S. P. Mandali's Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for MSc Part I

Program: MSc (Microbiology)

Program Code: RPSMIC

(Credit Based Semester and Grading System for academic year 2021–2022)

PROGRAM OUTCOMES

In the post graduate courses, S.P.Mandali's Ramnarain Ruia Autonomous College is committed to impart conceptual and procedural knowledge in specific subject areas that would build diverse creative abilities in the learner. The College also thrives to make its Science post graduates research/ job ready as well as adaptable to revolutionary changes happening in this era of Industry 4.0.

РО	PO Description
	A student completing Master's Degree in Science program
	will be able to:
PO 1	Demonstrate in depth understanding in the relevant science
	discipline. Recall, explain, extrapolate and organize conceptual
	scientific knowledge for execution and application and also to
	evaluate its relevance.
PO 2	Critically evaluate, analyze and comprehend a scientific problem.
	Think creatively, experiment and generate a solution
	independently, check and validate it and modify if necessary.
PO 3	Access, evaluate, understand and compare digital information
	from various sources and apply it for scientific knowledge
	acquisition as well as scientific data analysis and presentation.
PO 4	Articulate scientific ideas, put forth a hypothesis, design and
	execute testing tools and draw relevant inferences. Communicate
	the research work in appropriate scientific language.
PO 5	Demonstrate initiative, competence and tenacity at the
	workplace. Successfully plan and execute tasks independently as
	well as with team members. Effectively communicate and
	present complex information accurately and appropriately to
	different groups.
PO 6	Use an objective, unbiased and non-manipulative approach in
	collection and interpretation of scientific data and avoid
	plagiarism and violation of Intellectual Property Rights.
	Appreciate and be sensitive to environmental and sustainability

	issues and understand its scientific significance and global
	relevance.
PO 7	Translate academic research into innovation and creatively
	design scientific solutions to problems. Exemplify project plans,
	use management skills and lead a team for planning and execution of a task.
DO 0	_
PO 8	Understand cross disciplinary relevance of scientific
	developments and relearn and reskill so as to adapt to
	technological advancements.
	0 0 0 0 0 0 0 0 0 0 0 0 0

PROGRAM SPECIFIC OUTCOMES

PSO	Description				
	A student completing Master's Degree in Science program in the				
	subject of Microbiology will be able to:				
PSO 1	Recall the basic concepts of gene expression and regulation, exemplify				
	cytoplasmic inheritance and transposons. Analyse the genetics				
	underlying cancer and cell cycle. Solve problems based on allelic and				
	genotypic frequencies				
PSO 2	Apply the principles of thermodynamics to understand stability of				
	biological molecules, execute experiments for their detection and				
	estimation in samples. Summarize the metabolism of one and two				
	carbon compounds by microorganisms				
PSO 3	Attribute pathogenesis of diseases to virulence mechanisms, outline the				
	pathogenesis, transmission and treatment of emerging bacterial and				
	viral infections. Recognize the role of microbiome in the overall				
	physiology of humans. Execute antibiotic susceptibility assays and				
	evaluate efficacy in context of antibiotic resistance. Also, implement				
	diagnostic tests for infectious diseases				
PSO 4	Formulate a hypothesis, design a research project, execute the				
	experiments including appropriate calibrations and controls, implement				
	appropriate methods for data collection and analyse data with				
	appropriate statistical tools. Abstract and paraphrase scientific				
	information, extrapolate it and present it creatively in the appropriate				
	scientific language for verbal and non-verbal communication, using ICT				
	tools.				
PSO 5	Recall the structure and functions of cell membrane and cytoskeleton				
	as well as the concept of protein trafficking and transport. Compare				
	various transport mechanisms, and analyse the significance of cell to				
	cell communication. Explain the process of development and				
	organogenesis in higher animals and correlate it to genes with specific				
	reference to Drosophila.				

PSO 6	Execute extraction, purification and analysis of various biomolecules.
	Compare the mechanisms of enzyme catalysis of different classes of
	enzymes and solve problems on enzyme kinetics. Recall different cell
	signalling mechanisms. Outline the biochemistry of degradation of
	various xenobiotics by microorganisms
PSO 7	Recall methods used to study microbial ecology and execute analysis
	of samples from varied environments. Extrapolate potential of
	extremophilic proteins to industrial applications, attribute problems like
	biofouling and biocorrosion to microbial activity. Recall the role of
	microbes in soil and demonstrate their role in plant growth. Outline,
	appreciate and apply the principles of solid and hazardous waste
	management and appreciate various regulations enacted with respect
	to biosafety.
PSO 8	Access appropriate biological databases and apply various
	bioinformatics tools for varied analysis, recall concepts of synthetic
	biology and systems biology. Extrapolate understanding of
	contemporary tools in Molecular Biotechnology for DNA sequencing,
	mutagenesis and protein expression studies. Execute experiments for
	preparation of nanoparticles and their analysis
PSO 9	Understand and evaluate the significance of viral genetics in
	representative bacterial viruses and apply it in rDNA technology. Recall
	and extrapolate the types of animal and plant viruses, describe their
	mechanisms of infections, control and treatment. Explain and give an
	overview of emerging & re-emerging viral infections responsible for
	causing pandemics. Outline the mechanism of tumorigenesis by
	oncogenic viruses.
PSO 10	Recall detailed mechanisms of innate and adaptive immunity, and
01.	emphasize the molecular interactions that help distinction of self from
	non self in immune mechanisms. Outline the mechanisms of immune
	tolerance and exemplify reasons for autoimmune diseases as well as
	cancer. Apply principles of immunoassays for execution of diagnosis of
	disorders and diseases. Summarize and illustrate concepts in
	immunotherapy. Extrapolate basics of vaccine development to combat

	emerging infections
PSO 11	Understand and illustrate different concepts in food microbiology like-fermentations, preservation, microbial analysis and quality control. Check food and water samples for microbiological quality as per prescribed standards and maintain records. Recall concepts and monitor processes in food industry and bottled water manufacturing units with emphasis on BIS regulations, regulatory frameworks, GMP and HACCP.
PSO 12	Recall and explain the principle and working of techniques like spectroscopy, chromatography, hyphenated techniques, PCR based assays, microarrays, electrophoresis, X ray diffraction and SPR and compare all the different types included under each technique. Understand and extrapolate these concepts to analyse biological samples for biomolecular composition and/or structure.
PSO 13	Understand, explain and monitor processes in pharmaceutical industry with respect to regulatory aspects, QA, QC, GLP, ISO standards and validation. Check microbial quality of bulk and finished pharmaceutical products, judge their quality and maintain records. Apply concepts in bioinformatics, proteomics, high throughput screening and pharmacogenomics for discovering new drugs
PSO 14	Recall and apply various concepts in modern Biotechnology like gene therapy, stem cell technology, 16SrRNA sequencing in fields like diagnostics, therapeutics and genetic counselling. Summarize and evaluate the biotechnological potential of fungi and algae for production of commercial products like pharmaceutics, pigments, enzymes, biofuels etc. and in processes like bioremediation and wastewater treatment. Summarize and interpret the laws for IPR, biodiversity conservation and recall the perspectives of bioethics. Implement patent searches and outline prerequisites and steps in patentability.
PSO 15	Recall aspects in epidemiological study designs and public health surveillance and detect agents that could be associated with

	bioterrorism. Categorize biofuels and outline fermentation technologies				
	for their manufacture. Exemplify enzymes with industrial potential and				
	recall and explore technologies like immobilization for their application				
	in industrial products. Explain techniques in protein engineering for				
	increasing activity and specificity.				
PSO 16	Outline work plans and execute tasks independently and to completion. Coordinate and cooperate with team members for execution of experiments. Maintain records, make reports and interpret them for making summaries. Communicate information accurately and effectively. Follow ethical practices at workplace, take initiative, exhibit competency and imbibe other professional skills.				
PSO 17	Apply theoretical concepts effectively and think innovatively to translate ideas to research projects and projects to products. Understand the significance of microbiology as a science that has transdisciplinary relevance and immense potential to improve quality of life for all humankind.				

PROGRAM OUTLINE

YEAR	SEM	COURSE	COURSE TITLE	CREDITS
		CODE		
		RPSMIC 101	MICROBIAL GENETICS	04
		RPSMIC 1P1	Practicals based on Microbial Genetics	02
		RPSMIC 102	MICROBIAL BIOCHEMISTRY	04
		RPSMIC 1P2	Practicals based on Microbial Biochemistry	02
		RPSMIC 103	MEDICAL AND CLINICAL MICROBIOLOGY	04
		RPSMIC 1P3	Practicals based on Medical And Clinical Microbiology	02
		RPSMIC 104	RESEARCH METHODOLOGY	04
MSc I		RPSMIC 1P4	Practicals based on Research Methodology	02
		RPSMIC 201	CELL BIOLOGY	04
	B	RPSMIC 2P1	Practicals based on Cell Biology	02
		RPSMIC 202	MICROBIAL BIOCHEMISTRY	04
6 hr	II	RPSMIC 2P2	Practicals based on Microbial Biochemistry II	02
		RPSMIC 203	ENVIRONMENTAL MICROBIOLOGY	04
		RPSMIC 2P3	Practicals based on Environmental Microbiology	02
		RPSMIC	EMERGING AREAS IN	04

		204	BIOLOGY	
		RPSMIC 2P4	Practicals based on Emerging Areas In Biology	02
		RPSMIC 301	VIROLOGY	04
		RPSMIC 3P1	Practicals based on Virology	02
		RPSMIC 302	IMMUNOLOGY	04
		RPSMIC 3P2	Practicals based on Immunology	02
	III	RPSMIC 303	FOOD AND WATER MICROBIOLOGY	04
		RPSMIC 3P3	Practicals based on Food And Water Microbiology	02
		RPSMIC 304	TOOLS AND TECHNIQUES: BIOMOLECULAR ANALYSIS	04
MSc II		RPSMIC 3P4	Practicals based on Tools And Techniques: Biomolecular Analysis	02
IVISC II		RPSMIC 401	PHARMACEUTICAL AND COSMETIC MICROBIOLOGY	04
		RPSMIC 4P1	Practicals based on Pharmaceutical And Cosmetic Microbiology	02
	B	RPSMIC 402	ADVANCES IN BIOTECHNOLOGY	04
	IV	RPSMIC 4P2	Practicals based on Advances In Biotechnology	02
Sh.		RPSMIC 403	EMERGING AREAS IN BIOLOGY II	04
		RPSMIC 4P3	Practicals based on Emerging Areas In Biology II	02
		RPSMIC 404	INTERNSHIP	04
		RPSMIC 4P4	Practicals based on Internship	02

Course Code: RPSMIC 101 Course Title: Microbial Genetics Academic year 2020-21

COURSE OUTCOME	DESCRIPTION
CO 1	Recall the basic genetic mechanisms like transcription and translation mechanisms, post translational modifications, levels of gene expression
CO 2	Compare and contrast between prokaryotic and eukaryotic transcription and demonstrate an in depth understanding of gene regulation
CO 3	Implement the knowledge about oncogenes and cancer genetics in research
CO 4	Structure the medical and evolutionary relation of transposition
CO 5	Critique the best model organism for genetic studies
CO 6	Outline the factors leading to changes in genetic structure in a population
CO 7	To apply Hardy-Weinberg's Law and evaluate problems based on genotypic and allelic frequencies
CO 8	Outlining the significance of cytoplasmic inheritance, giving emphasis to the evolutionary relationship of inheritance

Course	Unit	Course/ Unit Title	Credits/
Code			Lectures
RPSMIC		MICROBIAL GENETICS	4/60
101			
1		Gene expression and its regulation	15
	1.1	Gene expression	05
		a) Revision of prokaryote transcription and translation b) Transcription process in eukaryotes c) Pre-mRNA processing and Small RNA molecules i. Structure of mRNA ii. Post transcriptional processing of pre-mRNA 1. Addition of 5"cap 2. Addition of Poly(A)tail 3. RNA splicing 4. RNA editing ii. Small RNA molecules 1. RNA interference 2. Types 3. Processing 4. Function of micro RNAs d) mRNA surveillance	
	1.2.	e) Post translational modification of Proteins Regulation of gene expression	09
	.0.	a) Control of gene expression in prokaryotes i. Levels of gene regulation ii. DNA binding proteins iii. Antisense RNA molecules iv. Riboswitches v. Operon (Revision with examples)	03
PHI		 b) Control of gene expression in eukaryotes i. Regulation through modification of gene structure 1. DNase I hypersensitivity 2. histone modifications 3. chromatin remodelling 4. DNA methylation. ii. Regulation through regulatory molecules 1. Transcriptional activators 2. Co-activators 3. Repressors 4. Enhancers 5. Insulators iii. Regulation through RNA processing & degradation 	06

		iv. Regulation through RNA interference	
	1.3	Chromosomal Rearrangements and effects on gene expression	01
		a) Amplification and deletion of genes	
		b) Inversions that alter gene expression	
		c) Phase variation in Salmonella	
II		Extensions and deviations from Mendelian	15
		Genetics	
	2.1	Mitochondrial Inheritance	04
		a) Mitochondrial genome structure	
		b) Ancestral and derived mitochondrial genome	
		c) Mitochondrial DNA of Human, yeast and	
		flowering plants d) Endosymbiotic theory	
		e) General features of replication, transcription	
		and translation of mitochondrial DNA	
		f) Codon usage in Mitochondria	
		g) Damage to Mitochondrial DNA and aging.	
		h) Evolution of mitochondrial DNA	
		i) Mt DNA analysis for study of evolutionary	
		relationships	
	2.2	Chloroplast DNA (cp DNA)	03
		a) Gene structure and organization	
		b) General features of replication, transcription and	
		translation of cp DNA	
		c) Comparison of nuclear, eukaryotic, eubacterial	
		mitochondrial and chloroplast DNA cp DNA maps	
	2.3	Examples of extranuclear inheritance	03
		a) Leaf Variegation	
		b) Poky mutant of Neurospora	
		c) Yeast petite mutant, d) Human genetic diseases	
	2.4	d) Human genetic diseases Horizontal Gene Transfer	02
	4.7	Revision of	02
		a) Transformation in bacteria	
		b) Conjugation	
		c) Transduction	
- 1/1/4	2.5	Epigenetics (Nature v/s Nurture)	03
O. K.		a) The concept of Epigenome	
		b) Molecular Mechanisms of epigenetic Changes	
		c) Cause of epigenetic effects- Alterations in	
		Chromatin Structure	
		d) Examples of epigenetic effects	
III		Transposable genetic elements and population	15
		genetics	
	3.1	Transposable genetic elements	80
		a) Revision of prokaryotic transposable elements	

		b) Transposable Elements in Eukaryotes	
		 Ac and Ds Elements in Maize 	
		ii. P Elements and Hybrid Dysgenesis in	
		Drosophila	
		iii. Retro-transposons Retrovirus like Elements	
		Retroposons	
		iv. Transposable elements in Humans	
		c) The Genetic and Evolutionary Significance of	
		Transposable Elements	
		d) Transposons and Genome Organization	
		Transposons and Mutation	
		e) Transpositions that alter gene Expression	
		i. Antigenic variation in Trypansomes	
		ii. Mating type switching in yeast	
	3.2	Population genetics	07
		a) Population and gene pool	
		i. Genotypic and Allelic frequencies	
		ii. Calculation of Genotypic frequencies and	
		Allelic frequencies for autosomal and X linked	
		loci	
		iii. Problems –calculation of allelic and genotypic	
		frequencies	
		iv. Hardy-Weinberg Law, genotypic frequencies	
		at HWE, Implications of the H-W Law	
		v. H-W proportions for multiple alleles,	
		vi. X-linked alleles	
		vii. Testing for H-W proportions and problems	
		viii. Genetic ill effects of in-breeding	
		b) Changes in the genetic structure of populations:	
		i. Mutation	
		ii. Migration and gene flow	
		iii. Genetic drift	
	-	iv. Natural selection and problems based on the	
	. 0.	natural forces	
IV		Model organisms and Genetic basis of cancer	15
70	4.1	Model organisms	07
		a) Characteristics of an ideal model organism	
1/1/1		b) Elaborating each model organism	
0 />		i. <i>E. coli</i>	
		ii. Yeast	
		iii. <i>C. elegan</i> s	
		iv. <i>A. thaliana</i>	
		v. Mus musculus	
	4.2	Genetic basis of cancer	08
		a) Forms of Cancer, cancer and the Cell Cycle	
		b) Genetics Basis for Cancer	
		c) Oncogenes	
		d) Tumor-Inducing Retroviruses and Viral	
-			

Oncogenes e) Cellular Homologs of Viral Oncogenes: The Proto-Oncogenes Mutant Cellular Oncogenes and Cancer f) Chromosome Rearrangement and Cancer g) Tumor Suppressor Genes h) Inherited Cancers and Knudson's Two-Hit	
Hypothesis Cellular Roles of Tumor Suppressor Proteins Genetic Pathways to Cancer	

- a) Watson, Baker, Bell, Gann, Levine, Losick, "Molecular Biology of the Gene", 5th Ed, Pearson Education (LPE)
- b) Russell, P.J., "iGenetics- A Molecular Approach", 3rd Ed, Pearson International Edition
- c) Snustad & Simmons, "Principals of Genetics", 3rd Ed, John Wiley & Sons Inc
- d) Pierce, B.A, "Genetics- A Conceptual Approach", 2nd Ed, W.H. Freeman & Co
- e) Gray Micheal et al, "The origin and early evolution of Mitochondria", Genome Biology, 2001,
- f) Gray Micheal, "The origin and evolution of Mitochondrial DNA", *Annual Reviews in Cell Biology*, 1989, 25-50
- g) Howe Christopher J *et al*, "Evolution of the chloroplast genome", *The Royal Society*, 2003, 358, 99-107
- h) Kelchner, S. A., "The Evolution of Non-Coding Chloroplast DNA and Its Application in Plant Systematics", 2000, *Annals of the Missouri Botanical Garden, 87(4), 482.*
- i) Ladoukakis Emmanuel *et al* "Evolution and inheritance of animal mitochondrial DNA: rules and exceptions", *Journal of Biological Research*, 2017, 24:2.
- j) Wallace Douglas C., "Mitochondrial DNA in evolution and disease", *Nature*, 2016, 535(7613), 498–500.

PRACTICALS: RPSMIC1P1 (60 CONTACT HRS)

- a. β galactosidase assay
- b. Separation of DNA using Agarose Gel Electrophoresis (AGE)
- c. Isolation of genomic DNA from yeast
- d. Demonstration of Mating type switching in yeast
- e. Problems on population genetics
- f. Transformation of yeast
- g. Tetrad analysis of yeast
- h. Artificial transformation of bacteria
- i. Bacterial conjugation
- j. Study of transduction

Course Code: RPSMIC 102

Course Title: Microbial Biochemistry-I

Academic year 2020-21

COURSE	DESCRIPTION
OUTCOME	
CO 1	Recall the basics of biochemical calculations like SI units and
	expression of concentration
CO 2	Illustrate various biochemical processes with the help of
	thermodynamic principles
CO 3	Remember the basics of amino acids and peptides and understand
	further details about secondary structure of polypeptide chain.
CO 4	Differentiate between various polysaccharides like glycoproteins
	and proteoglyans
CO 5	Organize various events in evolution of metabolic pathway
CO 6	Explain the method of transport of four major biomolecules into the
	cell
CO 7	Execute various chemical methods to characterize the
	biomolecules

Course	Unit	Course/ Unit Title	Credits/
Code			Lectures
RPSMIC		MICROBIAL BIOCHEMISTRY I	4/60
102			
102		Biochemical Calculations and Thermodynamics	15
	1.1	Biochemical Calculations	09
		a) SI Units Relevant to Biochemistry	
		i. Prefixes for Multiples and Fractions of Units	
		ii. Relative molecular mass (Mr)	
		iii. Stoichiometry	
		b) Various units of expressing and inter-converting	
		concentration of solutions	
		i. Molarity	
		ii. Moles	
		iii. Normality	
		iv. Osmolarity	
		v. Molality	
		vi. Mole fraction	
		vii. Density	
		viii. Specific gravity	
		c) Bronsted Concept of conjugate acid-conjugate base	
		pairs	
		 Ionization of solutions 	
		ii. pH	
		iii. Titration curves	
		iv. Buffers: preparation, action and their use in	
		Biology	
		d) Henderson-Hasselbalch equation	
		i. Buffer capacity	
		ii. Polyproteic acids	
		iii. Amphoteric salts	
		iv. Ionic strengths	
		(problem solving under all heads)	
0/2	1.2	Thermodynamics	06
		a) Energy Transformations	
		b) First and second law of thermodynamics	
		i. Statement and Introductionii. Enthalpy, examples from biochemistry and	
		energy conservation in living organisms	
		iii. Entropy of universe	
		iv. Protein denaturation	
		c) Gibbs Free Energy-Applications	
		i. Introduction	
		i. Illuouuouoti	

		ii. Photosynthesis, glycolysis, and the citric acid	
		, , , , ,	
		cycle	
		iii. Oxidative phosphorylation and ATP hydrolysis	
		iv. Enzyme–substrate interaction	
		v. Protein solubility	
		vi. Protein stability	
II		Biomolecules	15
	2.1	Amino acids and Proteins	04
		a) Amino Acids and Peptides (Revision)	
		i. Properties of α-Amino Acids	CX
		ii. Acidic and Basic Side Chains	
		iii. The Peptide Unit	
		iv. Polypeptides	
		b) The Architecture of Folded Proteins	
		i. Conformations of Polypeptide Chains	
		ii. The Extended Chain β Structures	
		iii. Helices	
		iv. Turns and Bends, Domains, Subunits, and	
		Interfaces	
		v. Packing of Side Chains	
		c) Dynamic Properties of Proteins	
		i. Packing of Side Cha Motion of Backbone and	
		Side Chains	
		ii. Conformational Changes	
		iii. Denaturation and Refolding	
		iv. Effects of pH and Solvent	
		v. Irreversible Damage to Proteins	
	2.2	Sugars, Polysaccharides and glycoproteins	03
		Structures and Properties of Simple Sugars	
		a) Glycosides, Oligosaccharides, Glycosylamines, and	
		Glycation	
		b) Polysaccharides (Glycans)	
		c) Glycoproteins and Proteoglycans	
	2.3	Lipids	03
		a) Lipid Structures	
	1111	 Fatty Acids, Fatty Alcohols, and Hydrocarbons 	
		ii. Acylglycerols, Ether Lipids, and Waxes	
	1	iii. Phospholipids	
ON		iv. Glycolipids	
		v. Sphingolipids	
•		vi. Sterols and Other Isoprenoid Lipids	
		b) Membranes-The Structure of Membranes	
	2.4	Evolution of Metabolic pathway	05
		a) The primordial metabolism	
		b) The role of duplication and fusion of DNA sequences	
		in the evolution of metabolic pathways in the early	
		cells	
		c) Hypotheses on the origin and evolution of metabolic	
		, ,,	

		pathways	
		d) The reconstruction of the origin and evolution of	
		metabolic pathways	
III		One and two Carbon metabolism	15
	3.1	Metabolism of one carbon compounds	07
	3.1	a) Methylotrophs	- 07
		i. Oxidation of methane, methanol, methylamines	
		ii. Carbon assimilation in methylotrophic bacteria	
		and yeasts Methanogens	
		b) Methanogenesis	
		i. Methanogenesis form H2, CO2, CH3OH,	
		HCOOH, methylamines	
		ii. Energy coupling and biosynthesis in	
		methanogenic bacteria	
		c) Acetogens: autotrophic pathway of acetate synthesis	
		and CO2 fixation,	7
		d) Carboxidotrophs: Biochemistry of	
		chemolithoautotrophic metabolism	
		e) Cyanogens and cynotrophs	
		i. Cynogenesis	
		ii. Cyanide degradation	
	3.2	Metabolism of two- carbon compounds	08
		a) Acetate	
		i. TCA	
		ii. Glyoxylate cycle	
		iii. Modified citric acid cycle	
		iv. Carbon monoxide dehydrogenase pathway and	
		disproportionation to methane	
		b) Ethanol- acetic acid bacteria	
		c) Glyoxylate and glycollate	
		i. Dicarboxylic acid cycle	
		ii. Glycerate pathway	
		iii. Beta hydroxyaspartate pathway	
		d) Oxalate- as carbon and energy source	
		e) Highlight about sign of 1C/2C utilization	
IV		Transport of Biomolecules	15
	4.1	Transport of sugars	03
		a) Transport of D-Glucose and D-Fructose into E. coli	
141		cell.	
		b) Glucose transporters of erythrocytes, various	
		glucose transporters present in humans (GLUT1-	
	4.2	GLUT12) Transport of Fatty acid	03
	4.2	a) Mobilization of triacylglycerols stored in adipose	US
		tissue	
		b) Fatty acid entry into mitochondria via the acyl-	
		carnitine/carnitine transporter	
	4.3	Transport of proteins	09

a) Protein transport: extracellular protein secretion,
drug export system
b) Folding of periplasmic proteins, translocation of
folded proteins

- a) Segel. R, "Biochemical calculations", 3rd edition John Wiley and Sons, 1995
- b) Mathew, Van Holde and Ahern, "Biochemistry" 3rd edition, Pearson Education
- c) Zubay, G., Wm.C., "Principles of Biochemistry", 4th edition, Brown Publishers, 1998
- d) Lehninger A.L., Cox and Nelson, "Principles of Biochemistry", 4th Edition, CBS Publishers and Distributors Pvt. Ltd. 1994
- e) G N Cohen, "Microbial Biochemistry", 2nd Edition, Springer, 2011
- f) Donald Haynie, "Biological Thermodynamics", 2nd Edition, Cambridge University Press, 2008
- g) David E. Metzler, "Biochemistry: The Chemical reactions of living cell", 2nd Edition Vol. 1 & 2 Elsevier Academic Press
- h) David White, "The Physiology and Biochemistry of Prokaryotes", 3rd Edition Oxford University Press 2007
- i) John Gareth Morris, A biologist"s Physical Chemistry, 2nd Edition, Wiley
- j) Fani, R., & Fondi, M. "Origin and evolution of metabolic pathways" *Physics of Life Reviews*, 2009, 6(1), 23–52. doi:10.1016/j.plrev.2008.12.003

PRACTICALS: RPSMIC1P2 (60 CONTACT HRS)

- a) Preparation of buffers
- b) Determination of pK and PI value for an amino acid
- c) Extraction of total lipids
- d) Identification of fatty acids and other lipids by TLC
- e) Determination of degree of unsaturation of fats and oils
- f) Estimation of total sugars by phenol-sulphuric acid method
- g) Determination of molar absorption coefficient(ε)of I-tyrosine
- h) Determination of the isoelectric point of the given protein
- i) Estimation of polyphenols /tannins by Folin-Denis method
- j) Enrichment, isolation and identification of Methylobacterium
- k) Diffusion studies of molecules across RBCs
- I) Diffusion studies of molecules across yeasts cells

Course Code: RPSMIC 103 Course Title: Medical and Clinical Microbiology

Academic year 2020-21

COURSE	DESCRIPTION
OUTCOME	
CO 1	Elaborate on pathogenesis, mode of transmission, epidemiology
	and therefore modes of prophylaxis of some current and
	emerging diseases
CO 2	Understand nature of regulation of expression of pathogenicity,
	evasion of host defense
CO 3	Recognise and appreciate the importance of biofilms in
	different environments
CO 4	Identify and classify the nature and methods of eradication of
	biofilms, especially those on implants and medical devices
CO 5	Apply appropriate methodologies to tackle the threat of
	antibiotic resistance
CO 6	Perform and analyze all kinds of clinical microbiological tests
	associated with antibiotic susceptibility testing
CO 7	Analysing and hypothesizing the effects of gut microbiome on
	different aspects of human physiology

Course	Sub-	Course/ Unit Title	Credits/
Code	Unit		Lectures
RPSMIC		MEDICAL AND CLINICAL	04/ 60
103		MICROBIOLOGY	
l		Study of Infections – I	15
		Detailed Study of following infections including Etiology,	
		Transmission, Pathogenesis, Clinical Manifestations, Lab.	/(1)
		diagnosis, Prophylaxis, and Treatment:	1/1
		MOTT (myseshasteria other than TD) MDD and VDD TD	
		MOTT (mycobacteria other than TB), MDR and XDR TB, Legionellosis, Emerging infections like-Rickettsial	
		infections and C.auris, Conditions caused by Helicobacter	
		pylori, VRE (Vancomycin Resistant enterococci),	
		Listeriosis, Leptospirosis	
II		Study of Infections- II and introduction to	15
		microbiome	
	2.1	Detailed Study of following infections	06
		including Etiology, Transmission, Pathogenesis, Clinical	
		Manifestations, Lab. diagnosis, Prophylaxis, and	
		Treatment	
		Chikungunya, Dengue, Swine flu	
	2.2	Gut Microbiome studies	09
		a) Stomach, small and large intestinal microbiome	
		b) Function of the Human Gut Microbiotac) Gut Microbiota in health and disease	
		d) Gut-brain axis	
III		Virulence regulation and strategies to evade	15
•••		defense	13
	3.1	Revision of Virulence mechanisms in pathogens	02
	3.2	Mechanisms of virulence regulation	04
		a) Types of regulation	
	191	b) Quorum Sensing	
	3.3	Measuring Virulence	03
	3.4	Bacterial strategies for evading or surviving host	06
		defense systems	
		a) Biofilms- Structure, development, biofilms on	
		implants and prosthetic devices, Biofilm	
		eradication	
		b) Colonization of host surfaces	
I\/		c) Evading host responses	45
IV		Clinical Microbiology- Antibiotic resistance and	15
	A A	Antibiotic susceptibility testing Antibiotic resistance in microbes	07
	4.1	Antibiotic resistance in microbes	07

	a) Mechanisms of Antifungal agents	
	,	
	b) Mechanisms of antibiotic resistance in bacteria	
	and fungi	
	c) Transfer of antibiotic resistance	
	d) Maintaining antibiotic resistance through Selective	
	Pressure	
4.2	Antibiotic susceptibility testing	08
	a) Tests that predict the effectiveness of therapy	
	 Antibiotic Susceptibility Testing Methods- 	
	Indications, standardization, QC, Procedures	
	and interpretation	
	ii. Detection of resistance- Beta lactamase and	
	ESBL	
	iii. Antibiograms	
	b) Tests that monitor the effectiveness of therapy	
	i. Molecular detection	
	ii. MBC	
	iii. Serum killing curves	
	iv. Testing antibiotic combinations	
	v. Time kill curves	
	c) Test of therapeutic efficacy and avoidance of	
	toxicity	

- a) Ananthnarayan & Paniker, "Textbook of Microbiology", 8th edition, University press 2009
- b) Richard Goering, Hazel Dockerell *et al*, "Mim's Medical Microbiology, 5th ed, Saunders, Elsevier, 2013
- c) David Greenwood et al, "Medical Microbiology: A Guide to Microbial Infections: Pathogenesis, Immunity, Laboratory Diagnosis and Control", 17th Edition, Churchill Livingstone/Elsevier, 2012
- d) Julian R. Marchesi, "The Human Microbiota and Microbiome, Advances in Molecular and Cellular Microbiology", CABI press, 2014
- e) Brenda Wilson, Abigail Salyers *et al*, "Bacterial Pathogenesis- A molecular approach", 3rd ed, ASM press, 2011
- f) Jana Jass, Sussane Surma et al, "Medical Biofilms. Detection Prevention and Control", Wiley, 2003
- g) Kendra Rumbaugh, Iqbal Ahmed, "Antibiofilm agents-From Diagnosis to treatment and Prevention", Springer Series on Biofilms Vol 8, Springer, 2014
- h) J. Vandepitte, J. Verhaegen *et al*, "Basic laboratory procedures in clinical bacteriology", 2nd ed, WHO, Geneva, 2003
- i) Gary Procop, Elmer Koneman *et al, "*Koneman's Color Atlas and Textbook of Diagnostic Microbiology", 7th Edition, Wolters Kluwer, 2017

- j) Indira Kudva, Nancy Cornick et al, "Virulence Mechanisms of Bacterial Pathogens", 5th ed, ASM Press, 2016
- k) A brief guide to emerging infectious diseases and zoonoses. WHO.
- I) Nett JE, "Candida auris: An emerging pathogen "incognito", *PLoSPathog*, 2019, 15(4): e1007638. https://doi.org/10.1371/journal.
- m) Spivak ES, Hanson KE, "Candida auris: an emerging fungal pathogen", *J Clin Microbiol*, 2018, 56:e01588-17.
- n) Abdad MY, Abou Abdallah R, Fournier P-E, Stenos J, Vasoo S, "A concise review of the epidemiology and diagnostics of rickettsioses: Rickettsia and Orienti spp", *J Clin Microbiol*, 2018, 56: e01728-17. https://doi.org/10.1128/JCM.01728-17.
- o) Narendra Rathi And Akanksha Rathi, "Rickettsial Infections: Indian Perspective", *Indian Pediatrics*, 2010, Volume 47.
- p) Haake, D. A., & Levett, P. N., "Leptospirosis in Humans", *Leptospira and Leptospirosis*, 2014, 65–97. doi:10.1007/978-3-662-45059-8_5.
- q) Yunjin Lee, Emily Puumala, Nicole Robbins, and Leah E. Cowen, Antifungal Drug Resistance: Molecular Mechanisms in Candida albicans and Beyond, Chemical Reviews, 2017

PRACTICALS: RPSMIC1P3 (60 CONTACT HRS)

- a) Diagnosis for HIV Trispot/ ELISA for AIDS (Demonstration)
- b) Mono Spot Test for diagnosis of Chikungunya (Demonstration expt.)
- c) Diagnosis of leptospirosis Kit method (Demonstration)
- d) Diagnosis for *Helicobacter pylori* HPSA (Helicobacter pylori) (Demonstration expt.) (kit method)
- e) Study of Quorum Sensing in C.violaecium
- f) Study of Quorum sensing inhibitors
- g) Detection of Biofilm formation on different surfaces
- h) Determination of Minimum Biofilm Inhibition Concentration of an antibiotic
- i) Study of biofilms in flow systems
- j) Antibiotic Susceptibility Test microdilution methods according to CLSI guidelines
- k) Checkerboard assay
- I) E-test

Course Code: RPSMIC 104

Course Title: Research Methodology

Academic year 2020-21

COURSE	DESCRIPTION
CO 1	Summarize the basics of research methodology
CO 2	Execute the experiments including appropriate calibrations and
	controls, with a carefully written record of the outcomes
CO 3	Implement different methods of data collection and process the
	collected data by conventional and modern methods.
CO 4	Hypothesize a solution to a research problem
CO 5	Design a research project
CO 6	Distinguish between laws, theory, postulates, and research types
CO 7	Carrying out statistical analysis of the result
CO 8	Selecting correct mode of scientific communication and quality
	literature

Course	Unit	Course/ Unit Title	Credits/
Code			Lectures
RPSMIC		RESEARCH METHODOLOGY	4/60
104			
1		Research Fundamentals and Terminology	15
	1.1	Philosophy of natural science	02
		a) Traditional philosophy of science	777
		b) Scientific explanation and modes of inference	
		c) Scientific rationality	
		d) Theory testing	
	1.2	Introduction to research	02
		a) Definition of research	
		b) Scientific research	
		c) General characters of research	
		d) Objectives of research	
		 e) Classification and types of research 	
	1.3	Research methodology	03
		a) Types of research methods	
		b) Research methods verses methodology	
		c) Research and scientific method	
		d) Research process	
		e) Criteria of good research	
	1.4	Strategies and analysis	04
		a) Research conditions	
		b) Importance of controls	
		c) Experimental protocol and experimental routine	
	1.4	Research problem	01
	-	a) Selection of a research problem	
	O'	b) Necessity of defining a research problem	
		c) Technique involved in defining a research	
		problem	22
	1.5	Study designs	03
T)		Preparation for research project and data	15
		collection methods	
	2.1	Literature search	02
		a) Concept of Information literacy	
		b) Method: Systematic literature search	
		c) Literature Search Technique	
		d) Methodology filters	
		e) Concept of Quality of literature f) Impact factor	
	2.2	Personal reference database	02
	۷.۷		UZ
		a) Introduction to principal bibliographic	

		•	
		databases	
		b) Medical and scientific internet search engines	
		c) Reference management softwares	
		d) Significance of cite when you write	
		e) Bibliographic format: output styles	
	2.3	Hypothesis and testing of hypothesis	04
		a) Meaning, nature of hypothesis,	
		b) Functions of hypothesis,	
		c) Importance of hypothesis,	
		d) Kinds of hypothesis,	·CX
		e) Characteristics of good hypothesis,	
		f) Formulation of hypothesis	
	2.4	Methods and techniques of data collection	03
		a) Types of data	
		b) methods of primary data collection	
		(observation/ experimentation/ questionnaire/	
		interviewing/ case/ pilot study, methods)	
		c) methods of secondary data collection	
		(internal/external), schedule method	
	2.4	Experimental data processing	04
		a) Processing operations	
		b) Problems in processing	
		c) Elements of analysis in data processing	
		d) Software for data processing	
III			15
111	0.4	Sampling, Sampling distribution and Statistics	
	3.1	Sampling	05
		a) Sampling frame	
		b) Importance of probability sampling	
		c) Types of sampling	
		i. Simple random sampling	
	4	i. Simple random samplingii. Systematic sampling	
		ii. Systematic sampling	
	. 2	ii. Systematic sampling iii. Stratified random sampling	
	B	ii. Systematic samplingiii. Stratified random samplingiv. Cluster sampling	
	R	ii. Systematic samplingiii. Stratified random samplingiv. Cluster samplingd) Problems due to unintended sampling	
	3.2	 ii. Systematic sampling iii. Stratified random sampling iv. Cluster sampling d) Problems due to unintended sampling e) Ecological and statistical population in the 	01
	3.2	ii. Systematic sampling iii. Stratified random sampling iv. Cluster sampling d) Problems due to unintended sampling e) Ecological and statistical population in the laboratory Variables	01
	3.2	 ii. Systematic sampling iii. Stratified random sampling iv. Cluster sampling d) Problems due to unintended sampling e) Ecological and statistical population in the laboratory 	01
<i>SBIII</i>	3.2	ii. Systematic sampling iii. Stratified random sampling iv. Cluster sampling d) Problems due to unintended sampling e) Ecological and statistical population in the laboratory Variables a) Types of Variables i. Ordinal	01
5 KIII	3.2	ii. Systematic sampling iii. Stratified random sampling iv. Cluster sampling d) Problems due to unintended sampling e) Ecological and statistical population in the laboratory Variables a) Types of Variables i. Ordinal ii. Discontinuous	01
	3.2	ii. Systematic sampling iii. Stratified random sampling iv. Cluster sampling d) Problems due to unintended sampling e) Ecological and statistical population in the laboratory Variables a) Types of Variables i. Ordinal ii. Discontinuous iii. Continuous	01
P A A A A A A A A A		ii. Systematic sampling iii. Stratified random sampling iv. Cluster sampling d) Problems due to unintended sampling e) Ecological and statistical population in the laboratory Variables a) Types of Variables i. Ordinal ii. Discontinuous iii. Continuous iv. Derived	
P W	3.2	ii. Systematic sampling iii. Stratified random sampling iv. Cluster sampling d) Problems due to unintended sampling e) Ecological and statistical population in the laboratory Variables a) Types of Variables i. Ordinal ii. Discontinuous iii. Continuous iv. Derived Statistical methods	01
		ii. Systematic sampling iii. Stratified random sampling iv. Cluster sampling d) Problems due to unintended sampling e) Ecological and statistical population in the laboratory Variables a) Types of Variables i. Ordinal ii. Discontinuous iii. Continuous iv. Derived Statistical methods Statistical methods	
<i>SBIIIIIIIIIIIII</i>		iii. Systematic sampling iii. Stratified random sampling iv. Cluster sampling d) Problems due to unintended sampling e) Ecological and statistical population in the laboratory Variables a) Types of Variables i. Ordinal ii. Discontinuous iii. Continuous iv. Derived Statistical methods Statistical methods a. Effect measure, Comparing two proportions,	
91111		ii. Systematic sampling iii. Stratified random sampling iv. Cluster sampling d) Problems due to unintended sampling e) Ecological and statistical population in the laboratory Variables a) Types of Variables i. Ordinal ii. Discontinuous iii. Continuous iv. Derived Statistical methods a. Effect measure, Comparing two proportions, Measures of association in 2 x 2 tables, Normal	
		iii. Systematic sampling iii. Stratified random sampling iv. Cluster sampling d) Problems due to unintended sampling e) Ecological and statistical population in the laboratory Variables a) Types of Variables i. Ordinal ii. Discontinuous iii. Continuous iv. Derived Statistical methods Statistical methods a. Effect measure, Comparing two proportions,	

		b. hypothesis testing and confidence interval	
		, , ,	
		i. Null and alternate hypothesis	
		ii. Type-I & Type-II errors	
		iii. Level of significance,	
		iv. Power of test	
		v. p value	
		c. Parametric tests	
		i. Large sample Tests	
		 a. Testing significance of single population 	
		mean	
		 b. Testing significance of two population 	
		mean	
		ii. Small sample Tests	
		a. Testing significance of single population	
		mean	
		b. Testing difference between two	
		independent normal population mean	
		c. Testing difference between two correlated	
		normal population mean	
		d. Testing significance of correlation	
		coefficient	
		iii. x2 test	
		a. Testing single population variance	
		b. Testing Goodness of fit	
		c. Testing association between two	
		attributes	
		iv. F-test- Testing equality of variance	
		a. ANOVA- one-way classification, two-way	
		classification	
IV		Scientific writing and Communication	15
	4.1	Report writing	03
		a) Types of research reports	
		b) Guidelines for writing a report	
		c) Report format	
		d) Appendices	
		e) Miscellaneous information	
	4.2	Scientific communication	05
1/1/1		a) Types of scientific documents	
		i. Journal articles	
		ii. Books	
		iii. Thesis	
		iv. Conference	
		v. Project reports	
		b) Components of a research paper	
		c) Publication process	
		d) Copy right transfer and co-authorship	
		e) Open access	
	4.3	How to write grant application	02
	7.0	11011 to Willo grain application	VL

4.4	Communication skills	02
	a) Importance of communication	
	b) The process of communication	
	c) Verbal and nonverbal communication	
4.5	Modes of communication	03
	a) Communication by presentations	
	 Structure and types of presentation 	
	ii. PowerPoint presentation	
	iii. Handing PowerPoint	
	iv. Slide organisation and Content	
	management	
	v. Body language, gestures and voice	
	modulation	
	b) Communication by Email	
	c) Poster presentations	
	d) Oral presentations	
	i. Preparing for a lecture	
	ii. Delivering a lecture	

- a) Kothari, C.R, "Research Methodology- Methods and Techniques", New Delhi, Wiley Eastern Limited. 1985
- b) Rosner B.A., "Fundamentals of Biostatistics", Cengage Learning, 2011
- c) Petter Laake, Haakon Breien Benestad and Bjorn Reino Olsen, "Research methodology in the medical and biological sciences" 1st Ed, Academic Press, 2007
- d) Ranjit Kumar, "Research Methodology- A step-by-step Guide for beginners", 3rd Ed, Sage publications, 2005
- e) Daniel WW, "Biostatistics: A foundation for analysis in health sciences", 10th Edn, Cross CL., Wiley. 2013
- f) McKiernan, E. C., Bourne, P. E., Brown, C. T., Buck, S., Kenall, A., Lin, J., Yarkoni, T. (2016). How open science helps researchers succeed. eLife, 5. doi:10.7554/elife.16800
- g) Satish G. Patil, "How to plan and write a budget for research grant proposal?", Journal of Ayurveda and Integrative Medicine, Volume 10, Issue 2, 2019, Pages 139-142

PRACTICALS: RPSMIC1P4 (60 CONTACT HRS)

- a) Writing the Literature review on research topic that the students wishes to take for dissertation
- b) Problem solving on Biostatistics (manually and using Microsoft Excel)
- c) Abstract writing or summary for a research paper

Modality of Assessment:

I) Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1	One Review writing/ Review paper presentation/Research paper	40
	presentation and Assignment / Long Answer/ Case Study or any other	0

B) External Examination- 60%- 60 Marks per paper

- 1. Duration- These examinations shall be of two hours and thirty minutes.
- 2. Theory question paper pattern
 - a. There shall be **five** questions each of **12** marks. On each unit there shall be one question and the fifth question will be based on all the three units.
 - b. All questions shall be compulsory with internal choice within the questions.

Paper pattern:

Question	Options	Marks	Questions based on
Q.1)	Any 2 out of 3	12	Unit 1
Q.2)	Any 2 out of 3	12	Unit 2
Q.3)	Any 2 out of 3	12	Unit 3
Q.4)	Any 2 out of 3	12	Unit 4
Q.5) a)	Any 4 out of 5	04	All four units
Q.5) b)	Any 4 out of 5	04	All four units
Q.5) c)	Any 2 out of 3	04	All four units

II) Practical Examination Pattern

	Paper I	Paper II	Paper III	Paper IV
Journal	05	05	05	-
Viva	05	05	05	-
Quiz	05	05	05	25
Laboratory work	35	35	35	-
Literature	-	-	-	25
Review				CX
Total	50	50	50	50

Journal

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination. In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Co-ordinator / Incharge of the department; failing which the student will not be allowed to appear for the practical examination.

Overall Examination and Marks Distribution Pattern

Semester I

Course	101			102		103			104				
	Internal	External	Total	Grand total									
Theory	40	60	100	40	60	100	40	60	100	40	60	100	400
Practicals	6	50	50	-	50	50	-	50	50	-	50	50	200

Semester End Examination: (Deviation from the usual modality)

Owing to the pandemic situation prevailing in 2020 and continuing in 2021, the external examinations (Semester End) may be conducted online as per the instructions/circulars received from the University of Mumbai and Maharashtra State notifications from time to time. The conventional mode of external examination will commence again only after the declaration of normalcy by the Government authorities.

Course Code: RPSMIC201

Course Title: Cell Biology Academic year 2020-21

COURSE	DESCRIPTION
OUTCOME	
CO 1	Interpret the structure and analyze the function of cell membrane &
	Cytoskeleton.
CO 2	Discuss the concept of compartmentalization of cell and understand
	the process of membrane transport and protein trafficking.
CO 3	Interpret the phases of Cell cycle & discuss the apoptotic
	mechanisms.
CO 4	Exemplify cell communication strategies in plants & animals.
CO 5	Recall the basics of developmental biology and deconstruct the
	process of meiosis, embryonic cleavage, gastrulation &
	morphogenesis
CO 6	Justify the genetic basis of development in model organisms
CO 7	Analyze the entire genetically predisposed process of development
	in Drosophila.
CO 8	Execute & implement the techniques used to study cell structure &
000	
MAL	its components.

Code RPSMIC 201 I Cell structure and cytoskeleton 15 1.1 Techniques to study cell and cellular structure. 02 1.2 Cell membrane structure 03 a) Lipid bilayer b) Membrane proteins c) Spectrins d) Glycophorin e) Multi pass membrane protein f) Bacteriorhodopsin 1.3 Cytoskeleton 05 a) Cytoskeletal filaments b) Microtubules c) Actin regulation d) Molecular motors e) Cell behaviour 1.4 Cell Junctions and cell adhesion 05 a) Anchoring b) Adherence junctions c) Desmosomes d) Gap junctions e) Cell-cell adhesion f) Cadherins II Membrane Transport (Revision) 05 a) Principles of membrane transport i. Ion channels ii. electrical properties of membranes b) Types of diffusion i. Passive Diffusion, and Facilitated Diffusion, iii. Ion channels c) Active transport – ion pumps (e.g.: Na+-K+ pump) 1 A Compartmentalization of cells b) Transport of molecules between the nucleus and cytosol, peroxisomes, Endoplasmic reticulum c) Transport of proteins into mitochondria and chloroplasts	Course	Unit	Course/ Unit Title	Credits/
I Cell structure and cytoskeleton 1.1 Techniques to study cell and cellular structure. 2.2 Cell membrane structure 3.3 a) Lipid bilayer b) Membrane proteins c) Spectrins d) Glycophorin e) Multi pass membrane protein f) Bacteriorhodopsin 1.3 Cytoskeleton a) Cytoskeleton b) Microtubules c) Actin regulation d) Molecular motors e) Cell behaviour 1.4 Cell Junctions and cell adhesion d) Anchoring b) Adherence junctions c) Desmosomes d) Gap junctions e) Cell-cell adhesion f) Cadherins II Membrane Transport and Compartmentalization 2.1 Membrane Transport (Revision) a) Principles of membrane transport i. Ion channels ii. electrical properties of membranes b) Types of diffusion i. Passive Diffusion, and Facilitated Diffusion, ii. Ion channels — Ligand gated and voltage gated channels, c) Active transport of molecules between the nucleus and cytosol, peroxisomes, Endoplasmic reticulum c) Transport of proteins into mitochondria and	Code			Lectures
I Cell structure and cytoskeleton 1.1 Techniques to study cell and cellular structure. 2.2 Cell membrane structure 3.3 a) Lipid bilayer b) Membrane proteins c) Spectrins d) Glycophorin e) Multi pass membrane protein f) Bacteriorhodopsin 1.3 Cytoskeleton a) Cytoskeleton b) Microtubules c) Actin regulation d) Molecular motors e) Cell behaviour 1.4 Cell Junctions and cell adhesion d) Anchoring b) Adherence junctions c) Desmosomes d) Gap junctions e) Cell-cell adhesion f) Cadherins II Membrane Transport and Compartmentalization 2.1 Membrane Transport (Revision) a) Principles of membrane transport i. Ion channels ii. electrical properties of membranes b) Types of diffusion i. Passive Diffusion, and Facilitated Diffusion, ii. Ion channels — Ligand gated and voltage gated channels, c) Active transport of molecules between the nucleus and cytosol, peroxisomes, Endoplasmic reticulum c) Transport of proteins into mitochondria and	RPSMIC		CELL BIOLOGY	4/60
I Cell structure and cytoskeleton 1.1 Techniques to study cell and cellular structure. (2) 1.2 Cell membrane structure (3) a) Lipid bilayer b) Membrane proteins c) Spectrins d) Glycophorin e) Multi pass membrane protein f) Bacteriorhodopsin 1.3 Cytoskeleton (3) a) Cytoskeletal filaments b) Microtubules c) Actin regulation d) Molecular motors e) Cell behaviour 1.4 Cell Junctions and cell adhesion a) Anchoring b) Adherence junctions c) Desmosomes d) Gap junctions e) Cell-cell adhesion f) Cadherins II Membrane Transport and Compartmentalization 5 2.1 Membrane Transport (Revision) a) Principles of membrane transport i. Ion channels ii. electrical properties of membranes b) Types of diffusion i. Passive Diffusion, and Facilitated Diffusion, ii. Ion channels — Ligand gated and voltage gated channels, c) Active transport — ion pumps (e.g.: Na+-K+ pump) 2.2 Intracellular Compartments and protein sorting a) Compartmentalization of cells b) Transport of molecules between the nucleus and cytosol, peroxisomes, Endoplasmic reticulum c) Transport of proteins into mitochondria and				
1.1 Techniques to study cell and cellular structure. 1.2 Cell membrane structure a) Lipid bilayer b) Membrane proteins c) Spectrins d) Glycophorin e) Multi pass membrane protein f) Bacteriorhodopsin 1.3 Cytoskeleton a) Cytoskeletal filaments b) Microtubules c) Actin regulation d) Molecular motors e) Cell behaviour 1.4 Cell Junctions and cell adhesion a) Anchoring b) Adherence junctions c) Desmosomes d) Gap junctions e) Cell-cell adhesion 18 Membrane Transport and Compartmentalization 15 Cadherins Membrane Transport (Revision) a) Principles of membrane transport i. Ion channels ii. electrical properties of membranes b) Types of diffusion i. Passive Diffusion, and Facilitated Diffusion, iii. Ion channels – Ligand gated and voltage gated channels, c) Active transport of cells b) Transport of molecules between the nucleus and cytosol, peroxisomes, Endoplasmic reticulum c) Transport of proteins into mitochondria and	1		Cell structure and cytoskeleton	15
1.2 Cell membrane structure a) Lipid bilayer b) Membrane proteins c) Spectrins d) Glycophorin e) Multi pass membrane protein f) Bacteriorhodopsin 1.3 Cytoskeleton a) Cytoskeletal filaments b) Microtubules c) Actin regulation d) Molecular motors e) Cell behaviour 1.4 Cell Junctions and cell adhesion a) Anchoring b) Adherence junctions c) Desmosomes d) Gap junctions e) Cell-cell adhesion f) Cadherins II Membrane Transport and Compartmentalization 5 2.1 Membrane Transport (Revision) a) Principles of membrane transport i. Ion channels ii. electrical properties of membranes b) Types of diffusion i. Passive Diffusion, and Facilitated Diffusion, iii. Ion channels – Ligand gated and voltage gated channels, c) Active transport – ion pumps (e.g.: Na+-K+ pump) 2.2 Intracellular Compartments and protein sorting a) Compartmentalization of cells b) Transport of molecules between the nucleus and cytosol, peroxisomes, Endoplasmic reticulum c) Transport of proteins into mitochondria and	-	1.1		
a) Lipid bilayer b) Membrane proteins c) Spectrins d) Glycophorin e) Multi pass membrane protein f) Bacteriorhodopsin 1.3 Cytoskeleton a) Cytoskeletal filaments b) Microtubules c) Actin regulation d) Molecular motors e) Cell behaviour 1.4 Cell Junctions and cell adhesion a) Anchoring b) Adherence junctions c) Desmosomes d) Gap junctions e) Cell-cell adhesion f) Cadherins II Membrane Transport and Compartmentalization 2.1 Membrane Transport (Revision) a) Principles of membrane transport i. Ion channels ii. electrical properties of membranes b) Types of diffusion i. Passive Diffusion, and Facilitated Diffusion, iii. Ion channels – Ligand gated and voltage gated channels, c) Active transport – ion pumps (e.g.: Na+-K+ pump) 2.2 Intracellular Compartments and protein sorting a) Compartmentalization of cells b) Transport of molecules between the nucleus and cytosol, peroxisomes, Endoplasmic reticulum c) Transport of proteins into mitochondria and				
b) Membrane proteins c) Spectrins d) Glycophorin e) Multi pass membrane protein f) Bacteriorhodopsin 1.3 Cytoskeleton a) Cytoskeletal filaments b) Microtubules c) Actin regulation d) Molecular motors e) Cell behaviour 1.4 Cell Junctions and cell adhesion a) Anchoring b) Adherence junctions c) Desmosomes d) Gap junctions e) Cell-cell adhesion f) Cadherins II Membrane Transport and Compartmentalization 2.1 Membrane Transport (Revision) a) Principles of membrane transport i. Ion channels ii. electrical properties of membranes b) Types of diffusion i. Passive Diffusion, and Facilitated Diffusion, ii. Ion channels — Ligand gated and voltage gated channels, c) Active transport — ion pumps (e.g.: Na+-K+ pump) 2.2 Intracellular Compartments and protein sorting a) Compartmentalization of cells b) Transport of molecules between the nucleus and cytosol, peroxisomes, Endoplasmic reticulum c) Transport of proteins into mitochondria and			a) Lipid bilayer	
d) Glycophorin e) Multi pass membrane protein f) Bacteriorhodopsin 1.3 Cytoskeleton a) Cytoskeletal filaments b) Microtubules c) Actin regulation d) Molecular motors e) Cell behaviour 1.4 Cell Junctions and cell adhesion a) Anchoring b) Adherence junctions c) Desmosomes d) Gap junctions e) Cell-cell adhesion f) Cadherins II Membrane Transport and Compartmentalization 5 Cadherins a) Principles of membrane transport i. Ion channels ii. electrical properties of membranes b) Types of diffusion i. Passive Diffusion, and Facilitated Diffusion, iii. lon channels — Ligand gated and voltage gated channels, c) Active transport — ion pumps (e.g.: Na+-K+ pump) 2.2 Intracellular Compartments and protein sorting a) Compartmentalization of cells b) Transport of molecules between the nucleus and cytosol, peroxisomes, Endoplasmic reticulum c) Transport of proteins into mitochondria and			,	
e) Multi pass membrane protein f) Bacteriorhodopsin 1.3 Cytoskeleton a) Cytoskeletal filaments b) Microtubules c) Actin regulation d) Molecular motors e) Cell behaviour 1.4 Cell Junctions and cell adhesion a) Anchoring b) Adherence junctions c) Desmosomes d) Gap junctions e) Cell-cell adhesion f) Cadherins II Membrane Transport and Compartmentalization 5.1 Membrane Transport (Revision) a) Principles of membrane transport i. Ion channels iii. electrical properties of membranes b) Types of diffusion i. Passive Diffusion, and Facilitated Diffusion, iii. Ion channels – Ligand gated and voltage gated channels, c) Active transport – ion pumps (e.g.: Na+-K+ pump) 2.2 Intracellular Compartments and protein sorting b) Transport of molecules between the nucleus and cytosol, peroxisomes, Endoplasmic reticulum c) Transport of proteins into mitochondria and			,	
f) Bacteriorhodopsin 1.3 Cytoskeleton a) Cytoskeletal filaments b) Microtubules c) Actin regulation d) Molecular motors e) Cell behaviour 1.4 Cell Junctions and cell adhesion a) Anchoring b) Adherence junctions c) Desmosomes d) Gap junctions e) Cell-cell adhesion f) Cadherins II Membrane Transport and Compartmentalization 2.1 Membrane Transport (Revision) a) Principles of membrane transport i. Ion channels ii. electrical properties of membranes b) Types of diffusion i. Passive Diffusion, and Facilitated Diffusion, iii. Ion channels – Ligand gated and voltage gated channels, c) Active transport – ion pumps (e.g.: Na+-K+ pump) 2.2 Intracellular Compartments and protein sorting b) Transport of molecules between the nucleus and cytosol, peroxisomes, Endoplasmic reticulum c) Transport of proteins into mitochondria and			d) Glycophorin	
f) Bacteriorhodopsin 1.3 Cytoskeleton a) Cytoskeletal filaments b) Microtubules c) Actin regulation d) Molecular motors e) Cell behaviour 1.4 Cell Junctions and cell adhesion a) Anchoring b) Adherence junctions c) Desmosomes d) Gap junctions e) Cell-cell adhesion f) Cadherins II Membrane Transport and Compartmentalization 2.1 Membrane Transport (Revision) a) Principles of membrane transport i. Ion channels ii. electrical properties of membranes b) Types of diffusion i. Passive Diffusion, and Facilitated Diffusion, iii. Ion channels – Ligand gated and voltage gated channels, c) Active transport – ion pumps (e.g.: Na+-K+ pump) 2.2 Intracellular Compartments and protein sorting b) Transport of molecules between the nucleus and cytosol, peroxisomes, Endoplasmic reticulum c) Transport of proteins into mitochondria and			e) Multi pass membrane protein	
a) Cytoskeletal filaments b) Microtubules c) Actin regulation d) Molecular motors e) Cell behaviour 1.4 Cell Junctions and cell adhesion a) Anchoring b) Adherence junctions c) Desmosomes d) Gap junctions e) Cell-cell adhesion f) Cadherins II Membrane Transport and Compartmentalization 5 2.1 Membrane Transport (Revision) a) Principles of membrane transport i. Ion channels iii. electrical properties of membranes b) Types of diffusion i. Passive Diffusion, and Facilitated Diffusion, ii. Ion channels — Ligand gated and voltage gated channels, c) Active transport — ion pumps (e.g.: Na+-K+ pump) 2.2 Intracellular Compartments and protein sorting b) Transport of molecules between the nucleus and cytosol, peroxisomes, Endoplasmic reticulum c) Transport of proteins into mitochondria and				
b) Microtubules c) Actin regulation d) Molecular motors e) Cell behaviour 1.4 Cell Junctions and cell adhesion a) Anchoring b) Adherence junctions c) Desmosomes d) Gap junctions e) Cell-cell adhesion f) Cadherins II Membrane Transport and Compartmentalization f) Cadherins II Membrane Transport (Revision) a) Principles of membrane transport i. Ion channels ii. electrical properties of membranes b) Types of diffusion i. Passive Diffusion, and Facilitated Diffusion, ii. Ion channels – Ligand gated and voltage gated channels, c) Active transport – ion pumps (e.g.: Na+-K+ pump) 2.2 Intracellular Compartments and protein sorting b) Transport of molecules between the nucleus and cytosol, peroxisomes, Endoplasmic reticulum c) Transport of proteins into mitochondria and		1.3	Cytoskeleton	05
c) Actin regulation d) Molecular motors e) Cell behaviour 1.4 Cell Junctions and cell adhesion a) Anchoring b) Adherence junctions c) Desmosomes d) Gap junctions e) Cell-cell adhesion f) Cadherins II Membrane Transport and Compartmentalization 5.1 Membrane Transport (Revision) a) Principles of membrane transport i. Ion channels ii. electrical properties of membranes b) Types of diffusion i. Passive Diffusion, and Facilitated Diffusion, iii. Ion channels — Ligand gated and voltage gated channels, c) Active transport — ion pumps (e.g.: Na+-K+ pump) 2.2 Intracellular Compartments and protein sorting a) Compartmentalization of cells b) Transport of molecules between the nucleus and cytosol, peroxisomes, Endoplasmic reticulum c) Transport of proteins into mitochondria and			a) Cytoskeletal filaments	
d) Molecular motors e) Cell behaviour 1.4 Cell Junctions and cell adhesion a) Anchoring b) Adherence junctions c) Desmosomes d) Gap junctions e) Cell-cell adhesion f) Cadherins II Membrane Transport and Compartmentalization 2.1 Membrane Transport (Revision) a) Principles of membrane transport i. Ion channels ii. electrical properties of membranes b) Types of diffusion i. Passive Diffusion, and Facilitated Diffusion, iii. lon channels – Ligand gated and voltage gated channels, c) Active transport – ion pumps (e.g.: Na+-K+ pump) 2.2 Intracellular Compartments and protein sorting a) Compartmentalization of cells b) Transport of molecules between the nucleus and cytosol, peroxisomes, Endoplasmic reticulum c) Transport of proteins into mitochondria and			b) Microtubules	
e) Cell behaviour 1.4 Cell Junctions and cell adhesion a) Anchoring b) Adherence junctions c) Desmosomes d) Gap junctions e) Cell-cell adhesion f) Cadherins II Membrane Transport and Compartmentalization 5.1 Membrane Transport (Revision) a) Principles of membrane transport i. Ion channels ii. electrical properties of membranes b) Types of diffusion i. Passive Diffusion, and Facilitated Diffusion, ii. Ion channels — Ligand gated and voltage gated channels, c) Active transport — ion pumps (e.g.: Na+-K+ pump) 2.2 Intracellular Compartments and protein sorting a) Compartmentalization of cells b) Transport of molecules between the nucleus and cytosol, peroxisomes, Endoplasmic reticulum c) Transport of proteins into mitochondria and			c) Actin regulation	
1.4 Cell Junctions and cell adhesion a) Anchoring b) Adherence junctions c) Desmosomes d) Gap junctions e) Cell-cell adhesion f) Cadherins II Membrane Transport and Compartmentalization 5.1 Membrane Transport (Revision) a) Principles of membrane transport i. Ion channels ii. electrical properties of membranes b) Types of diffusion i. Passive Diffusion, and Facilitated Diffusion, ii. Ion channels — Ligand gated and voltage gated channels, c) Active transport — ion pumps (e.g.: Na+-K+ pump) 2.2 Intracellular Compartments and protein sorting a) Compartmentalization of cells b) Transport of molecules between the nucleus and cytosol, peroxisomes, Endoplasmic reticulum c) Transport of proteins into mitochondria and			d) Molecular motors	
a) Anchoring b) Adherence junctions c) Desmosomes d) Gap junctions e) Cell-cell adhesion f) Cadherins II Membrane Transport and Compartmentalization 2.1 Membrane Transport (Revision) a) Principles of membrane transport i. Ion channels ii. electrical properties of membranes b) Types of diffusion i. Passive Diffusion, and Facilitated Diffusion, ii. Ion channels — Ligand gated and voltage gated channels, c) Active transport — ion pumps (e.g.: Na+-K+ pump) 2.2 Intracellular Compartments and protein sorting a) Compartmentalization of cells b) Transport of molecules between the nucleus and cytosol, peroxisomes, Endoplasmic reticulum c) Transport of proteins into mitochondria and			e) Cell behaviour	
b) Adherence junctions c) Desmosomes d) Gap junctions e) Cell-cell adhesion f) Cadherins II Membrane Transport and Compartmentalization 2.1 Membrane Transport (Revision) a) Principles of membrane transport i. Ion channels ii. electrical properties of membranes b) Types of diffusion i. Passive Diffusion, and Facilitated Diffusion, ii. Ion channels – Ligand gated and voltage gated channels, c) Active transport – ion pumps (e.g.: Na+-K+ pump) 2.2 Intracellular Compartments and protein sorting a) Compartmentalization of cells b) Transport of molecules between the nucleus and cytosol, peroxisomes, Endoplasmic reticulum c) Transport of proteins into mitochondria and		1.4	Cell Junctions and cell adhesion	05
c) Desmosomes d) Gap junctions e) Cell-cell adhesion f) Cadherins II Membrane Transport and Compartmentalization 2.1 Membrane Transport (Revision) a) Principles of membrane transport i. Ion channels ii. electrical properties of membranes b) Types of diffusion i. Passive Diffusion, and Facilitated Diffusion, ii. Ion channels – Ligand gated and voltage gated channels, c) Active transport – ion pumps (e.g.: Na+-K+ pump) 2.2 Intracellular Compartments and protein sorting b) Transport of molecules between the nucleus and cytosol, peroxisomes, Endoplasmic reticulum c) Transport of proteins into mitochondria and				
d) Gap junctions e) Cell-cell adhesion f) Cadherins II Membrane Transport and Compartmentalization 2.1 Membrane Transport (Revision) a) Principles of membrane transport i. Ion channels ii. electrical properties of membranes b) Types of diffusion i. Passive Diffusion, and Facilitated Diffusion, ii. Ion channels – Ligand gated and voltage gated channels, c) Active transport – ion pumps (e.g.: Na+-K+ pump) 2.2 Intracellular Compartments and protein sorting a) Compartmentalization of cells b) Transport of molecules between the nucleus and cytosol, peroxisomes, Endoplasmic reticulum c) Transport of proteins into mitochondria and				
e) Cell-cell adhesion f) Cadherins II Membrane Transport and Compartmentalization 15 2.1 Membrane Transport (Revision) 05 a) Principles of membrane transport i. Ion channels ii. electrical properties of membranes b) Types of diffusion i. Passive Diffusion, and Facilitated Diffusion, ii. Ion channels – Ligand gated and voltage gated channels, c) Active transport – ion pumps (e.g.: Na+-K+ pump) 2.2 Intracellular Compartments and protein sorting 07 a) Compartmentalization of cells b) Transport of molecules between the nucleus and cytosol, peroxisomes, Endoplasmic reticulum c) Transport of proteins into mitochondria and				
f) Cadherins II Membrane Transport and Compartmentalization 15 2.1 Membrane Transport (Revision) 05 a) Principles of membrane transport				
II Membrane Transport and Compartmentalization 15 2.1 Membrane Transport (Revision) 05 a) Principles of membrane transport i. Ion channels ii. electrical properties of membranes b) Types of diffusion i. Passive Diffusion, and Facilitated Diffusion, ii. Ion channels – Ligand gated and voltage gated channels, c) Active transport – ion pumps (e.g.: Na+-K+ pump) 2.2 Intracellular Compartments and protein sorting 07 a) Compartmentalization of cells b) Transport of molecules between the nucleus and cytosol, peroxisomes, Endoplasmic reticulum c) Transport of proteins into mitochondria and				
2.1 Membrane Transport (Revision) a) Principles of membrane transport i. Ion channels ii. electrical properties of membranes b) Types of diffusion i. Passive Diffusion, and Facilitated Diffusion, ii. Ion channels – Ligand gated and voltage gated channels, c) Active transport – ion pumps (e.g.: Na+-K+ pump) 2.2 Intracellular Compartments and protein sorting a) Compartmentalization of cells b) Transport of molecules between the nucleus and cytosol, peroxisomes, Endoplasmic reticulum c) Transport of proteins into mitochondria and			,	
a) Principles of membrane transport i. Ion channels ii. electrical properties of membranes b) Types of diffusion i. Passive Diffusion, and Facilitated Diffusion, ii. Ion channels – Ligand gated and voltage gated channels, c) Active transport – ion pumps (e.g.: Na+-K+ pump) 2.2 Intracellular Compartments and protein sorting a) Compartmentalization of cells b) Transport of molecules between the nucleus and cytosol, peroxisomes, Endoplasmic reticulum c) Transport of proteins into mitochondria and	II.			
i. Ion channels ii. electrical properties of membranes b) Types of diffusion i. Passive Diffusion, and Facilitated Diffusion, ii. Ion channels – Ligand gated and voltage gated channels, c) Active transport – ion pumps (e.g.: Na+-K+ pump) 2.2 Intracellular Compartments and protein sorting a) Compartmentalization of cells b) Transport of molecules between the nucleus and cytosol, peroxisomes, Endoplasmic reticulum c) Transport of proteins into mitochondria and		2.1		05
ii. electrical properties of membranes b) Types of diffusion i. Passive Diffusion, and Facilitated Diffusion, ii. lon channels – Ligand gated and voltage gated channels, c) Active transport – ion pumps (e.g.: Na+-K+ pump) 2.2 Intracellular Compartments and protein sorting a) Compartmentalization of cells b) Transport of molecules between the nucleus and cytosol, peroxisomes, Endoplasmic reticulum c) Transport of proteins into mitochondria and				
b) Types of diffusion i. Passive Diffusion, and Facilitated Diffusion, ii. Ion channels – Ligand gated and voltage gated channels, c) Active transport – ion pumps (e.g.: Na+-K+ pump) 2.2 Intracellular Compartments and protein sorting a) Compartmentalization of cells b) Transport of molecules between the nucleus and cytosol, peroxisomes, Endoplasmic reticulum c) Transport of proteins into mitochondria and				
i. Passive Diffusion, and Facilitated Diffusion, ii. Ion channels – Ligand gated and voltage gated channels, c) Active transport – ion pumps (e.g.: Na+-K+ pump) 2.2 Intracellular Compartments and protein sorting a) Compartmentalization of cells b) Transport of molecules between the nucleus and cytosol, peroxisomes, Endoplasmic reticulum c) Transport of proteins into mitochondria and				
ii. Ion channels – Ligand gated and voltage gated channels, c) Active transport – ion pumps (e.g.: Na+-K+ pump) 2.2 Intracellular Compartments and protein sorting a) Compartmentalization of cells b) Transport of molecules between the nucleus and cytosol, peroxisomes, Endoplasmic reticulum c) Transport of proteins into mitochondria and			· · · ·	
channels, c) Active transport – ion pumps (e.g.: Na+-K+ pump) 2.2 Intracellular Compartments and protein sorting a) Compartmentalization of cells b) Transport of molecules between the nucleus and cytosol, peroxisomes, Endoplasmic reticulum c) Transport of proteins into mitochondria and	O.K.			
c) Active transport – ion pumps (e.g.: Na+-K+ pump) 2.2 Intracellular Compartments and protein sorting a) Compartmentalization of cells b) Transport of molecules between the nucleus and cytosol, peroxisomes, Endoplasmic reticulum c) Transport of proteins into mitochondria and				
Intracellular Compartments and protein sorting a) Compartmentalization of cells b) Transport of molecules between the nucleus and cytosol, peroxisomes, Endoplasmic reticulum c) Transport of proteins into mitochondria and			·	
a) Compartmentalization of cells b) Transport of molecules between the nucleus and cytosol, peroxisomes, Endoplasmic reticulum c) Transport of proteins into mitochondria and		2.2		07
b) Transport of molecules between the nucleus and cytosol, peroxisomes, Endoplasmic reticulum c) Transport of proteins into mitochondria and			· · · · · · · · · · · · · · · · · · ·	
cytosol, peroxisomes, Endoplasmic reticulum c) Transport of proteins into mitochondria and			· · · · · ·	
c) Transport of proteins into mitochondria and				

	2.3	Intracellular vesicular traffic	03
		a) Endocytosis	
		b) Exocytosis	
		c) Transport from the ER through the Golgi apparatus	
III		Cell cycle & Cell communication	15
	3.1	Mechanism of cell division	04
		a) M-phase	
		b) Cytokinesis	
	3.2	Cell cycle and Programmed cell death	03
		a) Control system	
		b) Intracellular control of cell cycle events	
		c) Apoptosis	
		d) Extracellular control of cell growth and apoptosis	
	3.3	Cell communication	03
		a) Extracellular signal molecules	
		b) Nitric oxide gas signal	
		c) Classes of cell-surface receptor proteins	
	3.4	Signalling through enzyme linked cell surface receptors	04
		a) Docking sites	
		b) Ras	
		c) MAP kinase	
		d) PI-3kinase	
		e) TGF	
	3.5	Signalling in plants	01
		a) Serine/ Threonine kinases	
		b) Role of ethylene	
157		c) Phytochromes	45
IV	4.4	Developmental Biology	15
	4.1	The Process of Development in Animals	04
		a) Evo-Devo: The Study of Evolution and Development	
		b) Meiosis- Oogenesis, spermatogenesis and	
		fertilization	
_		c) The Embryonic Cleavage Divisions and Blastula Formation	
	4.2	d) Gastrulation and Morphogenesis Genetic Analysis of Development in Model Organisms	01
	4.2	a) Genetic Analysis of Development Pathways	01
O.K.		b) Molecular Analysis of Genes Involved in	
		Development	
	4.3	Maternal Gene Activity in Development	03
	7.0	Maternal-Effect Genes	0.5
	4.4	Development of Drosophila	07
	7.7	a) Determination of the Dorsal-Ventral and Anterior-	0,
		Posterior Axes in Drosophila Embryos	
		b) Zygotic Gene Activity in Development	
		c) Specification of Cell Types	
		o) Specification of Cell Types	

(d)	Genes of drosophila	
	i. Drosophila signalling genes	
	ii. gradient of nuclear gene regulatory protein	
	iii. Dpp and Sog setup	
	iv. Neural development	

- a) Albert, Johnson, Lewis, Raff, Roberts and Walter, "Molecular Biology of The Cell", 5th Ed,
 Garland Science Publishing, 2008
- b) Lodish, Birk, and Zipursky, "Molecular Cell Biology", Freeman Publishing, 2008
- Lipowsky and Sackmann, "The Structure and Dynamics of Cell Membrane",1st Ed, Elsevier,
 1995
- d) Dennis Bray, "Cell Movements: from Molecules to Motility", 2nd Ed, Garland Publications, 2001
- e) Snustad &Simmons, "Principles of Genetics", 3rd Ed, John Wiley & Sons Inc, 2002

PRACTICALS: RPSMIC2P1 (60 CONTACT HRS)

- f) Study of cell cytology using Phase contrast Microscopy-Demonstration
- g) Study of Cell structure using Confocal Microscopy- Demonstration
- h) Study of Cell structure using Fluorescence Microscopy- Demonstration
- i) Isolation of Chloroplasts.
- j) Isolation of Mitochondria from the cell.
- k) Cultivation of macrophage cell lines and study of cell viability
- I) Study of Mitosis.
- m) Study of Meiosis
- n) Estimation of NO (Nitric Oxide) produced by Macrophages.
- o) Study of Cell membrane integrity using up take of neutral red.

Course Code: RPSMIC 202

Course Title: Microbial Biochemistry-II

Academic year 2020-21

COURSE OUTCOME	DESCRIPTION
CO 1	Recall the basics of biochemical techniques for extraction and purification of biomolecules
CO 2	Compare modes of regulation of enzyme activity at protein level
CO 3	Understand the details of mechanism of enzyme activity for the representative enzyme from each class
CO 4	Attribute various mechanisms to the response to various environmental stimuli
CO 5	Analyze the mechanism of biodegradation of various xenobiotics by microorganisms
CO 6	Check various properties of amylase enzyme in the laboratory

Course	Unit	Course/ Unit Title	Credits/
Code			Lectures
RPSMIC		MICROBIAL BIOCHEMISTRY II	4/60
202			
		Analytical Biochemistry	15
	1.1	Problems on Determination of	2
		a) Molecular weights	
		b) Purity	
		c) Length and volume of organic compounds	
	1.2	Extraction, purification, application and analysis of	2
		proteins, carbohydrates and lipids	
	1.3	General methods of extraction	3
		a) Salting out	
		b) Use of organic solvents	
	1.4	Purification: Chromatographic techniques	2
	1.5	Mass determination	2
		a) Ultracentrifuge	
		b) GC-MS	
	1.6	Structure determination: X-ray diffraction	1
		Location: Confocal spectroscopy	
	1.7	Methods of analysis of:	3
		a) Proteins,	
		b) Carbohydrates	
		c) Lipids	
		d) Other organic compounds	
II		Enzymology	15
	2.1	Introduction to enzymes	06
		a) Discovery of enzymes	
		b) Enzyme terminology	
		c) Basic aspects of chemical kinetics	
		d) Kinetics of enzyme catalysed reactions	
		e) Enzyme inhibition (reversible and irreversible)f) Specific examples	
	1	i. Effect of pH on enzyme activity (Fumarase)	
OW		ii. Enzyme action by X-ray crystallography	
		iii. Nerve gas and its significance	
		iv. HIV enzyme inhibitors and drug design	
	2.2	Enzyme regulation:	05
	_	a) Phosphofructokinase as allosteric enzyme	
		b) General properties of allosteric enzymes	
		c) Two themes of allosteric regulations	
		d) Regulation by covalent modification	
		e) Regulation by multienzyme complexes and	

			multifunctional enzymes	
		£/	specific example- the blood coagulation cascade	
		f)		
			(problem solving)	
	2.3		inisms of enzyme catalysis	04
		a)	Five themes that occur in discussing enzymatic	
			reactions	
		b)	Detailed mechanisms of enzyme catalysis for	
		example		
		i. serine protease		
		ii. ribonucleases		
			iii. triose phosphate isomerase	
			iv. lysozyme	
			v. lactate and alcohol dehydrogenases	
			vi. catalytic antibodies	
Ш			Cell Signaling in Prokaryotes	15
	3.1	Introd	uction to two-component signaling systems	06
	5.1		Response by facultative anaerobes to anaerobiosis,	
		a)		
			, , , , , , ,	
		1- \	phosphate supply	
		D)	Effect of oxygen and light on the expression of	
			photosynthetic genes in purple photosynthetic	
			bacteria, response to osmotic pressure and	
			temperature, response to potassium ion and external	
			osmolarity, response to carbon sources	
		c)	Bacterial response to environmental	
			stress-heat-shock response, repairing damaged	
			DNA, the SOS response, oxidative stress	
	3.2	3.2 Synthesis of virulence factors in response to		04
		a)	Temperature	
		b)	pH	
		c)	nutrient	
		d)	Osmolarity	
			Quorum sensors	
		f)	Chemotaxis	
		g)	Photo responses	
		•	Aero taxis	
	3.3	,	rial development and quorum sensing	05
	0.0	a)	Myxobacteria	
		b)	Caulobacter	
		c)	Bioluminescence	
		d)	systems similar to Lux R/Lux I in non-luminescent	
		- \	bacteria	
13.7		e)	Biofilms.	45
IV			Biodegradation of Xenobiotics	15
	4.1		pial Degradation of	05
		a)	Polychlorophenols	
		b)	Decolorization and Degradation of Azo Dyes	
		c)	Degradation of High Molecular Weight Polynuclear	

	Aromatic Hydrocarbons	
	d) Bacterial Degradation of Petroleum Hydrocarbons	
4.2	Biodegradation by Fungus of	05
	a) Aromatic Pollutants	
	b) Chloro-organic Pollutants by White Rot Fungi	
4.3.	Biodegradation of Xenobiotics	05
	a) Microbial Degradation of Plastics and Water-Soluble	
	Polymers	
	b) Degradation of PAHs: Organisms and Environmental	
	Compartments	CX.
	c) Microbial Degradation of Alkanes	

REFERENCES:

- a) Mathew, Van Holde and Ahern, "Biochemistry", 3rd Ed, Pearson Education, 2000
- b) Zubay, "Principles of Biochemistry", 4th Ed, 1995
- c) Horton and Moran, "Principles of Biochemistry", 5th Ed, Scrimgeour Pears Rawn, 2011
- d) Lehninger A.L., Cox and Nelson, "Principles of Biochemistry", 4th Ed, CBS Publishers and Distributors Pvt. Ltd. 1994
- e) Conn and Stumpf, "Outlines of Biochemistry", 5th Ed, John Wiley and Sons, 2006
- f) White D, "The physiology and biochemistry of prokaryotes", 2nd Ed, Oxford University Press, 2000
- g) Biotechnology H.J. Rehm and G. Reed, "Biotransformation's", Volume 6 a., Verlag and Chemie, 1984
- h) Doelle H.W., "Introduction to bacterial metabolism", Academic Press, 1975
- i) Atlas R M and Bartha, "Microbial ecology", Addison Wesley Longman Inc., 1998
- j) Shree Nath Singh, "Microbial Degradation of Xenobiotics" Springer, 2012.
- k) Segel. R, "Biochemical calculations", 3rd edition John Wiley and Sons,1995

PRACTICALS: RPSMIC2P2 (60 CONTACT HRS)

- a) Isolation of Amylase from Aspergillus spp and its Purification strategy
- b) Purification of an extracellular enzyme (βamylase) by salting out and dialysis
- c) Purification of an extracellular enzyme by (βamylase) Ion-Exchange chromatography
- d) Enzyme kinetics effect of enzyme concentration, substrate concentration, pH, temperature and inhibitors on enzyme activity,
- e) Demonstration of proteolytic activity
- f) Determination of glucose isomerase present intracellularly in *Bacillus sp.*
- g) Adaptation of E. coli to anaerobiosis
- h) Chemotaxis of Pseudomonas
- i) Effect of temperature and water activity on swarming of Proteus

- j) Microbial degradation of polycyclic aromatic hydrocarbons (PAHs) enrichment, isolation and screening of bacteria
- k) Aqueous two-phase partitioning
- I) Extraction of protein by precipitation with Acetone
- m) Separation of proteins using Polyacrylamide Gel Electrophoresis (PAGE)

Course Code: RPSMIC 203

Course Title: Environmental Microbiology

Academic year 2020-21

COURSE OUTCOMES:

COURSE	DESCRIPTION		
OUTCOME			
CO 1	Recollect basic concepts of microbial ecology		
CO 2	Design, execute and implement a protocol for sample collection		
	from a natural environment and its microbiological analysis		
CO 3	Discriminate and select the best genomic technique for microbial studies of different environmental samples		
CO 4	Demonstrate an in depth understanding of microbial ecology of soil and marine environments		
CO 5	Apply the understanding on industrial applications of		
	extremophiles to explore and innovate for newer products		
CO 6	Summarize the significance of microbes in elemental cycles		
CO 7	Interpret the role of rhizosphere bacteria in plant growth and implement techniques for exploring them for commercial applications		
CO 8	Explain and appreciate various regulations enacted with respect to biosafety and hazardous waste management		

DETAILED SYLLABUS

Course	Unit	Course/ Unit Title	Credits/
Code			Lectures
RPSMIC		ENVIRONMENTAL MICROBIOLOGY	04/60
203			
I		Microbial Ecology	15
	1.1	Basic concepts of Microbial Ecology, Sample	05
		collection and processing	
		a) Revision of basic concepts of Microbial Ecology i. Concepts ii. Niche iii. Habitat iv. Ecosystem v. Microbial diversity vi. Interactions between micro-organisms vii. Ecological succession b) Environmental sample collection and processing i. Soils and Sediment	
		ii. Water	
	1.2	Techniques for microbial analysis a) Cultural Methods	08
		 b) Physiological Methods: Measuring microbial activity in pure culture Carbon respiration Stable isotope probing Use of radioisotopes as tracers Adenylate energy charge Enzyme assays Functional genomics, Metagenomics & Proteomics- based approach Immunological methods Nucleic acid-based methods Recombinant DNA Techniques RFLP Denaturing/Temperature gradient Plasmid analysis Reporter genes Rep PCR fingerprinting and Microbial diversity 	
	1.3	Environmental genomics	02
		a) Metagenomics	
		b) Meta-trancriptomics	

		c) Metaproteomics	
II		Study of Marine Ecosystem & Extremophiles	15
	2.1	Marine microbiology	03
		a) Marine and estuarine habitats	
		b) Characterization and stratification of the	
		oceans: Vertical and horizontal zones of	
		marine habitats	
		c) Marine microbes	
		i. Characteristics	
		ii. Distribution	
		iii. Composition & activity	
		d) Marine pathogens	
	2.2	Extremophiles	08
		a) Habitat	
		b) Effect of extreme conditions on cellular	
		components	
		c) membrane structure	
		d) nucleic acids	
		e) proteins	
		f) Adaptation mechanism in microorganisms in	
		diverse environments	
		g) Study, Industrial Applications and	
		Biotechnological applications of proteins from:	
		i. Thermophiles	
		ii. Psychrophiles	
		iii. Halophiles	
		iv. Piezophiles	
		v. Acidophiles	
		vi. Alkaliphiles	
		vii. Xerophiles	
		viii. Radiation resistant organisms	
		ix. Methanogens	
	2.3	Mechanisms of metal resistance, Metal	02
	0	transformations, Microbial metal remediation	-
	2.4	Geomicrobiology	02
	71	a) Biofouling	
		b) Biocorrosion	
6/1/1		c) Bioleaching	
111		Soil and Agricultural Microbiology	15
	3.1	Soil Microbiology	03
		a) Litho ecosphere	
		i. Soil formation	
		ii. Properties (physical and chemical)	
		b) Soil communities	
	3.2	Agricultural microbiology	04
	† -	a) Factors affecting microbial load of soils	
		b) Relationship between plants and microbe's	
		rhizosphere, phyllosphere.	
	<u> </u>	I I I Zoopiioio, priyrioopiioioi	j

		c) Beneficial uses of microorganisms for plant	
		growth and development	
		d) Interactions with aerial plant structure	
	3.4	Biofilms in plant-associated habitats	03
		a) In the phyllosphere (impact on survival and	
bacterial interactions, interactions		bacterial interactions, interaction of plants with	
		epiphytic biofilms,)	
		b) In the Rhizosphere (ubiquity and importance	
		for rhizosphere bacteria, impact of rhizosphere	
		biofilms on plant biology)	
	3.5	Biogeochemical cycles and Degradation	05
		a) Biogeochemical cycles	
		i. Carbon	
		ii. Nitrogen	
		iii. Oxygen)
		b) Degradation of complex polymers	
		i. Cellulose	
		ii. Lignin	
		iii. Lignocellulose	
IV		Environmental & natural resources	15
		management and safety standards	
	4.1	Environmental Impact Assessment and	02
		Sustainable Development	
	4.2	Microbes and global warming	02
		a) Microbial contribution to green-house gases	<u> </u>
		b) Combating Greenhouse effect using microbes	
		c) Concept of carbon credits	
	4.3	Solid waste management	02
		a) Biodegradable waste from kitchen, abattoirs	<u> </u>
		and agricultural fields and their recycling by	
		aerobic composting or bio methanation.	
		b) Non-biodegradable waste like plastics, glass	
		metal scrap and building materials and plastic	
		recycling, metal recycling.	
	4.4	Hazardous waste management	03
	4.70	a) Hazardous waste from paint, pesticides and	
		chemical industries and their composition	
1/1/1		b) Probable means to reduce waste through	
		Common Effluent Treatment Plants.	
	4.6	Biohazards	03
	4.0	Dioliazaius	
		a) Introduction	
		a) Introduction b) lovels of biobazards	
		b) levels of biohazards	
		b) levels of biohazards c) Risk assessment	
		b) levels of biohazardsc) Risk assessmentd) Proper cleaning procedures	
	4.7	b) levels of biohazardsc) Risk assessmentd) Proper cleaning procedurese) Biomedical waste management	02
	4.7	b) levels of biohazards c) Risk assessment d) Proper cleaning procedures e) Biomedical waste management Biosafety guidelines for GMOs and LMOs	03
	4.7	b) levels of biohazardsc) Risk assessmentd) Proper cleaning procedurese) Biomedical waste management	03

	food and agriculture. Environmental release of GMOs.	
'	Overview of national regulations and relevant international agreements.	
,	Ecolabelling, IS 22000, Generally Recognized as Safe (GRAS)	

REFERENCES:

- a) Brock Madigan, Martinko, Dunlap, Clark, "Biology of microorganisms", 12th Ed, Pearson Intl, 2011
- b) R. M. Atlas and R. Bartha, "Microbial Ecology Fundamentals and Applications" Addison Wesley Longman Inc, 1998
- c) Johri and Satyanarayana, "Microbial Diversity- Current Perspective and Potential Application", International Pvt. Ltd, New Delhi, India, 2005
- d) Fred Rainey, Aharon Oren, "Methods in Microbiology- Extremophiles", Vol 35, Academic press, 2006
- e) R.M Maier, I. L. Pepper and C. P. Gerba, "Environmental Microbiology", Academic Press, 2010
- f) Rastogi & Sani, "Molecular Techniques to Assess Microbial Community Structure, Function, and Dynamics in the Environment", *Microbes and Microbial Technology*, 2011, pp 29-57,
- g) A K Bej and M H Mahbubani, "Applications of the polymerase chain reaction in environmental Microbiology", *Genome Res*, 1992, 1: 151-159
- h) Rolf Daniel, "The Metagenomics of soil", Vol 3, Nature reviews, 2005
- Susannah Green Tringe and Edward M. Rubin, "Metagenomics: DNA sequencing of environmental samples", Volume 6, 2005
- j) Colin Munn, "Marine Microbiology: Ecology and Applications", Garland publishing. ISBN: 0815365179
- k) G. Rangaswami, D. J. Bagyaraj, D.G. Bagyaraj, "Agricultural Microbiology", PHI Learning Pvt. Ltd., 2004
- I) Iqbal Ahmad, Farah Ahmad, John Pichtel, "Microbes and Microbial Technology: Agricultural and Environmental Applications", Springer, 2011.
- m) S. K. Maiti, "Water and Wastewater analysis: Handbook of methods in environmental studies", Volume 1, ABD Publishers, 2004
- n) S.K. Maiti, "Soil analysis Handbook of methods in environmental studies", Volume 2, ABD Publishers, 2004
- o) H. V. Jadhav, "Environmental management", Vipul Prakashan, 2002
- p) R.K. Jain, "Environmental management"
- q) M. H. Fulekar, "Industrial hygiene and safety"

r) Medini Duccio et al, "Microbiology in the post-genomic era", Vol-6, *Nature review* Microbiology, 2008

PRACTICALS: RPSMIC2P3 (60 CONTACT HRS)

- a) Enrichment & isolation of thermophiles from hot springs/compost heaps & extraction of thermophilic enzymes & determination of their specific activity.
- b) Physical analysis of soil
 - i. Particle size analysis
 - ii. Water retention capacity
 - iii. Bulk density and tap density
- c) Chemical analysis of soil
 - i. Nitrogen
 - ii. Phosphorus
 - iii. Chloride
 - iv. Organic matter
 - v. Calcium carbonate content
- d) Microbial analysis of soil
 - i. Microbial load
 - ii. Presence of cellulose, lignin & xylan degraders
 - iii. Detection of inorganic metabolism
 - iv. Detection of siderophore producing bacteria
 - v. Isolation of iron bacteria
 - vi. Isolation of Plant Growth Promoting bacteria from Rhizosphere
 - vii. Dehydrogenase Activity of Soils
 - viii. Determination of nitrogen mineralization and nitrification in soils and the influence of chemicals on these processes
- e) Visit to CETP

Course Code: RPSMIC204

Course Title: Emerging Areas in Biology I

Academic year 2020-21

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION		
CO 1	Understand basics of bioinformatics and execute the analysis of		
	molecular data using different databases & software.		
CO 2	Design primer for PCR reaction & carryout phylogenetic analysis.		
CO 3	Discuss the concept of synthetic biology & systems biology		
CO 4	Illustrate & implement the methods for biosynthesis of nanoparticles & discuss its applications.		
CO 5	Summarize and compare the principles of different Nucleic acid Sequencing methods.		
CO 6	Compare and analyze the process of protein expression in prokaryotic & eukaryotic systems.		
CO 7	Interpret the significance of concepts like directed mutagenesis, mapping & quantifying transcription & measuring protein accumulation.		

DETAILED SYLLABUS

Course	Unit	Course/ Unit Title	Credits/
Code			Lectures
RPSMIC		EMERGING AREAS IN BIOLOGY I	04/60
204			
ı		Bioinformatics	15
	1.1	Bioinformatics Basics	07
		a) Introduction	
		b) Genome sequencing projects: technologies and	
		impact	
		c) Annotation, Databases and Protein Structures	
		d) Pairwise Alignment, Multiple Alignment, and	
		BLAST	
	1.2	Introduction to omics	03
		a) Definitions of proteomics, genomics,	
		transcriptomics	
		b) High dimensional Biology	
	4.0	c) The omic experiment	0.5
	1.3	Applications of Bioinformatics	05
		a) Primer Design	
		b) Phylogenetic Analysis	
II		Synthetic and systems biology	15
	2.1	Synthetic Biology	10
		a) Basic concepts in Engineering Biology	
		b) Parts, Devices and Systems	
		c) Logic gatesd) Synthetic Gene Circuits and examples like	
		Oscillators, Toggle Switches	
	2.2	Overview of Systems biology	05
	-1-	a) Approaches and methodologies,	33
		b) Analysis of biological Networks,	
		c) Network Dynamics	
		d) Network Motifs and Functional Modules,	
12/12		e) Dynamical Models	
		f) Artificial Intelligence in Systems Biology	
		Nanobiotechnology	15
	3.1	Synthesis of nanostructures	07
		a) Physical	
		b) Chemical	
		c) Biological	
	2.2	d) Microbiological methods	00
	3.2	Applications of nanomaterials	08
		a) Biomolecules as nanostructures	

		b) Nanoparticular carrier systems	
		c) Micro and Nanofluidics	
		d) Nano-biosensors	
		e) Drug and gene delivery systems	
		f) Chip technologies	
		g) Nano imaging	
		h) Nanomedicine	
		i) Cancer diagnostics and treatment	
IV		Contemporary tools in Molecular Biotechnology	15
	4.1	DNA Sequencing and Physical mapping	04
		a) Dideoxynucleoside method for sequencing of	
		DNA	
		b) Automated DNA sequencing	
		c) High-throughput Sequencing	
		d) Restriction Mapping reference	
	4.2	Heterologous protein production in eukaryotic cells	03
		a) Saccharomyces cerevisiae	
		b) Pichia pastoris	
		c) Baculovirus- Insect cell	
	d) Mammalian cell		
1		d) Warminalian cell	
	4.3	Directed Mutagenesis	05
	4.3	,	05
	4.3	Directed Mutagenesis	05
	4.3	Directed Mutagenesis a) Oligonucleotide directed mutagenesis with	05
	4.3	Directed Mutagenesis a) Oligonucleotide directed mutagenesis with plasmid DNA	05
	4.3	Directed Mutagenesis a) Oligonucleotide directed mutagenesis with plasmid DNA b) PCR amplified oligonucleotide directed	05
	4.3	Directed Mutagenesis a) Oligonucleotide directed mutagenesis with plasmid DNA b) PCR amplified oligonucleotide directed mutagenesis	05
	4.3	Directed Mutagenesis a) Oligonucleotide directed mutagenesis with plasmid DNA b) PCR amplified oligonucleotide directed mutagenesis c) Random mutagenesis with degenerate	05
	4.3	Directed Mutagenesis a) Oligonucleotide directed mutagenesis with plasmid DNA b) PCR amplified oligonucleotide directed mutagenesis c) Random mutagenesis with degenerate oligonucleotide primer	05
	4.3	Directed Mutagenesis a) Oligonucleotide directed mutagenesis with plasmid DNA b) PCR amplified oligonucleotide directed mutagenesis c) Random mutagenesis with degenerate oligonucleotide primer d) Random mutagenesis with nucleotide analogues	05
	4.3	Directed Mutagenesis a) Oligonucleotide directed mutagenesis with plasmid DNA b) PCR amplified oligonucleotide directed mutagenesis c) Random mutagenesis with degenerate oligonucleotide primer d) Random mutagenesis with nucleotide analogues e) Error-prone PCR	05
	4.3	Directed Mutagenesis a) Oligonucleotide directed mutagenesis with plasmid DNA b) PCR amplified oligonucleotide directed mutagenesis c) Random mutagenesis with degenerate oligonucleotide primer d) Random mutagenesis with nucleotide analogues e) Error-prone PCR f) DNA shuffling	05
		Directed Mutagenesis a) Oligonucleotide directed mutagenesis with plasmid DNA b) PCR amplified oligonucleotide directed mutagenesis c) Random mutagenesis with degenerate oligonucleotide primer d) Random mutagenesis with nucleotide analogues e) Error-prone PCR f) DNA shuffling g) Mutant proteins with unusual amino acids	
		Directed Mutagenesis a) Oligonucleotide directed mutagenesis with plasmid DNA b) PCR amplified oligonucleotide directed mutagenesis c) Random mutagenesis with degenerate oligonucleotide primer d) Random mutagenesis with nucleotide analogues e) Error-prone PCR f) DNA shuffling g) Mutant proteins with unusual amino acids Mapping and quantifying transcriptions a) S1 mapping b) Primer extension reference	
		Directed Mutagenesis a) Oligonucleotide directed mutagenesis with plasmid DNA b) PCR amplified oligonucleotide directed mutagenesis c) Random mutagenesis with degenerate oligonucleotide primer d) Random mutagenesis with nucleotide analogues e) Error-prone PCR f) DNA shuffling g) Mutant proteins with unusual amino acids Mapping and quantifying transcriptions a) S1 mapping b) Primer extension reference c) Run-off transcription	
	4.4	Directed Mutagenesis a) Oligonucleotide directed mutagenesis with plasmid DNA b) PCR amplified oligonucleotide directed mutagenesis c) Random mutagenesis with degenerate oligonucleotide primer d) Random mutagenesis with nucleotide analogues e) Error-prone PCR f) DNA shuffling g) Mutant proteins with unusual amino acids Mapping and quantifying transcriptions a) S1 mapping b) Primer extension reference c) Run-off transcription d) G-less cassette transcription	
		Directed Mutagenesis a) Oligonucleotide directed mutagenesis with plasmid DNA b) PCR amplified oligonucleotide directed mutagenesis c) Random mutagenesis with degenerate oligonucleotide primer d) Random mutagenesis with nucleotide analogues e) Error-prone PCR f) DNA shuffling g) Mutant proteins with unusual amino acids Mapping and quantifying transcriptions a) S1 mapping b) Primer extension reference c) Run-off transcription d) G-less cassette transcription Measuring protein accumulation in vivo:	
	4.4	Directed Mutagenesis a) Oligonucleotide directed mutagenesis with plasmid DNA b) PCR amplified oligonucleotide directed mutagenesis c) Random mutagenesis with degenerate oligonucleotide primer d) Random mutagenesis with nucleotide analogues e) Error-prone PCR f) DNA shuffling g) Mutant proteins with unusual amino acids Mapping and quantifying transcriptions a) S1 mapping b) Primer extension reference c) Run-off transcription d) G-less cassette transcription Measuring protein accumulation in vivo: a) Assaying DNA –protein interactions	02
	4.4	Directed Mutagenesis a) Oligonucleotide directed mutagenesis with plasmid DNA b) PCR amplified oligonucleotide directed mutagenesis c) Random mutagenesis with degenerate oligonucleotide primer d) Random mutagenesis with nucleotide analogues e) Error-prone PCR f) DNA shuffling g) Mutant proteins with unusual amino acids Mapping and quantifying transcriptions a) S1 mapping b) Primer extension reference c) Run-off transcription d) G-less cassette transcription Measuring protein accumulation in vivo:	02

REFERENCES:

- a) Bernard R. Glick, Jack J. Pasternak, "Molecular Biotechnology: Principles and Applications of Recombinant DNA", ASM Press, 2010
- b) Henrik Christensen, "Introduction to Bioinformatics in Microbiology", Springer International Publishing, 2018
- c) Arthur Lesk, "Introduction to Bioinformatics", Oxford University Press, 2013
- d) Geoff Baldwin et al, "Synthetic Biology- A Primer", Imperial College Press, 2015
- e) Robert Meyer, "Synthetic Biology", 2 volume set, Wiley-Blackwell, 2015
- f) Iman Tavassoly, Joseph Goldfarb, Ravi Iyengar, "Systems biology primer: the basic methods and approaches", *Essays in Biochemistry*, 2018, 62 (4) 487-500.
- g) Michael Wink, "An Introduction to Molecular Biotechnology: Molecular Fundamentals, Methods and Applications in Modern Biotechnology", Wiley VCH, 2006
- h) Horgan Richard and Kenny Louise, "Omic technologies: genomics, transcriptomics, proteomics and metabolomics", SAC review, 2011, 13:189-195
- i) Sulabha Kulkarni, "Nanotechnology: Principles and Practices", 3rd Ed, Springer International Publishing, 2015

PRACTICALS: RPSMIC 2P4 (60 CONTACT HRS.)

- a) Exploration of DNA and protein databases
- b) Pair-wise and multiple alignment of DNA and Amino acid sequences
- c) Designing of Synthetic Gene Circuits
- d) Preparation of Nano silver particles by Wet reduction Method (Chemical) using Neem Extract (plants) & fungi (Microbiological)
- e) Preliminary characterization of Nano silver by UV spectrometry
- f) Antimicrobial effect of Ionic silver and Nano silver prepared by above methods
- g) Study of Nano silver coated Gauze/textiles for antimicrobial effect on different bacteria
- h) Primer design and conceptual PCR troubleshooting
- i) Demonstration of PCR

Modality of Assessment:

I) Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1	One Review writing/ Review paper presentation/Research paper presentation and Assignment / Long Answer/ Case Study or any other	40

B) External Examination- 60%- 60 Marks per paper

- 1. Duration- These examinations shall be of two hours and thirty minutes.
- 2. Theory question paper pattern
 - a. There shall be **five** questions each of **12** marks. On each unit there shall be one question and the fifth question will be based on all the three units.
 - b. All questions shall be compulsory with internal choice within the questions.

Paper pattern:

Question	Options	Marks	Questions based on
Q.1)	Any 2 out of 3	12	Unit 1
Q.2)	Any 2 out of 3	12	Unit 2
Q.3)	Any 2 out of 3	12	Unit 3
Q.4)	Any 2 out of 3	12	Unit 4
Q.5) a)	Any 4 out of 6	04	All four units
Q.5) b)	Any 4 out of 6	04	All four units
Q.5) c)	Any 2 out of 3	04	All four units

II) Practical Examination Pattern

	Paper I	Paper II	Paper III	Paper IV		
Viva	05	05	10	-		
Quiz	-	10	-	-		
Laboratory work	25	35	40	20		
Proposal Writing	-	-	-	30		
Research Proposal Presentation	20	-	-			
Total	50	50	50	50		

Journal

- 1. The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.
- 2. In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Coordinator / In charge of the department; failing which the student will not be allowed to appear for the practical examination.

Research Proposal writing

Candidates are required to present duly certified Research proposal and make the PowerPoint presentation of the research proposal for evaluation by the examiner.

Overall Examination and Marks Distribution Pattern Semester II

Course	201		202		203		204						
	Internal	External	Total	Grand total									
Theory	40	60	100	40	60	100	40	60	100	40	60	100	400
Practicals	-	50	50	-	50	50	-	50	50	-	50	50	200

Semester End Examination: (Deviation from the usual modality)

Owing to the pandemic situation prevailing in 2020 and continuing in 2021, the external examinations (Semester End) may be conducted online as per the instructions/circulars received from the University of Mumbai and Maharashtra State notifications from time to time. The conventional mode of external examination will commence again only after the declaration of normalcy by the Government authorities.