical and chemical) b) Soil communities	04
ii. Properties (physical and chemical) b) Soil communities 3.2 Agricultural microbiology	04
ii. Properties (physical and chemical) b) Soil communities 3.2 Agricultural microbiology a) Factors affecting microbial load of soils	04
ii. Properties (physical and chemical) b) Soil communities 3.2 Agricultural microbiology a) Factors affecting microbial load of soils b) Relationship between plants and microbe's	04
ii. Properties (physical and chemical) b) Soil communities 3.2 Agricultural microbiology a) Factors affecting microbial load of soils b) Relationship between plants and microbe's rhizosphere, phyllosphere.	04
ii. Properties (physical and chemical) b) Soil communities 3.2 Agricultural microbiology a) Factors affecting microbial load of soils b) Relationship between plants and microbe's rhizosphere, phyllosphere. c) Beneficial uses of microorganisms for plant	04
ii. Properties (physical and chemical) b) Soil communities 3.2 Agricultural microbiology a) Factors affecting microbial load of soils b) Relationship between plants and microbe's rhizosphere, phyllosphere. c) Beneficial uses of microorganisms for plant growth and development	04
ii. Properties (physical and chemical) b) Soil communities 3.2 Agricultural microbiology a) Factors affecting microbial load of soils b) Relationship between plants and microbe's rhizosphere, phyllosphere. c) Beneficial uses of microorganisms for plant	04

		a) In the phyllosphere (impact on survival and	
		bacterial interactions, interaction of plants with	
		epiphytic biofilms,)	
		b) In the Rhizosphere (ubiquity and importance	
		for rhizosphere bacteria, impact of rhizosphere	
		biofilms on plant biology)	
	3.5	Biogeochemical cycles and Degradation	05
	010	a) Biogeochemical cycles	
		i. Carbon	
		ii. Nitrogen	
		iii. Oxygen	
		b) Degradation of complex polymers	
		i. Cellulose	
		ii. Lignin	
		iii. Lignocellulose	
IV		Environmental & natural resources	15
IV		management and safety standards	15
	4.1		01
	4.1	•	01
	4.0	Sustainable Development	00
	4.2	Microbes and global warming	03
		a) Microbial contribution to green-house gases	
		b) Combating Greenhouse effect using microbes	
		c) Concept of carbon credits	
	4.3	Solid waste management	02
		a) Solid waste generation and Characterization	
		b) Material recycling	
		c) Biological Treatment of Solid waste	
	4.4	Hazardous waste management bioremediation	03
		a) Biological Principles	
		b) Treatment Approaches	
		c) Hazardous Waste Biodegradation	
		d) Mixed, Aerobic, Anaerobic hazardous Waste	
	\sim	Reactors	
¢	4.6	Biohazards	03
		a) Introduction	
\square		b) levels of biohazards	
	-	c) Risk assessment	
V/A.		d) Proper cleaning procedures	
		e) Biomedical waste management	
6.	4.7	Biosafety guidelines for GMOs and LMOs	03
		a) Role of Institutional biosafety committee.	
		RCGM, GEAC, etc. for GMO applications in	
		food and agriculture. Environmental release of	
		J	
		GMOs.	
		GMOs. b) Overview of national regulations and relevant	
		b) Overview of national regulations and relevant	

REFERENCES:

- a) Brock Madigan, Martinko, Dunlap, Clark, "Biology of microorganisms", 12th Ed, Pearson Intl, 2011
- b) R. M. Atlas and R. Bartha, "Microbial Ecology Fundamentals and Applications" Addison Wesley Longman Inc, 1998
- c) Johri and Satyanarayana, "Microbial Diversity- Current Perspective and Potential Application", International Pvt. Ltd, New Delhi, India, 2005
- d) Fred Rainey, Aharon Oren, "Methods in Microbiology- Extremophiles", Vol 35, Academic press, 2006
- e) R.M Maier, I. L. Pepper and C. P. Gerba, "Environmental Microbiology", Academic Press, 2010
- f) Colin Munn, "Marine Microbiology: Ecology and Applications", Garland publishing. ISBN: 0815365179
- g) G. Rangaswami, D. J. Bagyaraj, D.G. Bagyaraj, "Agricultural Microbiology", PHI Learning Pvt. Ltd., 2004
- h) Iqbal Ahmad, Farah Ahmad, John Pichtel, "Microbes and Microbial Technology: Agricultural and Environmental Applications", Springer, 2011.
- i) Thomas H. Christensen, "Solid Waste Technology and Management", Blackwell Publishing Limited, 2011
- j) Deepak Yadav, Pradeep Kumar, "Hazardous Waste management: An overview of cost effective solutions", Elsevier, 2022.

PRACTICALS: RPSMIC 203 (Core Course) (60 CONTACT HRS)

- a) Enrichment & isolation of thermophiles from hot springs/compost heaps & extraction of thermophilic enzymes & determination of their specific activity.
- b) Physical analysis of soil
 - i. Particle size analysis
 - ii. Water retention capacity
 - iii. Bulk density and tap density
- c) Chemical analysis of soil
 - i. Phosphorus
 - ii. Chloride
 - iii. Organic matter
 - iv. Calcium carbonate content
- d) Microbial analysis of soil

- i. Microbial load
- ii. Presence of cellulose, lignin & xylan degraders
- iii. Detection of siderophore producing bacteria
- iv. Isolation of Plant Growth Promoting bacteria from Rhizosphere (IAA producers)

Munnum Munnumus

- v. Dehydrogenase Activity of Soils
- e) Visit to CETP

Modality of Assessment for Core Papers (Core 1,2 and 3):

I) Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1	One Review writing/ Review paper presentation/Research paper presentation and Assignment / Long Answer/ Case Study or any other	20
2	Class test	20
	Total	40

B) External Examination- 60%- 60 Marks per paper

- 1. Duration- These examinations shall be of two hours and thirty minutes.
- 2. Theory question paper pattern-
- a. There shall be **five** questions each of **12** marks. On each unit there shall be one question and the fifth question will be based on all the three units.
- b. All questions shall be compulsory with internal choice within the questions.

Paper pattern:

Question	Options	Marks	Questions based on
Q.1)	Any 2 out of 3	12	Unit 1
Q.2)	Any 2 out of 3	12	Unit 2
Q.3)	Any 2 out of 3	12	Unit 3
Q.4)	Any 2 out of 3	12	Unit 4
Q.5) a)	Any 4 out of 5	04	All four units
Q.5) b)	Any 4 out of 5	04	All four units
Q.5) c)	Any 2 out of 3	04	All four units

II) Practical Examination Pattern

	Core 1	Core 2	Core 3
Viva	05	05	05
Quiz	05	05	05
Laboratory work	40	40	40
Total	50	50	50

Journal

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination. In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Co-ordinator / Incharge of the department; failing which the student will not be allowed to appear for the practical examination.

(Discipline Specific Elective)

Students have to select any one of the following courses

Course Code: RPSMIC 204

Course Title: Microbial Approaches to Quality Management

Academic year 2022-23

COURSE OUTCOMES:

2 AMAR

COURSE OUTCOME	DESCRIPTION
CO 1	Execute collection, processing and microbiological analysis of food, water, pharmaceutical and cosmetic samples
CO 2	Implement monitoring protocols for the quality of food and water using principles of HACCP
CO 3	Apply basic knowledge of microbial analysis and standards to evaluate current techniques and improvise technology in industries like food, bottled water, cosmetic and pharmaceutical manufacturing units
CO 4	Recall the principles and terminologies used in pharmaceutical industry
CO 5	Design experiments on bioburden determination
CO 6	Execute microbial and sterility testing of pharmaceutical products
CO 7	Monitor the factors which affect the quality of a pharmaceutical product
CO 8	Outline the process of validation and audit validation
CO 9	Design effective antimicrobial preservation methods for cosmetic products

Course	Unit	Course/ Unit Title	Credits/
Code			Lectures
RPSMIC		MICROBIAL APPROACHES TO	04/60
204		QUALITY MANAGEMENT	
(Discipline			
Specific			$\langle O \rangle$
Elective)			
I		Introduction to Quality Control and Quality	15
		Assurance	
	1.1	 Basics of Quality and Audits a) Introduction to Basics of Quality b) Total Quality Management c) Quality Assurance d) Audits e) Manufacturing Audits: Control of Processing Operations 	08
	1.2	 Good Manufacturing Practices and HACCP a) Plant Sanitation: Good Manufacturing Practice Audits b) Hazard Analysis and Critical Control Points 	07
I		Quality Control and Quality Assurance in Food and Water Industry	15
8 AM	2.1	Quality Assurance in Food Industry a) Food Safety Assurance and Standards b) Microbiological Examination Methods for food c) Role of International and National Organisations i. FDA Food Safety Modernization Act. ii. ISO 9001:2008: A Quality Management System Standard iii. Food Safety Management System Standards (FSMS) iv. Global Food Safety Initiative v. GFSI Recognized Schemes vi. ISO 2000:2005 vii. ISO 9001 and FSSC 22000 viii. FSSAI	09
	2.2	 Quality Assurance in Water Industry a) General considerations and principles b) A conceptual framework for implementing the Guidelines c) Verification of drinking-water quality 	06

	d) Drinking-water regulations and supporting policies and programmes	
III	Quality Control and Quality Assurance in	15
	Pharmaceutical Industry	
IV	 A. Laboratory management and design B. Introduction to Pharmacopoeia- IP, BP, USP C. Microbiological examination of nonsterile products D. Sterility Testing E. Antibiotic Potency Testing Quality Control and Quality Assurance in 	15
	Pharmaceutical and Cosmetic Industry	
	A. Pyrogen Testing and Bioburden determination	8
	B. Antimicrobial Effectiveness Testing and	7
	Preservation of Cosmetics	
	a) Preservative Effectiveness Testingb) Preservation of cosmetics	
	c) Aspects of cosmetic preservation	

REFERENCES:

- a) Rosamund M.Baird, Norman A.Hodges, Stephen P.Denyer, Handbook of Microbiological Quality Control: Pharmaceuticals and Medical Devices Taylor and Francis
- b) Food And Drug Administration, Office Of Regulatory Affairs, Office of Regulatory Science, Document Number:ORA.007, Pharmaceutical Microbiology Manual, Revision #: 02 Revised: 25 Aug 2020
- c) Tim Sandle, "Pharmaceutical Microbiology- Essentials for Quality Assurance and Quality control", Woodhead Publishing, Elsevier, 2016
- d) Philip A, Taylor and Francis, "Cosmetic Microbiology a practical approach", 2nd Ed. 2006
- e) WHO drinking water guidelines, Manual For Packaged Drinking, Water Bureau Of Indian Standards, January 2005
- f) Food Safety Management Programs by Debby Newslow
- g) Microbiological Examination Methods for Food and Water by Neusely da Silva
- h) Food Safety Management A Practical Guide for the food Industry by Yasmine Motarjem
- i) Quality Assurance for Food Industry- A Practical Approach. 3rd Edition, J. Andres Vasconcellos
- j) Government of India, Ministry of Health. (1955). Pharmacopoeia of India : (the Indian pharmacopoeia). Delhi :Manager of Publications,
- k) The United States pharmacopeia. The National formulary. (1979). Rockville, Md. :United States Pharmacopeial Convention, Inc.,
- I) British Pharmacopoeia Commission. British Pharmacopoeia 2016. London: TSO; 2016.

PRACTICAL: RPSMIC 204 (Discipline Specific Elective) (60 CONTACT HRS)

- a) Sterility testing and reporting (as per Pharmacopoeia)
- b) Preparation of cosmetic product and its stability study
- *c)* Microbial load in cosmetic product as per IS 14648:2011 w.r.t heterotrophic counts, presence of *Pseudomonas spp, Staphylococcus spp, P.acne*
- d) Efficacy testing of preservatives like parabens as per ISO 11930
- e) Performance of an audit of a test with proper documentation
- f) Bioburden determination of manufacturing unit
- g) Determination of efficacy of sterilization methods.
- h) Demonstration of endotoxin/pyrogen testing
- i) Microbiological load in carrot and apple juice, salad, mayonnaise
- j) Quality Assessment and Analysis of Raw and Pasteurized milk
- k) To detect coliform and faecal coliform bacteria in water by the membrane filtration method
- I) Study of efficiency of water purifiers and comparative assessment
- m) MIC of food preservative
- n) Determination of Thermal Death Point (TDP) and Thermal Death Time (TDT)
- o) Potability testing of drinking Water.
- p) Film medium for detection of coliforms in water and food
- q) Dip slide technique for detection of organisms from food and water samples

Modality of Assessment for RPSMIC 204 (Discipline Specific Elective)

Course Title: Microbial Approaches to Quality Management

I) Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1	One Review writing/ Review paper presentation/Research paper presentation and Assignment / Long Answer/ Case Study or any other	20
2	Class test	20
	Total	40

B) External Examination- 60%- 60 Marks per paper

- 1. Duration- These examinations shall be of two hours and thirty minutes.
- 2. Theory question paper pattern-
- c. There shall be **five** questions each of **12** marks. On each unit there shall be one question and the fifth question will be based on all the three units.
- d. All questions shall be compulsory with internal choice within the questions.

Question	Options	Marks	Questions based on
Q.1)	Any 2 out of 3	12	Unit 1
Q.2)	Any 2 out of 3	12	Unit 2
Q.3)	Any 2 out of 3	12	Unit 3
Q.4)	Any 2 out of 3	12	Unit 4
Q.5) a)	Any 4 out of 5	04	All four units
Q.5) b)	Any 4 out of 5	04	All four units
Q.5) c)	Any 2 out of 3	04	All four units

II) Practical Examination Pattern

	DSE 2
Viva	-
Quiz	25
Laboratory work	25
Total	50

Journal

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination. In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Co-ordinator / Incharge of the department; failing which the student will not be allowed to appear for the practical examination.

Course Code: RPSBCH 204 (Discipline Specific Elective) Course Title: Nutraceutical and Functional Foods

Academic year 2022-23

COURSE OUTCOMES:

After completion of the course, a student will be able to

COURSE OUTCOME	DESCRIPTION
CO 1	Understand the Basics of Nutraceuticals as Science
CO 2	Comprehend the Properties, structure and functions of various Nutraceuticals
CO 3	Demonstrate the use of Nutraceuticals as remedies
CO 4	Develop Novel Food and food Ingredients: Polysaccharides, low caloric sweeteners
CO 5	Illustrate the effect of Anti-nutritional factors and Limitations of Nutraceuticals & Functional foods

Course	Unit	Course/ Unit Title	Credits/
Code			Lectures
RPSBCH		NUTRACEUTICALS AND FUNCTIONAL	04/60
204		FOODS	
(Discipline			
Specific			K
Elective)			
	I	Nutraceutical Science	15
	1.1	Introduction to Nutraceuticals as Science	1
	1.2	Classification, scope & future prospects of the Nutraceutical Science	3
	1.3	Sources of Nutraceuticals	3
		Plant sources, Animal sources, Microbial sources and	
	1.4	Minerals Applied aspects of the Nutraceutical Science.	1
	1.5	Relation of Nutraceutical Science with other Sciences	4
		Medicine, Human physiology, genetics, food technology, chemistry and nutrition	
	1.6	Analysis of nutraceuticals- Techniques	3
		(Spectroscopic, Voltammetric, Chromatographic) Bioceuticals	15
			15
	2.1	Properties, structure and functions of various Nutraceuticals	
	NP	 a) Glucosamine, Octacosanol, Lycopene, Carnitine, Melatonin and Ornithine alpha ketoglutarate b) Use of proanthocyanidins, grape products, flaxseed oil, minor millets as Nutraceuticals. 	3
	2.2	Development of Novel Food and food Ingredients:	6
Uh,		Naturally produced flavour modifiers, Single Cell Proteins, Marine Algae as food supplements	
Ki.	2.3	Food supplements and food ingredients as by products – Fishery, poultry/animal husbandry and agriculture/dairy industries.	3
	III	Food remedies	15
	3.1	Food as a remedy	
		a) Nutraceuticals bridging the gap between food	3
		and drugs b) Nutraceuticals in treatment for cognitive decline	2

	 c) Nutraceutical remedies for common disorders like Arthritis, Bronchitis, circulatory problems, hypoglycemia, Nephrological disorders, Liver disorders, Osteoporosis, Psoriasis and Ulcers 	4
3.2	Brief idea about some Nutraceutical rich supplements	6
	 a) Bee pollen, Caffeine, Green tea, Lecithin, Mushroom Extract b) Chlorophyll, Kelp and Spirulina 	
IV	Anti-nutritional Factors & Limitations of	15
	Nutraceuticals	CX.
4.1	Anti-nutritional factors present in foods	2
	Types of inhibitors present in various foods and how they can be inactivated	
4.2	General idea about role of Probiotics and Prebiotics as nutraceuticals. Recent advances in techniques & feeding of substrates	4
4.3	Assessment of nutritional status and Recommended Daily allowances	2
4.4	Non Nutrient Effect of Specific Nutrients : Proteins and Peptides and Nucleotides, Trans fats, Vitamins, Minerals	4
4.5	Issues on functional foods and nutraceuticals in animals	3

REFERENCES:

- a) Nutraceuticals: Efficacy, Safety and Toxicity by Ramesh C. Gupta
- b) Nutraceuticals: The Complete Encyclopedia of Supplements, Herbs, Vitamins and Healing Foods by Arthur J. Roberts, Genelle Subak-Sharpe, et al.
- c) Advances in Nutraceutical Applications in Cancer: Recent Research Trends and Clinical Applications (Nutraceuticals) by Sheeba Varghese Gupta and Yashwant V Pathak
- d) Nutraceuticals in Health and Disease Prevention (Infectious Disease and Therapy Book 6) by PETER. PAUL HOPPE, Klaus Kramer, et al.
- e) Nutrigenomics and Nutraceuticals: Clinical Relevance and Disease Prevention by Yashwant
 V. Pathak and Ali M. Ardekani
- f) Pharmaceuticals to Nutraceuticals: A Shift in Disease Prevention by Dilip Ghosh and R.B.Smarta
- g) Handbook of Nutraceuticals and Functional Foods (Modern Nutrition) by Robert E.C. Wildman and Richard S. Bruno

PRACTICAL: RPSBCH 204 (Discipline Specific Elective) (60 CONTACT HRS)

- a) To determine the lactose present in the Soy-milk by Cole's method
- b) Determination of reducing sugars by Nelson: Somogyi Method
- c) Protein Estimation by Bradford's method
- d) Determination of Hardness of water
- e) Estimation of Cholorogenic acid (Anti-Nutritional Factor)
- f) Estimation of phytic acid by Heubner and Stadler Method
- g) Estimation of Vitamin C by Folin Phenol method
- h) Optimization and Analysis of probiotics
- i) Comparative assessment of Fat content in Full cream milk and low fat milk

Modality of Assessment for RPSBCH 204 (Discipline Specific Elective)

Course Title: Nutraceutical and Functional Foods

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

B) External Examination- 60%- 60 Marks per paper

- 1. Duration- These examinations shall be of two hours and thirty minutes.
- 2. Theory question paper pattern-

Paper Pattern:

A <i>i</i>			
Question	Options	Marks	Questions based on
Q.1.A)	Any 1 out of 2	8	Unit 1
Q.1.B)	Compulsory		
Q.2.A)	Any 1 out of 2	8	Unit 2
Q.2.B)	Compulsory	7	
Q.3.A)	Any 1 out of 2	8	Unit 3
Q.3.B)	Compulsory	7	
Q.4.A)	Any 1 out of 2	8	Unit 4
Q.4.B)	Compulsory	7	
	Total	60	

II)Practical Examination Pattern:

C) Internal Examination: 40%- 40 Marks

Particulars	Practical I, II, III & IV
Journal	05
Experimental tasks	15
Total	20

D) External Examination: 60%- 60 Marks

Semester End Practical Examination:

RAMNARAIN RUIA AUTONOMOUS COLLEGE, SYLLABUS FOR MSc MICROBIOLOGY 2022-2023

Particulars	Practical I, II, III & IV
Laboratory work	25
Viva	5
Total	30

HUMBRINARI

Course Code: RPSBTK 204 (Discipline Specific Elective) Course Title: Nanotechnology

Academic year 2022-23

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
CO 1	Discuss the basics of nanotechnology, tools used for characterising nanomaterials and specific applications of nanotechnology.
CO 2	Examine the nanorobotics devices of nature.
CO 3	Analyse and interpret the latest developments in nanotechnology in the field of medical sciences.
CO 4	Explain drug delivery systems using nanotechnology.
CO 5	Apply nanomaterials in food, cosmetics, agriculture, environment management.
CO 6	Assess and appreciate the thrust in the domain and encourage it to take ahead in research.

		DETAILED STLLADUS	
Course	Unit	Course/ Unit Title	Credits/
Code			Lectures
RPSBTK 204 (Discipline		NANOTECHNOLOGY	04/60
Specific			
Elective)			KOY.
	I	Nutraceutical Science Introduction to	15
		nanotechnology - principles and applications	
		Introduction, synthesis of nanomaterials, biological methods, use of microbial systems & plant extracts, use of proteins & templates like DNA. Characterization of nanomaterials, analysis techniques, properties of nanomechanical, optical, magnetic properties, electrical conductivity, thermal conductivity	7
	I	Carbon nanotubes, Nanorobotics devices of	15
		nature: ATP synthase, the kinen, myosin,	
		dynein, flagella modulated motion	
	- 111	Nanomedicine	15
		Nanomedicine : biopharmaceuticals ,implantable materials,implantable chemicals,surgicals aids,diagnostic tools ,nanosensors and nanoscanning,nano enabled drug delivery system,nanorobotics in medicine	
	IV	Applications of nanotechnology	15
7,	\mathcal{S}_{1}	Application of nanomaterials in food, cosmetics, agriculture, environment management	

REFERENCES:

- a) The Nanoscope encyclopedia of nanoscience and nanochehnology, Vol I, V and VI (2005)
 Dr. Parag Diwan and Ashish Bhardwaj Pentagon Press New Delhi.
- b) Nano forms of carbon and its applications (2007) Prof. Maheshwar Sharon and Dr. Madhuri Sharon Manad Nanotech Pvt.Ltd.
- c) Biotech Nanotechnology lessons from Nature (2004) David Goodsell Wiley-Liss A John Wiley and sons.
- d) Nanotechnology- Basic science and emerging technologies (2005)Willson Kannangava, Smith, Simmons, RaguseOverseasePress.
- e) Textbook of Biotechnology (2005) R. C. Dubey S. Chand and Co.

f) Nanotechnology- Principles and practices S. K. Kulkarni Capital PublishingCo.

PRACTICAL: RPSBTK 204 (Discipline Specific Elective) (60 CONTACT HRS)

- a) Antibacterial studies of silver nanoparticles by MIC method.
- b) Testing the cell viability of metal oxide nanoparticles using tissue culture technique.
- c) Synthesis of Metal Nanoparticles by Chemical reduction method and their UV-VIS absorption studies.
- d) Synthesis of nanoparticles using bacterial system and their UV-VIS absorption studies.
- e) Synthesis of nanoparticles using plant extract and their UV-VIS absorption studies.
- f) Synthesis of nanoparticles using fungal system and their UV-VIS absorption studies.
- g) Analysis of nanoparticles using UV vis spectrophotometer , TEM ,SEM -data interpretation

Modality of Assessment for RPSBTK 204 (Discipline Specific Elective) Course Title: Nanotechnology

I) Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1	One Assignment/ Case Study/ Project based/ Written Assignment /	20
	Presentation	\mathbb{S}^{\vee}
2	Class test (Multiple Choice)	20
	Total	40

B) External Examination- 60%- 60 Marks per paper

- 3. Duration- These examinations shall be of two hours and thirty minutes.
- 4. Theory question paper pattern-
- e. There shall be **five** questions each of **12** marks. On each unit there shall be one question and the fifth question will be based on all the three units.
- f. All questions shall be compulsory with internal choice within the questions.

Paper pattern:

Question	Options	Marks	Questions based on
Q.1.A)	Any 1 out of 2	8	Unit 1
Q.1.B)	Compulsory	7	
Q.2.A)	Any 1 out of 2	8	Unit 2
Q.2.B)	Compulsory	7	
Q.3.A)	Any 1 out of 2	8	Unit 3
Q.3.B)	Compulsory	7	
Q.4.A)	Any 1 out of 2	8	Unit 4
Q.4.B)	Compulsory	7	
	Total	60	

II) Practical Examination Pattern

External Examination- 50 Marks Semester End Practical Examination

Particulars	Paper
Laboratory Work	40
Journal	05
Viva	05
Total	50

Overall Examination and Marks Distribution Pattern

Course	Course DSE				
	Internal	External	Total		
Theory	40	60	100		
Practicals	-	50	50		

Course Code: RPSMIC 205 (Ability Enhancement Course) Course Title: Research Methodology

Academic year 2022-23

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
CO 1	Summarize the basics of research methodology
CO 2	Execute the experiments including appropriate calibrations and controls, with a carefully written record of the outcomes
CO 3	Implement different methods of data collection and process the collected data by conventional and modern methods.
CO 4	Hypothesize a solution to a research problem
CO 5	Design a research project
CO 6	Distinguish between laws, theory, postulates, and research types

Course Code	Unit	Course/ Unit Title	Credits/
			Lectures
RPSMIC 205		RESEARCH METHODOLOGY	2/30
(Ability			
Enhancement			
Course)			
	I	Research Fundamentals and Terminology	15
	1.1	Introduction to research	02
		a) Definition of research	
		b) Scientific research	
		c) General characters of research	
		d) Objectives of researcha) Classification and types of research	
	1.2	Research methodology	03
	1.2	a) Types of research methods	00
		b) Research methods verses methodology	
		c) Research and scientific method	
		d) Research process	
		e) Criteria of good research	
	1.3	Strategies and analysis	03
		a) Research conditions	
		b) Importance of controls	
		e) Experimental protocol and experimental	
		routine	
	1.4	Research problem	02
		a) Selection of a research problem	
		b) Necessity of defining a research problem	
	$\langle \frown \rangle$	c) Technique involved in defining a research	
		problem	
	1.5	Study designs and Sampling	05
		Preparation for research project and data	15
	0.1	collection methods	
	2.1	Literature search	02
		 a) Concept of Information literacy b) Method: Systematic literature search 	
O		b) Method: Systematic literature searchc) Literature Search Technique	
		d) Methodology filters	
		e) Concept of Quality of literature	
		f) Impact factor	
	2.2	Personal reference database	02
		a) Introduction to principal bibliographic	
		databases	
		b) Medical and scientific internet search engines	
		c) Reference management softwares	
		d) Significance of cite when you write	

	g) Bibliographic format: output styles					
2.3	Hypothesis and testing of hypothesis	04				
	a) Meaning, nature of hypothesis,					
	b) Functions of hypothesis,					
	c) Importance of hypothesis,					
	d) Kinds of hypothesis,					
	e) Characteristics of good hypothesis,					
	e) Formulation of hypothesis					
2.4	Methods and techniques of data collection	03				
	a) Types of data					
	b) methods of primary data collection					
	(observation/ experimentation/ questionnaire/					
	interviewing/ case/ pilot study, methods)					
	c) methods of secondary data collection					
	(internal/external), schedule method					
2.5	Experimental data processing	04				
	a) Processing operations					
	b) Problems in processing					
	 c) Elements of analysis in data processing 					

REFERENCES:

- a) Kothari, C.R, "Research Methodology- Methods and Techniques", New Delhi, Wiley Eastern Limited. 1985
- b) Petter Laake, Haakon Breien Benestad and Bjorn Reino Olsen, "Research methodology in the medical and biological sciences" 1st Ed, Academic Press, 2007
- c) Ranjit Kumar, "Research Methodology- A step-by-step Guide for beginners", 3rd Ed, Sage publications, 2005

Modality of Assessment:

AECC paper- Semester End examination -50 marks

Overall Examination and Marks Distribution Pattern

Course														
	Cor	e 1	1	Cor	e 2	1	Cor	e 3	1	DSE	1	1	AECC	
	Internal	External	Total	Internal	External	Total	Internal	External	Total	Internal	External	Total	Total	Grand
Theory	40	60	100	40	60	100	40	60	100	40	60	100	50	450
Practicals	-	50	50	-	50	50	-	50	50	-	50	50	00	200
											5	3		
								, (Í,	\mathcal{O}				
							0	$\left \right\rangle$	5					
					1	\mathcal{L}								
				11	A									
	~	21												

Semester II

MSC II Sem III and Sem IV Syllabus

S. P. Mandali's

Ramnarain Ruia Autonomous College

Syllabus for MSc Part II

Program: MSc

Program Code: Microbiology (RPSMIC)

(Credit Based Semester and Grading System for academic year 2022–2023)

Course Code: RPSMIC 301 Course Title: Virology Academic year 2020-21

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	
CO 1	Understand and compare the types of bacterial viruses, their
	structure, mode of replication and their characteristic features
CO 2	Summarize and infer the significance of viral genetics to map the
	genes and decode the ways to construct and use phage vectors
	in rDNA technology
CO 3	Recall the types of plant viruses, their general mechanisms of
	infections, steps in inducing the infection, diagnosis & control of
	plant viral infections
CO 4	Demonstrate an in depth understanding of the types and
	structure of animal viruses, their pathogenesis and attribute it to
	the mode of transmission, diagnosis, control & therapy of different
	animal viral infections
CO 5	Differentiate between the mechanisms of pathogenesis of plant
	and animal viruses
CO 6	Illustrate and exemplify the types and mechanisms of oncolytic
0	viruses and their tumorigenic characteristics.
CO 7	Integrate knowledge on the novel emerging & re-emerging viral
	infections to attribute to pandemics
CO 8	Apply molecular biology techniques& bioinformatics tools to
	diagnose & control viral infections

Course	Sub-	Course/ Unit Title	Credits/
Code/Unit	Unit		Lectures
RPSMIC		VIROLOGY	4/60
301			
I		Viral Genetics & Bacterial Viruses	15
	1.1	Viral genetics	04
		a) Mapping the Bacteriophage genome.	
		b) Phage phenotypes	
		c) Genetic recombination in phages	
		d) Genetic fine structure mapping	
		e) Deletion mapping	
		f) Genes within genes: Bacteriophage ΦX174	
		g) Constructing phage vectors-phage display vectors, suicide vectors, combining phage vectors and transposons	
	1.2	Bacteriophages	02
		General properties of phages, properties of phage infected Bacterial cultures, Specificity of Phage Infection	
	1.3	E.coli Phage T4	02
		Properties of T4 DNA, Genetic organization, the T4 growth cycle, Replication of T4 DNA	
	1.4	E.coli PhageT7 and Lambda	03
		Organization of theT7 genes, Growth Cycle,	
		Regulation of transcription of T7phage.	
	1.5	<i>E.coli</i> Phage (phi) X174, Filamentous DNA	04
		phages, Single stranded RNA phages, Lysogenic	
MI.		cycle.	
		Plant Viruses	15
\mathcal{L}	2.1	Plant viruses: General features & infection	04
		process	
		a) Morphology	
		b) Modes of Transmission	
		c) General life cycle	
		d) Symptoms of infection	
	2.2	Virus-plant interactions: steps in induction of disease	04
	2.3	Plant satellite viruses and satellite Nucleic acids	02
	2.4	Citrus Tristeza Virus (CTV): Viral structure, Genome,	03

		Host range, Transmission, Symptoms and Control.	
	2.5	Diagnosis and control of viral infections in plants	02
III		Animal Viruses	15
		Study of Structure, replication, life cycle,	
		pathogenesis, transmission, clinical features- Signs &	
		symptoms, diagnosis and control of following viral	
		infections:	
	3.1	Rabies	02
	3.2	Polio	03
	3.3	Hepatitis	04
	3.4	Pox virus, Vaccinia Virus, Orthopox virus, Variola Virus	03
	3.5	HSV and Varicella Zoster	02
	3.6	Epstein Barr & Cytomegalovirus	01
IV		Oncogenic Viruses & Emerging Viral infections	1
	4.1	a) Molecular mechanisms of virally induced	07
		tumor formation by	
		i. RNA tumor viruses (Retroviruses) ii. DNA tumor viruses	
		b) Oncolytic Viruses	
	4.2	Ebola Virus	02
	4.3	Nipah Virus	02
	4.4	Corona Virus	02
	4.5	Methods to deal with emerging viral infections	02

REFERENCES:

- a) Luria, General Virology, 3rd Edition, John Wiley & Sons, 1978
- b) Edward Birge, Bacterial and Bacteriophage Genetics, 5th edition, Springer Publications, 2006
- c) Flint, Enquist, Racaniello & Skalka, Principles of Virology– Vol I and II, 3rd Edition, ASM, 2008
- d) Teri Shors, Understanding Viruses, 3rd Edition, Jones and Bartlett pub, 2016.
- e) Roger Hull, Matthew's Plant Virology, 4th edition, Academic Press, 2001.
- f) Edward K Wagner, Basic Virology, 3rd Edition, Blackwell Publishing house, 2008.
- g) CDC, "Preventing Emerging Infectious Diseases: A Strategy for the 21st Century Overview of the Updated CDC Plan", *MMWR*, September 11, 1998 / 47(RR15):1-14
- h) Devendra T Mourya *et al*, "Emerging/re-emerging viral diseases & new viruses on the Indian horizon", *Indian Journal of Medical research*, 2019, (149): 447- 467
- i) Aditi, M. Shariff, "Nipah virus infection: a review", Epidemiology and infection, 2019,

(95):147.

- j) Raj K Singh *et al*, "Nipah virus: epidemiology, pathology, immunobiology and advances in diagnosis, vaccine designing and control strategies – a comprehensive review", *Veterinary Quarterly*, 2019, (39): 26-55
- k) Shamimul H *et al*, "Ebola virus: A global public health menace: A narrative review", *Journal of Family Medicine and Primary Care*, 2019, 8(7): 2189–2201.
- I) Denis M et al, "Ebola virus disease", The Lancet, 2019, (393):936-948
- m) Yan-Rong Guo *et al*, "The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak an update on the status", *Military Medical Research*, 2020, (7) 11
- n) Xiaowei L *et al*, "Molecular immune pathogenesis and diagnosis of COVID-19", *Journal of Pharmaceutical Analysis*, 2020
- o) Hussain A Rathod *et al*, "The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak", *Journal of Autoimmunity*, 2020, (109): 102433

PRACTICALS: RPSMIC 3P1 (60 CONTACT HRS)

- a) Enrichment of coliphages & phage assay.
- b) One step growth curve.
- c) Induction of lytic cycle.
- d) Chick embryo inoculation.
- e) Case Studies on emerging viral infections.

Course Code: RPSMIC 302

Course Title: Immunology

Academic year 2020-21

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
CO 1	Explain the defense mechanisms in the human body against various infectious agents
CO 2	Recall the key players of innate and adaptive immune response
CO 3	Compare the T cell dependent and T cell independent immune responses
CO 4	Integrate the understanding of immune tolerance to distinguish between autoimmune and Immunity Mediated Inflammatory Disease
CO 5	Distinguish between immune tolerance and immune therapy and extend its application to treatment of Cancer
CO 6	Apply the understanding of immunological techniques for analysis of immune responses
CO 7	Critically evaluate the newer methods of vaccine developments
CO 8	Demonstrate the presence of immune cells in human peripheral blood

Course Code	Unit	Course/ Unit Title	Credits Lecture
RPSMIC 302	2SMIC IMMUNOLOGY		04/60
I		Defense against infectious agents	15
		a) Viral infections	4
		b) Bacterial infections	4
		c) Fungal infections	2
		d) Parasitic and worm infections	32
		e) Emerging and re-emerging infections	2
II		Mechanisms of Innate immunity and Acquired Immunity	15
	2.1	Innate Immunity	7
		a) Inflammation	-
		i) Role of cytokines and chemokines in	
		leucocyte recruitment	
		ii) Inflammatory mediators	
		b) Phagocytosis	
		i) Role of PAMP's	
		ii) Soluble pattern recognition molecules	
		iii) TLR's and CLR's	
		c) Evasion of Innate immune mechanisms	
	2.2	Acquired Immunity	8
		a) Molecular basis of diversity of immunoglobulin	
		molecules	
		i) Mechanism of VDJ recombination	
		ii) Other mechanisms of generation of antibody	
		diversity	
		b) Mechanisms of T dependent responses	
		i) Antigen presentation by B cells	
		ii) Formation of germinal centres	
		iii) Somatic hypermutations and class switching	
$\langle \rho \rangle$	X	c) Mechanisms of T independent responses	
		 Types of T independent antigens 	
111		ii) B-1 B cells and Marginal zone B cells	
N		Immune tolerance and Autoimmunity	15
	3.1	Establishment of immune tolerance	6
		a) Central Tolerance, Peripheral Tolerance,	
		Regulatory T cells	
		b) B cell tolerance	
	3.2	Autoimmunity and Immune Linked Inflammatory diseases	7
		a) Autoimmunity	
		i. Spectrum of autoimmune diseases	
		ii. Genetic factors for autoimmunity	
		iii. Induction of autoimmunity	

	4.3	a) Newer approaches to vaccine development	3
		b) Using cytokines and Mab's for Immunotherapyc) Plantibodies	
		a) Cancer Immunotherapy	
	4.2	Immunotherapy	4
		antibody-producing mice	
		antibodies- Humanization of mAbs and Human	
		iii. Immunohistochemistryb) Methodologies for developing therapeutic	
		ii. Fluorescence-activated cell sorting (FACS)	
		i. Flow Cytometry	
		a) Cellular Techniques	
	4.1	Techniques in Immunology	8
		Vaccines	
IV		Techniques in Immunology, Immunotherapy and	15
		b) Anti-Tumor Immune responses	
		a) Tumor antigens	_
	3.3	Cancer Immunology	2
		v. Treatment of IMID	
		iv. Epidemiology of IMID	
		ii. Inflammation & IMID iii. Genetic basis of IMID	
		i. Definition and examples	
		b) Immune linked inflammatory diseases (IMID)	
		iv. Treatment of autoimmune diseases	

REFERENCES:

- a) Oven, Punt, Stranford, Kuby "Immunology", 7th Ed W.H. Freeman, 2013
- b) Male, Brostoff, Roth, Roitt, "Immunology", 8th Ed, Elsevier, 2013
- c) Sulabha Pathak, Urmi Palan, "Immunology: Essential and Fundamental", 3rd Ed, Anshan Ltd, 2011
- d) Roitt, Delves, Roitt's , "Essential Immunology", 10th Ed Blackwell Science, 2001
- e) Delves, Martin, Burton, Roitt, Roitt's "Essential Immunology", 13th Ed, Wiley Blackwell, 2011
- f) Ruei-Min Lu, Yu-Chyi Hwang *etal*, "Development of therapeutic antibodies for the treatment of diseases", *Journal of Biomedical Science*, 2020, 27:1
- g) Gueven Edgue, Richard M Twyman, *et al.*, "Antibodies from plants for
 Bionanomaterials", *WIREs Nanomedicine and Nanobiotechnology*, 2017, Volume 9
- h) Krupa Naran, Trishana Nundalall, "Principles of Immunotherapy: Implications for Treatment Strategies in Cancer and Infectious Diseases", *Frontiers in Microbiology*, 2018, Volume:9, Article 3158

- i) Laura Walker, Dennis Burton, "Passive Immunotherapy of Viral Infections: 'Super-antibodies' enter the fray", *Nature Reviews Immunology*, 2018, Volume 18.
- j) Annabel Kuek, Brian L Hazleman, Andrew J K Ostor, "Immune-mediated inflammatory diseases (IMIDs) and biologic therapy: a medical revolution", *Postgrad Med J*, 2007;83:251– 260. doi: 10.1136/pgmj.2006.052688
- k) Hani El-Gabalawy, Lyn C. Guenther And Charles N. Bernstein, "Epidemiology of Immune-Mediated Inflammatory Diseases: Incidence, Prevalence, Natural History, and Comorbidities", *The Journal of Rheumatology*, 2010;85;2-10
- T. David, S. F. Ling and A. Barton, "Genetics of immune-mediated inflammatory diseases", *Clinical and Experimental Immunology*, 2018, 193: 3–12
- m) Linlin Chen, Huidan Deng, *etal*, "Inflammatory responses and inflammation-associated diseases in organs", *Oncotarget*, 2018, Vol. 9, (No. 6), pp: 7204-7218
- n) Caroline L. Sokol and Andrew D. Luster, "The Chemokine System in Innate Immunity", *Cold spring Harbour Perspectives in Biology*, 2019.
- o) Taro Kawai and Shizuo Akira, "Toll-like Receptors and Their Crosstalk with Other Innate Receptors in Infection and Immunity", *Immunity*, 2011
- p) Shirly Frizinsky, *et al.*, "The innate immune perspective of autoimmune and autoinflammatory conditions", *Rheumatology*, 2019;58:vi1vi8

PRACTICALS RPSMIC 3P2 (60 Contact Hrs)

- a) Phagocytosis & Phagocytic index
- b) Collection of human blood & separation of mononuclear cells by Ficoll Hypaque density gradient centrifugation,
- c) Counting of viable cells by trypan blue
- d) Separation of T and B cells
- e) Rocket immunoelectrophoresis
- f) SRID
- g) Demonstration of Flow cytometry
- h) Assignment on modern vaccines

Course Code: RPSMIC 303

Course Title: Food and water Microbiology

Academic year 2020-21

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
CO 1	Outline the process of production of different fermented foods
CO 2	Construct a cause and effect model system for effective preservation of foods
CO 3	Understand microbiology of modern foods like probiotics, nutraceuticals and dehydrated foods
CO 4	Execute collection, processing and microbiological analysis of food and water samples
CO 5	Implement monitoring protocols for the quality of food and water using principles of HACCP
CO 6	Apply basic knowledge of fermented foods, food preservation, microbial analysis and standards to evaluate current techniques and improvise technology in food manufacturing or bottled water manufacturing units

NHUL ...

Course	Course Unit Course/ Unit Title		Credits/
Code			Lectures
RPSMIC		FOOD MICROBIOLOGY AND WATER	04/60
303		MICROBIOLOGY	
		Microbiology of fermented and non-fermented	15
-		foods	
	1.1	Basic concepts of Food Microbiology	02
		Revision of	
		a) Sources of microbes in food	
		b) Normal microbiological quality of food	
		c) Factors influencing microbial growth in food	
	1.2	Production of fermented foods	07
		a) Starter cultures and their stress adaptations	
		b) Fermented meat product- Sausage	
		c) Fermented cereal product- Soy sauce,	
		d) Fermented milk product- Blue cheese and Swiss	
		cheese	
		e) Fermented legume product - Idli	
	1.3	Nutraceuticals and Probiotics	04
		a) Microbial fructooligosaccharides	
		b) Probiotics and Prebiotics	
		i. Probiotics	
		ii. Screening of Potential Probiotics	
		iii. Industrial Aspects of Probiotic Production	
		iv. Prebiotics	
	1.4	Non- fermented food products	02
		a) Desiccated foods	
		b) Dehydrated foods	
II (Control of microbes in food	15
	2.1	Methods of control	01
		a) Control of access	
		b) Control by physical removal	
	2.2	Control by regulating the factors that affect	10
\mathcal{O}		microbial growth	
		a) Control by temperature	
		b) Control by reduced aw	
		c) Control by low pH and organic acids	
		d) Control by modified atmosphere	0.2
	2.3	Control by chemicals and physical methods	02
		 a) Control by antimicrobial preservatives and additives 	
		b) Control by irradiation	

		Newer methods of Controlling Microbial growth	02
		a) Novel emerging techniques of food preservation	
		b) Control by combination of methods (Hurdle	
		concept)	
		Detection of Microbes in food and water	15
	3.1	Conventional methods	05
		a) Sampling for microbial analysis	
		b) Qualitative methods of microbial detection	
		c) Quantitative microbial enumeration in food	
		d) Detection of Bacterial toxins	
		e) Toxicological evaluation of food additives	
	3.2	Modern methods	05
		a) Nucleic acid-based methods	
		i. Oligonucleotide DNA microarray	
		ii. Loop-mediated isothermal amplification	
		(LAMP)	
		iii. Nucleic acid sequence-based amplification	
		(NASBA)	
		b) Biosensors for food analysis	
	3.3	Microbiological analysis of Potable water	05
		a) Drinking water risk assessment	
		b) Regulatory Framework	
		c) Types of bottled water	
		d) Microbiology of bottled water	
		e) Potential chemical and microbiological hazards	
IV		Controlling the Microbiological Quality of food	15
		and water	
	4.1	Controlling the Microbiological Quality of food	07
		a) Quality and Criteria	
		b) Sampling Schemes	
		c) QC using microbiological control	
		d) Control at source	
		e) Codes of GMP	
		f) HACCP	
		g) Laboratory Accreditation	
10	4.2	Controlling the Microbiological Quality of water	08
110		a) BIS Regulations regarding the production of	
V_{I_A}	-	bottled waters with respect to final quality of the	
		product.	
		b) The application of HACCP in the bottling plants	
-		c) Point of use water purifier units	
		d) Types of water purifiers.: Microbiological	
		specifications and methods used to certify water	
		purifiers	

REFERENCES:

- a) Bibek Ray and Arun Bhunia, "Fundamental Food Microbiology", 4th Ed. CRC Press, 2008
- b) James Jay, M Loessner and D Golden, "Modern Food Microbiology", 7th Ed, 2005
- c) Adams M R and Moss M O, "Food Microbiology", 3rd Ed. RSC Publishing. 2008
- d) Petra Foerst, Chalat Santivarangkna, "Advances in Probiotic Technology", CRC Press A Science Publishers Book, 2016
- e) Edward R. Farnworth, "Handbook of Fermented Functional Foods", 2nd Ed. CRC Press, 2003
- f) Elmer H Marth, James Steele, "Applied Dairy Microbiology", 2nd Ed. CRC Press, 2001
- g) Pressman P., Clemens R., Hayes W., & Reddy, "Food additive safety", Toxicology Research and Application, 2017, 1, 239784731772357. doi:10.1177/2397847317723572
- h) Fei Law Jodi Woan et al, "Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations", Frontiers in Microbiology, 2014, 5:770 doi: 10.3389/fmicb.2014.00770
- i) Guidelines For Drinking-Water Quality WHO 2008
- j) Rosenberg, F. A., "The microbiology of bottled water", Clinical Microbiology Newsletter, 2003, 25(6), 41–44. doi:10.1016/s0196-4399(03)80019-3
- k) Manual For Packaged Drinking, Water Bureau Of Indian Standards, January 2005
- Damikouka, I., Katsiri, A., & Tzia, C., "Application of HACCP principles in drinking water treatment", Desalination, 2007, 210(1-3), 138-145. doi:10.1016/j.desal.2006.05.039
- m)Pooi, C. K., & Ng, H. Y. (2018). Review of low-cost point-of-use water treatment systems for developing communities. Npj Clean Water, 1(1). doi:10.1038/s41545-018-0011-0

PRACTICALS: RPSMIC3P3 (60 CONTACT HRS)

- a) Microbiological study of fermented foods (Idli batter)
- b) Microbiological load in carrot and apple juice, salad, mayonnaise
- c) Quality Assessment and Analysis of Raw and Pasteurized milk
- d) Film medium for detection of coliforms in water and food
- e) To detect coliform and faecal coliform bacteria in water by the membrane filtration method
- f) Study of efficiency of water purifiers and comparative assessment

Course Code: RPSMIC 304

Course Title: Tools and Techniques: Biomolecular analysis Academic year 2020-21

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION				
CO 1	Understand the principles of various spectroscopic methods				
CO 2	Attribute various applications in biological sciences to the appropriate chromatographic technique				
CO 3	Summarize principle and applications of variants of PCR technique				
CO 4	Recall the basics of electrophoresis technique and apply it to study recent advances of the technique				
CO 5	Explain the use of microscopic and diffraction techniques to study nanostructures				
CO 6	Summarize methods other than microscopy and diffraction to study nanomaterials				
CO 7	Implement the knowledge of various techniques to carryout research project				

Course Code/ Unit	Unit	Course/ Unit Title	Credits/ Lectures	
RPSMIC		TOOLS AND TECHNIQUES:	4/60	
304		BIOMOLECULAR ANALYSIS		
I		Spectroscopic Techniques	15	
		Principle and applications of:		
	1.1	UV-visible spectroscopy	02	
	1.2	IR spectroscopy	02	
	1.3	Atomic Absorption Spectroscopy	02	
	1.4	Raman Spectroscopy	02	
	1.5	Mass spectroscopy	05	
	1.6	Circular Dichroism Spectroscopy	02	
11		Chromatographic Techniques	15	
	2.1	Gas Chromatography	05	
		a) Principle		
		b) Instrumentation		
		c) Operation		
		d) Calibration		
		e) Accuracy		
		f) Applications		
	2.2	High Performance Liquid Chromatography	05	
		a) Principles		
		b) Instrumentation		
		c) Operation		
		d) Calibration,		
		e) Accuracy		
		f) Applications		
	2.3	High Performance Thin Layer Chromatography	02	
		a) Theory of TLC		
		 b) HPTLC: Development, data and results 		
		c) Applications		
\mathcal{N}	2.4	Hyphenated techniques	03	
		a) Principle		
2		b) LC-MS		
		c) GC-MS		
111		Molecular Biology Techniques	15	
	3.1	Variations/ Modifications of PCR	05	
		a) Hot- Start PCR,		
		b) Multiplex PCR,		
		c) Nested PCR,		
		d) RT-PCR,		
		e) Broad Range PCR,		
		f) Arbitrarily primed PCR,		

		g) Quantitative PCR,	
		h) Real time PCR	
		i) Touchdown PCR	
		j) Colony PCR	
		k) Digital PCR –Droplet	
		I) Loop mediated isothermal amplification	
	3.2	Hybridization array technology	05
		a) Applications of microarrays in microbiology,	
		b) Microarray platform technologies	
		(oligonucleotide microarrays, cDNA	
		microarrays)	
	3.3	Electrophoresis	05
		a) 2D- Gel Electrophoresis	\mathbf{V}
		b) Capillary Electrophoresis	
IV		Microscopy and Nanotechnological	15
		Techniques	
	4.1	Microscopy	09
		a) Scanning Probe Microscopes –	
		a) Scanning Probe Microscopes – i. Scanning tunneling microscope (STM)	
		, , ,	
		i. Scanning tunneling microscope (STM)	
		i. Scanning tunneling microscope (STM)ii. Atomic force microscope (AFM)	
		i. Scanning tunneling microscope (STM)ii. Atomic force microscope (AFM)b) Electron Microscopy:	
		 i. Scanning tunneling microscope (STM) ii. Atomic force microscope (AFM) b) Electron Microscopy: i. Scanning Electron Microscopy 	
	4.2	 i. Scanning tunneling microscope (STM) ii. Atomic force microscope (AFM) b) Electron Microscopy: i. Scanning Electron Microscopy ii. Transmission Electron Microscopy 	02
	4.2 4.3	 i. Scanning tunneling microscope (STM) ii. Atomic force microscope (AFM) b) Electron Microscopy: i. Scanning Electron Microscopy ii. Transmission Electron Microscopy c) Confocal Microscopy 	02 04
		 i. Scanning tunneling microscope (STM) ii. Atomic force microscope (AFM) b) Electron Microscopy: i. Scanning Electron Microscopy ii. Transmission Electron Microscopy c) Confocal Microscopy Diffraction Techniques- X Ray Diffraction 	-
		 i. Scanning tunneling microscope (STM) ii. Atomic force microscope (AFM) b) Electron Microscopy: i. Scanning Electron Microscopy ii. Transmission Electron Microscopy c) Confocal Microscopy Diffraction Techniques- X Ray Diffraction Other methods 	-
		 i. Scanning tunneling microscope (STM) ii. Atomic force microscope (AFM) b) Electron Microscopy: i. Scanning Electron Microscopy ii. Transmission Electron Microscopy c) Confocal Microscopy Diffraction Techniques- X Ray Diffraction Other methods a) Dynamic Light Scattering 	-

REFERENCES:

- a) Kulkarni Sulabha, "Nantotechnology: Principles and Practices", New Delhi, Capital Publishing Company, 2011.
- b) Persing, H.D. et al., "Molecular Microbiology: Diagnostic principles and Practice", Washington D.C., ASM press, 2004.
- c) Upadhyay, Upadhyay and Nath, "Biophysical Chemistry: Principles and Techniques", Mumbai, Himalaya Publishing House, 2012
- d) Skoog, Holler and Nieman, "Principles of Instrumental Analysis", 5th Ed. Australia, Thomson Brock/Cole
- e) Wilson and Walker, "Principles and Techniques of Biochemistry and Molecular Biology", 7th Ed., Cambridge University Press, 2010.

- f) Sauer, S., & Kliem, M., "Mass spectrometry tools for the classification and identification of bacteria". *Nature Reviews Microbiology*, 2010, 8(1), 74–82.
- g) Singhal N. et al "MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis", *Front Microbiol*. 2015; 6: 791.
- h) Don R, Cox P, Wainwright B, Baker K, Mattick J., "Touchdown' PCR to circumvent spurious priming during gene amplification", *Nucleic Acids Res*, 1991, 19 (14): 4008.
- i) Hecker K, Roux K., "High and low annealing temperatures increase both specificity and yield in touchdown and stepdown PCR". *BioTechniques*. 1996, 20 (3): 478–85.
- j) Bergkessel, M., & Guthrie, C., "Colony PCR. Laboratory Methods in Enzymology: DNA", 2013, 299–309.
- k) <u>https://www.bio-rad.com/en-in/applications-technologies/droplet-digital-pcr-ddpcr-technology?ID=MDV31M4VY</u>
- Kanagal-Shamanna, R., "Digital PCR: Principles and Applications. Methods in Molecular Biology", 2016, 43–50.
- m) Notomi, T., Mori, Y., Tomita, N., & Kanda, H., "Loop-mediated isothermal amplification (LAMP): principle, features, and future prospects", *Journal of Microbiology*, 2015, 53(1), 1–5.
- n) A. Zlatkis and R.E. Kaiser, "HPTLC High Performance thin-layer chromatography Journal of Chromatography", Library Vol 9 Elsevier Scientific Publishing Company, 1977
- o) https://www.chem.uci.edu/~dmitryf/manuals/Fundamentals/DLS%20measurement%20pri nciples.pdf
- p) Sourav Bhattacharjee, "DLS and zeta potential What they are and what they are not?", *Journal of Controlled Release*, 2016, 235:337–351 Review Article
- q) Patel Kalpesh et al, "Introduction to hyphenated techniques and their applications in pharmacy", *Pharm Methods*. 2010 Oct-Dec; 1(1): 2–13.

PRACTICALS: RPSMIC3P4 (60 CONTACT HRS)

- a) Research project and Dissertation
- b) Research poster presentation

Modality of Assessment:

I) Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	
1	One Review writing/ Review paper presentation/Research paper	40
	presentation and Assignment / Long Answer/ Case Study or any other	

B) External Examination- 60%- 60 Marks per paper

- 1. Duration- These examinations shall be of two hours and thirty minutes.
- 2. Theory question paper pattern
 - a. There shall be **five** questions each of **12** marks. On each unit there shall be one question and the fifth question will be based on all the three units.
 - b. All questions shall be compulsory with internal choice within the questions.

Paper pattern:

Question	Options	Marks	Questions based on
Q.1)	Any 2 out of 3	12	Unit 1
Q.2)	Any 2 out of 3	12	Unit 2
Q.3)	Any 2 out of 3	12	Unit 3
Q.4)	Any 2 out of 3	12	Unit 4
Q.5) a)	Any 4 out of 6	04	All four units
Q.5) b)	Any 4 out of 6	04	All four units
Q.5) c)	Any 2 out of 3	04	All four units

	Paper I	Paper II	Paper III	Paper IV
Journal	05	05	05	-
Viva	05	05	05	-
Quiz	05	05	05	-
Laboratory work	35	35	35	
Thesis Writing	-	-	-	30
Research Poster Presentation	-	-	-	20
Total	50	50	50	50

II) Practical Examination Pattern

Journal

- 1. The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.
- In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Coordinator / Incharge of the department; failing which the student will not be allowed to appear for the practical examination.

Research project work

Candidates are required to present duly certified dissertation report based on the topic of research along with the laboratory notebook containing raw data and make the poster presentation of the research work for evaluation by the examiner.

Overall Examination and Marks Distribution Pattern

Course 301 302 303 304 External External External External Internal Internal Internal Internal Grand total Total Total Total Total 40 400 Theory 60 100 40 60 100 40 60 100 40 60 100 Practicals 50 50 50 50 50 50 50 50 200 -

Semester III

Course Code: RPSMIC 401 Course Title: Pharmaceutical Microbiology

Academic year 2020-21

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
CO 1	Recall the principles and terminologies used in pharmaceutical industry
CO 2	Design experiments on bioburden determination
CO 3	Execute microbial and sterility testing of pharmaceutical products
CO 4	Monitor the factors which affect the quality of a pharmaceutical product
CO 5	Outline the process of validation and audit validation
CO 6	Apply various softwares used for studying 3D structures of drug and target molecule for drug discovery
CO 7	Critique suitable candidates as potential drugs based on theoretical knowledge
CO 8	Design effective antimicrobial preservation methods for cosmetic products

MARANR

Course	Unit	Course/ Unit Title	Credits/
Code			Lectures
RPSMIC		PHARMACEUTICAL MICROBIOLOGY	04/60
401			
I		Principles and applications of GMP in	15
		pharmaceuticals	
	1.1	 General Principles of QC,QA and GMP f) The concept of Quality g) The regulatory factors h) QC, QA and GMP i) Quality assurance beyond GMP j) IS and ISO standards: 9000, 17025 	07
	1.2	 Microbiology for Pharmaceutical industries a) Microbiological culture media and laboratory techniques b) Laboratory management c) Bioburden determination 	08
II		Quality management and regulatory aspects	15
	2.1	Premises and contamination control	02
		 a) Location b) Design c) Structure d) Layout e) Services and cleaning 	
	2.2	Introduction to Documentation and Validation	03
21	2.3	 Auditing and Sterilization a) Auditing in Pharmaceutical Industry b) Audit Validation c) Sterilization and Sterility Assurance d) Chemical and Biological Indicators: Measuring sterilization e) Auditing Sterilization Processes and Facilities 	05
	2.4	Endotoxin and pyrogen testing	03
	2.5	Risk assessment and Microbiology	02
- 111		Cosmetic Microbiology	15
	3.1	History of cosmetic microbiology	01
	3.2	Global regulatory and toxicological aspects of cosmetic preservation	04
	3.3	Antimicrobial preservation efficacy and microbial content	06

		testing	
	3.4	Preservation of cosmetics	04
		A. Preservation strategy	
		B. Antimicrobial mechanisms of selected	
		preservatives and the bacterial response	
IV		Drug Discovery and Pharmacology	15
	4.1	Modern Methods of Drug Discovery	02
	4.2	Proteomics	02
	4.3	Bioinformatics	02
	4.4	High throughput screening technology	02
	4.5	Natural products for lead identification	02
	4.6	The role of protein 3D structures in the drug discovery process	03
	4.7	Introduction to pharmacogenomics, Pharmacogenetics and toxicogenomics	02

REFERENCES:

- m) Sharp John, "Quality in the manufacture of medicines and other healthcare products" Pharmaceutical Press, 2000.
- n) Tim Sandle, "Pharmaceutical Microbiology- Essentials for Quality Assurance and Quality control", Woodhead Publishing, Elsevier, 2016
- o) Philip A, Taylor and Francis, "Cosmetic Microbiology a practical approach", 2nd Ed. 2006
- p) Hillisch A and Hilgenfeld R, "Modern Methods of drug discovery", Springer International, 2009
- q) S.B.Primrose, "Principles of Gene Manipulation and Genomics", 7th Ed, Blackwell Publishing, 2006
- Rosamund Baird and Norman A Hodges, "Handbook of Microbiological Quality Control Pharmaceutical and Medical Device", Taylor & Francis e-Library, 2005.

PRACTICAL: RPSMIC4P1 (60 CONTACT HRS)

- r) Sterility testing and reporting (as per Pharmacopia)
- s) Preparation of cosmetic product and its stability study
- t) Microbial load in cosmetic product as per IS 14648:2011 w.r.t heterotrophic counts, presence of *Pseudomonas spp, Staphylococci spp, P.acne*
- u) Efficacy testing of preservatives like parabens as per ISO 11930
- v) Performance of an audit of a test with proper documentation

Course Code: RPSMIC402 Course Title: Advances in Biotechnology Academic year 2020-21

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
CO 1	Summarize the prenatal diagnostic techniques used for diagnosing
	genetic disorders.
CO 2	Justify the significance of gene therapy & understand antisense
	technology used for treatment of genetic disorders.
CO 3	Explain the importance of stem cell technology in regenerative
	medicine.
CO 4	Analyze and compare the advanced techniques & its utility for
	detection of pathogens.
CO 5	Evaluate the commercialization potential of fungal strains &
	understand the current trends in fungal biotechnology.
CO 6	Interpret the potential of microalgae in producing biofuels &
	biofertilizers.
CO 7	Explain IPR, traditional bill law, biodiversity law & ethics in
	biological research.
CO 8	Design & execute experiments to harness the commercial potential
$\mathcal{O}_{\mathcal{V}}$	of fungal & algal strains, also to write, read and understand the
6K.	patent claims.

Course Code	Unit	Course/ Unit Title	Credits/ Lectures
RPSMIC 402		ADVANCES IN BIOTECHNOLOGY	04/60
I		Medical Biotechnology	15
	1.1	Diagnostics & therapeutic approach for Genetic disorders	07
		a. Pre- natal diagnosis- Sample collection,	01
		processing, Advantages, disadvantages	
		b. Karyotyping, FISH & PCR	02
		c. Gene Therapy: Vectors, Gene targeting & Tissue	
		Specific Expression	02
		d. Antisense Technology	01
		e. Introduction to Genetic Counselling	01
	1.2	Modern Diagnostic approach for pathogens	05
		a. Optical Tweezer	
		b. 16S rRNA Sequencing	
		c. Spectrometry	
		d. VITEK	
		e. API 20	
		f. FAME	
	4.0	g. BIOLOG	
	1.3	Stem Cell Technology	03
		a. Introduction to Stem cells & types	
		b. Regenerative medicine	
		c. Genomic Reprogramming of cells	
		d. Stem cells in Neurodegenerative disorders	
		e. Stem cells in physiological dysfunctions Eg:	
		Diabetes	
I		Exploring microbes for commercial products (Fungal Biotechnology)	15
	2.1	Introduction Fungal world	02
	2.1	a. An overview of Fungi and fungal activities	νz
		b. Fungal growth and Fungal nutrition	
		c. Mycology: A Neglected Megascience	
	2.2	Genetics of Fungus	02
	<u></u>	a. Fungal Genetics	V2
		b. Fungal Genomics	
	2.3	Fungal Pigments	03
	2.0	a. Genetic basis of pigment production	
		b. Factors affecting pigment production	
		c. Fermentation for pigment synthesis	
		d. Mycotoxins and their replacement	
		e. Relevance of pigments in various fields	

	2.4	Applications of Fungal Biotechnology	04
		a. Metabolic capacities of fungi for bioremediation	
		b. Fungal biomolecules and their Implications	
		c. Fungal Biocatalysts in the textile industry and	
		waste water treatment	
	2.5	Current trends in Fungal Biotechnology	04
		a. Myconanotechnology	
		b. Fungal Antitumor agents	
		c. Production of recombinant Peptides like	
		Peptaibiotics and peptaibols	
III		Exploring microbes for commercial products	15
		(Algal Biotechnology)	
	3.1	The microalgal cell	03
		a. Introduction	
		b. Structural and Morphological features of	
		Microalgae	
		c. Ultrastructure and cell division	
		d. Cell growth and development	
		e. Microalgal systematics	
	3.2	Basic culturing Techniques	03
	0.2	a. Isolation of Microalgae	
		b. Screening of Microalgae for bioactive molecules	
		c. Measurement of Growth Parameters	
		d. Modes of culture	
	3.3	Mass Production of Microalgae: Photobioreactors	03
	3.3	a. Definition of photobioreactors	03
		b. Classification of photobioreactors	
		c. Types of bioreactors	
		d. Tubular photobioreactors	
		e. Flat photobioreactors	
		f. Vertical cylinders and sleeves	
		g. Axenic photobioreactors	
		h. Scale up of photobioreactors	
	3.4	Applications of Algal Biotechnology	03
		a. Microalgae as platforms for Recombinant proteins	
	~	b. Algae as a source of Biofuel	
11		c. Algae as biofertilizer for rice	
N/	3.5	Current trends in Algal Biotechnology	03
XY.		a. Targeted Genetic Modification of Cyanobacteria	
		b. Phylogenomics in Algal research	
IV		IPR and Bioethics Traditional Knowledge &	15
		Biodiversity conservation.	
	4.1	Types of IPR & the Need of IPR in Biotechnology	02
		a. What is IPR?	
		b. Types of IPR: Patents, Trade Marks & Service	
		Marks, Design Registration, Trade Secrets,	
		Geographical indications, Protection of New	

	- Nacal 9 Incidentications, Taskaslam, Transford	
	c. Need & Implications: Technology Transfer, Commercialization, Economic and policy	
	Commercialization, Economic and policy implications	
	d. Global Harmonization: TRIPS Agreement	
4.2	Pre-requisites for patentability, the process & its	03
4.2	Implications	03
	a. Criteria to be fulfilled for Patentability - new/novel,	
	non-obvious/inventive step, useful/capable of	
	industrial application.	
	b. Steps in patentability: Application to the grant of	
	patent	
	c. Implications of IPR in Biotechnology	
4.3	Patentability in Biology: What Can and What Cannot	03
	be patented?	
	a. Indian Scenario of patentability	
	b. Global Scenario of patentability	
	c. Implications in policy making and	
	commercialization due to variables	
4.4	Bioethics: Issues & Perspectives in the discipline of	02
	Microbiology	
	a. Ethics involved while working with	
	Microorganisms	
	b. Bioweapons- an Ethical issue	
	c. Bioethics: An Indian perspective	
4.5	Ethical guidelines for Biomedical research in Human	01
	subjects	
4.6	Safety, ethical, moral implications of Genetic	01
	engineering	
4.7	The protection of Traditional Knowledge Bill, 2016	01
4.8	Biodiversity Law	02
	a. Need for a biodiversity law	
	b. National Guidelines	
	c. International Guidelines	

REFERENCES:

- a) Jogdand S. N., Medical Biotechnology, 2008, Himalaya Publishing House.
- b) Judit Pongracz, Mary Keen, Medical Biotechnology, 2009, Churchill Livingstone, Elsevier.
- c) Pratibha Nallari & V. Venugopal Rao, Medical Biotechnology, 2010, Oxford University Press, India
- d) Richard Re, The application of Antisense technology to medicine, 2000, The Oschner Journal, 2(4).
- e) Robert Lanza, Anthony Atala, Essentials of Stem Cell Biology, 3rd edition, 2012, Academic Press, Elsevier.

- f) Gary. S. Stein, Maria Borowski, Mai. X. Luong, Meng-Jiao Shi, Kelly. P. Smith, Priscilla Vazquez, Human stem cell technology & biology: A Research guide & Laboratory Manual, 2011, Wiley- Blackwell.
- g) Ricardo Franco-Duarte, Lucia Cernáková 3, Snehal Kadam, Karishma S. Kaushik, Bahare Salehi, , Antonio Bevilacqua, Maria Rosaria Corbo, Hubert Antolak, Katarzyna Dybka-Stepien, Martyna Leszczewicz, Saulo Relison Tintino, Veruska Cintia Alexandrino de Souza, Javad Sharifi-Rad, Henrique Douglas Melo Coutinho, Natália Martins and Célia F. Rodrigues. Advances in Chemical and Biological Methods to Identify Microorganisms—From Past to Present, 2019, Microorganisms, 7(130).
- h) Singhal N. et al "MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis", Front Microbiol. 2015; 6: 791.
- i) MICROBIAL IDENTIFICATION USING THE BIOMÉRIEUX VITEK® 2 SYSTEM David H. Pincus bioMérieux
- j) Wenhuan Xu* & Zhiwei Ge "Application and Optimization of Biolog EcoPlates in Functional Diversity Studies of Soil Microbial Communities" Matec web of conferences 22 04015 (2015)
- k) Bacterial Identification by Gas Chromatographic Analysis of Fatty Acid Methyl Esters (GC-FAME) Technical Note #101 Myron Sasser May 1990 Last Revised July 2006
- I) Jim Deacon, "Fungal Biology", 4th Ed, Blackwell Publishing, 2006
- m) Tulasi Satyanarayana and Sunil K. Deshmukh, "Developments in Fungal Biology and Applied Mycology", Springer, 2017
- n) Dinabandhu Sahoo, "The Algae World", Volume 26, Springer, 2015.
- o) Robert Andersen, "Algal culturing Techniques", Elsevier Academic Press, 2005
- P) Yuan Kun Lee, Microbial Biotechnology: Principles & Applications, 2nd edition, 2006, World Scientific Publishing Company.
- q) Prabuddha Ganguli, IPR- Unleading the knowledge economy, 1st Edition, 2017, McGraw Hill education.
- r) Kshitij Kumar Singh, Biotechnology and IPR Legal and Social Implications, 2015, Springer Publications.
- s) Law and National Biodiversity Strategies and Action Plans by the Law Division for the United Nations Environment Programme. A booklet issued by UN Environment committee.
- t) P Desikan, A Chakrabarti, V Muthuswamy. "Ethical issues in microbiology", *Indian Journal of Medical Microbiology*, 2011, 29(4).
- u) Dr. Mohammed Sarosh Khan, Dr. Rakesh Kumar Gorea, Dr. Shafqat Qamar, Dr. Gulam Mustafa, Abhinav Gorea, "Some ethical Perspectives in the Discipline of Microbiology", International Journal of ethics, trauma & Victimology, 2015, 1(2).
- v) Ajit Avasthi, Abhishek Ghosh, Sidharth Sarkar, Sandeep Grover, "Ethics in medical research: General principles with special reference to psychiatry research", 2013, Indian Journal of Psychiatry 55(1).

w) The Protection Of Traditional Knowledge, Genetic Resources And Expressions Of Folklore Act, 2016, WIPO.

PRACTICAL: RPSMIC 4P2 (60 CONTACT HRS)

- a) IPR Case studies: An innovative approach to understand IPR & it's Implications.
- b) Case study on Bioethics: An innovative approach to understand bioethics & it's significance.
- c) Study of pigment production & purification from Trichoderma
- d) Isolation and detection of laccase producing fungi
- e) Production, purification and immobilization of fungal amylase.
- f) Culturing microalgae in the lab & studying the effect of growth parameters on its multiplication.
- g) Bioprospecting algae for oils and flavouring compounds
- h) Visit to algal cultivation units

Course Code: RPSMIC403 Course Title: Emerging areas in Biology II Academic year 2020-21

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
CO 1	Demonstrate a basic understanding of epidemiological strategies, study designs and evaluate the data for its statistical relevance.
CO 2	Discuss and understand the strategies to detect & monitor biological agents used for bioterrorism & exemplify the significance of biosecurity.
CO 3	Identify & implement potential solutions for energy needs by evaluating existing & novel biomass to energy technologies
CO 4	Explain and recall the alternative sources for exhaustible fuels in the form of variety of biofuels.
CO 5	Critique the current and emerging trends of enzyme technology & discuss the applications of enzymes.
CO 6	Understand & execute methods for production, purification, characterization & immobilization of enzymes.
CO 7	Discuss & recall the principles & procedure of protein engineering techniques.

Course	Sub-	Course/ Unit Title	Credits/
Code	Unit		Lectures
RPSMIC		EMERGING AREAS IN BIOLOGY II	04/60
403			
		Epidemiology, Bioterrorism and Biosecurity	01/15
•	1.1	Epidemiology	10
-	1.1	a. Historical aspects-definition	
		b. Descriptive Epidemiology-aims and uses	
		c. Epidemiological principles in prevention and	$\langle \cdot \rangle$
		control of Diseases	
		d. Study Designs:	
		i. Introduction	
		ii. Observational Versus Experimental	
		approaches in Epidemiology	
		iii. Overview of study designs used in	
		Epidemiology	
		iv. Ecologic Studies	
		v. Cross-Sectional studies	
		vi. Case-Control studies	
		e. Public health surveillance:	
		i. Purpose and characteristics	
		ii. Identifying health problems for surveillance	
		 iii. Collecting data for surveillance iv. Analyzing and interpreting data 	
		v. Disseminating data and interpretation	
		vi. Evaluating and improving surveillance	
	1.2	Bioterrorism	03
		a. Introduction	
		b. Threat Agents by category	
	0	c. Detection, Monitoring, and Identification of BT	
	11	Agents	
	$\langle \rangle$	d. The Potential for Misuse of Biotechnology	
		e. Some examples of biological agents as warfare	
		– Smallpox, <i>Bacillus anthracis,</i> Yersinia	
		pestis	
	1.3	Biosecurity	02
		a. Introduction	
		b. Constituents of a Biosecurity hazard	
II		Bioenergy and Bioconversions	15
	2.1	Classification of biofuels:	09
		a. Conventional and Advanced Biofuels 1st	
		generation biofuels- sugar and starch-based	
		ethanol, conventional biodiesel, biogas	
		b. 2nd generation biofuels – cellulosic ethanol,	
		advanced biodiesel, biooils and biobutanol	

	1	
c. 3rd generat	ion biofuels- Biohydrogen and algal	
based fuels		
d. 4th generati	on biofuels	
e. Syngas/ Bio	gas production	
i. Types of f	eedstocks	
ii. Process t	ypes and digestors used	
2.2 Microbial fue	el cells	03
2.3 a. Bioconversion	on of Lignocelluloses into food and	03
feed rich in	protein	
b. Bioconversi	on of industrial cellulosic pulp	
materials to	protein-enriched food and feeds	
III En	zyme Technology	15
3.1 Different types er	zymes, production and enzymatic	08
analysis and assay	methods	
a. Amylases		
b. Cellulases		
c. Lipases		
d. Laccases		
e. Proteases		
3.2 Enzyme immobiliza	ation- Need, methods, Carriers and	05
applications		
3.3 Therapeutic enzym	es	02
IV Pr	otein Engineering	15
4.1 Modifications of pro	oteins	05
a. Adding disu	lphide bonds	
b. Changing A	sparagine to other amino acids	
c. Reducing nu	umber of free sulfhydryl residues	
4.2 Modifications of en	zymes	10
a. Increasing e	enzyme activity, enzyme stability and	
specificity		
b. Modifying m	netal cofactor requirement and	
b. Modifying m protein spec	-	
protein spec	-	
c. Decreasing	cificity	

REFERENCES:

- a) Principles of epidemiology in public health practices 3rd Ed.
 (www.cdc.gov/training/products/ss1000)
- b) Ann Aschengrau, George R Seage, Essentials of Epidemiology in Public Health, 3rd Ed.
- c) Kenrad E Nelson, Carolyn Maters Williams, "Infectious Disease Epidemiology theory and practice", 3rd Ed, Jones & Bartlett Learning (Year)
- d) Burt Anderson, Herman Friedman, Mauro Bendinelli, "Microorganisms and Bioterrorism", Springer Science, 2006
- e) FAO Biosecurity Tool Kit, Food and Agriculture Organization of the United Nations Rome, 2007 (<u>http://www.fao.org/3/a1140e/a1140e.pdf</u>)

- f) Biofuels Production, Ed by Vikash Babu, Ashish Thapliyal & Girijesh Kumar Patel, 2014, Scrivener Publishing LLC. Co-published by John Wiley & Sons, Inc.
- g) Introduction to Biofuels, David M. Mousdale, 2010, CRC Press Taylor & Francis Group
- h) Biofuels, Alternative Feedstocks and Conversion Processes, Ed by Ashok Pandey, Christian Larroche, Steven Cricke, Claude-Gilles Dussap, Edgard Gnansounou, 2011, Academic Press
- i) Advances in agricultural Microbiology 1st edition, Editor: N.S. Subba Rao
- j) Cui, H., Wang, L., & Yu, Y. (2015). Production and Characterization of Alkaline Protease from a High Yielding and Moderately Halophilic Strain of SD11 Marine Bacteria. Journal of Chemistry, 2015, e798304. https://doi.org/10.1155/2015/798304
- k) Gopinath, S. C. B., Anbu, P., Arshad, M. K. M., Lakshmipriya, T., Voon, C. H., Hashim, U., & Chinni, S. V. (2017). Biotechnological Processes in Microbial Amylase Production. BioMed Research International, 2017, e1272193. https://doi.org/10.1155/2017/1272193
- I) Javed, S., Azeem, F., Hussain, S., Rasul, I., Siddique, M. H., Riaz, M., Afzal, M., Kouser, A., & Nadeem, H. (2018). Bacterial lipases: A review on purification and characterization. Progress in Biophysics and Molecular Biology, 132, 23–34. https://doi.org/10.1016/j.pbiomolbio.2017.07.014
- m) Microbial Laccases and their Applications: A Review. (n.d.). https://doi.org/10.3923/ajbkr.2011.98.124
- n) Sadhu, S., & Maiti, T. K. (2013). Cellulase Production by Bacteria: A Review. Microbiology Research Journal International, 235–258 Bernard R.
- o) Industrial Biocatalysis, (2015) Edited by Peter Grunwald, Pan Standard Publishing, CRC Press Taylor & amp; Francis Group
- p) Glick, Jack J. Pasternak, "Molecular Biotechnology: Principles and Applications of Recombinant DNA", ASM Press, 2010

PRACTICALS: RPSMIC3P3 (60 CONTACT HRS):

- a) Case Studies of epidemiological strategies
- b) Internship presentation

Course Code: RPSMIC 404

Course Title: Internship

Academic year 2020-21

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
CO 1	Understand how theoretical concepts transpire into application in workplaces like research institutes or industry
CO 2	Comprehend a scientific problem and execute prescribed protocols independently
CO 3	Demonstrate ability to complete tasks on time and record results without fabrication, falsification in prescribed formats
CO 4	Confidently communicate relevant information effectively to supervisors in clear and concise manner, in writing and orally.
CO 5	Capability to work with diverse teams with respect, empathy and understanding
CO 6	Demonstrate competency, integrity and commitment at the workplace

Course Code	Course/ Unit Title	Credits
RPSMIC 404	INTERNSHIP	04
	Internship to research institute/industry	16 weeks
PRACTICAL	S: RPSMIC4P4 (60 CONTACT HRS)	Cliff
nternship rep		S
	2	<u> </u>
	RP1.	
e p		
0 P/L		

PRACTICALS: RPSMIC4P4 (60 CONTACT HRS)

Modality of Assessment:

I) Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type					
1	One Review writing/ Review paper presentation/Research paper presentation and Assignment / Long Answer/ Case Study or any other	40				

B) External Examination- 60%- 60 Marks per paper

- 1. Duration- These examinations shall be of two hours and thirty minutes.
- 2. Theory question paper pattern
 - a. There shall be **five** questions each of **12** marks. On each unit there shall be one question and the fifth question will be based on all the three units.
 - b. All questions shall be compulsory with internal choice within the questions.

Paper pattern:

Options	Marks	Questions based on
Any 2 out of 3	12	Unit 1
Any 2 out of 3	12	Unit 2
Any 2 out of 3	12	Unit 3
Any 2 out of 3	12	Unit 4
Any 4 out of 6	04	All four units
Any 4 out of 6	04	All four units
Any 2 out of 3	04	All four units
	Any 2 out of 3Any 4 out of 6Any 4 out of 6	Any 2 out of 312Any 4 out of 604Any 4 out of 604

Theory Examination Pattern- RPSMIC 404:

Internship evaluation by guide/ mentor- 60 marks

Internship report evaluation by internal faculty- 40 marks

II) Practical Examination Pattern

	Paper I	Paper II	Paper III	Paper IV
Viva	05	05	-	
Quiz	05	05	-	
Laboratory work	40	40	-	
Internship presentation	-	-	50	S [×]
Internship report	-	-	.6	50
Total	50	50	50	50

Journal

- 1. The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.
- In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Co-ordinator / In-charge of the department; failing which the student will not be allowed to appear for the practical examination.

Internship Report

- 1. Candidates are required to present duly certified Internship Report dissertation report based on the topic of Internship
- 2. The students also have to make a PowerPoint presentation of the work done during Internship for evaluation by the examiner.

Course		401 402			403			404					
	Internal	External	Total	Internal	External	Total	Internal	External	Total	Internal (Internship report evaluation by internal Faculty)	External (Internship evaluation by Guide /mentor)	Total	Grand total
Theory	40	60	100	40	60	100	40	60	100	40	60	100	400
Practical	-	50	50	-	50	50	-	50	50	Delle Carlo	50	50	200

Overall Examination and Marks Distribution Pattern