S. P. Mandali's Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for F.Y

Program: BSc

Program Code: Microbiology (RUSMIC)

(Choice Based Credit System for academic year 2022–2023)

PROGRAM OUTCOMES

РО	PO Description

	A student completing Bachelor's Degree in Science program will be				
	able to:				
PO 1	Recall and explain acquired scientific knowledge in a comprehensive				
	manner and apply the skills acquired in their chosen discipline. Interpret				
	scientific ideas and relate its interconnectedness to various fields in				
	science.				
PO 2	Evaluate scientific ideas critically, analyse problems, explore options for				
	practical demonstrations, illustrate work plans and execute them, organise				
	data and draw inferences.				
PO 3	Explore and evaluate digital information and use it for knowledge				
	upgradation. Apply relevant information so gathered for analysis and				
	communication using appropriate digital tools.				
PO 4	Ask relevant questions, understand scientific relevance, hypothesize a				
	scientific problem, construct and execute a project plan and analyse				
	results.				
PO 5	Take complex challenges; work responsibly and independently, as well as				
	in cohesion with a team for completion of a task. Communicate effectively,				
	convincingly and in an articulate manner.				
PO 6	Apply scientific information with sensitivity to values of different cultural				
	groups. Disseminate scientific knowledge effectively for upliftment of the				
	society.				
PO 7	Follow ethical practices at work place and be unbiased and critical in				
	interpretation of scientific data. Understand the environmental issues and				
	explore sustainable solutions for it.				
PO 8	Keep abreast with current scientific developments in the specific discipline				
	and adapt to technological advancements for better application of scientific				
~	knowledge as a lifelong learner				

PROGRAM SPECIFIC OUTCOMES

PSO	Description
	A student completing Bachelor's Degree in Science program in the subject of Microbiology will be able to:
PSO 1	Recall, explain and summarize basic concepts related to cytology, biochemistry, physiology, genetics and reproduction of prokaryotes and compare it with eukaryotes.
PSO 2	Appreciate and exemplify the diversity in the microbial world and evaluate their ecological role as well as state their significance to humankind.
PSO 3	Understand the basic concepts associated with growth and control of microorganisms and apply it in pure culture and preservation techniques.
PSO 4	Differentiate, classify and characterize microorganisms based on their morphological, cultural, biochemical, and molecular properties.
PSO 5	Explore, compare and evaluate the role of microorganisms in different natural environments as well as plants, animals and humans, and evaluate and exemplify their interrelationships.
PSO 6	Apply the understanding of microbial processes to diverse science areas such as medical, industrial, agricultural and food and evaluate their potential for human well-being, for tackling environmental issues and exploring sustainable solutions
PSO 7	Recall and explain the nature of biomolecules and metabolic processes; the role and kinetics of enzymes as well as the thermodynamic laws that drive these reactions.
PSO 8	Recall the basic working principles of various bioanalytical techniques and tools and apply them to detect, estimate and structurally evaluate biomolecules present in the microbial cells.
PSO 9	Understand and explain the nature of genetic material and elaborate the molecular mechanisms underlying various genetic processes like replication, transcription, translation, gene transfer and recombination in bacteria; and explain basic concepts in virology.

PSO 10	Apply the basics of genetics and molecular biology to understand and evaluate techniques in genetic engineering and also for the use of bioinformatic tools for presentation and processing of data.
PSO 11	Recognize and explain the role of microorganisms in different diseases, attribute pathogenesis mechanisms to their properties and extrapolate it to disease diagnosis, treatment and prevention. Outline and recall concepts in epidemiology of diseases. Classify and evaluate different chemotherapeutic agents.
PSO 12	Recall, classify and summarize mechanisms of defense in humans, detail out the functioning of our immune system, correlate it to disease and its prevention and outline its association to health. Apply immunological principles for diagnosis of diseases.
PSO 13	Understand and outline different biochemical mechanisms and their regulation; retrieve and construct biochemical pathways in microbial metabolism of major macromolecules and, recall and integrate the bioenergetics of metabolic reactions.
PSO 14	Evaluate, exemplify and outline the role of microorganisms in different industrial fermentations, summarize technological aspects of bioprocesses, recall knowledge about patents, copyright and regulatory practices and QA.
PSO 15	Demonstrate key practical skills/competencies in working with microbes for their study and use in the laboratory as well as outside, including the use of good microbiological practices. Analyze problems involving microbes, articulate them and devise innovative and creative solutions.
PSO 16	Hypothesize, design experiments, construct experimental plans, execute them and analyze data with a basic understanding of statistics. Demonstrate an ability to be unbiased and critical in interpretation of scientific data

PSO 17 Communicate effectively to express scientific ideas and/or their experimental data in an effective, precise and concise manner.

PROGRAM OUTLINE

YEAR	SE	COURSE	COURSE TITLE	CREDIT
	М	CODE		S
	ı	RUSMIC 101	Fundamentals of Microbiology	02
	<u> </u>	Core course	Turidumentals of innerconcegy	V-
		RUSMIC 102	Techniques in Microbiology	02
		Core course		
		RUSMICP10	Practical based on above two	
		1	courses	02
FY		Core course	Z	
	l 11	RUSMIC 201	Microbial world: types and	02
		Core course	inter-relations	02
		RUSMIC 202	Microbial biomolecules,	00
		Core course	Growth & Control	02
		RUSMICP20	Practical based on above two	
		1		02
		Core course	courses	
	=		Microbial taxonomy and	
7/1		RUSMIC 301	Introduction to Genetics and	02
SY			Molecular Biology	
		DUOMO COC	Introduction to Experimental	02
		RUSMIC 302	Microbial Biochemistry	UZ
		RUSMIC 303	Environmental Microbiology	02
		RUSMICP30	Practicals based on above	00
		1	three courses	03

		DUOMO 404	Microbe interactions and host	
	IV	RUSMIC 401	responses	02
		RUSMIC 402	Introduction to Metabolic	02
		RUSIVIIC 402	Pathways and Enzymology	UZ.
		RUSMIC 403	Applied Microbiology	02
		RUSMICP40	Practicals based on above	00
		1	three courses	03
	V	RUSMIC 501	Microbial Genetics	2.5
		RUSMIC 502	Medical Microbiology	2.5
		RUSMICP501	Practical Based on Above Two Courses	3
		RUSMIC 503	Microbial Biochemistry: Part-I	2.5
		RUSMIC 504	Bioprocess Technology	2.5
		RUSMICP502	Practical Based on Above Two Courses	3
TY	VI	RUSMIC 601	Genetics, Bioinformatics & Virology	2.5
		RUSMIC 602	Immunology	2.5
		RUSMICP601	Practical Based on Above Two Courses	3
	0	RUSMIC 603	Microbial Biochemistry Part II	2.5
		RUSMIC 604	Industrial Microbiology	2.5
1		DUCMICDOS	Practical Based on Above Two	3
W.		RUSMICP602	Courses	3

PARMARAIM RUIA AUTONOMOUS COLLEGÉE
PARMARAIM RUIA AUTONOMOUS COLLEGÉE
PARMARAIM RUIA AUTONOMOUS COLLEGÉE

Course Code: RUSMIC 101 Core Course Course Title: Fundamentals of Microbiology

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
CO 1	Understand and explain the process of formation of earth and evolution of microorganisms on earth.
CO 2	Summarize the key events in the history of Microbiology
CO 3	Recognize the scope and relevance of Microbiology
CO 4	Recall and explain the nature, correlate function of components that make up a prokaryotic cell and identify them microscopically
CO 5	Compare and contrast between structural features of prokaryotic and eukaryotic cell
CO 6	Explain the types and role of normal flora on human body and infer its significance
CO7	Organizing the events of development of infection in human system and summarize the factors affecting host immune system
2 AMHAS	

DETAILED SYLLABUS

Course	Uni	Course/ Unit Title	Credits/
Code/	t		Lectures
Unit			4,
RUSMIC		FUNDAMENTALS OF MICROBIOLOGY	2/45
101			
I		Evolution of Microbes, History and Future of Microbiology	15
	1.1	The Evolution of Microorganisms	05
		 a) Formation and Early History of Earth b) Origin of Cellular life. c) RNA world hypothesis and protein synthesis d) Microbial Diversification e) Endosymbiotic origin of prokaryotes f) Microbial Evolution - Process 	
	1.2	History, Branches and Scope of Microbiology	08
		 a) Discovery of microorganisms b) Conflict over spontaneous generation c) Golden Age of Microbiology-Koch Postulate, Medical Microbiology, Immunology d) Development of industrial microbiology and microbial ecology e) Scope and relevance of microbiology 	
	1.3	Future of Microbiology and unification with	02
7		other sciences	
PANN	, and the second	 a) Molecular and genomic methods to study microorganisms b) Emerging diseases c) Search for extra-terrestrial life d) Bio-based economies 	
II		Prokaryotic and Eukaryotic Cell Structure	15
	2.1	Prokaryotic Cell Structure and functions	10
		a) Overview of prokaryotic cell structure b) Cell wall	

	OP	a) Skin, Nose & Nasopharynx, Oropharynx,Respiratory tract, Eye, External earb) Mouth, Stomach, Small intestine, Large intestine	
	3.1	Normal flora of the human body	04
III		Microbe- Human interactions	
		i) Mitosis & meiosis	
		Cells	
		g) Nucleus –Nuclear Structure h) Comparison of Prokaryotic and Eukaryotic	
		f) Chloroplasts	
		e) Mitochondria	
		d) Eukaryotic ribosomes	
		Proteasome	
		& Golgi apparatus. Lysosome, Autophagy,	
		 c) Organelles of the Biosynthetic-secretory and endocytic pathways –Endoplasmic reticulum 	
		Cilia and Flagella	
		intermediate filaments, and microtubules,	
		b) Cytoplasmic matrix, microfilaments,	
		a) Overview of Eukaryotic cell structure	
	2.2	Eukaryotic Cell Structure	05
		g) Bacterial endospores and their formation	4,
		magnetosomes, ribosomes, gas vesicles f) Nucleoid, Plasmids	C^{\times}
		e) Cytoplasmic matrix-Inclusion bodies,	/,
		Slime layer, Flagella, Pili, Fimbriae	
		d) Components external to cell wall-Capsule,	
		c) Cell membrane	

3.2	Development of infection	07
	a) Portal of entry and infectious dose	
	b) Attaching to host	
	c) Surviving defenses	
	d) Virulence factors	4/
	e) Process of infection	.(2)
	f) Portal of exit	4/
	g) Patterns of an infection- localized, systemic,	
	focal, mixed, primary, secondary, acute and	V
	chronic infections	
	h) Signs and symptoms of disease	
3.3	Host defense against infection: Overview	04
	a) Factors affecting host defense: Species	
	resistance, racial resistance and Individual	
	resistance	
	b) Introduction to innate and adaptive defences,	
	Barriers at portal of entry: Physical barriers,	
	Chemical defenses, genetic resistance.	

References:

- a) Willey, Sherwood and Woolverton, Prescott's Microbiology, 9th edition, 2013, International edition, McGraw Hill.
- b) Michael T. Madigan & J.M. Martin, Brock's Biology of Microorganisms 13th Ed. International edition 2012, Pearson Prentice Hall.
- c) https://www.hort.purdue.edu/newcrop/ncnu02/v5-011.html
- d) https://www.weforum.org/agenda/2018/04/can-a-nature-based-economy-help-us-driv e-green-growth
- a) Michael J. Pelczar Jr., E.C.S. Chan, Noel R. Krieg, Microbiology 5th Edition, 1986,
 Tata McGraw Hill Publishing Company Tortora, Funke and Case, Microbiology: An Introduction, 10th Edition, 2010, Pearson.
- b) Kathleen Park Talaro & Arthur Talaro Foundations in Microbiology International edition 2002, McGraw Hill.
- c) Jacquelyn Black, Laura Black, Microbiology, Principles and Explorations, 9th Ed,
 2015, Wiley

Course Code: RUSMIC 102 Core Course Course Title: Techniques in Microbiology

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
CO 1	Understand and explain the principle, construction & functionality differences of various microscopes.
CO 2	Classify the microorganisms based on their growth requirements & explain the methods of cultivation of different microorganisms.
CO 3	Summarize the method & principle of the techniques used for visualization of microorganisms.
CO 4	Infer the significance of different preservation techniques & emphasize the role of Culture collection centres.
CO 5	Understand the design, working principle and applications of commonly used instruments in a microbiology laboratory
CO6	Comprehend biosafety levels and principle of containment
CO 7	Carry out basic staining and culturing techniques and test microbial activities using aseptic techniques
MARR	

PANNARAIN RUIA AUTONONOUS COLLEGE

PANNARAIN RUIA AUTONOUS COLLEGE

PANNARAIN RUIA AU

DETAILED SYLLABUS

Course Code/ Unit	Unit	Course/ Unit Title	Credits/ Lecture s
RUSMIC		Techniques in Microbiology	2/45
102		Cultivating & Visualizing Bacteria	15
	1.1	Microscopy	10
	1.2	a) History of microscopy, Optical spectrum, Lenses and mirrors with ray diagrams b) Simple and compound light microscope c) Dark field Microscopy d) Phase contrast Microscopy e) Electron Microscopy f) Confocal Microscopy g) Fluorescence Microscopy a) Morphological characteristics	05
		 b) Staining procedures i. Dyes and stains: Types, Physicochemical basis, Fixatives, Mordants, Decolorizers ii. Simple and differential staining iii. Special Staining 	
II		Nutrition and Cultivation of Microorganisms:	9
2 AM	2.1	 a) Nutritional requirements – Carbon, Oxygen, Hydrogen, Nitrogen, Phosphorus, Sulfur and growth factors. b) Nutritional classification based on source of energy, electron and carbon c) Modes of nutrition: Endocytosis, Phagocytosis, movement of solutes across membranes d) Media Design and composition e) Types of Culture media with examples f) VBNC & oligotrophs g) Anaerobic cultivation 	
	2.2	Pure Culture Techniques	4
		a) Streak plate method	

		b) Pour plate method	
		c) Colony characteristics	
		, , , , , , , , , , , , , , , , , , ,	
	2.3	Preservation of microorganisms	02
		a) Methods for maintenance and Preservation	
		of Bacteria	.(^)~
		b) Culture Collection Centers	
III		Basic Instrumentation & Biosafety	15
	3.1	Instrumentation - Construction, Working	08
		principle, application:	
		a) Overview of lab facility design and workflow	
		b) Equipment for sterilization	
		i) Autoclave	
		ii) Hot air oven	
		c) Equipment for cultivation	
		i) Incubator	
		ii) Water bath	
		iii) Shaker	
		iv) Anaerobic jars and work station	
		d) Micropipettes	
		e) Colorimeter	
		f) Electrochemical sensors: pH meter	
	3.2	Biosafety in Microbiology	07
		a) Precautions to be taken while working in a	
		Microbiology lab	
	4	b) Biosafety- general principles and terminology with equipment	
	D	c) Biological containment and laboratory safety	
	07	levels	
		d) Safe disposal of biohazardous waste	
		e) Biowarfare & Bioterrorism	

References:

- a) A.J.Salle, Fundamental Principles of Bacteriology, 1984, McGraw Hill publications
- b) Michael J.Pelczar Jr., E.C.S. Chan , Noel R , Microbiology TMH 5th Edition
- c) Stanier, Ingraham et al, General Microbiology, 5th Ed.1987, Macmillan Education.
- d) Tortora, Funke and Case, Microbiology: An Introduction, 6th Edition.1998, Pearson.

- e) Michael T. Madigan & J.M. Martin, Brock's Biology of Microorganisms 13th Ed. International edition 2012, Pearson Prentice Hall.
- f) Willey, Sherwood and Woolverton, Prescott's Microbiology, 7th edition, 2011, International edition, McGraw Hill.

	<u> </u>	- (
Course code	Practical	2 Credits
RUSMIC P101	PRACTICAL-1	
Unit-I	 Demonstration of Pasteur's experiment to refute Spontaneous Generation theory. Demonstration of microbes in air, cough, on table surface, finger tips, fomites etc. 	
Unit-II	 Study of prokaryotic subcellular structures by special staining: Cell wall, capsule, endospore, flagella, lipid, metachromatic granules. Study of Motility (Hanging Drop Preparation) Wet mount of Hay infusion 	
Unit-III	 Normal flora of the skin, oral cavity and intestine. Role of fomites Cough plate technique 	
RUSMIC P102	PRACTICAL-2	
Unit-I	 Parts of a microscope Micrometry Dark field and Phase Contrast Microscopy: (Demonstration) Monochrome staining Gram staining Negative Staining 	
Unit-II	 Nutritional requirements- Designing media using food material Preparation of standard laboratory Culture Media: a. Liquid medium (Nutrient Broth) b. Solid Media (Nutrient agar, Sabouraud's agar) 	

	c. Preparation of slant, butts& plates
	Inoculation techniques and Study of Growth:
	a. Inoculation of Liquid Medium
	b. Inoculation of Solid Media (Slants, Butts and
	Plates)
	4. Pure culture techniques- Streak plate method
	5. Study of Colony Characteristics of bacteria.6. Use of Differential & Selective Media: (MacConkey&
	Salt Mannitol Agar), Enriched (Blood Agar)
	7. Cultivation in defined and crude media-Demonstration
	8. Effect of environment on growth
	a. Temperature
	b. pH
	c. Osmotic pressure
	9. Methods of Preservation of culture- Soil stock, oil
	overlay and preparation of glycerol stocks
Unit-III	Working principle, architecture and applications of:
	a) Autoclave
	b) Hot air oven
	c) Incubator
	d) Anaerobic jars and work station
	e) Water bath
	f) Shaker
	g) Colorimeter
	h) Electrochemical sensors: pH meter
	Working in a laminar air flow
•	
(L)	

Modality of Assessment

Theory Examination Pattern:

A. Internal Assessment- 40%- 40 Marks per paper

Sr No	Evaluation type	Mar ks
1	One Assignment/Case study/Project/ Presentation	20
2	One class Test (multiple choice questions / objective)	20
	TOTAL	40

B. External Examination- 60%- 60 Marks per paper

Semester End Theory Examination:

- 1. Duration These examinations shall be of **two hours** duration.
- 2. Theory question paper pattern:
 - a. There shall be three questions each of 20 marks one on each unit.
 - b. All questions shall be compulsory with internal choice within the questions.

Paper Pattern:

Questio n	Options	Marks	Questions Based on
Q.1) A)	Any 3 out of 5	15	
Q.1) B)	Any 1 set out of 2 (i & ii or i & ii)	03 &02	Unit I
Q.2) A)	Any 3 out of 5	15	
Q.2) B)	Any 1 set out of 2 (i & ii or i & ii)	03 &02	Unit II
Q.3) A)	Any 3 out of 5	15	Unit
Q.3) B)	Any 1 set out of 2 (i & ii or i & ii)	03 &02	III
	TOTAL	60	

Practical Examination Pattern:

A. Internal Examination: 40%- 40 Marks

Particulars	Paper I	Paper II
Journal	05	05
Experimental tasks	15	15
Total	20	20

B. External Examination: 60%- 60 Marks

Semester End Practical Examination:

Particulars	Paper I	Paper II
Laboratory work	25	25
Spots/Quiz/Viva	05	05
Total	30	30

PRACTICAL BOOK/JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.

In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Co-ordinator / In charge of the department; failing which the student will not be allowed to appear for the practical examination.

Overall Examination & Marks Distribution Pattern

Semester I

Course	101			102			Gra nd Tot al
	Inter nal	Extern al	Tot al	Inter nal	Extern al	Tot al	
Theory	40	60	10 0	40	60	10 0	200
Practic al	20	30	50	20	30	50	100

Course Code: RUSMIC 201 Core Course Course Title: Microbial World: Types and inter-relations OUTCOMES:

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	
CO 1	Understand the structure, cultivation and significance of viruses
CO 2	Explain and compare the features of Rickettsia, Chlamydia and Myxobacteria
CO 3	Summarize the characteristics and infer significance of Actinomycetes and Archaebacteria
CO 4	Categorize microorganisms like Protozoa, Algae and Fungi into different groups based on their characteristics
CO 5	Infer the medical and industrial significance of Protozoa, Algae and Fungi
CO 6	Recall & explain the role of microorganisms in biogeochemical cycles & in maintaining balance of the ecosystem
CO 7	Illustrate the different types of microbial interactions & explain the significance of extremophiles.

DETAILED SYLLABUS

	2.1	Archaea	03
II		Microbial diversity-II	15
2 AMIL	1.2	Domain Bacteria- General characteristics and list of genera of every group with emphasis on mentioned genera a) Proteobacteria- Rickettsia, Caulobacter, Spirillum, Pseudomonas, Escherichia, Vibrio, Bdellovibrio, Myxobacteria b) Non-proteobacteria Cyanobacteria, Chlamydia, Firmicutes-Clostridium, Mycoplasma, c) High G+C content bacteria- Mycobacteria, Actinobacteria	09
		 a) Historical highlights, General properties of viruses, prions, viroids b) Structure of viruses-capsids, envelopes, genomes-TMV, Influenza, and T4 as representatives c) Cultivation of viruses- overview 	
I	1.1	Microbial diversity-l Viruses	15 06
RUSMIC 201		MICROBIAL WORLD: TYPES AND INTER-RELATIONS	2/45
Course Code/ Unit	Unit	Course/ Unit Title	Credits/ Lecture s
•	11.4	O / 11 . '4 T '41 .	0/2/11/2/

1	3.3	Microbial competition and cooperation	04
		b) Interaction between elemental cycles	
		a) C- cycle, N- cycle, S- cycle, Iron cycle	
	3.2	Role of microbes in Biogeochemical cycles	06
		d) Introduction to Quorum Sensing	
25		c) Mixed populations and microbial consortia	
W.		b) Introduction to microbial biofilms	
		a) Microenvironments	
	3.1	Microorganisms in Nature	03
III		Microbes in Natural Environments	15
	2.5	Slime molds	01
	4	d) Life cycle of yeast e) Biological and economical importance	
		c) Major fungal divisions- overview	
		b) Cultivation of fungi and yeasts	
		a) Characteristics: structure, Reproduction	
	2.4	Fungi and Yeast	04
		application	
		importance e) Medical, ecological &Commercial	
		d) Biological, Medical and economic	
		c) Major groups of Algae –an overview	
		Pigments, reproduction b) Cultivation of algae	
		a) Characteristics of algae: morphology,	
	2.3	Algae	04
		c) Medically important Protozoa	6.4
		motility, reproduction	V
		a) General characteristicsb) Major categories of Protozoa based on	
		a) Caparal characteristics	70
	2.2	Protozoa	03
		b) Archaeal cell wall, lipids and membranesc) Ecological importance	
		groups,	
		a) Introduction- Major Archaeal physiological	

3.4	Introduction to extremophiles with importance	02
	c) Establishment of symbiosis	, (') ^v
	b) Functions of symbiosis	
	examples	
	Parasitism, Amensalism, Competition with	
	Cooperation, Commensalism, Predation,	
	a) Types of Microbial Interactions: Mutualism,	

References:

- a) Willey, Sherwood and Woolverton, Prescott's Microbiology, 9th edition, 2013, International edition, McGraw Hill.
- b) Michael T. Madigan & J.M. Martin, Brock's Biology of Microorganisms 13th Ed. International edition 2012, Pearson Prentice Hall.
- c) Michael J. Pelczar Jr., E.C.S. Chan, Noel R. Krieg, Microbiology 5th Edition, 1986, Tata McGraw Hill Publishing Company
- d) Stanier, Ingraham et al, General Microbiology, 5th Ed. 1987, Macmillan Education Ltd.

Course Code: RUSMIC202 Core Course Course Title: Microbial Biomolecules, Growth & Control

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
CO 1	Recall the characteristics and structures of biomolecules and classify and detect them in various samples
CO 2	Understand and explain the growth pattern with the phases of growth for bacteria.
CO 3	Summarize the physical, chemical &cultivation-based methods for enumeration of microorganisms.
CO 4	Recall & exemplify the mechanisms of physical & chemical antimicrobial agents.
CO 5	Execute & perform the techniques used for enumeration of microorganisms & evaluate the microbicidal action of physical & chemical agents.
PANIT	

DETAILED SYLLABUS

Course Code/ Unit	Uni t	Course/ Unit Title			
RUSMIC 202		Microbial Biomolecules, Growth & Control	2/45		
ı		Chemical basis of life	15		
	3.1	Chemical foundations	02		
		 a) Biomolecules as compounds of carbon with a variety of functional groups. b) Universal set of small molecules. c) Macromolecules as the major constituents of cells. d) Configuration and Conformation with definitions and suitable examples only. e) Types of Stereoisomers and importance of stereoisomerism in biology. f) Types of bonds and their importance: Hydrogen, van der Waal's, Electrovalence, covalent, ester, phosphodiester, thioester, peptide, glycosidic. 			
	3.2	Water- Structure, properties in brief	01		
	3.3	Carbohydrates and glycobiology	04		
PAN		 a) Definition, Classification, Biological role. b) Monosaccharides, (Chair and boat conformation) oligosaccharides (maltose, cellobiose, sucrose, lactose) and polysaccharide (starch, glycogen, peptidoglycan, cellulose), glycoproteins (glycosaminoglycans and proteoglycans), glycome. 			
	3.4	Lipids	02		
		a) Fatty acids as basic component of lipids			

		h) Olassification and a state of the little and	<u> </u>
		b) Classification, nomenclature, storage lipids and	
		structural lipids.	
		c) Types of lipids with general structure of each and	
		mention examples.	
	3.5	Amino acids & proteins	03
		 a) General structure and features of amino acids (emphasis on amphoteric nature) b) Classification by R-group, Uncommon amino acids and their functions Peptides and proteins- Definition and general features and examples with biological role. c) Primary, secondary, tertiary, quaternary structures of proteins- Brief outline. 	
	3.6	Nucleic acids	03
		 a) Nitrogenous bases- Purines, Pyrimidines b) Pentoses-Ribose, Deoxyribose, c) Nomenclature of Nucleosides and nucleotides, d) N-β-glycosidic bond, e) polynucleotide chain to show bonding between nucleotides (Phosphodiester bonds). f) Basic structure of RNA and DNA 	
II		Microbial Growth	15
	1.1	Growth Curve & Mathematical Expression of Growth Curve	05
		a) Definition of Growth, Growth phases b) Determining growth constant & growth rate	
	1.2	Measurement of Growth	07
PAN		 a) Direct microscopic count i) Breed's count, ii) Petroff-Hausser counting chamber iii) Haemocytometer b) Viable count using Spread plate and Pour plate technique c) Measurements of cell constituents. d) Turbidity measurements— Brown's opacity tubes and spectrophotometer techniques e) Coulter Counter 	
	1.3	Factors affecting growth pattern	03
		,	

III		Control of Microorganisms	15
	2.1	Definition of terms	01
	2.2	Physical agents for control of microorganisms (mode of action, advantages, disadvantages and applications)	07
		 a) High temperature-moist heat and dry heat b) Low temperatures c) Radiation d) Osmotic pressure e) Desiccation f) Physical removal of microorganisms using bacteriological filters 	K. CK.
	2.3	Chemical agents for control of microorganisms (mode of action, advantages, disadvantages and applications of all major groups of antimicrobial agents)	05
	2.4	Evaluation of Chemical disinfectants	02
	2.5	Chemotherapeutic & antimicrobial agents- types & examples (tabular form)	01

References:

- a) Microbiology TMH 5th Edition by Michael J.Pelczar Jr., E.C.S. Chan , Noel R. Krieg
- b) A.J.Salle, Fundamental Principles of Bacteriology, 1984, McGraw Hill Book Company
- c) Prescott, Hurley Klein-Microbiology, 5th ed, International edition 2002, McGraw Hill.
- d) Prescott's Microbiology, 7th Edition; Joanne M. Willey, Linda M. Sherwood, Christopher J.Woolverton, 2011, McGraw Hill International
- e) Michael T.Madigan & J.M. Martin, Brock, Biology of Microorganisms 11th Ed. International edition, 2006, Pearson Prentice Hall.
- f) Principles and Techniques of Biochemistry and Molecular Biology by Keith Wilson and John Walker, 7th edition, 2010, Cambridge University Press.
- g) Conn P. Stumpf, G. Bruening and R. Doi, Outlines of Biochemistry 5/E, 1995, John Wiley & Sons. New York
- h) D. Nelson and M. Cox, Lehninger's Principles of Biochemistry, 4th Edition, 2005, W.H. Freeman and Company

i) Laurence A. Moran, H. Robert Horton, K. Gray Scrimgeour, Marc D. Perry, Principles of Biochemistry, 5th Edition, 2012, Pearson

Course code	PRACTICALS				
RUSMIC P 201	PRACTICAL-1				
Unit-l	 Demonstration of Bacteriophages in sewage Isolation of Actinomycetes from soil and Slide Culture technique for Actinomycetes Biogas production using methanogens Cultivation of algae 				
Unit-II	 Isolation of yeast, and other fungi Fungal Wet mounts & Study of Morphological Characteristics Mucor, Rhizopus, Aspergillus, Penicillium Slide culture of fungi Cultivation of fungi- static and shaker conditions Permanent slides of Algae, Protozoa 				
Unit-III	 Demonstration of protozoa in hay infusion Dip slide technique to demonstrate microbial biofilms Crowded plate technique for demonstration of antibiosis Demonstration of bacteroid forms of <i>Rhizobia</i> 				
RUSMIC P 202	PRACTICAL-2				
Unit-I	Qualitative detection of: a. Carbohydrates- Benedicts, Molisch's test. b. Proteins, amino acids- Biuret, Ninhydrin. c. Nucleic acid detection by DPA and Orcinol				
Unit-II	 Study of growth curve of bacteria Enumeration of microorganisms using Haemocytometer & Breed's Count Enumeration of microorganisms Brown's opacity tubes Viable count: Spread plate and pour plate 				

Unit-III	 Demonstration of efficiency of autoclave Effect of UV Light on bacteria Effect of surface tension on bacterial growth Study of Oligodynamic action Effect of dyes, phenolic compounds and chemotherapeutic agents on bacteria- disc diffusion method Demonstration of MIC of an antibacterial agent
	anous collin
PAN	ARPAIR
PAN	

Modality of Assessment

Theory Examination Pattern:

A. Internal Assessment- 40%- 40 Marks per paper

Sr No	Evaluation type	Mar ks
1	One Assignment/Case study/Project/ Presentation	20
2	One class Test (multiple choice questions / objective)	20
	TOTAL	40

B. External Examination- 60%- 60 Marks per paper

Semester End Theory Examination:

- 1. Duration These examinations shall be of **two hours** duration.
- 2. Theory question paper pattern:
 - a. There shall be three questions each of 20 marks one on each unit.
 - b. All questions shall be compulsory with internal choice within the questions.

Paper Pattern:

Questio n	Options	Marks	Questions Based on
Q.1) A)	Any 3 out of 5	15	
Q.1) B)	Any 1 set out of 2 (i & ii or i & ii)	03 &02	Unit I
Q.2) A)	Any 3 out of 5	15	
Q.2) B)	Any 1 set out of 2 (i & ii or i & ii)	03 &02	Unit II
Q.3) A)	Any 3 out of 5	15	Unit
Q.3) B)	Any 1 set out of 2 (i & ii or i & ii)	03 &02	III
	TOTAL	60	

Practical Examination Pattern:

A. Internal Examination: 40%-40 Marks

Particulars	Paper I	Paper II
Journal	05	05
Experimental tasks	15	15
Total	20	20

B. External Examination: 60%- 60 Marks

Semester End Practical Examination:

Particulars	Paper I	Paper II
Laboratory work	25	25
Spots/Quiz/Viva	05	05
Total	30	30

PRACTICAL BOOK/JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.

In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Co-ordinator / Incharge of the department; failing which the student will not be allowed to appear for the practical examination.

Overall Examination & Marks Distribution Pattern

Semester II

Course		2 0 1			2 0 2		Gra nd Tot al
	Inter nal	Extern al	Tot al	Inter nal	Extern al	Tot al	
Theory	40	60	10 0	40	60	10 0	200
Practic als	20	30	50	20	30	50	100

AC/I(21-22).2(II).RUS9

S. P. Mandali's Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for S.Y, T.Y

Program: BSc

Program Code: Microbiology (RUSMIC)

(Credit Based Semester and Grading System for academic year 2022-23)

Course Code: RUSMIC 301

Course Title: MICROBIAL TAXONOMYAND INTRODUCTION TO GENETICS AND MOLECULAR BIOLOGY

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	
CO 1	Differentiate between vast pool of microbes on the basis of
	morphological, cultural, biochemical and genetic characteristics
CO 2	Understand, apply and evaluate techniques in microbial taxonomy
CO 3	Construct phylogenetic trees using simple computational tools
CO 4	Recall Mendelian genetics and critique the deviations from Mendelian
	genetics
CO 5	Discriminate the structure of DNA and RNA focusing on the different
	forms of DNA
CO6	Understand the central dogma of molecular genetics
CO7	Explain prokaryotic transcription and translation process and interpret
	the significance of the important events from initiation to the
	termination of the process
CO8	Extrapolate the role of omics in molecular biology studies

DETAILED SYLLABUS

Course Code/ Unit	Unit	Course/ Unit Title	Credits/ Lecture s
RUSMI		MICROBIAL TAXONOMY AND	2 / 45
C 301		INTRODUCTION TO GENETICS AND	
		MOLECULAR BIOLOGY	
I		Techniques in Microbial Taxonomy	15
	1.1	Introduction to microbial Taxonomy and Taxonomic	01
		ranks	
	1.2	Techniques for studying Microbial Taxonomy	08
	1.3	a) Microscopic & macroscopic morphology and biochemical characteristics, b) Chemical Analysis c) Serological analysis d) Genetic & molecular analysis: i. Nucleic acid sequencing and finger printing ii. G+C content iii. Nucleic acid hybridization iv. Amino acid sequencing e) Community DNA analysis Introduction to Microbial Phylogeny a) Phylogenetic Trees i. Types ii. Construction (an overview) b) Numerical Taxonomy	05
	1.4	Bergey's Manual of Systematic Bacteriology	01
67		a) Understanding classification and identification schemes for bacteria using Bergey's manual	
II		Classical Genetics (Mendelian & Neomendelian) & Nucleic acid structure	15
	2.1	Mendelian genetics:	04
	 1	a) Genotype and Phenotype	<u> </u>

		h) Mandal'a Evperimente deciar	
		b) Mendel's Experiments design	
		c) Monohybrid cross and dihybrid cross, Mendelian	
		Laws of inheritance	
		a) Trihybrid Cross	
	2.2	Non-Mendelian genetics	05
		a) Multiple alleles	
		b) Modification of dominance relationships	
		c) Incomplete dominance	
		d) Codominance (both with their molecular	
		explanations)	
		e) Essential and lethal genes	
		f) Gene expression and effect of	
		environment	
		g) Maternal effect	
		h) Gene interactions and modified Mendelian	
		ratios	
	2.3	Structure of DNA:	03
		Different 3D forms and unusual structures	
		DNA methylation	
	2.4	Structure of chromosomes	01
	2.5	Structure of RNA	02
III		Gene Expression in Bacteria	15
	3.1	Central dogma of Molecular Biology	01
	3.2	Transcription in prokaryotes	06
		a) RNA biosynthesis	
		b) Prokaryotic transcription	
	7,	i. Prokaryotic promoters	
		ii. Initiation, elongation and termination	
25	3.3	Translation	06
		a) Components of protein synthesis apparatus:	
		Genetic code, mRNA, Ribosomes	
		b) Degeneracy of genetic code	
		c) Protein synthesis	

3.4	Comparison of eukaryotic & prokaryotic transcription & translation	01
3.5	Introduction to the concept of Omics:	01
	Genomics and Proteomics	

References:

2AMHAR2AIR

- a) Prescott"s Microbiology, Joanne M. Willey, Linda M. Sherwood, Christopher J.Woolverton, Edition, 7th Edition, 2011, McGraw Hill International
- b) Madigan, Martinko, Dunlap and Clark, Brock Biology of Microorganisms, 12thedition, 2009, Pearson Education
- c) Peter J. Russell, "iGenetics A molecular approach", 3rd edition, 2010, Benjamin Cummings.7
- d) Stanier R.Y. And Other, MacMillan General Microbiology, 5th edition,1987, MACMILLAN PRESS LTD
- e) D. Nelson & M. Cox, Lehninger"s Principles Of Biochemistry,4th Edition ,2005, (W.H.Freeman& Co., (LPE)
- f) James Watson, Molecular Biology of Gene, 5th edition,2004, Pearson Benjamin Cummings CSHL Press.
- g) Benjamin A Pierce, Genetics: A conceptual approach ,2002, W.H. Freeman

Course Title: INTRODUCTION TO EXPERIMENTAL MICROBIAL BIOCHEMISTRY

COURSE	DESCRIPTION
OUTCOME	
CO 1	Understand the process of designing experiments & analyse the
	experimental data statistically.
CO 2	Implement the use of web directories & databases for
	biochemical studies
CO 3	Recall & compare the different cell disintegration methods &
	elaborate the working principles of centrifugation,
	electrophoretic & chromatographic techniques used for studying
	cell analytes.
CO 4	Illustrate the principles of protein separation & purification.
CO 5	Compare the utility & perform the techniques for the estimation
0	of biomolecules.
CO 6	Understand the principle, instrumentation & application of
	different laboratory instruments used in biochemical studies.
CO 7	Design an experiment for extraction, purification & estimation of
(biomolecules, & evaluate the statistical relevance of the data
	generated.

Course Code	Unit	Course/ Unit Title	Credits/ Lecture s
RUSMI C 302		INTRODUCTION TO EXPERIMENTAL MICROBIAL BIOCHEMISTRY	2/45
I		Designing and Analysis of experimental data, General laboratory techniques: Electrochemical sensors	15
	1.1	Designing experiments:	02
		a) Aims of laboratory experiments b) Outline of Scientific method c) Experimental design d) Analytical considerations and experimental error	
	1.2	Analysis of experimental data:	07
	ARAP.	a) Data presentation: Dot diagram, Bar diagram, Histogram, Frequency curve, Calibration methods: Linear regression, Internal standards b) Assessment of precision -Mean, Median, Mode, Standard deviation, coefficient of variation and variance c) Assessment of performance of an analytical technique -performance indicators d) Poisson and Normal distribution e) Assessment of accuracy& Validation of analytical data population statistics, confidence limit and confidence interval; Students t factor, Q test, F test, ANOVA	02
	1.3	Using computers in biochemistry	02
		Using web directories, biological databases and tools (eg. NCBI, EMBL)	
	1.4	General and routine laboratory procedures:	04
		Theoretical and practical aspects of: a) Preparation and use of buffers	

	l		
		b) Electrochemical sensors: pH meter	
		c) Oxygen electrode	
		d) Biosensors	
l II		Fractionation of microbial cells and separation	15
		techniques	
	2.1	Disintegration of cells	02
		a) Physical methods	
		b) Chemical methods	
	2.2	Separation Techniques	03
		a) Centrifugation techniques: i.Basic principles of sedimentation ii.Types of centrifuges and their use: preparative & analytical, ultracentrifuges iii.Differential, Density Gradient & isopycnic centrifugation	
		b) Electrophoretic techniques: i.General Principles ii.Factors affecting electrophoresis iii.Support media- Agarose gels and PAGE	03
	28	c) Chromatographic Techniques: i.General principles ii.Types and applications- Partition, adsorption, ion exchange, affinity and size exclusion iii.Modes- Paper, TLC, HPLC, GC, Reverse Phase	07
III		Purification & Estimation of biomolecules	15
	3.1	Separation and purification of proteins	03
PAT		a) Criteria for purity b) Methods of separation/ concentration of proteins based on: i. Size and mass ii. Polarity iii. Solubility iv. Specific binding sites v. Concentration of proteins - Dialysis,	

	Ultrafiltration	
	c) Choice of methods	
3.2	Estimation of Biomolecules	12
	a) Visible and UV spectrophotometry	03
	i. Principles	
	ii. Instrumentation	
	iii. Applications	
	b) Preparation of bacteria for analysis	01
	c) Methods for chemical analysis (Basic principles	80
	of all methods to be covered)	
	 Methods of elemental analysis: Carbon by 	
	Slyke's method, Nitrogen by	
	Microkjelhdahl method, Phosphorus by	
	Fiske-Subbarow method	
	ii. Estimation of Carbohydrates by	
	Phenol and Anthrone Method	
	iii. Estimation of Reducing Sugars	
	iv. Estimation of Proteins	
	v. Estimation of Amino acids	
	vi. Extraction of Lipids and estimation of total	
	lipid	
	vii. Estimation of Nucleic acids	

- a) Norris & Ribbon, Methods in Microbiology, Vol.5B, Edition,1971, Academic Press
- b) J. Jayaraman, Laboratory Manual in Biochemistry, 2003, New Age International Publishers
- c) D. Nelson & M. Cox, Lehninger's Principles Of Biochemistry,4th Edition, 2005, W.H.Freeman & Co., (LPE)
- d) B.K. Mahajan. Jaypee brothers, Methods in biostatistics for medical & research workers. 6thedition, Medical Publishers (P) ltd.
- e) Rodney Boyer, Modern experimental biochemistry by 3rd Edition ,2000, Benjamin Cummings
- f) I.H. Segel, Biochemical calculations, 2nd Edition 2004, Wiley India

- g) Wilson and Walker, Principles and Techniques of Biochemistry and Molecular Biology 7th Ed ,2010. Cambridge University Press
- h) Stanier R.Y. And Other, General Microbiology, 5th edition, 1989 MacMillan Press.
- i) Plummer David, An Introduction to Practical Biochemistry ,1979, TMH
- 10th edition of the control of the c

Course Title: ENVIRONMENTAL MICROBIOLOGY

COURSE OUTCOME	DESCRIPTION		
CO 1	Understand the distribution and characterization of microbes in various habitats/ecosystems		
CO 2	Explain role of air as a medium of microbial dispersion		
CO 3	Differentiate between microbial flora of marine and freshwater environments		
CO 4	Execute microbiological techniques for studying microbiota of air, aquatic and terrestrial environments		
CO 5	Implement routine bacteriological analysis techniques for assessing water quality and attribute the results to sources of contamination		
CO 6	Recall steps in sewage treatment and check effectivity of treatment processes		
CO 7	Implement microbiological analysis of a soil ecosystem with an understanding of the most appropriate technique		
CO 8	Apply basic principles of environmental microbiology for understanding and solving environmental problems –bioremediation		

Course Code	Unit	Course/ Unit Title	Credits/ Lectures
RUSMI C 303		ENVIRONMENTAL MICROBIOLOGY	2/45
I		Air & Fresh Water Microbiology	15
	1.1	Air Microbiology	05
		 a) Origin, distribution, number and kinds of microorganisms in air, Factors affecting microbial survival in air b) Enumeration of microorganisms in air: Impingement in liquids, Impaction on solids, Filtration, Sedimentation, Centrifugation, Electrostatic Precipitation. c) Air borne pathogens and diseases, droplets and droplet nuclei d) Air sanitation- methods and application 	
	1.2	Fresh water microbiology	10
2 AM	JAR	 a) General: Groups of natural waters, factors affecting kinds of microorganisms found in aquatic environments and nutrient cycles in aquatic environments b) Fresh Water environments and microorganisms found in Lakes, ponds, rivers, marshes, bogs and springs c) Potable water: Definition, water purification and pathogens transmitted through water. d) Microorganisms as indicators of water quality 	
		e) Bacteriological examination of water-sampling, routine analysis, SPC, membrane filter technique, Standards for water quality	

II		Marine and Sewage Microbiology	15
	2.1	Marine Microbiology	05
		a) Characteristics of marine environments	7,
		b) Diversity& characteristics of marine microorganisms and their importance	
		c) Ecosystems of Deep-sea Hydrothermal vents and Subterranean Water	
	2.2	Sewage Microbiology	10
		a) Types of waste water	
		b) Characteristics of waste water	
		c) Modern waste water treatment: Primary, Secondary and tertiary treatment (oxidation ponds, activated sludge, trickling filters, anaerobic digestor).	
		d) Removal of pathogens by sewage treatment Processes	
		e) Sludge Processing	
		f) Disposal of Solid Waste, Modern Sanitary Landfills, Composting	
III		Soil & Geo Microbiology	15
	3.1	Soil Microbiology	03
PAN		a) Soil – Definition, composition, function, Textural Triangle Types of Soil microorganisms & their activities	
	3.2	Methods of studying soil microorganisms	05
		a) Sampling	
		b) Cultural methods	
		c) Physiological methods	

	d)	Immunological methods (Tabulation of the immunological methods)	
	e) NA based method		
	f)	Radioisotope technique	,
3.3	Geo N	licrobiology	03
	a)	Carbon cycle	
b) Nitrogen cycle			
	c)	c) Sulphur cycle	
	d)	Phosphorus cycle	~
3.4	Biode	egradation and Bioremediation	4
	a)	Microbial leaching	
	b)	Metal transformations	
	c)	Petroleum degradation	
	d)	Degradation of xenobiotics	

- a) Raina M. Maier, Ian L. Pepper, Charles P. Gerba, Environmental Microbiology, 2nd Edition, 2010, Academic Press
- b) A.J. Salle, Fundamental Principles of Bacteriology, 7th Editon,1974, Tata McGraw Hill Publishing Company
- c) Air Quality Standards NAAQS Manual, Volume I, 2011
- d) Joanne M. Willey, Linda M. Sherwood, Christopher J.Woolverton Prescott's Microbiology, 8th Edition, 2011, McGraw Hill International Edition
- e) Frobisher, Hinsdill, Crabtree, Goodheart, Fundamentals of Microbiology, 9th Edition, 1974, Saunders College Publishing
- f) Barbara Kolwzan, Waldemar Adamiak (E Book) Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, 2006
- g) N.S Subba Rao, Introduction to Environmental Microbiology –Soil Microbiology -4th Edition ,2000, Oxford and IBH Publishing Co. Pvt Ltd
- h) Michael T. Madigan & J.M. Martin, Brock's Biology of Microorganisms 13th Ed. International edition 2012, Pearson Prentice Hall.

PANNARAIN RUIA AUTONONOUS COLLEGE

PANNARAIN RUIA AUTONOUS COLLEGE

PANNARAIN RUIA

Course code	PRACTICALS	3
		CREDITS
RUSMICP301	PRACTICAL-1	
	Isolation and identification of a bacterial isolate	/,
	2. Problems on Mendelian genetics	
	3. Extraction of DNA from onion and <i>E. coli</i>	4,0
	Problems on genetic code	
	Construction of phylogenetic tree.	,
RUSMICP302	PRACTICAL -2	
	Introduction to experimental design	
	2. Lab common sense workshop	
	3. Biostatistics problems	
	4. Study of pH meter and preparation of buffers	
	5. Density gradient centrifugation	
	6. Demonstration of agarose gel electrophoresis	
	7. Demonstration of PAGE	
	8. Separation of amino acids using paper	
	chromatography	
	9. Separation of carbohydrates using TLC	
	10. Demonstration of column chromatography	
	11. Demonstration of HPLC, HPTLC and GC	
	12. Determination of λmax	
OP	13. Verification of Beer's law and determination of	
	extinction coefficient	
7/	14. Large scale cultivation of bacteria /yeast/ fungi	
	15. Determination of Dry and wet Weight	
	16. Disintegration of cells using physical & chemical	
	methods and separation of biomolecules	
	17. Estimation of Amino acids by Ninhydrin method	
	18. Estimation of Proteins by Biuret method	
	19. Bradford's Method for protein estimation	
	20. Estimation of Reducing Sugars by DNSA method	

	21. Estimation of RNA by orcinol method	
	22. Estimation of DNA by diphenylamine method	
	' ' '	
	Note: All the above methods will also be analyzed using	
	statistical methods covered in theory	6.
RUSMICP303	PRACTICAL-3	, G ^V
	Enumeration of microorganisms in air and study its	
	load after fumigation	
	Determination of microbial load using air impinger	
	Study of halophilic and haloduric bacteria from marine	
	samples	
	Routine analysis of water	
	5. Use of membrane filter technique for bacteriological	
	analysis of water	
	6. Rapid detection of <i>E.coli</i> by MUG technique-Demo	
	7. Visit to a Sewage treatment plant	
	8. BOD of untreated and treated sewage	
	Buried slide technique to study soil flora	
	10. Enrichment and isolation of Cellulose degraders,	
	Sulphate reducers and Phosphate solubilizers from soil	
	11. Setting up Winogradsky's Column	
	12. Developing compost pits	

PANNARAIN PAULA AUTOMORIOUS COLLEGÉE
PANNARAIN PAULA AUTOMORIOUS COLLEGÉE
PANNARAIN PAULA AUTOMORIOUS COLLEGÉE

Modality of Assessment

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks per paper

Sr No	Evaluation type	Mark s
1	One Assignment/Case study/Project/ Presentation	20
2	One class Test (multiple choice questions / objective)	20
	TOTAL	40

B) External Examination- 60%- 60 Marks per paper

Semester End Theory Examination:

- 1. Duration These examinations shall be of **two hours** duration.
- 2. Theory question paper pattern:
 - a. There shall be three questions each of 20 marks one on each unit.
 - b. All questions shall be compulsory with internal choice within the questions.

Paper Pattern:

Question	Options	Marks	Questions Based on
Q.1) A)	Any 3 out of 5	15	
Q.1) B)	Any 1 set out of 2 (i & ii or i & ii)	03 &02	Unit I
Q.2) A)	Any 3 out of 5	15	
Q.2) B)	Any 1 set out of 2 (i & ii or i & ii)	03 &02	Unit II
Q.3) A)	Any 3 out of 5	15	
Q.3) B)	Any 1 set out of 2 (i & ii or i & ii)	03 &02	Unit III
	TOTAL	60	

Practical Examination Pattern:

A) Internal Examination: 40%- 60 Marks

Particulars	Paper I	Paper II	Paper III
Journal	05	05	05
Experimental tasks	15	15	15
Total	20	20	20

B) External Examination: 60%- 90 Marks

Semester End Practical Examination:

Particulars	Paper I	Paper II	Paper III
Laboratory work	25	25	25
Spots/Quiz/Viva	05	05	05
Total	30	30	30

PRACTICAL BOOK/JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.

In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Co-ordinator / Incharge of the department; failing which the student will not be allowed to appear for the practical examination.

Overall Examination & Marks Distribution Pattern Semester III

					1100101 111					
Course		301		3	302		3	03		Grand Total
	Internal	External	Total	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	40	60	100	300
Practicals	20	30	50	20	30	50	20	30	50	150

	Course Code: RUSMIC 401						
Course	Course Title: Microbe Interactions and Host Responses						
COURSE OUTCO	OURSE OUTCOMES:						
COURSE OUTCOME	DESCRIPTION						
CO 1	Exemplify microbial interactions with plants, animals and other microorganisms						
CO 2	Evaluate the ecological, medical and evolutionary significance of microbial interactions with plants, animals and other microorganisms						
CO 3	Outline the strategies through which pathogens develop infections and demonstrate presence of some virulence factors in known isolates						
CO 4	Understand the concepts and terminologies used in epidemiology and correlate disease transmission to disease control						
CO 5	Apply the understanding of epidemiology studies in solving public health concerns						
CO6	Understand the key components of innate and acquired immune system and summarize their role in overcoming disease						
C07	Compare the different types of immunoglobulins and understand their function in protection						

Course Code/ Unit	Uni t	Course/ Unit Title	Credits/ Lectures
RUSMI		MICROBE INTERACTIONS AND HOST	2/45
C 401		RESPONSES	
I		Microbial interactions with plants, animals and	15
		other microbes) `
	1.1	Microbial associations with plants	08
	1.2	 a) Phyllosphere b) Rhizosphere & Rhizoplane c) Mycorrhizae d) Nitrogen fixation: Biochemistry of nitrogen fixation, nodulation in <i>Rhizobia</i>, <i>Azolla-Anabena</i> symbiosis, Actinorhizae, Stem nodulating <i>Rhizobia</i> e) Fungal & Bacterial endophytes f) Plant pathogens -Fungal, bacterial and viral diseases Microbial interactions with animals a) Microbial symbionts in invertebrates b) Bacterial flora in the Rumen c) Microbe- insect interactions 	05
		d) Introduction to Zoonotic diseases	
	1.3	Microbe - Microbe interactions	02
	PL	a) Lichen b) Endosymbionts of Protozoa c) Parasitism in microbes	45
11		Microbial invasion in Human hosts	15
25	2.1	Virulence Mechanisms	08
		a) Bacterial virulence factors i. Adherence factors ii. Invasion of host cells and tissues iii. Toxins- Exotoxins and Endotoxins iv. Enzymes	

		v. Evading host defense- Antigenic variation, Antiphagocytic factors and Intracellular	
		pathogenicity	
		vi. Iron sequestration	
		vii. The role of Biofilms	/,
		b) Measuring bacterial virulence: Infective dose &	
		Lethal dose, limulus amoebocyte assay	7,0
		c) Pathogenic properties of viruses, fungi and	
		protozoa	
	2.2	Introduction to enidomial exical concepts	07
	2.2	Introduction to epidemiological concepts	07
		a) Reservoirs of infection	
		b) Modes of disease transmission	
		c) Nosocomial infections	
		d) Epidemiological terminology: epidemic, endemic, pandemic, sporadic, incidence rate, prevalence	
		rate, mortality, morbidity	
		e) Controlling epidemics: Controlling reservoirs,	
		controlling transmission- Immunization strategies-	
		passive and active, Surveillance	
III		Host responses to infection	15
	3.1	Cells, Tissues and Organs of the Immune System	04
		a) Cells of the immune system- Lymphoid and Myeloid	
		cells, NK cells	
		b) Organs of the immune system- Introduction to	
		primary and secondary lymphoid organs and their	
	200	roles	
	3.2	Immune responses- Innate defense mechanisms	04
Ī		, <u>, , , , , , , , , , , , , , , , , , </u>	
		a) Phagocytosis – Recognition, Destruction,	
4		b) Inflammation- Acute and Chronic	
	P	b) Inflammation- Acute and Chronic c) Fever	
ant	3.3	b) Inflammation- Acute and Chronicc) Feverd) Molecular defenses- IFN, complement, ACP	07
2 Part	3.3	b) Inflammation- Acute and Chronic c) Fever d) Molecular defenses- IFN, complement, ACP Immune responses- Acquired Defense	07
PANT	3.3	b) Inflammation- Acute and Chronic c) Fever d) Molecular defenses- IFN, complement, ACP Immune responses- Acquired Defense a) Outline and characteristics of Adaptive Immune	07
2 PAINT	3.3	b) Inflammation- Acute and Chronic c) Fever d) Molecular defenses- IFN, complement, ACP Immune responses- Acquired Defense a) Outline and characteristics of Adaptive Immune response	07
2 Partie	3.3	 b) Inflammation- Acute and Chronic c) Fever d) Molecular defenses- IFN, complement, ACP Immune responses- Acquired Defense a) Outline and characteristics of Adaptive Immune response b) Immunoglobulins – basic and fine structure 	07
2 PAINT	3.3	 b) Inflammation- Acute and Chronic c) Fever d) Molecular defenses- IFN, complement, ACP Immune responses- Acquired Defense a) Outline and characteristics of Adaptive Immune response b) Immunoglobulins – basic and fine structure c) Immunoglobulin classes and biological activities 	07
PANT	3.3	 b) Inflammation- Acute and Chronic c) Fever d) Molecular defenses- IFN, complement, ACP Immune responses- Acquired Defense a) Outline and characteristics of Adaptive Immune response b) Immunoglobulins – basic and fine structure 	07

		e) Protective functions of antibodies- Opsonization, Complement mediated lysis, viral neutralization and toxin neutralization f) Introduction to Cell mediated immunity	
--	--	---	--

- a) Willey, Sherwood and Woolverton, Prescott's Microbiology, 9th edition, 2013, International edition, McGraw Hill.
- b) Michael T. Madigan & J.M. Martin, Brock's Biology of Microorganisms 13th Ed. International edition 2012, Pearson Prentice Hall.
- c) Stanier, General microbiology 5th edition ,1987, Macmillan publication
- d) Tortora, Funke and Case, Microbiology: An Introduction, 10th Edition, 2010, Pearson.
- e) Kathleen Park Talaro & Arthur Talaro Foundations in Microbiology International edition 2002, McGraw Hill.
- f) Jacquelyn Black, Laura Black, Microbiology, Principles and Explorations, 9th Ed, 2015, Wiley
- g) Brooks, Carroll, et al, Jawetz, Melnick & Adelberg's Medical Microbiology, 26th Ed McGraw Hill Lange 2013
- h) https://www.eurofins.com.au/biopharma-services/testing-solutions/sterile-products-testing/en dotoxin-or-lal-test/
- i) Ingraham and Ingraham, Introduction to Microbiology, by 2nd Ed ,2000, Brooks/Cole
- j) Thomas J. Kindt, Barbara A. Osborne, Richard A. Goldsby, Kuby Immunology, 6th ed, W. H. Freeman & Company 2005

Course Title: INTRODUCTION TO METABOLIC PATHWAYS AND ENZYMOLOGY

COURSE OUTCOME	DESCRIPTION
CO 1	Understand the concepts and types of metabolism. Compare the
	metabolic strategies & recall the role of Omics in biochemical studies
CO 2	Explain the regulatory junctions of metabolic pathways.
CO 3	Recall the properties & classes of enzymes. Illustrate
	enzyme-substrate interaction models & recognize the significance of
	cofactors & coenzymes.
CO 4	Evaluate enzyme kinetics & the change in activity in presence of
	variables.
CO 5	Explain the principles of Bioenergetics & attribute the role of energy
	currency molecule
CO 6	Understand & apply the laws of thermodynamics to microbial
<	metabolism.
CO 7	Implement experimental procedures for enzyme purification and
	enzyme kinetics studies

Course Code	Unit	Course/ Unit Title	Credits/ Lecture s
RUSMI		INTRODUCTION TO METABOLIC	2/45
C 402		PATHWAYS AND ENZYMOLOGY	
I		Introduction to Metabolism	15
	1.1	Introduction to biochemical reactions:	04
		a) Key reactions involved in metabolism. b) Weak interactions involved in determining the structures and functions of macromolecules.	
	1.2	Introduction to metabolism:	06
		 a) Metabolism- Catabolism & Anabolism b) Types of Metabolic pathways c) Metabolic networks, use of different software d) Primary and secondary metabolism e) Energy and reducing power requirements 	
	1.3	Metabolic strategies: Managing metabolic network	04
	1.1	a) Role of enzymes, enzyme clustering & multienzyme complexes b) Functional coupling c) Compartmentalization in cells	
	1.4	Introduction to omics: Metabolome & Metabolomics	01
II	2.1	Enzymology Introduction to enzymes:	15 06
PAM	2.1	a) General properties of enzymes b) How do enzymes accelerate reactions? c) Classification of enzymes d) Enzyme kinetics: Rate law for a simple catalyzed reaction, Michaelis-Menten equation and its derivation, other plots to determine velocity of reactions	

2.2	Modifying enzyme catalysis rates	05
	·	
	•	C_{2}
	inhibitors	4/
	c) Allosteric effects in enzyme catalyzed reactions	
	d) Multi-substrate reactions- Ordered,	
	Random and ping-pong reactions	
	e) Koshland- Nemethy and Filmer model	
	f) Monod, Wyman and Chageux model	
2.3	Coenzymes& Co-factors:	04
	a) Different types and reactions catalyzed by	
	coenzymes (in tabular form)	
	b) Water soluble coenzymes (NAD, Nicotinic acid)	
	c) Fat soluble vitamins and their examples.	
	Principles of Bioenergetics	15
3.1	Bioenergetics & thermodynamics:	06
	a) Energy transformations	
	b) Thermodynamic quantities, standard –free	
	energy	
0	c) Difference between ΔG & ΔGo"	
3.2	ATP and it's role	05
	a) Structure of ATP, phosphoryl group transfer and	
-	ATP	
	b) Types of energy –rich compounds	
	c) Multi-roles of ATP inorganic phosphoryl group	
	donor	
3.3	Biological oxidation-reduction reactions	04
	3.1	a) Effect of temperature and pH b) Effect of Inhibitors- Reversible and irreversible, competitive, Non-competitive and uncompetitive inhibitors c) Allosteric effects in enzyme catalyzed reactions d) Multi-substrate reactions- Ordered, Random and ping-pong reactions e) Koshland- Nemethy and Filmer model f) Monod, Wyman and Chageux model 2.3 Coenzymes& Co-factors: a) Different types and reactions catalyzed by coenzymes (in tabular form) b) Water soluble coenzymes (NAD, Nicotinic acid) c) Fat soluble vitamins and their examples. d) Inorganic cofactors Principles of Bioenergetics 3.1 Bioenergetics & thermodynamics: a) Energy transformations b) Thermodynamic quantities, standard –free energy c) Difference between ΔG & ΔGo" 3.2 ATP and it's role a) Structure of ATP, phosphoryl group transfer and ATP b) Types of energy –rich compounds c) Multi-roles of ATP inorganic phosphoryl group donor

- a) Principles of Biochemistry by Geoffery Zubay (1988) 4th Edition Wm.C. Brown Publishers
- b) Outlines Of Biochemistry,5/E,Conn P.Stumpf, G.Bruening & R.Doi,John Wiley & Sons, New York 1995
- c) Fundamentals of Enzymology: Cell and Molecular Biology of Catalytic Proteins 3rd Edition Nicholas Price and Lewis Stevens
- d) Lehninger: Principles Of Biochemistry,4th Ed., D. Nelson & M. Cox, W.H.Freeman & Co., (LPE)
- e) A biologist's Physical Chemistry by John Gareth Morris.
- f) Concepts of Biochemistry, Rodney Boyer
- g) Stanier, General microbiology 5th edition ,1987, Macmillan publication
- h) Principles of Biochemistry by Robert Horton (2011) 5th Edition Pearson Publishers.

Course Title: APPLIED MICROBIOLOGY

COURSE OUTCOME	DESCRIPTION
CO 1	Understand and explain the significance of microbes in fermentation industry and compare the techniques used for their screening
CO 2	Compare different types of fermentations and fermentation processes used for industrial productions
CO 3	Exemplify components used in industrial fermentation media with an understanding of its role in the process
CO 4	Summarize the general principles of food spoilage by microorganisms and compare methods used for food preservation
CO 5	Execute experimental procedures for detection of microbes in food and dairy products and comment on its quality
CO 6	Recall the sources of microorganisms in milk and explain the significance of pasteurization techniques
CO7	Outline and analyze the manufacturing processes of different fermented dairy products
CO 8	Apply knowledge of contamination, preservation, and quality control in food and dairy product manufacturing industries

Course Code	Unit	Course/ Unit Title	Credits/ Lecture s
RUSMI C 403		APPLIED MICROBIOLOGY	2/45
I		Industrial Microbiology	15
	1.1	Strains of industrially important microorganisms	04
		a) Desirable characteristics of an industrial strain b) Principles and methods of primary and secondary screening	
	1.2	Types of fermentations:	02
		a) Aerobicb) Anaerobicc) Solid state fermentation	
	1.3	Types of fermentation processes:	02
		a) Surface and Submergedb) Batch, continuous, fed-batch fermentation process	
	1.4	Media for industrial fermentations	05
	RA	a) Production and Inoculum media b) Media components: - Carbon source, nitrogen source, amino acids and vitamins, minerals, water, buffers, antifoam agents, precursors, inhibitors and inducers	
1	1.5	Inoculum development	02
		Food Microbiology	15
	2.1	Introduction:	01
		Significance, food as a substrate and sources of microorganisms in food	
	2.2	Intrinsic and extrinsic factors affecting the microbial growth in food	02

	2.3	General Principles of spoilage	04
		Spoilage of fresh foods: fruits and vegetables, eggs,	
		meat, poultry and seafood	
	2.4	General principles of food preservation	04
		(principle of each method and example of foods only) High temperature, low temperature, drying, radiations and food additives and preservatives (tabular representation), Asepsis, introduction to HACCP, Regulation	K.G.
	2.5	Food borne diseases	1
	2.6	Methods of detection of microorganisms in food:	3
		Overview of cultural, microscopic, physical, chemical and bioassay methods	
III		Dairy Microbiology	15
	3.1	Milk- Definition, composition, sources of contamination of milk	2
	3.2	Pasteurization of milk LTHT, HTST, UHT	3
	3.3	Milk products: production and spoilage of:	7
		a) Yoghurt b) Butter c) Cheese-Cheddar and Cottage cheese d) Fermented milks	
	3.4	Quality control of milk	3
RAIN		a) Rapid platform tests b) Microbiological analysis of milk : SPC, Coliform count, LPC, Psychrophiles, Thermophilic count, DRT	

- a) Fundamental Food Microbiology by Bibek Ray, Arun Bhunia (2007), 4th edition CRC Press
- b) Food Microbiology by Frazier 5th ed (1971), McGraw-Hill Education.
- c) Modern Food Microbiology by James Jay 6th ed(2000), Springer US.
- d) Applied Dairy Microbiology by Marth & Steele(2001), CRC Press
- e) BIS standards, FSSAI

2ANNARAIN

- f) Casida L. E., "Industrial Microbiology" 2009 Reprint, New Age International (P) Ltd, Publishers, New Delhi
- g) Stanbury P. F., Whitaker A. & Hall--S. J., 1997, "Principles of Fermentation, Technology", 2nd Edition, Aditya Books Pvt. Ltd, New Delhi.
- h) Prescott and Dunn's ""Industrial Microbiology"".1982 4th Edition, McMillan Publishers
- i) H. A. Modi, 2009. ""Fermentation Technology"" Vol 2, Pointer Publications, India.
- j) Milk and milk products. C. H. Eckles 1943 edition
- k) Sukumar De, Outlines of dairy technology, 1st edition, 1983, O.U.P.
- I) James Jay Frazier 5th. Ed Okafor Waites & Morgan

Course	PRACTICALS	3
code		Credits
RUSMICP 401	PRACTICAL-1	4
	1. Isolation of <i>Rhizobium</i> from root nodules	1,0,
	2. Demonstration of fungi and algae in lichens	
	Study of virulence factors – Enzymes – Streptokinase, Coagulase, Hemolysin, Lecithinase	
	Demonstration of biofilm formation by pathogens on catheters	
	5. Assignment on classical stages, signs and symptoms of any one microbial disease	
	6. Staining of blood film to demonstrate different types of leucocytes	
	7. Phagocytosis (Demonstration)	
	8. Study of plant microbe interactions: Screening for Auxin production (PGP from Rhizosphere)	
	9. Case studies and problems on Epidemiology	
	10. How to develop epidemiological surveys	
RUSMICP 402	PRACTICAL-2	
	1. Using KEGG, Ecocyc, metacyc, biocyc and Brenda for	
	understanding metabolic networking	
(A)	2. Qualitative detection of	
25	a. Amylase	
	b. Lipase	
	c. Protease	
	d. DNase	
	e. Catalase	

	f. Oxidase	
	g. Carbohydrate fermentation	
	h. Dehydrogenase	
	3. Production and purification of an enzyme	
	4. Assay of an enzyme and determination of enzyme units	70
	5. Determination of km and Vmax of an enzyme	
	6. Effect of environment on enzyme activity:	
	a. Effect of temperature	
	b. Effect of pH	
	c. Effect of enzyme concentration	
	7. Effect of inhibitors	
RUSMICP 403	PRACTICAL-3	
	Isolation of antibiotic producers from soil- Wilkin's overlay	
	method.	
	2. Determination of microbial counts in food using dip slide	
	technique (demonstration)	
	3. Isolation of food spoilage agent	
	4. Determination of TDT and TDP	
	5. Determination of Salt and sugar tolerance	
	6. Determination of MIC of a preservative	
	7. Visit to Food/Dairy industry	
2Pi	8. Rapid platform tests of raw and pasteurized milk.	
	Microbiological analysis of raw and pasteurized Milk.	
	10. Microbiological analysis of Butter, Cheese.	
	11. Surface and submerged fermentation.	
	ı	

12. Testing a packaged meat product for its microbial load.]

Modality of Assessment

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks per paper

Sr No	Evaluation type	Mark
		S
1	One Assignment/Case study/Project/ Presentation	20
2	One class Test (multiple choice questions / objective)	20
	TOTAL	40

B) External Examination- 60%- 60 Marks per paper

Semester End Theory Examination:

- 1. Duration These examinations shall be of **two hours** duration.
- 2. Theory question paper pattern:
 - a. There shall be three questions each of 20 marks one on each unit.
 - b. All questions shall be compulsory with internal choice within the questions.

Paper Pattern:

Question	Options	Marks	Questions Based on
Q.1) A)	Any 3 out of 5	15	
Q.1) B)	Any 1 set out of 2 (i & ii or i & ii)	03 &02	Unit I
Q.2) A)	Any 3 out of 5	15	
Q.2) B)	Any 1 set out of 2 (i & ii or i & ii)	03 &02	Unit II
Q.3) A)	Any 3 out of 5	15	
Q.3) B)	Any 1 set out of 2 (i & ii or i & ii)	03 &02	Unit III

ΤΟΤΔΙ	60	
IOIAL	00	

PANNARAIN RUIA AUTONONOUS COLLIFICIE

PANNARAIN RUIA AUTONOMOUS COLLIF

Practical Examination Pattern:

A) Internal Examination: 40%- 60 Marks

Particulars	Paper I	Paper II	Paper III
Journal	05	05	05
Experimental tasks	15	15	15
Total	20	20	20

B) External Examination: 60%- 90 Marks

Semester End Practical Examination:

Particulars	Paper I	Paper II	Paper III
Laboratory work	25	25	25
Spots/Quiz/Viva	05	05	05
Total	30	30	30

PRACTICAL BOOK/JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.

In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Co-ordinator / Incharge of the department; failing which the student will not be allowed to appear for the practical examination.

Overall Examination & Marks Distribution Pattern Semester IV

	Composed IV										
Course		101		4	102		4	03		Grand Total	
	Internal	External	Total	Internal	External	Total	Internal	External	Total		
Theory	40	60	100	40	60	100	40	60	100	300	
Practicals	20	30	50	20	30	50	20	30	50	150	

Course Title: Microbial Genetics

COURSE	DESCRIPTION
OUTCOME	
CO 1	Understand and differentiate between population and
	quantitative genetics and compare model organisms used in genetic
	studies.
CO 2	Summarize different natural plasmids and transposons
	present in prokaryotes and be able to compare and contrast
	between different plasmids.
CO 3	Understand the coherence of the molecular mechanisms
	involved in DNA replication and outline different enzymes and
	proteins associated with both prokaryotic and eukaryotic DNA
	replication
CO 4	Identify, interpret and classify mutations in DNA followed by
	mechanism of DNA repair
CO 5	Test the effect of mutagens on bacteria and identify mutants
CO 6	Solve and interpret problems based on mapping of bacterial
	genes using transformation, transduction and conjugation
CO 7	Retrieving basic concepts of homologous recombination and genetic
DI.	exchange among prokaryotes

Course	Uni	Course/ Unit Title	Credits/
Code	t		Lectures
RUSMI		MICROBIAL GENETICS	2.5/60
С			
501			
ı		Branches of Genetics, Plasmids, Transposons	15
	1.1	Overview of branches of Genetics	04
		 a) Transmission, Molecular, b) Population Genetics: Hardy-Weinberg Law-principle and violation of assumptions (Mutation, Migration, Genetic Drift, Natural Selection) c) Quantitative Genetics: Characteristics, concept of Heritability, QTLs, Response to selection 	
	1.2	Model Organisms	03
		 a) Characteristics of a model organism b) Examples of select model organisms used in study: <i>E.coli</i>, Yeast, Mouse, <i>Caenorhabditis elegans</i>, <i>Arabidopsis thaliana</i> 	
	1.3	Plasmids	04
2 AM	R	 a) Physical nature b) Detection and isolation of plasmids c) Plasmid incompatibility and Plasmid curing d) Cell to cell transfer of plasmids e) Types of plasmids i. Resistance Plasmids ii. Plasmids encoding Toxins and other Virulence characteristics iii. col factor iv. Degradative plasmids 	
	1.4	Transposable elements in Prokaryotes	04
		 a) Insertion sequences b) Transposons i. Types ii. Structure and properties iii. Mechanism of transposition 	

		iv Transposon mutagonosis	
		iv. Transposon mutagenesis	
		v. Integrons	4 =
II	0.4	DNA Replication	15
	2.1	Historical perspective	04
		a) Conservative	
		b) Dispersive	C_{2}^{\vee}
		c) Semi-conservative	
		d) Bidirectional	
		e) Semi-discontinuous DNA replication	
	2.2	Prokaryotic DNA replication	`04
		Details of molecular mechanism involved in Initiation,	
		Elongation and Termination	
	2.3	Enzymas and proteins associated with DNA	04
	2.3	Enzymes and proteins associated with DNA replication	04
		a) Primase	
		b) Helicase	
		c) Topoisomerase	
		d) SSB	
		e) DNA polymerases	
		f) Ligases	
		g) Ter and Tus proteins	
	2.4	Eukaryotic DNA replication	02
		a) Molecular details of DNA synthesis	
		b) Replicating the ends of the chromosomes	
	2.5	Rolling circle mode of replication	01
III	1	Mutation and Repair	15
	3.1	Mutation	10
		a) <u>Terminology</u> : alleles, homozygous, heterozygous, genotype, phenotype, Somatic mutation, Germline mutation, Gene mutation, Chromosome mutation,	
		phenotypic lag, hotspots and mutator genes	
		b) Fluctuation test.	
25		c) Types of mutations: Point mutation, reverse	
		mutation, suppressor mutation, frameshift	
		mutation, conditional lethal mutation, base pair	
		substitution, transition, transversion, missense	
		mutation, nonsense mutation, silent mutation,	
		neutral mutation, pleiotropic mutations.	
		d) Causes of mutation: Natural/spontaneous	
		mutationreplication error, depurination,	

			Г
		deamination. Induced mutation: principle and	
		mechanism with illustrative diagrams for –	
		i. Chemical mutagens- base analogues, nitrous	
		acid, hydroxyl amine, intercalating agents and	
		alkylating agents.	
		ii. Physical mutagen	_ /</th
		iii. Biological mutagen (only examples)	. (^)
		e) Ames test	
		f) Detection of mutants	
	3.2	DNA Repair	05
		a) Mismatch repair	
		b) Light repair	
		c) Repair of alkylation damage	
		d) Base excision repair	
		e) Nucleotide excision repair	
		f) SOS repair	
IV		Genetic Exchange	15
	4.1	Gene transfer mechanisms in bacteria & homologous	
		recombination	
		a) Transformation	04
		i. Introduction and History	
		ii. Types of transformation in prokaryotes—Natural	
		transformation in Streptococcus pneumoniae,	
		Hemophilus influenzae and Bacillus subtilis	
		iii. Mapping of bacterial genes using transformation	
		iv. Problems based on transformation.	
		b) Conjugation	05
		i. Discovery of conjugation in bacteria	
		ii. Properties of F plasmid/Sex factor	
		iii. The conjugation machinery	
		iv. Hfr strains, their formation and mechanism of	
		conjugation	
	4	v. F' factor, origin and behavior of F' strains,	
		Sexduction.	
	71	vi. Mapping of bacterial genes using conjugation	
		(Wolman and Jacob experiment).	
M.		vii. Problems based on conjugation	
		c) Transduction	03
'		i. Introduction and discovery	
		ii. Generalized transduction	
		iii. Use of Generalized transduction for mapping	
		genes	
		iv. Specialized transduction v. Problems based on transduction	
		v. Froblettis based offitialisudction	
	4.2	Recombination in bacteria	03

1	-	T	
		a) General/Homologous recombination	
		i. Molecular mechanism	
		ii. Holliday model of recombination	
		b) Site–specific recombination	

- a) Peter J. Russell, "Genetics-A molecular approach", 2nd edition, 2006.
- b) Benjamin A. Pierce, "Genetics a conceptual approachl", 3rdedition, 2008, W. H. Freeman and company.
- c) R. H. Tamarin, "Principles of genetics", 2004, Tata McGraw Hill.
- d) D, Nelson and M. Cox, "Lehninger's Principles of biochemistry" 4th edition,2005, Macmillan worth Publishers.
- e) M.Madigan, J. Martinko, J.Parkar, "Brock Biology of microorganisms", 12th edition, 2009, Pearson Education International.
- f) Fairbanks and Anderson, "Genetics", 1999, Wadsworth Publishing Company.
- g) Willey, Sherwood and Woolverton, Prescott's Microbiology, 7th edition, 2013, International edition, McGraw Hill.
- h) Robert Weaver, "Molecular biology", 3rd edition, McGraw Hill international edition.
- i) Nancy Trun and Janine Trempy, "Fundamental bacterial genetics", 2004, Blackwell Publishing.
- j) Snustad, Simmons, "Principles of genetics" 3rd edition, John Wiley & sons, Inc.
- k) Stanier, Ingraham, "General Microbiology",5th edition, Macmillan
- I) Benjamin Lewin, "Genes IX", Jones and Bartlett publishers.
- m) JD Watson, Bake, Bell, Gann, Levine, Losick, "Molecular biology of the gene", 5th edition, Person

Course Title: Medical Microbiology

COURSE OUTCOME	DESCRIPTION
CO 1	Understand modern alternatives to Koch's postulates
CO 2	Summarize the basic aspects of clinical and diagnostic microbiology and implement bacteriological investigations using good laboratory practices
CO 3	Understand, interpret and explain the coherence between pathogenesis mechanisms of microorganisms, clinical manifestation of disease and prophylactic measures of representative bacterial, fungal and parasitic infections in various organ systems
CO 4	Extrapolate the understanding of representative infections of skin, respiratory system, urinary tract, gastro intestinal tract central nervous system to other infections within the same system
CO 5	Given a few key clinical features, design and execute lab diagnostic procedures for any given pathological specimen and test antibiotic susceptibility of the isolated pathogen
CO6	Differentiate between the different classes of antibiotics on the basis of their mechanism of action
C07	Attribute strategies through which microbes acquire anti-microbial resistance
CO8	Check and evaluate drugs/ antibiotics for their efficacy by demonstrating their action on microorganisms

Course	Uni	Course/ Unit Title	Credits/
Code	t		Lectures
RUSMI		MEDICAL MICROBIOLOGY	2.5/60
С			4/
502		<u> </u>	
I		Study of Infectious diseases-I	15
	1.1	Associating Microbes to disease	02
		a) Koch's Postulate and modern alternatives to it b) Molecular Koch's postulates	
	1.2	Introduction to Clinical and diagnostic Microbiology	05
		 a) Phases of diagnostic cycle- Pre analytic, analytic and post analytic b) Introduction to Molecular and immunological methods 	
	1.3	Study of Infectious Diseases-I (With Emphasis on Characteristics of the Aetiological Agent, Pathogenesis & clinical features, Laboratory Diagnosis and Prevention)	08
	7	Respiratory diseases: a) Strep throat by <i>S. pyogenes</i> b) Diphtheria c) Common cold d) Tuberculosis e) Pneumonia caused by <i>K. pneumoniae</i>	
II	RF	Study of Infectious Diseases II (With emphasis on cultural characteristics of the aetiological agent, pathogenesis, laboratory diagnosis and prevention)	15
	2.1	Study of skin infections	05
Sr.		 a) Leprosy b) Pyogenic skin infections caused by Pseudomonas, S. pyogenes and S. aureus. c) Fungal infections- Oral Thrush, Dermatophytosis 	
	2.2	Study of gastrointestinal tract infections	08
		a) Enteric fever- <i>Salmonella</i> b) Shigellosis	

		c) Infections due to pathogenic <i>E. coli</i> strains	
		d) Rotavirus diarrhoea	
		e) Dysentery due to <i>Entamoeba histolytica</i>	
	2.3	. Study of urinary tract infections	02
		a) Predisposing factors	
		b) List of causative agents	
		c) Pathogenesis and laboratory diagnosis	
		, ,	
III		Study of Infectious Diseases III	15
"		(With emphasis on cultural characteristics of the	10
		aetiological agent, pathogenesis, laboratory diagnosis and	
		prevention)	
	3.1	Study of vector-borne infections	03
		a) Rickettsial diseases	
		b) Malaria	
	3.2	Study of sexually transmitted infectious diseases	07
		a) Syphilis b) AIDS	
		c) Gonorrhea	
		c) Gonorniea	
	3.3	Study of central nervous system infectious diseases	05
		a) Tetanus	
		b) Polio	
		c) Meningococcal meningitis	
IV		Chemotherapy of infectious agents	15
	4.1	Introduction to Chemotherapeutic agents	03
		a) Attributes of an ideal chemotherapeutic agent and	
	7	related definitions	
	0-	b) Selection and testing of antibiotics for bacterial	
		isolates by Kirby-Bauer method and other assays (E-test & Checker Board Assay)	
	7,	(L-lest & Checker Board Assay)	
	4.2	Mode of action of antibiotics	08
		a) Cell wall (Beta-lactams- Penicillin and	
		Cephalosporins, Carbapenems)	
		b) Cell Membrane (Polymyxin and Imidazole)	
		c) Protein Synthesis Aminoglycosides	
		(Streptomycin), Macrolide (Erythromycin),	
		Tetracycline and Chloramphenicol	
		d) Nucleic acid (Quinolones, Nalidixic acid,	
		Rifamycin) e) Enzyme inhibitors (Sulfa drugs, Trimethoprim)	
		I .	

4.3	List of common antibiotics used for treating viral, fungal and parasitic diseases, New antibiotics	01
4.4	Mechanisms of drug resistance	03
	Its evolution, pathways and origin	

- a) Brenda Wilson, Abigail Salyer And Dixie Whitt, Bacterial Pathogenesis A molecular approach 3rdEd ASM press 2011
- b) Gary. W. Procop, Dierdre Church et al, Koneman's Color Atlas and Textbook of Diagnostic Microbiology, Seventh Ed, Walters Kluwer, 2017
- c) Willey, Sherwood and Woolverton, Prescott's Microbiology, 9th edition, 2013, International edition, McGraw Hill.
- d) Brooks, Carroll, et al, Jawetz, Melnick & Adelberg's Medical Microbiology, 26th Ed McGraw Hill Lange 2013
- e) Ananthanarayan and Panicker's, Textbook of Microbiology, 10th edition, Ed by Reba Kanugo, Universities Press, 2017
- f) Goering, Dockerel et al, Mim's Medical microbiology, 5th Ed 2013, Saunders

Course	PRACTICALS	3
code	FRACTICALS	Credits
		Ciedits
RUSMICP 501	PRACTICAL 1	
301	UV survival curve – determination of exposure time leading	
	to 90% reduction	/.O*
	Isolation of mutants using UV mutagenesis	
	 Replica plate technique for selection & characterization of mutants – auxotroph & antibiotic resistant 	
	Isolation and detection of plasmid DNA.	
	Preparation of competent cells and transformation	
	Demonstration of conjugation.	
	Assignment on sample collection, transport and processing of any one pathological sample	
	8. Rapid detection of infection in samples from CNS	
	Rapid Direct tests for identification of pathogens-	
	a. Acid fast staining of <i>M. tuberculosis/ M.leprae</i> .	
	b. Metachromatic granule staining for C.diphtheriae	
	c. Catalase test	
	d. Bile solubility test	
	e. Slide coagulase test for S.aureus	
	f. Spot indole test	
	g. Oxidase test	
	h. Modern methods for identification of pathogens.	
	10. Identification of isolates obtained from following samples by	
	morphological, cultural and biochemical properties from-	
	a. Nasal/ throat swabs (URT infection)	
	b. Sputum (LRT infection)	
	c. Skin swab/ pus (Skin infection)	
&	 d. Identification of Candida species using the germ tube test and growth on HiChrom agar 	
	e. Stool (GI tract infection)	
	f. Urine (UTI infection) 11. Demonstration of malarial parasite in blood film	

- 12. Selection and testing of antibiotics using the Kirby-Bauer method
- 13. Determination of MIC of an antibiotic by E-test
- 14. Synergistic action of two drugs
- 15. Determination of MBC of an antibiotic.
- 16. Detection of β lactamase in *S.aureus*.
- 17. Role of plasmids in antibiotic resistance through curing of the plasmid PANNARAIN RUIA AUTONOMOUS

 RANNARAIN RUIA AUTONOMOUS

Course Title: Microbial Biochemistry Part I

COURSE	DESCRIPTION	
OUTCOME		
CO 1	Understand the membrane architecture & critique the modes of solute	
	transportation.	
CO 2	Compare & contrast the mechanism of ATP synthesis in Prokaryotes	
	& Eukaryotes.	
CO 3	Summarize & differentiate the catabolic pathways of carbohydrates &	
	deconstruct its amphibolic nature.	
CO 4	Outline & evaluate the different fermentative pathways in bacteria.	
CO 5	Paraphrase the anabolic pathways for carbohydrate synthesis.	
CO 6	Organize the tally sheet of energetics for different catabolic substrates	
	and solve problems based on these.	
CO 7	Execute & evaluate the experimental aspects of metabolic reactions &	
	differentiate organisms on the basis of their metabolic differences.	

Course	Uni	Course/ Unit Title	Credits/
Code	t		Lectures
RUSMI		MICROBIAL BIOCHEMISTRY PART I	2.5/60
С			
503			
I		Biological Membranes & Transport	15
	1.1	Composition and architecture of membrane	02
		a) Lipids	
		b) Integral & peripheral proteins & interactions with lipids	
		c) Permeability and outer membrane- a barrier	
		d) Aquaporins	
		e) Mechanosensitive channels	
	1.2	Methods of studying solute transport	02
		a) Using whole cells	
		b) Using Liposomes	
		c) Using Proteoliposome	
	1.3	Solute transport across membrane	08
PANT		 a) Passive transport facilitated by membrane proteins. b) Transporters grouped into Superfamilies' ' c) Co transport across plasma membrane (Uniport, Antiport, Symport) d) Active transport & electrochemical gradient e) Ion gradient provides energy for secondary Active transport e.g. Lactose transport f) ATPases and transport g) ABC transporters e.g. Histidine transport h) Shock sensitive system – Role of binding proteins e.g. Maltose uptake i) Phosphotransferase system j) Schematic representation of various Membrane transport mechanisms in. <i>E. coli</i> 	
	1.4	Other examples of solute transport	03
		a) Iron transport: A special problem	-
		b) Bacterial protein export	
		c) Bacterial membrane fusion central to many	
		biological processes	

II		Bioenergetics and Bioluminescence	15
	2.1	Biochemical mechanism of generating ATP	01
		a) Substrate level	
		b) Oxidative	//
		c) Photo Phosphorylation	,6
	2.2	Electron transport chain	03
		a) Universal Electron acceptors that transfer Electrons to ETC. b) Carriers in ETC i. Hydrogen carriers – Flavoproteins, Quinones ii. Electron carriers-Iron sulphur proteins, Cytochromes c) Mitochondrial ETC i. Biochemical anatomy of mitochondria ii. Complexes in Mitochondrial ETC iii. Schematic representation of Mitochondrial	
	2.3	Prokaryotic ETC	03
		a) Organization of electron carriers in bacteria	
		b) Generalised electron transport pathway in bacteria	
		c) Different terminal oxidases	
		d) Branched bacterial ETC	
		e) Pattern of electron flow in <i>E. coli</i> – aerobic an anaerobic f) Pattern of electron flow in <i>Azotobacter vinelandii</i>	
	2.4	ATP synthesis	04
PAM	A.A	 a) Explanation of terms – Proton motive force, Proton Coupling sites, P: O ratio, Redox potential b) Free energy released during electron transfer from I to O₂. c) Chemiosmotic theory d) Structure & function of Mitochondrial ATP synthase (No Kinetics) e) Mechanism by Rotational catalysis f) Structure of bacterial ATP synthase g) Inhibitors of ETC, Inhibitors of ATPase, Uncouplers, Ionophores 	V-1
	2.5	Other modes of generation of electrochemical energy	02
		a) ATP hydrolysis	
		b) Oxalate formate exchange	

	1		
		c) Product efflux, Definition- Lactate efflux	
		d) Bacteriorhodopsin - Definition, Significance,	
		Function as proton pump	
	2.6	Bioluminescence	02
		a) Brief survey of bioluminescent systems	//
		b) Biochemistry of light emission	
		c) Schematic diagram	, ()
		d) Significance / Application	4/,
III		Methods of Studying Metabolism & Catabolism of	15
		Carbohydrates	
	3.1	Experimental Analysis of metabolism	03
		a) Goals of the study	
		b) Levels of organization at which metabolism is	
		studied.	
		c) Metabolic probes	
		d) Use of radioisotopes in biochemistry	
		i. Pulse labelling	
		ii. Assay & study of radio respirometry –to	
		differentiate EMP & ED	
		e) Use of biochemical mutants.	
		f) Sequential induction technique	
		1) Coquential industrict Confinque	
	3.2	Catabolism of Carbohydrates	12
		a) Breakdown of polysaccharides – glycogen, starch,	
		cellulose.	
		b) Breakdown of oligosaccharides– lactose, maltose,	
		sucrose, cellobiose	
		c) Utilization of monosaccharides – fructose,	
		Galactose.	
		d) Major pathways-	
		i. Glycolysis (EMP) & its regulation	
		ii. HMP Pathway & Significance of the pathway	
	()-	iii. ED pathway,	
		iv. TCA cycle, Significance & its regulation	
	7/	v. Anaplerotic reactions	
		vi. Glyoxylate bypass,	
B.		vii. Incomplete TCA in anaerobic bacteria	
		viii. Amphibolic role of EMP and TCA cycle	
(2-)		ix.Energetics of Glycolysis, ED and TCA-	
		Balance sheet and efficiency calculation	
IV		Fermentative Pathway & Anabolism of	15
'V		Carbohydrates	10
	4.1	Fermentative pathways (With structures and enzymes)	04
		a) Lactic acid fermentation –	
		i. Homofermentors	
•	I	i. Homorchicolo	

	ii. Heterofermentors iii. Bifidobacterium pathway (Schematic) b) Alcohol fermentation i. by ED pathway in bacteria ii. by EMP in yeasts	_ </th
4.2	Other modes of fermentations in microorganisms	05
	a) Mixed acid b) Butanediol c) Butyric acid d) Butanol-acetone e) Propionic acid (Acrylate pathway and succinate propionate pathway)	
4.3	Anabolism of Carbohydrates	06
	 a) General pattern of metabolism leading to synthesis of a cell from Glucose b) Gluconeogenesis c) Biosynthesis of Glycogen d) Biosynthesis of Peptidoglycan e) Role of carriers in synthesis of LPS and capsule 	

- a) Stanier R. Y., Ingraham. J. L, Wheelis. M. L, Painter. P. R., General Microbiology, 5th edition, 1987, The Macmillan press Ltd.
- b) Conn, E.E., P. K. Stumpf, G.Bruening and R. Y. Doi, Outlines of Biochemistry, 5th edition, 1987. John Wiley &Sons. New York.
- c) Gottschalk, G., Bacterial Metabolism, 2nd edition, 1985, Springer Verlag.
- d) White, D., The Physiology and Biochemistry of Prokaryotes, 3rd edition, 1995, Oxford University Press.
- e) Nelson, D. L. and M.M. Cox, Lehninger, Principles of biochemistry. 4th edition, 2005, W. H. Freeman and Company.
- f) Rose, A.H. Chemical Microbiology, 3rd edition, 1976, Butterworth-Heinemann.
- g) Zubay, G. L, Principles of Biochemistry, 4th edition, 1996, Wm. C. Brown publishers
- h) Mathews, C.K., K.E. van Holde, D.R. Appling, S.J. Anthony-Cahill, Biochemistry, 4th edition, 2012, Pearson.

- i) Wilson and Walker, Principles & techniques of Biochemistry & Molecular Biology, 7th edition, 2010, Cambridge University Press.

Course Title: Bioprocess Technology

COURSE OUTCOME	DESCRIPTION
CO 1	Understand and execute the process for isolation and strain improvement of industrially important microorganisms
CO 2	Outline the types and significance of sterilization process in fermentation industry
CO 3	Design the process of Inoculum development at various levels of scale-up
CO 4	Understand the assembly and working of typical fermenters and apply the knowledge to operate fermenters in microbiological industries
CO 5	Understand, attribute and apply methods of recovery and purification of fermentation products
CO 6	Recall, infer and apply methods in industrial effluent treatment and correlate it to environment protection
CO 7	Understand and use spectroscopic techniques in Biological analysis
CO 8	Recognize the significant role of different organizations in genesis of Intellectual Property Rights, categorize and use different types of intellectual property rights in protection of intangible properties

Course Code	Uni t	Course/ Unit Title	Credits/ Lecture s
RUSMI C 504		BIOPROCESS TECHNOLOGY	2.5 /60
I		Upstream Processing	15
	1.1	Strains and Strain Improvement of industrial microorganisms	11
		a) Isolation of industrially important microorganisms b) Improvement of industrial microorganisms i. Selection of induced mutants for primary metabolites ii. Isolation of induced mutants for secondary metabolites	
	1.2	Sterilization	04
		 a) Introduction to the concept of media sterilization and Nabla factor b) Design and methods of batch sterilization c) Design and methods of continuous sterilization 	
II		Fermenter equipment and control	15
	2.1	Design of fermenter	05
	AR	a) Inoculum development b) Basics of fermenter i. Aseptic operation and containment ii. Body construction iii. Aeration and agitation c) Achievement and maintenance of aseptic condition i. Valves- function in general and examples ii. Steam Traps- function in general and examples	
	2.2	Types of fermenters	05
8-K		a) Acetator b) Cavitator c) Tower fermenter d) Cylindro conical fermenters e) Air lift fermenters i. Outer loop fermenters ii. Inner loop fermenters f) Cyclone column	

	1		
		g) Packed tower (generator)	
		h) Rotating disc fermenters	
		i) Bubble cap fermenters	
	2.3	Control of Variables	05
		a) Types of variables	
		b) Sensing and control of	
		i. pH	, () [*]
		ii. Temperature	(/,
		iii. Dissolved oxygen	
		iv. Flow measurement	
		v. Pressure	
		vi. Inlet/ Exit gas analysis	
		vii. Foam sensing	
		VIII. I Gain conomig	
III		Downstream processing	15
	3.1	Downstream processing	12
			- -
		a. Recovery & Purification of fermentation products:	
		i. Introduction	
		ii. Precipitation iii. Filtration - theory, filter-aids, batch filters (Plate	
		and frame filters), continuous filters (Rotary	
		vacuum),	
		iv. Centrifugation: flocculating agent, range of	
		centrifuges - Basket, tubular bowl.	
		b. Cell disruption methods: Physico-chemical.	
		c. Liquid – Liquid extraction, Solvent recovery,	
		d. Chromatography –lon exchange &Adsorption	
		e. Membrane processes – Ultrafiltration, reverse	
		osmosis, liquid membranes.	
		f. Drying, Crystallization, Whole broth processing	
	3.2	Environmental aspects	3
	V	a) Modern methods of effluent treatment	
		b) Carbon Credits	
	71		
IV	b	Bioinstrumentation And IPR	15
	4.1	Bioinstrumentation	8
()-)	· · · ·	Principles, working and applications of:	<u> </u>
		a) Spectrophotometry (I. R)	
		b) Atomic absorption (AAS) & Atomic Emission	
		spectroscopy (Flame photometry)	
		c) Mass Spectroscopy- MALDI ToF, ESI	
	4.2	Intellectual Property Rights	7
		a) Introduction to Intellectual Property	1

b) Genesis of IPR - GATT, WTO, TRIPS, World	3
Intellectual Property Organization (WIPO) c) Types of Intellectual Property – Patents, Copyright, Trademark, Trade secret, Plant varieties protection	3
act, Industrial Designs, Geographical Indications	4.

- a) Casida L. E., "Industrial Microbiology" (2009) Reprint, New Age International (P)Ltd, Publishers, New Delhi
- b) Stanbury P. F., Whitaker A. & Hall S. J., (1997), "Principles of Fermentation Technology", 2nd Edition, Aditya Books Pvt. Ltd, New Delhi.
- c) H. A. Modi, (2009). _ 'Fermentation Technology "Vols 1 & 2, Pointer Publications, India
- d) Okafor Nduka (2007) _ 'Modern Industrial Microbiology and Biotechnology ", Science Publications Enfield, NH, USA.
- e) G Y Shitole and Ram Sable (2012) Environmental Degradation Issues and Challenges (Research publication)
- f) Crueger W. and Crueger A. (2000) "Biotechnology -"A Textbook of Industrial Microbiology", 2nd Edition, Panima Publishing Corporation, New Delhi.
- g) Principles and Techniques of Biochemistry and Molecular Biology by Wilson/Walker 7th Edition
- h) Brian McNeil & Linda M. Harvey, Practical Fermentation Technology, John Wiley and Sons. Pvt. Ltd. (2008).
- i) WIPO Publication No. 450(E) ISBN 978-92-805-1555-0
 https://www.wipo.int/edocs/pubdocs/en/intproperty/450/wipo_pub_450.pdf

Course code	PRACTICALS	3 Credits
RUSMICP502	PRACTICAL 2	
	Isolation and detection of Mitochondria	
	Isolation and study of Bioluminescent organisms	1,0
	Study of oxidative and fermentative metabolism	
	Carbohydrate fermentation tests	
	Mixed acid fermentations- Detection of organic	
	acids by TLC	
	Study of Homo and Hetero fermentation in Lactic	
	acid bacteria	
	7. Detection of enzyme phosphatase	
	Quantitative assay of Phosphatase	
	Stormy fermentation	
	10. Strip Plate Technique	
	11. Streak Plate Technique	
	12. Gradient plate technique for isolation of mutants.	
	13. Production and detection of vitamin B12 by bioautography.	
	14. Demonstration of IR spectroscopy and analysis of IR spectrum of one compound	
	15. Demonstration of GC-MS/ LC-MS	

Modality of Assessment:

Theory Examination Pattern:

A. Internal Assessment- 40%- 40 Marks per paper

Sr No	Evaluation type	Mark s
1	One Assignment/Case study/Project/ Presentation	20
2	One class Test (multiple choice questions / objective)	20
	TOTAL	40

B. External Examination- 60%- 60 Marks per paper **Semester End Theory Examination:**

- 1. Duration These examinations shall be of **two hours** duration.
- 2. Theory question paper pattern:

 - a. There shall be four questions each of 15 marks on each unit.b. All questions shall be compulsory with internal choice within the questions.

Paper Pattern:

Questions	Options	Marks	Total marks	Questions on
Q.1) A)	Any 2 out of 3	10		
Q.1) B)	Any 1 set out of 2 (i & ii or i & ii)	03 & 02	15	Unit I
Q.2) A)	Any 2 out of 3	10		
Q.2) B)	Any 1 set out of 2 (i & ii or i & ii)	03 & 02	15	Unit II
Q.3) A)	Any 2 out of 3	10		
Q.3) B)	Any 1 set out of 2 (i & ii or i & ii)	03 & 02	15	Unit III
Q.4) A)	Any 2 out of 3	10		
Q.4) B)	Any 1 set out of 2 (i & ii or i & ii)	03 & 02	15	Unit IV

Practical Examination Pattern:

A. Internal Examination: 40%-80 Marks

Practical		I		
Particulars	Paper I	Paper II	Paper III	Paper IV
Journal	05	05	05	05
Experimental tasks	15	15	15	15
Total	20	20	20	20

B. External Examination: 60%- 120 Marks

Semester End Practical Examination:

Particulars	Practical I	Practical II		
Laboratory work	50	50		
Spots/Quiz/Viva	10	10		
Total	60	60		

PRACTICAL BOOK/JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination. In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Co-ordinator / In charge of the department; failing which the student will not be allowed to appear for the practical examination.

Overall Examination and Marks Distribution Pattern Semester V

Course	501			502			503		504		Grand Total		
	ln	Ex	Total	ln	Ex	Total	In	Ex	Total	In	Ex	Total	
Theory	40	60	100	40	60	100	40	60	100	40	60	100	400
Practical	20	30	50	20	30	50	20	30	50	20	30	50	200

Course Title: Gene Manipulation, Bioinformatics, & Virology

COURSE	DESCRIPTION
OUTCOME	
CO 1	Understand and explain the fundamentals of gene manipulation
CO 2	Implement bioinformatics tools for genetic analysis and structure building
CO 3	Correlate structure and function of important cell components of prokaryotic and eukaryotic cells
CO 4	Recalling and categorising various genes and proteins involved in functioning of prokaryotic and eukaryotic structures
CO 5	Summarizing the structure, classification, enumeration, cultivation and life cycle of viruses.
CO 6	Recognise and compare the commonly used terms like cancer, prions, viroids and their replication mechanisms
CO 7	Independently illustrate regulation of lytic and lysogenic pathway of lambda phage
CO 8	Test the presence of coliphages and execute experiments for their enumeration

Course Code	Uni t	Course/ Unit Title	Credits/ Lectures
RUSMI C 601		GENE MANIPULATION, BIOINFORMATICS, &VIROLOGY	2.5/60
I		Gene Manipulation	15
	1.1	Basic Principles of Gene Manipulation	12
		 a) Cutting and joining DNA: Restriction endonucleases, Ligases, Linkers and Adapters b) Cloning vectors: Characteristics of a good vector, Plasmid vectors, Bacteriophage λ, Expression vectors c) Cloning strategies: Genomic libraries, cDNA libraries, PCR 	
	1.2	Emerging techniques in Genome sciences	03
		a) Microarray technologiesb) Karyotypingc) CRISPR-based technologies and applications	
II		Bioinformatics & Cell Biology	15
	2.1	Bioinformatics	06
PAM	AR	 a) Introduction Definition, aims, tasks and applications of Bioinformatics. Overview of prominent Databases, tools and their uses Importance, Types and classification of databases Nucleic acid sequence databases- EMBL, GenBank, Ensembl Protein sequence databases-PIR, SWISS-PROT, TrEMBL Protein structure databases: PDB, Cn3D. Pathway analysis: KEGG. Applications: Transcriptome, Metabolomics, Pharmacogenomics, 	

		ii. Phylogenetic analysis, Phylogenetic tree,	
		Annotation, SNPs	
		iii. Sequence alignment global v/s local	
		alignment, FASTA file format, BLAST.	
		iv. Genomics- structural, functional and	
		comparative genomics.	
		v. e. Proteomics- structural and functional	
		proteomics.	
	2.2	Cell Biology of Prokaryotes and Eukaryotes	09
		a) Revision of structure and function of Cell wall,	
		capsule, flagella and endospore of prokaryotes	
		b) Cytoskeleton and cell motility	
		i. Prokaryotic cytoskeleton: ftsZ and its role in	
		cell division	
		ii. Structure and function: Microtubules, Microfilaments, Intermediate filaments	
		iii. Microtubular organelles – Cilia, Flagella	
		and centrioles	
		iv. Molecular motors: Myosins, Kinesins,	
		Dyenin	
III		Basic Virology	15
	3.1	Viral architecture	04
		a) Capsid, viral genome and envelope	
		b) Structure of TMV, T4, Influenza virus, HIV	
	3.2	Viral classification	02
	0.0	The shirt was the street was to	0.4
	3.3	The viral replication cycle	04
	7	a) attachment,	
	0-	b) penetration,	
		c) uncoating,	
	71	d) types of viral genome and their replication,	
		e) assembly,	
M.		f) maturation and release	
	3.4	Life eyele of viruses	05
	J. 4	Life cycle of viruses a) T4 phage,	03
_		b) TMV,	
		c) Influenza Virus and	
		d) HIV	
IV	4.	Advanced Virology	15
	4.1	Cultivation of viruses	05

		.	
		a) Cell culture techniques,	
		b) embryonated egg,	
		c) laboratory animals,	
		d) Cell culture methods:	
		e) Equipment required for animal cell culture,	/,
		f) Isolation of animal tissue	
			,0
	4.2	Visualization and enumeration of virus particles	03
		a) Measurement of infectious units	
		i. Plaque assay	
		ii. Fluorescent focus assay	
		iii. Infectious centre assay	
		iv. Transformation assay	
		v. Endpoint dilution assay.	
		b) Measurement of virus particles and their	
		components	
		i. Electron microscopy	
		ii. Atomic force microscopy	
		iii. Haemagglutination	
		iii. Measurement of viral enzyme activity.	
	4.3	Regulation of lytic and lysogenic pathway of lambda	03
		phage	
	4.4	Role of viruses in cancer	02
		a) Definitions,	
		b) characteristics of cancer cell,	
		c) cancer multi step process,	
		d) Human DNA tumor viruses-	
		i. EBV,	
		ii. Kaposi's sarcoma virus,	
	0	iii. Hepatitis B and C virus,	
		iv. Papilloma Virus	
	71		
-11	4.5	Prions and viroids	02
Ch.		Thomas and Filolog	
	<u> </u>		

- a) R. H. Tamarin, (2004), "Principles of genetics", Tata McGraw Hill.
- b) M. Madigan, J. Martinko, J. Parkar, (2009), "Brock Biology of microorganisms", 12th ed., Pearson Education International.
- c) Fairbanks and Anderson, (1999), "Genetics", Wadsworth Publishing Company.
- d) Prescott, Harley and Klein, "Microbiology" 7th edition McGraw Hill international edition.
- e) Edward Wagner and Martinez Hewlett, (2005) "Basic Virology", 2nd edition, Blackwell Publishing
- f) Teri Shors, (2009), "Understanding viruses", Jones and Bartlett publishers.
- g) S.Ignacimuthu, (2005), "Basic Bioinformatics", Narosa publishing house.
- h) Robert Weaver, (2008), "Molecular biology", 3rd ed. McGraw Hill international edition.
- i) Primrose and Twyman, (2001), "Principles of gene manipulation and genomics", 6thed, Blackwell Publishing
- j) Arthur Lesk, (2009), "Introduction to Bioinformatics", 3rd Edition, Oxford University Press
- k) Snustad, Simmons, "Principles of genetics", 3rdedn. John Wiley & sons, Inc.
- I) Lodish, Scott." Molecular cell biology,7th edn, Macmillan higher education, International ed.
- m) Flint, Enquist, Racanillo and Skalka, "Principles of virology", (2009)3rdedn. ASM press
- n) T. K. Attwood & D. J. Parry-Smith, (2003), "Introduction to bioinformatics", Pearson education
- o) Benjamin Lewin, (2014) 9th edition, "Genes IX", Jones and Bartlett publishers.
- p) JD Watson, Baker (2004) 5thedn. "Molecular biology of the gene", CSHL Press and Benjamin Cummings
- q) Jonathan Pevsner, Bioinformatics and Functional Genomics, 3rd Edition, 2015, Wiley Blackwell
- r) Jin Xiong, Essential Bioinformatics, 1st Edition, 2006, Cambridge University Press

Course Title: Immunology

COURSE OUTCOME	DESCRIPTION
CO 1	Evaluate molecules for their antigenicity and explain role of haptens in
	elucidating molecular nature of antigens
CO 2	Outline mechanisms of antigen processing and presentation and the
	molecules involved thereof
CO 3	Understand the mechanisms of receptor-ligand interactions between
	cells involved in acquired as well as innate immune mechanisms
CO 4	Retrieve the process of T and B cell activation and proliferation in
	response to antigenic stimuli
CO 5	Summarize and compare the effector responses- Humoral Immunity &
	Cell Mediated Immunity
CO 6	Extrapolate the role of immune system in disease: Unregulated
	response- Hypersensitivity; exemplify the different types
CO 7	Understand the mechanism of Antigen-Antibody interaction &
	illustrate and execute immunological techniques for disease diagnosis
CO 8	Apply the concept of immunity for protection from disease by
M	development of vaccine

Course Code/	Uni t	Course/ Unit Title	Credits/ Lectures
Unit	'		Lectures
RUSMI C 602		IMMUNOLOGY	2.5/60
I		Antigens and Antigen- antibody reactions	15
	1.1	Overview of innate and acquired immunity, cells and organs in immune responses	02
	1.2	Antigens	05
		 a) Immunogenicity versus antigenicity b) Factors that influence immunogenicity, Contribution of the biological system to immunogenicity c) Epitopes / antigen determinants (only concepts) d) Haptens and antigenicity e) Immunogenicity of some natural substances – native globular proteins, polysaccharides, lipids, nucleic acids Types of antigens – heterophile antigens, isophile antigens, sequestered antigens, super antigens, bacterial and viral antigens 	
	1.3	Antigen-Antibody reactions	08
2AM	ARI	 a) Generation of Antibodies for experimental systems-Monoclonal antibodies b) Western Blotting c) Immunoprecipitation based assays d) Agglutination, passive agglutination, agglutination inhibition, e) Solid Phase assays- Radioimmunoassay (RIA), Enzyme immunoassays (EIA), f) Immunofluorescence, Immunohistochemistry g) Flow Cytometry, Fluorescence Activated Cell Sorting 	
II		Antigen presentation and Activation of Immune cells	15
	2.1	MHC complex and MHC molecules	03

		a) Structure of class I, and class II molecules; class III	
		molecules	
		b) Peptide – MHC interaction	
	2.1	Antigen processing and presentation	02
		a) Antigen presentation- professional and	
		nonprofessional cells	, (') ^v
		b) Antigen processing and presentation	
	2.2	Receptor Ligand interactions and activation in T cells	05
		a) TcR, (alpha-beta, gamma-delta TcR), TcR-CD3 complex structure & functions, Accessory molecules.	
		b) T cell activation, T cell differentiation, Subsets of T cells (TH1, TH2, TH17, T reg), Formation of Memory cells	
	2.3	Receptor Ligand interactions and activation in B cells	05
		 a) B- cell receptors, Receptor associated molecules, receptor clustering. Antigen processing by B cells B cell activation and differentiation –Antigen recognition and presentation by B cells, Formation of germinal centres and memory cells. b) B-cell responses to Thymus dependent and independent antigens 	
III		Acquired Immune Responses and Innate	15
	-	Immune Mechanisms	_
	3.1	Cytokines	02
		a) Properties, types and functions b) Cytokines secreted by Th1 and Th2 cells	
ell,	3.2	Humoral Response	04
6 k		a) Introduction of Humoral response, Primary and secondary responses b) Affinity maturation and somatic hyper mutation,	
		Ig diversity, class switching	
	3.3	Cell mediated effector response	03
		a) Generation and target destruction by Cytotoxic T cells. CNIC III	
		b) Killing mechanism of NK cells.	

	3.4	Innate Immune mechanisms	04
		a) Role of PAMPs and PRRs in phagocytosis eg LPS b) Role of cytokines and chemokines in phagocytosis c) Induced proteins by PRR signalling d) Innate immunity and septic shock	
	3.5	Interactions between Innate and Acquired immunity	02
IV		Vaccines, Immunohematology And Hypersensitivity	15
	4.1	Vaccines	05
		a) Active and passive immunization b) Types of vaccines - Killed and attenuated vaccines, Whole organism vaccines, Purified macromolecules as vaccines, recombinant viral vector vaccines, DNA vaccines c) Use of adjuvants in vaccine d) New vaccine strategies, Ideal vaccine	
	4.2	Immunohematology	05
		a) Human blood group systems, ABO, secretors and non-secretors, Bombay Blood group b) Rhesus system and list of other blood group systems. c) Haemolytic disease of new born, Coombs test.	
	4.3	Hypersensitivity	05
		Coombs and Gell's classification Type I to Type IV hypersensitivity - Mechanism and manifestation.	

- a) Thomas J. Kindt, Barbara A. Osborne, Richard A. Goldsby, Kuby Immunology, 6th ed, W. H. Freeman & Company 2005
- b) Oven, Punt, Stranford, Kuby Immunology,7th ed W.H. Freeman, 2013
- c) Sulabha Pathak, Urmi Palan, Immunology: Essential and Fundamental, 3rd Ed, Anshan Ltd, 2011
- d) Davis, Dulbecco, Eisen and Ginsberg, Microbiology, 4th ed, Lippincott Williams and Wilkins, 1990.
- e) Fahim Halim Khan, The Elements of Immunology, Pearson Education, 2009

COURSE	PRACTICALS	3
CODE		Credits
BUOMO	DDAOTIOAL 4	
RUSMIC P601	PRACTICAL 1	
1 001	1. Isolation of genomic DNA of <i>E. coli</i> and measurement of its	
	concentration by UV-VIS.	, () ·
	Restriction digestion of plasmid DNA	4/
	3. Demonstration of PCR	
	Bioinformatics practical On Line Practical	,
	a. Visiting NCBI and EMBL websites & list services available,	
	software tools available and databases maintained	
	b. Visiting & exploring various databases mentioned in syllabus	
	 i. Using BLAST and FASTA for sequence analysis 	
	ii. Fish out homologs for given specific sequences (by	
	teacher – decide sequence of some relevance to their	
	syllabus and related to some biological problem e.g.	
	evolution of a specific protein in bacteria, predicting	
	function of unknown protein from a new organism based on	
	its homology)	
	iii. Six frame translation of given nucleotide sequence	
	iv. Restriction analysis of given nucleotide sequence	
	v. Pair-wise alignment and multiple alignment of a given	
	protein sequences	
	vi. Formation of phylogenetic tree	
	5. Enrichment of coliphages from sewage	
	6. Enumeration of phages- Phage assay (pilot & proper).	
	 Demonstration of chick embryo inoculation Antigen Preparation: 'O'& 'H' antigen preparation of 	
	Salmonella. Confirmation by slide agglutination	
	Electrophoresis of serum.	
	10. Demonstration of soluble antigens by precipitation reaction.	
~~	11. Immunodiagnostics- Dreyer's drop Widal test	
	12. Diagnosis of syphilis- TRUST antigen kit	
	13. Demonstration of ELISA	
25	14. Blood grouping – Direct & Reverse typing	
	15. Major and minor compatibility test	
	16. Determination of Isoagglutinin titre	
	17. Coomb's Direct test	

Course Title: Microbial Biochemistry Part II

COURSE	DESCRIPTION	
OUTCOME		
CO 1	Categorize lipids into different classes based on their structure	
CO 2	Map the steps in the biochemical pathway for metabolism of lipids	
CO 3	Outline pathways for biochemical synthesis, degradation and recycling of nucleic acids	
CO 4	Explain mechanisms of catabolism of protein and synthesis of amino acid synthesis in the cell	
CO 5	Compare and contrast between various levels of metabolic regulation	
CO 6	Explain process of prokaryotic photosynthesis and attribute it to photosynthetic pigments, photochemical apparatus and light and dark reactions	
CO 7	Compare and contrast metabolism of different inorganic compounds and outline the concept of Lithotrophy	
CO 8	Execute and implement enzyme assays and testing of metabolic processes	

Course Code	Uni t	Course/ Unit Title	Credits/ Lectures
RUSMI C 603		MICROBIAL BIOCHEMISTRY PART II	2.5/60
I		Lipid Metabolism & Catabolism Of Hydrocarbons	15
	1.1	General introduction to Lipids	02
		 a) Lipids and their functions b) Action of lipases on triglycerides /tripalmitate c) Phospholipids and their properties d) Common phosphoglycerides in bacteria 	
	1.2	Catabolism of Lipids	05
		 a) Oxidation of saturated fatty acid- β oxidation pathway, Energetics of β oxidation of Palmitic acid b) Oxidation of propionic acid. c) Degradation of poly beta hydroxy butyrate 	
	1.3	Anabolism of Lipids	05
		 a) Biosynthesis of straight chain even carbon saturated fatty acid (palmitic acid) b) Biosynthesis of phosphoglycerides in bacteria c) Biosynthesis of PHB 	
	1.4	Catabolism of aliphatic hydrocarbons	03
	RP	a) Oxidation of saturated aliphatic hydrocarbon (n-alkane) b) Omega oxidation pathway- c) Pathway in Corynebacterium and yeast d) Pathway in Pseudomonas	
VII.	0.4	Metabolism Of Proteins And Nucleic Acids	15
	2.1	a) Enzymatic degradation of proteins b) Metabolic fate of amino acids (schematic only c) Metabolism of single amino acids – i. Deamination reactions ii. Decarboxylation iii. Transamination	05

		 e) Fermentation of single amino acid -Glutamic acid by Clostridium 	
		f) Fermentation of pair of amino acids -Stickland reaction	
	2.2	Amino acid synthesis	04
		a) Schematic representation of amino acid familiesb) Synthesis of amino acids of Aspartate family	
	2.3	Nucleic acid Catabolism	03
		a) Degradation of purine nucleotides up to uric acid formation	
		b) Recycling of purine and pyrimidine nucleotides by salvage pathway	
	2.4	Anabolism of Nucleic Acids	03
		a) Metabolic origin of atoms in purine and pyrimidine ringb) Biosynthesis of pyrimidine nucleotides.	
		c) Biosynthesis of purine nucleotides.	
		d) Formation of deoxyribonucleotides.	
		e) Synthesis of nucleotide diphosphates and	
		triphosphates.	
		f) Role of nucleotides (high energy triphosphates)	
III		Metabolic Regulation	15
	3.1	Overview and major modes of regulation	01
		Examples of cellular control mechanism acting at various levels of metabolism (tabulation only)	
	3.2	Allosteric proteins	04
	R	 a) Definition b) Allosteric enzymes - Role of allosteric enzymes using ATCase as example (no kinetic study) c) Regulatory allosteric proteins 	
CRANT		 i. Interaction of proteins with DNA ii. Structure of DNA Binding proteins iii. Examples - Lac repressor, Trp repressor, 	
		CAP protein iv. Definition and examples of alarmones	
	3.3	Regulation of gene expression (Transcription)	06
		 a) Introduction to operon model b) Common patterns of regulation of transcription – General concept of positive and negative 	

		regulation of operons i. Lac operon - Mechanism of regulation - Induction - Catabolite repression ii Trp operon - End Product Repression - Attenuation c) Regulation of gene expression i. Multiple Sigma Factors ii. Riboswitches	
	3.4	Regulation of enzyme activity (Post translational regulation)	04
		a) End-Product Inhibition and Mechanism of End Product Inhibition in branched pathways with examples i. Isofunctional enzymes ii. Concerted feedback inhibition iii. Sequential feedback inhibition iv. Cumulative Feedback inhibition v. Combined activation and inhibition b) Covalent modifications of enzymes i. General examples without structure ii. Monocyclic cascade &inter-convertible enzyme definition iii. Glutamine synthetase system of <i>E.coli</i> iv. Regulation by proteolytic cleavage	
		Prokaryotic Photosynthesis & Inorganic Metabolism	15
	4.1	Prokaryotic photosynthesis	09
PANT	R	 a) Early studies on photosynthesis i. Light and dark reactions ii. Bacterial photosynthesis iii. Hill reaction b) Phototrophic prokaryotes -Oxygenic, Anoxy phototrophs examples only c) Photosynthetic pigments d) Location of photochemical apparatus e) Photophosphorylation f) Light reactions in i. Purple photosynthetic bacteria ii. Green sulphur bacteria ii. Cyanobacteria (with details) g) Dark reaction i. Calvin Benson cycle ii. Reductive TCA 	
	4.2	Inorganic Metabolism	06
		a) Assimilatory pathways-	03

 i. Assimilation of nitrate, ii. Ammonia fixation – Glutamate dehydrogenase, iii. Glutamine synthetase, GS-GOGAT, Carbamoyl phosphate synthetase iv. Biological nitrogen fixation (Mechanism for N2 fixation and protection of nitrogenase) v. Assimilation of sulphate b) Dissimilatory pathways- i. Nitrate as an electron acceptor (Denitrification in <i>Paracoccus denitrificans</i>) ii. Sulphate as an electron acceptor c) Lithotrophy– Enlist organisms and products formed oxidation of Hydrogen, carbon monoxide, Ammonia, Nitrite, Sulphur, Iron. 	1
7 uninoma, ruanto, Galphai, nom	

- a) Stanier, R. Y., M. Doudoroff and E. A. Adelberg. General Microbiology, 5th edition, The Macmillan press Ltd
- b) Conn, E.E., P. K. Stumpf, G. Bruening and R. Y. Doi. 1987. Outlines of Biochemistry, 5th edition, 1987. John Wiley & Sons. New York.
- c) Gottschalk, G., (1985), Bacterial Metabolism, 2nd edition, Springer Verlag
- d) White, D., (1995), The Physiology and Biochemistry of Prokaryotes, 3rd edition, Oxford University Press
- e) Nelson, D. L. and M.M. Cox (2005), Lehninger, Principles of biochemistry. 4th edition, W. H. Freeman and Company.
- f) Salle, A.J. Fundamental Principles of Bacteriology, 7thedn McGraw Hill Book Co.
- g) Cohen, G.N. (2011). Microbial Biochemistry. 2ndedn, Springer
- h) Madigan, M.T. and J.M. Martinko 2006. Brock Biology of Microorganisms. Pearson Prentice Hall;
- i) Biochemistry 3rd edition, Mathew, Van Holde and Ahern, Pearson Education
- j) Zubay, G. L (1996), Biochemistry, 4th edition, Wm. C. Brown publishers
- k) Principles of Biochemistry, Lehninger, 5thednW. H. Freeman and Company

Course Title: Industrial Microbiology

COURSE OUTCOME	DESCRIPTION
CO 1	Understand and outline the processes of fermentation for the bulk
	production of primary and secondary metabolites and summarize the
	significance of each step
CO 2	Outline the production of commercially important fermentation
	products like fermented foods, alcoholic beverages, SCP, probiotics
	etc.
CO 3	Extrapolate the examples studied to design and execute conventional
	fermentation processes and be able to collaborate to set up an
	enterprise
CO 4	Explain the principles underlying Bioassays and differentiate and
	compare the methods of Biological assays
CO 5	Test and evaluate activity of fermentation products using
	microbiological assays
CO 6	Summarize factors responsible for contamination during production of
	sterile products, execute preventive measures against contamination
CO 7	Evaluate effectiveness of sterilization procedures and assess the
57	Microbiological Quality of pharmaceutical products
CO 8	Outline the salient features of quality management and Good
	Manufacturing Practices

Course Code	Uni t	Course/ Unit Title	Credits/ Lecture s
RUSMI C 604		INDUSTRIAL MICROBIOLOGY	2.5 /60
I		Industrial Fermentations: I	15
		 a) Types of alcoholic beverage. b) Beer –Ale and Lager c) Wine –Red and white & Champagne d) Vinegar (acetator& Generator) e) Bioethanol production- 	1 3 4 2 3
		-From feedstock to fermentable sugars - Zymomonas mobilis as an alternate ethanol producer f) Acetone Butanol Fermentation	2
II		Industrial Fermentations: II	15
	2.1	Production of secondary metabolites- Antibiotics- Penicillin& Semisynthetic Penicillins	04
	2.2	Production of primary metabolites-	
		 a) Vitamin B₁₂ from <i>Propionibacterium</i> & <i>Pseudomonas</i> b) Amino acids- Methods for manufacture, Glutamic Acid (direct) 	03 01
		c) Organic acids- Citric acid	02
	0	d) Enzymes- Uses of enzymes in industry, Production of Fungal amylase by solid substrate fermentation, Stabilization of enzymes- Immobilization techniques	04
4		e) Biotransformation of steroids	01
III		Industrial Fermentations: III	15
" En,	3.1	a) Mushroom cultivation	03
		b) SCP- Substrates used, Organisms and safety	03
~		c) Fermented foods- Bread, Fermented cassava, Kombucha tea	03
		 d) Mold modified foods- Types (list only), Production of Soya sauce e) Lactic acid starter cultures, Probiotics, Prebiotics and Synbiotics 	02 04
IV		Bioassays & Quality Assurance	15

4.1	Bioassays	05
	 a) Comparison of Chemical and Biological assays b) Microbiological assays- Test organisms, types of assay methods and factors affecting. c) Modern methods for assay of fermentation products 	//
4.2	QA, QC, GMP	07
	 a) Definitions- Manufacture, Quality, Quality Control, In-Process Control, Quality Assurance, Good Manufacturing Practices. b) Chemicals & Pharmaceutical production: The five variables, Raw materials, in process Items, Finished Products, Labels and Labelling, Packaging materials, Documentation, Regulations. c) Control of Microbial contamination during manufacture: Premises and contamination control Manufacture of sterile products, Clean and Aseptic Area, Important publications related to QA 	
4.3	Sterilization Control and Sterility Assurance	03
	 a) Bio-burden determinations b) Environmental monitoring c) Sterilization Monitors – Physical, Chemical and Biological indicators d) Sterility Testing 	

- a) Crueger W. and Crueger A. (2000) "Biotechnology -"A Textbook of Industrial Microbiology", 2nd Edition, Panima Publishing Corporation, New Delhi.
- b) Casida L. E., "Industrial Microbiology 2009 Reprint, New Age International (P) Ltd, Publishers, New Delhi
- c) H. A. Modi, 2009. 'Fermentation Technology "Vol: 1 & 2, Pointer Publications, India
- d) Prescott and Dunn's 'Industrial Microbiology' (1982) 4th Edition, McMillan Publishers
- e) Hugo & Russell's, Pharmaceutical Microbiology Blackwell Science, Seventh Edition
- f) Peppler, H. J. and Perlman, D. (1979), "Microbial Technology". Vol 1 & 2, Academic Press.
- g) Michael J. Waites, 2001 —Industrial Microbiology: An Introduction, Blackwell Science Publications
- h) Naduka Okafor, —Modern Industrial Microbiology, Science Publications, 2007
- R. W. Hutkins, "Microbiology and Technology of Fermented Foods (2006) Blackwell Publications p067-105

- j) https://www.dairyscience.info/index.php/cheese-starters/49-cheese-starters.html
- k) Marth and Steele, "Applied Dairy Microbiology", Lactic acid starter cultures, (2001)
- PANNARAIN PRINTARY PARINARY PA I) Probiotics and Prebiotics

COURSE CODE	PRACTICALS	3	3
			Credits
RUSMICP602	Practical Based on	603	
RUSIVIICP002	Fractical Based Oil	003	
	 Qualitative detection of Lipase 		
	Estimation of proteins by Lowi	ry's method	, (O'
	Qualitative detection of Protea	ase	4/
	Assay of enzyme Protease		
	5. Study the breakdown of a	mino acids – Lysine	
	decarboxylase and Deaminas	e activity	
	Estimation of uric acid		
	To study catabolite repression	6	
	Study of Hill reaction		
	Study of photosynthesis in mid	/ - \	
	Study of Lithotrophs – Nitrifica	ıtion	
	Alcohol tolerance for yeast.	4,	
	12. Sugar tolerance for yeast.	*	
	13. Inoculum Development for alc		
	14. Alcohol fermentation.: -Efficier	,	
	15. Chemical estimation –Sugar	by Cole's Ferricyanide	
	method		
		Alcohol Estimation-	
	Dichromate method		
	17. GC demonstration of ethanol		
	18. Production of fungal amylase	using solid substrate	
	fermentation		
	19. Immobilization of yeast inverta	ase	
	20. Mushroom cultivation		
	21. Production of Spirulina SCP		
	22. Bioassay of an antibiotic Ampi		
	23. Bioassay of Cyanocobalamin.		
16	24. Chemical assay of Ampicillin		
	25. Sterility testing of water for injury	ection.	

+

Modality of Assessment:

Theory Examination Pattern:

A. Internal Assessment- 40%- 40 Marks per paper

Sr No	Evaluation type	Mark s
1	One Assignment/Case study/Project/ Presentation	20
2	One class Test (multiple choice questions / objective)	20
	TOTAL	40

B. External Examination- 60%- 60 Marks per paper

Semester End Theory Examination:

- 1. Duration These examinations shall be of **two hours** duration.
- 2. Theory question paper pattern:
 - a. There shall be four questions each of 15 marks on each unit.
 - b. All questions shall be compulsory with internal choice within the questions.

Paper Pattern:

Questions	Options	Marks	Total marks	Questions on
Q.1) A)	Any 2 out of 3	10		
Q.1) B)	Any 1 set out of 2 (i & ii or i & ii)	03 & 02	15	Unit I
Q.2) A)	Any 2 out of 3	10		
Q.2) B)	Any 1 set out of 2 (i & ii or i & ii)	03 & 02	15	Unit II
Q.3) A)	Any 2 out of 3	10		
Q.3) B)	Any 1 set out of 2 (i & ii or i & ii)	03 & 02	15	Unit III
Q.4) A)	Any 2 out of 3	10		
Q.4) B)	Any 1 set out of 2 (i & ii or i & ii)	03 & 02	15	Unit IV

Practical Examination Pattern:

A. Internal Examination: 40%-80 Marks

Practical		I					
Particulars	Paper I	Paper II	Paper III	Paper IV			
Journal	05	05	05	05			
Experimental tasks	15	15	15	15			
Total	20	20	20	20			

B. External Examination: 60%- 120 Marks

Semester End Practical Examination:

Particulars	Practical I	Practical II
Laboratory work	50	50
Spots/Quiz/Viva	10	10
Total	60	60

PRACTICAL BOOK/JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination. In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Co-ordinator / In charge of the department; failing which the student will not be allowed to appear for the practical examination.

Overall Examination and Marks Distribution Pattern Semester VI

Course	601		602		603			604	Gran d Total				
	In	Ex	Total	In	Ex	Total	In	Ex	Total	In	Ex	Total	
Theory	4 0	60	100	4 0	60	100	4 0	60	100	40	60	100	400
Practical	2 0	30	50	2 0	30	50	2 0	30	50	20	30	50	200