

AC/II(22-23).3.RPS9

S.P.Mandali's Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for MSc Part II

Program: MSc (Microbiology)

Program Code: RPSMIC

(Choice Based Credit System for academic year 2023-2024)

GRADUATE ATTRIBUTES

In the post graduate courses, S.P.Mandali's Ramnarain Ruia Autonomous College is committed to impart conceptual and procedural knowledge in specific subject areas that would build diverse creative abilities in the learner. The College also thrives to make its Science post graduates research/ job ready as well as adaptable to revolutionary changes happening in this era of Industry 4.0.

GA	A student completing Master's Degree in Science program			
	will be able to:			
GA1	Demonstrate in depth understanding in the relevant science			
	discipline. Recall, explain, extrapolate and organize conceptual			
	scientific knowledge for execution and application and also to			
	evaluate its relevance.			
GA 2	Critically evaluate, analyze and comprehend a scientific problem.			
	Think creatively, experiment and generate a solution			
	independently, check and validate it and modify if necessary.			
GA3	Access, evaluate, understand and compare digital information			
	from various sources and apply it for scientific knowledge			
	acquisition as well as scientific data analysis and presentation.			
GA 4	Articulate scientific ideas, put forth a hypothesis, design a			
	execute testing tools and draw relevant inferences. Communicate			
	the research work in appropriate scientific language.			
GA 5	Demonstrate initiative, competence and tenacity at the workplace.			
F	Successfully plan and execute tasks independently as well as with			
Q_	team members. Effectively communicate and present complex			
	information accurately and appropriately to different groups.			
GA 6	Use an objective, unbiased and non-manipulative approach in			
*	collection and interpretation of scientific data and avoid plagiarism			
	and violation of Intellectual Property Rights. Appreciate and be			
	sensitive to environmental and sustainability issues and			
	understand its scientific significance and global relevance.			
GA7	Translate academic research into innovation and creatively design			
	scientific solutions to problems. Exemplify project plans, use			

	management skills and lead a team for planning and execution of a task.				
GA8	Understand cross disciplinary relevance of scientific developments				
	and relearn and reskill so as to adapt to technological advancements.				

PROGRAM OUTCOMES

РО	Description
	A student completing Master's Degree in Science program in the
	subject of Microbiology will be able to:
PO 1	Recall the basic concepts of gene expression and regulation, exemplify
	cytoplasmic inheritance and transposons. Analyse the genetics
	underlying cancer and cell cycle. Solve problems based on allelic and
	genotypic frequencies
PO 2	Apply the principles of thermodynamics to understand stability of
	biological molecules, execute experiments for their detection and
	estimation in samples. Summarize the metabolism of one and two carbon
	compounds by microorganisms
PO 3	Attribute pathogenesis of diseases to virulence mechanisms, outline the
	pathogenesis, transmission and treatment of emerging bacterial and viral
	infections. Recognize the role of microbiome in the overall physiology of
	humans.
PO 4	Acquire skills to work in a clinical laboratory. Execute antibiotic
	susceptibility assays and evaluate efficacy in context of antibiotic
	resistance. Also, implement diagnostic tests for infectious diseases.
	Recall aspects in epidemiological study designs and public health
	surveillance and detect agents that could be associated with
	bioterrorism.
PO 5	Formulate a hypothesis, design a research project, execute the
	experiments including appropriate calibrations and controls, implement
	appropriate methods for data collection and analyse data with
	appropriate statistical tools.
PO 6	Recall the structure and functions of cell membrane and cytoskeleton as
7	well as the concept of protein trafficking and transport. Compare various
	transport mechanisms, and analyse the significance of cell to cell
	communication. Explain the process of development and organogenesis

	in higher animals and correlate it to genes with specific reference to
	Drosophila.
	·
PO 7	Execute extraction, purification and analysis of various biomolecules.
	Compare the mechanisms of enzyme catalysis of different classes of
	enzymes and solve problems on enzyme kinetics. Recall different cell
	signalling mechanisms. Outline the biochemistry of degradation of
	various xenobiotics by microorganisms
PO 8	Recall methods used to study microbial ecology and execute analysis of
	samples from varied environments. Extrapolate potential of extremophilic
	proteins to industrial applications, attribute problems like biofouling and
	biocorrosion to microbial activity. Recall the role of microbes in soil and
	demonstrate their role in plant growth. Outline, appreciate and apply the
	principles of solid and hazardous waste management and appreciate
	various regulations enacted with respect to biosafety.
PO 9	Access appropriate biological databases and apply various
	bioinformatics tools for varied analysis, recall concepts of synthetic
	biology and systems biology. Extrapolate understanding of contemporary
	tools in Molecular Biotechnology for DNA sequencing, mutagenesis and
	protein expression studies. Execute experiments for preparation of
	nanoparticles and their analysis
PO 10	Understand and evaluate the significance of viral genetics in
	representative bacterial viruses and apply it in rDNA technology. Recall
	and extrapolate the types of animal and plant viruses, describe their
	mechanisms of infections, control and treatment. Explain and give an
	overview of emerging & re-emerging viral infections responsible for
	causing pandemics. Outline the mechanism of tumorigenesis by
	oncogenic viruses.
PO 11	Recall detailed mechanisms of innate and adaptive immunity, and
	emphasize the molecular interactions that help distinction of self from
	non self in immune mechanisms. Outline the mechanisms of immune
	tolerance and exemplify reasons for autoimmune diseases as well as

	cancer. Apply principles of immunoassays for execution of diagnosis of disorders and diseases. Summarize and illustrate concepts in immunotherapy. Extrapolate basics of vaccine development to combat emerging infections
PO 12	Understand and implement different concepts in microbial approaches to quality control and management in industries. Check food and water samples for microbiological quality as per prescribed standards and maintain records. Recall concepts and monitor processes in food industry, bottled water manufacturing units and monitor processes and products of pharmaceutical industry with emphasis on BIS regulations, regulatory frameworks, GMP and HACCP, GLP, ISO standards and validation.
PO 13	Recall and explain the principle and working of techniques like spectroscopy, chromatography, hyphenated techniques, PCR based assays, microarrays, electrophoresis, X ray diffraction and SPR and compare all the different types included under each technique. Understand and extrapolate these concepts to analyse biological samples for biomolecular composition and/or structure.
PO 14	Understand, explain and Apply concepts in bioinformatics, proteomics, high throughput screening and pharmacogenomics for discovering new drugs
PO 15	Recall and apply various concepts in modern Biotechnology like gene therapy, stem cell technology, 16SrRNA sequencing in fields like diagnostics, therapeutics and genetic counselling. Summarize and evaluate the biotechnological potential of fungi and algae for production of commercial products like pharmaceutics, pigments, enzymes, biofuels etc. and in processes like bioremediation and wastewater treatment. Summarize and interpret the laws for IPR, biodiversity conservation and recall the perspectives of bioethics. Implement patent searches and outline prerequisites and steps in patentability.

PO 16	Categorize biofuels and outline fermentation technologies for their manufacture. Exemplify enzymes with industrial potential and recall and explore technologies like immobilization for their application in industrial products. Explain techniques in protein engineering for increasing activity and specificity.
PO 17	Outline work plans and execute tasks independently and to completion. Coordinate and cooperate with team members for execution of experiments. Maintain records, make reports and interpret them for making summaries. Communicate information accurately and effectively. Follow ethical practices at workplace, take initiative, exhibit competency and imbibe other professional skills.
PO 18	Apply theoretical concepts effectively and think innovatively to translate ideas to research projects and projects to products. Understand the significance of microbiology as a science that has transdisciplinary relevance and immense potential to improve quality of life for all humankind.

PROGRAM OUTLINE

YEAR	SEM	COURSE	COURSE TITLE	CREDITS
		CODE		
		RPSMIC 101 (Core Course)	MICROBIAL GENETICS	04
		RPSMIC 102 (Core Course)	MICROBIAL BIOCHEMISTRY	04
		RPSMIC 103 (Core Course)	MEDICAL MICROBIOLOGY AND HUMAN MICROBIOME	04
		RPSMICP 101	Practical-I	02
		RPSMICP 102	Practical-II	02
MSc I	ı	RPSMICP 103	Practical-III	02
		Studen	t should select anyone of the following C	ourse
		RPSMIC 104 (Discipline Specific Course)	CLINICAL MICROBIOLOGY EPIDEMIOLOGY	
	R	RPSBCH 104 (Discipline Specific Course)	PLANT BIOCHEMISTRY	04
		RPSBTK 104 (Discipline Specific Course)	CLINICAL DATA MANAGEMENT	

		RPSMICP 104/ RPSBCHP 104/ RPSBTKP 104	Practical-IV	02
		RPSMIC 105 (Ability Enhancem ent Compulsor y Course)	EMOTIONAL WELL-BEING THROUGH LOGIC-BASED THINKING	02
		RPSMIC 201 (Core Course)	CELL BIOLOGY	04
		RPSMIC 202 (Core Course)	MICROBIAL BIOCHEMISTRY II	04
		RPSMIC 203 (Core Course)	ENVIRONMENTAL MICROBIOLOGY	04
	II	RPSMICP 201	Practical-I	02
		RPSMICP 202	Practical-II	02
		RPSMICP 203	Practical-III	02
		Stude	nt should select anyone of the following C	ourse
		RPSMIC 204 (Discipline Specific Course)	MICROBIAL APPROACHES TO QUALITY MANAGEMENT	04
<i></i>		RPSBCH 204 (Discipline Specific Course)	NUTRACEUTICALS AND FUNCTIONAL FOODS	

		RPSBTK 204 (Discipline Specific	NANOTECHNOLOGY	
		Course) RPSMICP 204/ RPSBCH 204/ RPSBTK	Practical-IV	02
		204 RPSMIC 205 (Ability Enhancem ent Course)	RESEARCH METHODOLOGY	02
		,	Total Credits	26
		RPSMIC 301 (Core course)	IMMUNOLOGY	04
		RPSMICP 301	Practical based on Immunology	02
		RPSMIC 302 (Core course)	BIOINSTRUMENTATION	04
MSc II	3	RPSMIC 303 (Skill ehanceme nt compulsor y course)	BIOINFORMATICS AND BIOSTATISTICS	04
		RPSMICP	Practical based on Bioinformatics and	
>		303	Biostatistics	02
		RPSMIC 304	RESEARCH PROJECT	08

	RPSMIC		
	401 (Core	VIROLOGY	04
	course)		
	RPSMICP	Duratical based on Vivalence	
	401	Practical based on Virology	02
	RPSMIC	ADVANCES IN BIOTECHNOLOGY	04
	402 (Core		
IV	course)		
	RPSMICP	Practical based on Advances in	02
	402	Biotechnology	
	RPSMIC	* \	
	403 (Core	EMERGING AREAS IN BIOLOGY	04
	Course)		
	RPSMIC	INTERNELID	
	404	INTERNSHIP	80

Course Code: RPSMIC 301(Core Course)

Course Title: Immunology
Academic year 2023-24

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
CO 1	Explain the defense mechanisms in the human body against various infectious agents
CO 2	Recall the key players of innate and adaptive immune response
CO 3	Compare the T cell dependent and T cell independent immune responses
CO 4	Integrate the understanding of immune tolerance to distinguish between autoimmune and Immunity Mediated Inflammatory Disease
CO 5	Distinguish between immune tolerance and immune therapy and extend its application to treatment of Cancer
CO 6	Apply the understanding of immunological techniques for analysis of immune responses
CO 7	Critically evaluate the newer methods of vaccine developments
CO 8	Demonstrate the presence of immune cells in human peripheral blood

DETAILED SYLLABUS

Course	11.5.4	Course/Unit Title	Cradital
Course Code	Unit	Course/ Unit Title	Credits/ Lectures
301 (Core Course)		IMMUNOLOGY	04/60
I		Defense against infectious agents	15
		 a) Viral infections b) Bacterial infections c) Fungal infections d) Parasitic and worm infections e) Emerging and re-emerging infections 	4 4 2 3 2
II		Mechanisms of Innate immunity and Acquired	15
	0.1	Immunity	
	2.1	Innate Immunity a) Inflammation	7
	2.2	a) Inflammation i) Role of cytokines and chemokines in leucocyte recruitment ii) Inflammatory mediators b) Phagocytosis i) Role of PAMP's ii) Soluble pattern recognition molecules iii) TLR's and CLR's c) Evasion of Innate immune mechanisms Acquired Immunity a) Molecular basis of diversity of immunoglobulin molecules i) Mechanism of VDJ recombination ii) Other mechanisms of generation of antibody diversity b) Introduction to Mechanisms of T dependent and independent responses	8
	5	Immune tolerance and Autoimmunity	15
	3.1	Establishment of immune tolerance	6
	3.1	a) Central Tolerance, Peripheral Tolerance, Regulatory T cells b) B cell tolerance	0
	3.2	Autoimmunity and Immune Linked Inflammatory diseases	7
		a) Autoimmunity i. Spectrum of autoimmune diseases ii. Genetic factors for autoimmunity iii. Induction of autoimmunity iv. Treatment of autoimmune diseases	

		b) Introduction to Immune mediated	
		inflammatory diseases (IMID)	
		 Definition and examples 	
	3.3	Cancer Immunology	2
		a) Tumor antigens	
		b) Anti-Tumor Immune responses	
IV		Techniques in Immunology, Immunotherapy and Vaccines	15
	4.1	Techniques in Immunology	8
		a) Cellular Techniques i. Flow Cytometry ii. Fluorescence-activated cell sorting (FACS)	
		iii. Immunohistochemistry b) Methodologies for developing therapeutic antibodies- Humanization of mAbs and Human antibody-producing mice	
	4.2	Immunotherapy	4
		a) Cancer Immunotherapy b) Using cytokines and Mab's for Immunotherapy c) Plantibodies	
	4.3	Vaccines	3
		a) Newer approaches to vaccine development b) Malarial vaccine	

REFERENCES:

- a) Oven, Punt, Stranford, Kuby "Immunology", 7th Ed W.H. Freeman, 2013
- b) Male, Brostoff, Roth, Roitt, "Immunology", 8th Ed, Elsevier, 2013
- c) Sulabha Pathak, Urmi Palan, "Immunology: Essential and Fundamental", 3rd Ed, Anshan Ltd, 2011
- d) Roitt, Delves, Roitt's, "Essential Immunology", 10th Ed Blackwell Science, 2001
- e) Delves, Martin, Burton, Roitt, Roitt's "Essential Immunology", 13th Ed, Wiley Blackwell, 2011
- f) Ruei-Min Lu, Yu-Chyi Hwang *etal*, "Development of therapeutic antibodies for the treatment of diseases", *Journal of Biomedical Science*, 2020, 27:1
- g) Gueven Edgue, Richard M Twyman, *et al.*, "Antibodies from plants for Bionanomaterials", *WIREs Nanomedicine and Nanobiotechnology*, 2017, Volume 9
- h) Krupa Naran, Trishana Nundalall, "Principles of Immunotherapy: Implications for Treatment Strategies in Cancer and Infectious Diseases", *Frontiers in Microbiology*, 2018, Volume:9, Article 3158
- i) Laura Walker, Dennis Burton, "Passive Immunotherapy of Viral Infections: 'Super-antibodies' enter the fray", *Nature Reviews Immunology*, 2018, Volume 18.

- j) Annabel Kuek, Brian L Hazleman, Andrew J K Ostor, "Immune-mediated inflammatory diseases (IMIDs) and biologic therapy: a medical revolution", *Postgrad Med J*, 2007;83:251-260. doi: 10.1136/pgmj.2006.052688
- k) Caroline L. Sokol and Andrew D. Luster, "The Chemokine System in Innate Immunity", *Cold spring Harbour Perspectives in Biology*, 2019.
- Taro Kawai and Shizuo Akira, "Toll-like Receptors and Their Crosstalk with Other Innate Receptors in Infection and Immunity", *Immunity*, 2011
- m) Shirly Frizinsky, *et al.*, "The innate immune perspective of autoimmune and autoinflammatory conditions", *Rheumatology*, 2019;58:vi1vi8

PRACTICAL-I: RPSMIC301 (Core Course) (60 Contact Hrs)

- a) Phagocytosis & Phagocytic index
- b) Collection of human blood & separation of mononuclear cells by Ficoll Hypaque density gradient centrifugation,
- c) Counting of viable cells by trypan blue
- d) Rocket immunoelectrophoresis
- e) SRID
- f) Demonstration of Flow cytometry

Course Code: RPSMIC 302 (Core Course)

Course Title: Tools and Techniques: Biomolecular analysis Academic year 2023-24

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
CO 1	Understand the principles of various spectroscopic methods
CO 2	Attribute various applications in biological sciences to the appropriate chromatographic technique
CO 3	Summarize principle and applications of variants of PCR technique
CO 4	Recall the basics of electrophoresis technique and apply it to study recent advances of the technique
CO 5	Explain the use of microscopic and diffraction techniques to study nanostructures
CO 6	Summarize methods other than microscopy and diffraction to study nanomaterials
CO 7	Implement the knowledge of various techniques to carryout research project

DETAILED SYLLABUS

Course Code/ Unit	Unit	Course/ Unit Title	Credits/ Lectures
RPSMIC		TOOLS AND TECHNIQUES:	4/60
302		BIOMOLECULAR ANALYSIS	
(Core			
Course)			
I		Spectroscopic Techniques	15
•		Principle and applications of:	
	1.1	UV-visible spectroscopy	03
	1.2	IR spectroscopy	03
	1.3	Atomic Absorption Spectroscopy	03
	1.4	Mass spectroscopy	05
ll l		Chromatographic Techniques	15
	2.1	Gas Chromatography	05
	2.2	a) Principle b) Instrumentation c) Operation d) Calibration e) Accuracy f) Applications High Performance Liquid Chromatography a) Principles b) Instrumentation c) Operation d) Calibration, e) Accuracy f) Applications	05
	2.3	High Performance Thin Layer Chromatography	02
7		a) Theory of TLC b) HPTLC: Development, data and results	32
	24	c) Applications	03
O. P.	2.4	Principle of a) LC-MS b) GC-MS	03
		Molecular Biology Techniques	15
7	3.1	Variations/ Modifications of PCR	05

		Basics of PCR and its Modifications:	
		a) Hot- Start PCR,	
		b) Multiplex PCR,	
		c) Nested PCR,	
		d) RT-PCR,	
		e) Broad Range PCR,	
		f) Quantitative PCR,	
		g) Real time PCR	
		h) Touchdown PCR	
		i) Colony PCR	
		j) Digital PCR -Droplet	
	3.2	Hybridization array technology	05
		a) Applications of microarrays in microbiology,)
		b) Microarray platform technologies	
		(oligonucleotide microarrays, cDNA	
		microarrays)	
	3.3	Electrophoresis	05
		a) 2D- Gel Electrophoresis	
		b) Capillary Electrophoresis	
IV		Microscopic Techniques	15
	4.1	Microscopy	12
		a) Scanning Probe Microscopes -	
		i. Scanning tunneling microscope (STM)	
		ii. Atomic force microscope (AFM)	
		b) Electron Microscopy:	
		i. Scanning Electron Microscopy	
		ii. Transmission Electron Microscopy	
		c) Confocal Microscopy	

REFERENCES:

- a) Kulkarni Sulabha, "Nantotechnology: Principles and Practices", New Delhi, Capital Publishing Company, 2011.
- b) Persing, H.D. et al., "Molecular Microbiology: Diagnostic principles and Practice", Washington D.C., ASM press, 2004.
- c) Upadhyay, Upadhyay and Nath, "Biophysical Chemistry: Principles and Techniques", Mumbai, Himalaya Publishing House, 2012
- d) Skoog, Holler and Nieman, "Principles of Instrumental Analysis", 5th Ed. Australia, Thomson Brock/Cole
- e) Wilson and Walker, "Principles and Techniques of Biochemistry and Molecular Biology", 7th Ed., Cambridge University Press, 2010.

- f) Sauer, S., & Diem, M., "Mass spectrometry tools for the classification and identification of bacteria". *Nature Reviews Microbiology*, 2010, 8(1), 74-82.
- g) Singhal N. et al "MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis", *Front Microbiol.* 2015; 6: 791.
- h) Don R, Cox P, Wainwright B, Baker K, Mattick J., "'Touchdown' PCR to circumvent spurious priming during gene amplification", *Nucleic Acids Res*, 1991, 19 (14): 4008.
- i) Hecker K, Roux K., "High and low annealing temperatures increase both specificity and yield in touchdown and stepdown PCR". *BioTechniques*. 1996, 20 (3): 478-85.
- j) Bergkessel, M., & Guthrie, C., "Colony PCR. Laboratory Methods in Enzymology: DNA", 2013, 299-309.
- k) https://www.bio-rad.com/en-in/applications-technologies/droplet-digital-pcr-ddpcr-technology?ID=MDV31M4VY
- Kanagal-Shamanna, R., "Digital PCR: Principles and Applications. Methods in Molecular Biology", 2016, 43-50.
- m) Notomi, T., Mori, Y., Tomita, N., & Kanda, H., "Loop-mediated isothermal amplification (LAMP): principle, features, and future prospects", *Journal of Microbiology*, 2015, 53(1), 1-5.
- n) A. Zlatkis and R.E. Kaiser, "HPTLC High Performance thin-layer chromatography Journal of Chromatography", Library Vol 9 Elsevier Scientific Publishing Company, 1977
- o) https://www.chem.uci.edu/~dmitryf/manuals/Fundamentals/DLS%20measurement%20principles.pdf
- p) Sourav Bhattacharjee, "DLS and zeta potential What they are and what they are not?", Journal of Controlled Release, 2016, 235:337-351 Review Article
- q) Patel Kalpesh et al, "Introduction to hyphenated techniques and their applications in pharmacy", *Pharm Methods*. 2010 Oct-Dec; 1(1): 2-13.

Course Code: Discipline Specific Skill Enhancement Course Course Title: Bioinformatics and Biostatistics Academic year 2023-24

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
CO 1	Understand the basic principles of Bioinformatics
CO 2	Analyse the sequence data using Bioinformatics tools
CO 3	Summarize the types and uses of various bioinformatics tools
CO 4	Understand the phylogenetic analysis and tools to conduct the analysis
CO 5	Implement bioinformatics tools for genetic analysis and structure building
CO 6	Understand the basic concepts of biostatistics
CO 7	Apply the simple linear regression for calculation
CO 8	Understand the concept of Hypothesis testing

DETAILED SYLLABUS

Course Code	Unit	Course/ Unit Title	Credits/ Lectures
RPSMIC SECC		Bioinformatics and Biostatistics	04/60
	I	Basics of Bioinformatics	15
		a) Introduction to Bioinformatics i. What Is Bioinformatics? ii. Goal iii. Scope iv. Applications v. Limitations vi. New Themes	02
		 b) Introduction to Biological Databases i. What Is a Database? ii. Types of Databases iii. Biological Databases iv. Pitfalls of Biological Databases v. Information Retrieval from Biological Databases 	03
		c) Pairwise Sequence Alignment i. Evolutionary Basis ii. Sequence Homology versus Sequence Similarity iii. Sequence Similarity versus Sequence Identity iv. Methods v. Scoring Matrices vi. Statistical Significance of Sequence Alignment	04
		d) Database Similarity Searching i. Unique Requirements of Database Searching ii. Heuristic Database Searching iii. Basic Local Alignment Search Tool (BLAST) iv. FASTA v. Comparison of FASTA and BLAST vi. Database Searching with the Smith- Waterman Method	03
		e) Multiple Sequence Alignment i. Scoring Function ii. Exhaustive Algorithms iii. Heuristic Algorithms	00

	iv. Practical Issues		
II	Advances in Bioinformatics	15	
	a) Phylogenetics Basics i. Molecular Evolution and Molecular Phylogenetics ii. Terminology iii. Gene Phylogeny versus Species Phylogeny iv. Forms of Tree Representation v. Why Finding a True Tree Is Difficult	04	
	vi. Procedure	05	
	b) Phylogenetic Tree Construction Methods and Programs i. Distance-Based Methods		
	ii. Character-Based Methods iii. Phylogenetic Tree Evaluation iv. Phylogenetic Programs	02	
	c) Protein Structure Basics (Revision) i. Amino Acids ii. Peptide Formation iii. Dihedral Angles iv. Hierarchy v. Secondary Structures vi. Tertiary Structures vii. Determination of Protein Three-Dimensional Structure viii. Protein Structure Database	04	
	d) Protein Structure Visualization, Comparison, and Classification i. Protein Structural Visualization ii. Protein Structure Comparison iii. Protein Structure Classification		
	Basic Biostatistics	15	
	a) Introduction to Biostatistics i. Introduction ii. Some Basic Concepts iii. Measurement and Measurement Scales iv. Sampling and Statistical Inference v. The Scientific Method and the Design of Experiments	03	
	b) Descriptive statistics i. Introduction ii. Grouped Data: The Frequency Distribution	04	

	1			T
			iii. Descriptive Statistics: Measures of Central	
			Tendency	05
			iv. Descriptive Statistics: Measures of Dispersion	05
		c)	Probability distributions	
			i. Introduction	
			ii. Probability Distributions of Discrete Variables	
			iii. The Binomial Distribution	
			iv. The Poisson Distribution	
			v. Continuous Probability Distributions	/ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
			vi. The Normal Distribution	03
			vii. Normal Distribution Applications	1
			VIII. Promisi Bloth Butter, applications	
		d)	Simple Linear regression and correlation	
		,	i. Introduction	
			ii. The Regression Model	
			iii. The Sample Regression Equation	
			iv. Evaluating the Regression Equation	
			v. Using the Regression Equation	
			vi. The Correlation Model	
			vii. The Correlation Coefficient	
	IV	Advan	ced Biostatistics	15
		a)	Estimation	05
			i. Introduction	
			ii. Confidence Interval for a Population Mean	
			iii. The t Distribution	
			iv. Confidence Interval for the Difference	
			Between Two Population Means	
			v. Confidence Interval for a Population	
	,		Proportion	
		7	vi. Confidence Interval for the Difference	
			Between Two Population Proportions	
	By'	1	vii. Determination of Sample Size for Estimating	
	1		Means	
] ,	viii. Determination of Sample Size for Estimating	
	7		Proportions	
Ay.			ix. Confidence Interval for the Variance of a	06
			Normally Distributed Population	00
			x. Confidence Interval for the Ratio of the	
, pr			Variances of Two Normally Distributed	
			Populations	
		b)	Hypothesis testing	
			i. Introduction	
	1	i		Î.
			ii. Hypothesis Testing: A Single Population	
			ii. Hypothesis Testing: A Single Population Mean	

	Hypothesis Testing: The Difference Between Two Population Means	
iv.	Paired Comparisons	
v.	Hypothesis Testing: A Single Population Proportion	04
vi.	Hypothesis Testing: The Difference Between Two Population Proportions	
vii.	Hypothesis Testing: A Single Population Variance	
viii.	Hypothesis Testing: The Ratio of Two Population Variances	
ix.	The Type II Error and the Power of a Test) ′
X.	Determining Sample Size to Control Type II Errors	
c) Ana	alysis of Variance	
i.	Introduction	
ii.	The Completely Randomized Design	
iii.	The Randomized Complete Block Design	
iv.	The Repeated Measures Design	
V.	The Factorial Experiment	

REFERENCES:

- a) Jin Xiong Essential Bioinformatics" Cambridge University Press, 2006
- b) Henrik Christensen, "Introduction to Bioinformatics in Microbiology", Springer International Publishing, 2018
- c) Arthur Lesk, "Introduction to Bioinformatics", Oxford University Press, 2013
- d) Horgan Richard and Kenny Louise, "Omic technologies: genomics, transcriptomics, proteomics and metabolomics", SAC review, 2011, 13:189-195
- e) Jonathan Pevsner, Bioinformatics and Functional Genomics, 3rd Edition, 2015, Wiley Blackwell
- f) Wayne Daniel, Chad Cross ""BIOSTATISTICS A Foundation for Analysis in the Health Sciences" Wiley, 10th Edition, 2013

PRACTICALS: SECC (60 CONTACT HRS.)

- a) Exploration of DNA and protein databases
- b) Pair-wise and multiple alignment of DNA and Amino acid sequences
- Visiting NCBI and EMBL websites & list services available, software tools available and databases maintained
- d) Visiting & exploring various databases mentioned in syllabus
- e) Using BLAST and FASTA for sequence analysis
- f) Six frame translation of given nucleotide sequence
- g) Restriction analysis of given nucleotide sequence
- h) Pair-wise alignment and multiple alignment of a given protein sequences
- i) Formation of phylogenetic tree
- j) Problems based on Biostatistics theory syllabus

Modality of Assessment for Core Courses and Skill Enhancement compulsory course:

I) Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1	One Review writing/ Review paper presentation/Research paper presentation and Assignment / Long Answer/ Case Study or any other	20
2	Class test	20
	Total	40

B) External Examination- 60%- 60 Marks per paper

- 1. Duration- These examinations shall be of **two hours and thirty minutes**.
- 2. Theory question paper pattern-
- a. There shall be **five** questions each of **12** marks. On each unit there shall be one question and the fifth question will be based on all the three units.
- b. All questions shall be compulsory with internal choice within the questions.

Paper pattern:

Question	Options	Marks	Questions based on
Q.1)	Any 2 out of 3	12	Unit 1
Q.2)	Any 2 out of 3	12	Unit 2
Q.3)	Any 2 out of 3	12	Unit 3
Q.4)	Any 2 out of 3	12	Unit 4
Q.5) a)	Any 4 out of 5	04	All four units
Q.5) b)	Any 4 out of 5	04	All four units
Q.5) c)	Any 2 out of 3	04	All four units

II) Practical Examination Pattern

	RPSMICP 301	RPSMICPSECC
Viva	05	05
Quiz	05	05

Laboratory work	40	40
Total	50	50

Journal

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination. In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Co-ordinator / Incharge of the department; failing which the student will not be allowed to appear for the practical examination.

Course Code:

Course Title: Research Project

8 credits

Modality of Assessment for Research Project:

Dissertation Marking Pattern

	Marks
Proposal Writing and Presentation	40
Thesis	60
Poster Presentation	40
Viva Voce	20
Lab meetings	40
Total	200

Research project work

Candidates are required to present duly certified dissertation report based on the topic of research along with the laboratory notebook containing raw data and make the poster presentation of the research work for evaluation by the examiner.

Overall Examination and Marks Distribution Pattern Semester III

Course	301			302			SECC			Research Project				
	Internal	External	Total	Internal	External	Total	Internal	External	Total	Proposal Writing and Presentation	Thesis	Poster and Viva Voce	Lab meets	Grand total
Theory	40	60	100	40	60	100	40	60	100		-	- ^	- \	300
Practical	-	50	50	-	-	-	-	50	50				No.	100
Research Work										40	60	60	40	200

Semester 4

Course Code: RPSMIC 401 (Core Course)

Course Title: Virology Academic year 2023-24

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	
CO 1	Understand and compare the types of bacterial viruses, their
	structure, mode of replication and their characteristic features
CO 2	Summarize and infer the significance of viral genetics to map the
	genes and decode the ways to construct and use phage vectors
	in rDNA technology
CO 3	Recall the types of plant viruses, their general mechanisms of
	infections, steps in inducing the infection, diagnosis & control of
	plant viral infections
CO 4	Demonstrate an in depth understanding of the types and structure
	of animal viruses, their pathogenesis and attribute it to the mode
	of transmission, diagnosis, control & therapy of different animal
	viral infections
CO 5	Differentiate between the mechanisms of pathogenesis of plant
25	and animal viruses
CO 6	Illustrate and exemplify the types and mechanisms of oncolytic
	viruses and their tumorigenic characteristics.
CO 7	Integrate knowledge on the novel emerging & re-emerging viral
	infections to attribute to pandemics
CO 8	Apply molecular biology techniques& bioinformatics tools to
	diagnose & control viral infections

DETAILED SYLLABUS

Course				
Code/Unit	Unit		Lectures	
RPSMIC		VIROLOGY	4/60	
401				
(Core			ja.	
Course)			_ (
ı		Viral Genetics & Bacterial Viruses	15	
	1.1	Viral genetics	04	
		 a) Mapping the Bacteriophage genome. b) Phage phenotypes c) Genetic recombination in phages d) Genetic fine structure mapping e) Deletion mapping f) Genes within genes: Bacteriophage ΦΧ174 g) Constructing phage vectors-phage display vectors, suicide vectors, combining phage vectors and transposons 	3	
	1.2	Bacteriophages	02	
	1.3	General properties of phages, properties of phage infected Bacterial cultures, Specificity of Phage Infection E.coli Phage T4 Properties of T4 DNA, Genetic organization, the T4	02	
		growth cycle, Replication of T4 DNA		
	1.4	E.coli PhageT7 and Lambda	03	
	_ <	Organization of the T7 genes, Growth Cycle, Regulation of transcription of T7phage.		
	1.5	E.coli Phage (phi) X174, Filamentous DNA	04	
		phages, Single stranded RNA phages, Lysogenic cycle.		
II V	y.**	Plant Viruses	15	
AP.	2.1	Plant viruses: General features & infection process	04	
		a) Morphologyb) Modes of Transmissionc) General life cycled) Symptoms of infection		
	2.2	Virus-plant interactions: steps in induction of disease	04	
	2.3	Plant satellite viruses and satellite Nucleic acids	02	
	2.4	Citrus Tristeza Virus (CTV): Viral structure, Genome, Host range, Transmission, Symptoms and Control.	03	

	2.5	Diagnosis and control of viral infections in plants	02			
III		Animal Viruses				
		Study of Structure, replication, life cycle, pathogenesis, transmission, clinical features- Signs & symptoms, diagnosis and control of following viral infections:				
	3.1	Rabies	02			
	3.2	Polio	03			
	3.3	Hepatitis	04			
	3.4	Pox virus, Vaccinia Virus, Orthopox virus, Variola Virus	03			
	3.5	HSV and Varicella Zoster	02			
	3.6	Epstein Barr & Cytomegalovirus	01			
IV		Oncogenic Viruses & Emerging Viral infections	15			
	4.1	a) Molecular mechanisms of virally induced tumor formation by i. RNA tumor viruses (Retroviruses) ii. DNA tumor viruses b) Oncolytic Viruses	07			
	4.2	Ebola Virus	02			
	4.3	Nipah Virus	02			
	4.4	Corona Virus	02			
	4.5	Methods to deal with emerging viral infections	02			

REFERENCES:

- a) Luria, General Virology, 3rd Edition, John Wiley & Sons, 1978
- b) Edward Birge, Bacterial and Bacteriophage Genetics, 5th edition, Springer Publications, 2006
- c) Flint, Enquist, Racaniello & Skalka, Principles of Virology- Vol I and II, 3rd Edition, ASM, 2008
- d) Teri Shors, Understanding Viruses, 3rd Edition, Jones and Bartlett pub, 2016.
- e) Roger Hull, Matthew's Plant Virology, 4th edition, Academic Press, 2001.
- f) Edward K Wagner, Basic Virology, 3rd Edition, Blackwell Publishing house, 2008.
- g) CDC, "Preventing Emerging Infectious Diseases: A Strategy for the 21st Century Overview of the Updated CDC Plan", *MMWR*, September 11, 1998 / 47(RR15):1-14
- h) Devendra T Mourya *et al*, "Emerging/re-emerging viral diseases & new viruses on the Indian horizon", *Indian Journal of Medical research*, 2019, (149): 447- 467
- Aditi, M. Shariff, "Nipah virus infection: a review", Epidemiology and infection, 2019, (95):147.
- Raj K Singh et al, "Nipah virus: epidemiology, pathology, immunobiology and advances in diagnosis, vaccine designing and control strategies - a comprehensive review", Veterinary Quarterly, 2019, (39): 26-55
- k) Shamimul H *et al*, "Ebola virus: A global public health menace: A narrative review", *Journal of Family Medicine and Primary Care*, 2019, 8(7): 2189-2201.
- I) Denis M et al, "Ebola virus disease", The Lancet, 2019, (393):936-948
- m) Yan-Rong Guo *et al*, "The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak an update on the status", *Military Medical Research*, 2020, (7) 11
- n) Xiaowei L et al, "Molecular immune pathogenesis and diagnosis of COVID-19", Journal of Pharmaceutical Analysis, 2020
- o) Hussain A Rathod *et al*, "The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak", *Journal of Autoimmunity*, 2020, (109): 102433

PRACTICAL: RPSMICP401 (60 CONTACT HRS)

- a) Enrichment of coliphages & phage assay
- b) One step growth curve
- c) Induction of lytic cycle.
- d) Demonstration of Chick embryo inoculation.
- e) Case Studies on emerging viral infections.

Course Code: RPSMIC 402 (Core Course) Course Title: Emerging areas in Biology

Academic year 2023-24

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
CO 1	Identify & implement potential solutions for energy needs by
	evaluating existing & novel biomass to energy technologies
CO 2	Explain and recall the alternative sources for exhaustible fuels in
	the form of variety of biofuels.
CO 3	Critique the current and emerging trends of enzyme technology &
	discuss the applications of enzymes.
CO 4	Understand & execute methods for production, purification,
	characterization & immobilization of enzymes.
CO 5	Discuss & recall the principles & procedure of protein engineering
	techniques.

DETAILED SYLLABUS

Course	urse Sub- Course/ Unit Title			
Code	Unit	nit		
RPSMIC		EMERGING AREAS IN BIOLOGY	04/60	
402			/	
(Core				
Course)				
<u> </u>		Bioenergy and Bioconversions	15	
	1.1	Classification of biofuels: a) Conventional and Advanced Biofuels 1st generation biofuels- sugar and starch-based ethanol, conventional biodiesel, biogas b) 2nd generation biofuels – cellulosic ethanol, advanced biodiesel, biooils and biobutanol c) 3rd generation biofuels- Biohydrogen and algal based fuels. d) 4th generation biofuels e) Syngas/ Biogas production i. Types of feedstocks ii. Process types and digestors used	09	
	1.2	Microbial fuel cells	03	
	1.3	 a) Bioconversion of Lignocelluloses into food and feed rich in protein b) Bioconversion of industrial cellulosic pulp materials to protein-enriched food and feeds 	03	
II		Enzyme Technology	15	
	2.1	Different types enzymes, production and enzymatic analysis and assay methods	08	
0		a) Amylases b) Cellulases c) Lipases d) Laccases e) Proteases		
	2.2	Enzyme immobilization- Need, methods, Carriers andapplications	05	
M.	2.3	Therapeutic enzymes	02	
<u> </u>		Contemporary tools in Molecular Biotechnology	15	
	3.1	DNA Sequencing and Physical mapping	04	
		a) Dideoxynucleoside method for sequencing of DNA b) Automated DNA sequencing c) High-throughput Sequencing d) Restriction Mapping reference		
	3.2	Heterologous protein production in eukaryotic cells	06	

	a) Saccharomyces cerevisiae	
	, .	
	,	
3.3	,	05
	<u> </u>	
	plasmid DNA	
	b) PCR amplified oligonucleotide directed	
	, ,	
	g) Mutant proteins with unusual amino acids	
	Contemporary tools in Molecular Biotechnology	15
	II V	
4.1	Mapping and quantifying transcriptions	02
	a) Northern Blotting	
	,	
4.2	,	02
	a) Nuclear Run-on	
	b) Reverse transcription-PCR	
4.3	Assaying DNA-protein, protein-protein interactions	04
		0.5
44	Genome Editing with CRISPR/Cas9	():5
4.4	Genome Editing with CRISPR/Cas9 a) Brief history & Components of CRISPR	05
4.4	a) Brief history & Components of CRISPR	<u>U5</u>
4.4		<u> </u>
4.4	a) Brief history & Components of CRISPR b) Advantages over TALENs or ZFNs	05
	4.2	b) Pichia pastoris c) Baculovirus- Insect cell d) Mammalian cell 3.3 Directed Mutagenesis a) Oligonucleotide directed mutagenesis with plasmid DNA b) PCR amplified oligonucleotide directed mutagenesis c) Random mutagenesis with degenerate oligonucleotide primer d) Random mutagenesis with nucleotide analogues e) Error-prone PCR f) DNA shuffling g) Mutant proteins with unusual amino acids Contemporary tools in Molecular Biotechnology II 4.1 Mapping and quantifying transcriptions a) Northern Blotting b) S1 mapping c) Primer extension reference d) Run-off transcription e) G-less cassette transcription 4.2 Measuring transcription rates in vivo a) Nuclear Run-on b) Reverse transcription-PCR

REFERENCES:

- a) Biofuels Production, Ed by Vikash Babu, Ashish Thapliyal & Girijesh Kumar Patel, 2014, Scrivener Publishing LLC. Co-published by John Wiley & Sons, Inc.
- b) Introduction to Biofuels, David M. Mousdale, 2010, CRC Press Taylor & Francis Group
- c) Biofuels, Alternative Feedstocks and Conversion Processes, Ed by Ashok Pandey, Christian Larroche, Steven Cricke, Claude-Gilles Dussap, Edgard Gnansounou, 2011, Academic Press

- d) Cui, H., Wang, L., & Yu, Y. (2015). Production and Characterization of Alkaline Protease from a High Yielding and Moderately Halophilic Strain of SD11 Marine Bacteria. Journal of Chemistry, 2015, e798304. https://doi.org/10.1155/2015/798304
- e) Gopinath, S. C. B., Anbu, P., Arshad, M. K. M., Lakshmipriya, T., Voon, C. H., Hashim, U.,
 & Chinni, S. V. (2017). Biotechnological Processes in Microbial Amylase Production.
 BioMed Research International, 2017, e1272193. https://doi.org/10.1155/2017/1272193
- f) Javed, S., Azeem, F., Hussain, S., Rasul, I., Siddique, M. H., Riaz, M., Afzal, M., Kouser, A., & Nadeem, H. (2018). Bacterial lipases: A review on purification and characterization. Progress in Biophysics and Molecular Biology, 132, 23-34. https://doi.org/10.1016/j.pbiomolbio.2017.07.014
- g) Microbial Laccases and their Applications: A Review. (n.d.). https://doi.org/10.3923/ajbkr.2011.98.124
- h) Sadhu, S., & Maiti, T. K. (2013). Cellulase Production by Bacteria: A Review. Microbiology Research Journal International, 235-258 Bernard R.
- i) Industrial Biocatalysis, (2015) Edited by Peter Grunwald, Pan Standard Publishing, CRC
 Press Taylor & Edited by Peter Grunwald, Pan Standard Publishing, CRC
- j) Glick, Jack J. Pasternak, "Molecular Biotechnology: Principles and Applications of Recombinant DNA", ASM Press, 2010
- k) Michael Wink, "An Introduction to Molecular Biotechnology: Molecular Fundamentals, Methods and Applications in Modern Biotechnology", Wiley VCH, 2006
- I) Robert F. Weaver. "Molecular Biology, 5th edition", WCB/McGraw-Hill, 2012.
- m) Russell, P.J., "iGenetics- A Molecular Approach", 3rd Ed, Pearson International Edition
- n) K. Turksen (ed.), Genome Editing, DOI 10.1007/978-3-319-34148-4_1. Springer International

PRACTICAL: RPSMIC402 (60 CONTACT HRS)

- 1. Qualitative detection of Amylases, Cellulases, Lipases, Laccases, Proteases from bacteria.
- 2. Enzyme assay of Amylases, Cellulases, Lipases, Laccases, Proteases
- 3. Immobilisation of Amylases, Cellulases, Lipases, Laccases, Proteases

Course Code: RPSMIC 403 (Core Course)

Course Title: Advances in Biotechnology

Academic year 2023-24

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
CO 1	Summarize the prenatal diagnostic techniques used for diagnosing
	genetic disorders.
CO 2	Justify the significance of gene therapy & understand antisense
	technology used for treatment of genetic disorders.
CO 3	Explain the importance of stem cell technology in regenerative
	medicine.
CO 4	Analyze and compare the advanced techniques & its utility for
	detection of pathogens.
CO 5	Evaluate the commercialization potential of fungal strains &
	understand the current trends in fungal biotechnology.
CO 6	Interpret the potential of microalgae in producing biofuels &
	biofertilizers.
CO 7	Explain IPR, traditional bill law, biodiversity law & ethics in biological
_	research.
CO 8	Design & execute experiments to harness the commercial potential
	of fungal & algal strains, also to write, read and understand the patent
Gi,	claims.

DETAILED SYLLABUS

Course	Unit	Course/ Unit Title	Credits/
Code			Lectures
RPSMIC			
403		ADVANCES IN BIOTECHNOLOGY	04/60
(Core		ADVANCES IN BIOTECHNOLOGI	04/00
Course)			
ı		Medical Biotechnology	15
	1.1	Diagnostics & therapeutic approach for Genetic disorders	07
		 a. Pre- natal diagnosis- Sample collection, processing, Advantages, disadvantages b. Karyotyping, FISH & PCR 	01 02
		c. Gene Therapy: Vectors, Gene targeting & Tissue	
		Specific Expression	02
		d. Antisense Technology	01
	1.2	e. Introduction to Genetic Counselling	01
	1.2	Modern Diagnostic approach for pathogens	05
		a. Optical Tweezer b. 16S rRNA Sequencing	
		c. Spectrometry	
		d. VITEK	
		e. API 20	
		f. FAME	
		g. BIOLOG	
	1.3	Stem Cell Technology	03
		a. Introduction to Stem cells & types	
	A	b. Regenerative medicine	
		c. Genomic Reprogramming of cells	
		d. Stem cells in Neurodegenerative disorders	
		e. Stem cells in physiological dysfunctions Eg:	
	<i>y</i>	Diabetes	45
II		Exploring microbes for commercial products (Fungal Biotechnology)	15
	2.1	Introduction Fungal world	05
	4. I	a. An overview of Fungi and fungal activities	0.5
		b. Fungal growth and Fungal nutrition	
		c. Fungal Genetics	
	2.2	Applications of Fungal Biotechnology	10
		a. Fungal bioremediation	
		b. Fungal Biocatalysts in the textile industry and	
		waste water treatment	
		c. Fungal Pigments	

	l		
		d. Myconanotechnology	
		e. Fungal Antitumor agents and Recombinant	
		Peptides	
III		Exploring microbes for commercial products	15
		(Algal Biotechnology)	
	3.1	The microalgal cell	04
	3.1		04
		a. Introduction	
		b. Structural and Morphological features of	
		Microalgae	
		c. Ultrastructure and cell division	
		d. Cell growth and development	
		e. Microalgal systematics	
	3.2	Basic culturing Techniques	07
	0.2	a. Isolation of Microalgae	<u> </u>
		b. Screening of Microalgae for bioactive molecules	
		c. Measurement of Growth Parameters	
		d. Modes of culture	
		e. Introduction to Photobioreactors and their types	
	3.4	Applications of Algal Biotechnology	04
		a. Microalgae as platforms for Recombinant	
		proteins	
		b. Algae as a source of Biofuel	
		c. Algae as biofertilizer for rice	
IV		IPR and Bioethics Traditional Knowledge &	15
		Biodiversity conservation.	
	4.1	Types of IPR & the Need of IPR in Biotechnology	02
	4.1	1100	UZ
		b. Types of IPR: Patents, Trade Marks & Service	
		Marks, Design Registration, Trade Secrets,	
	,4	Geographical indications, Protection of New	
		Plant Varieties, Copyright.	
		c. Need & Implications: Technology Transfer,	
		Commercialization, Economic and policy	
	7	implications	
		d. Global Harmonization: TRIPS Agreement	
	4.2	Pre-requisites for patentability, the process & its	03
		Implications	
		a. Criteria to be fulfilled for Patentability -	
		·	
		new/novel, non-obvious/inventive step,	
		useful/capable of industrial application.	
		b. Steps in patentability: Application to the grant of	
		patent	
		c. Implications of IPR in Biotechnology	
	4.3	Patentability in Biology: What Can and What Cannot	03
		be patented?	
		-	

	a. Indian Scenario of patentability	
	b. Global Scenario of patentability	
	c. Implications in policy making and	
	commercialization due to variables	
4.4	Bioethics: Issues & Perspectives in the discipline of	02
	Microbiology	
	a. Ethics involved while working with	
	Microorganisms	
	b. Bioweapons- an Ethical issue	
	c. Bioethics: An Indian perspective	
4.5	Ethical guidelines for Biomedical research in Human	01
	subjects	
4.6	Safety, ethical, moral implications of Genetic	01
	engineering	
4.7	The protection of Traditional Knowledge Bill, 2016	01
4.8	Biodiversity Law	02
	a. Need for a biodiversity law	
	b. National Guidelines	
	c. International Guidelines	

REFERENCES:

- a) Jogdand S. N., Medical Biotechnology, 2008, Himalaya Publishing House.
- b) Judit Pongracz, Mary Keen, Medical Biotechnology, 2009, Churchill Livingstone, Elsevier.
- c) Pratibha Nallari & V. Venugopal Rao, Medical Biotechnology, 2010, Oxford University Press, India
- d) Richard Re, The application of Antisense technology to medicine, 2000, The Oschner Journal, 2(4).
- e) Robert Lanza, Anthony Atala, Essentials of Stem Cell Biology, 3rd edition, 2012, Academic Press, Elsevier.
- f) Gary. S. Stein, Maria Borowski, Mai. X. Luong, Meng-Jiao Shi, Kelly. P. Smith, Priscilla Vazquez, Human stem cell technology & biology: A Research guide & Laboratory Manual, 2011, Wiley- Blackwell.
- g) Ricardo Franco-Duarte, Lucia Cernáková 3, Snehal Kadam, Karishma S. Kaushik, Bahare Salehi, Antonio Bevilacqua, Maria Rosaria Corbo, Hubert Antolak, Katarzyna Dybka-Stepien, Martyna Leszczewicz, Saulo Relison Tintino, Veruska Cintia Alexandrino de Souza, Javad Sharifi-Rad, Henrique Douglas Melo Coutinho, Natália Martins and Célia F. Rodrigues. Advances in Chemical and Biological Methods to Identify Microorganisms—From Past to Present, 2019, Microorganisms, 7(130).
- h) Singhal N. et al "MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis", Front Microbiol. 2015; 6: 791.

- i) MICROBIAL IDENTIFICATION USING THE BIOMÉRIEUX VITEK® 2 SYSTEM David H. Pincus bioMérieux
- j) Wenhuan Xu* & Zhiwei Ge "Application and Optimization of Biolog EcoPlates in Functional Diversity Studies of Soil Microbial Communities" Matec web of conferences 22 04015 (2015)
- k) Bacterial Identification by Gas Chromatographic Analysis of Fatty Acid Methyl Esters (GC-FAME) Technical Note #101 Myron Sasser May 1990 Last Revised July 2006
- I) Jim Deacon, "Fungal Biology", 4th Ed, Blackwell Publishing, 2006
- m) Tulasi Satyanarayana and Sunil K. Deshmukh, "Developments in Fungal Biology and Applied Mycology", Springer, 2017
- n) Dinabandhu Sahoo, "The Algae World", Volume 26, Springer, 2015.
- o) Robert Andersen, "Algal culturing Techniques", Elsevier Academic Press, 2005
- p) Yuan Kun Lee, Microbial Biotechnology: Principles & Applications, 2nd edition, 2006, World Scientific Publishing Company.
- q) Prabuddha Ganguli, IPR- Unleading the knowledge economy, 1st Edition, 2017, McGraw Hill education.
- r) Kshitij Kumar Singh, Biotechnology and IPR Legal and Social Implications, 2015, Springer Publications.
- s) Law and National Biodiversity Strategies and Action Plans by the Law Division for the United Nations Environment Programme. A booklet issued by UN Environment committee.
- t) P Desikan, A Chakrabarti, V Muthuswamy. "Ethical issues in microbiology", *Indian Journal of Medical Microbiology*, 2011, 29(4).
- u) Dr. Mohammed Sarosh Khan, Dr. Rakesh Kumar Gorea, Dr. Shafqat Qamar, Dr. Gulam Mustafa, Abhinav Gorea, "Some ethical Perspectives in the Discipline of Microbiology", International Journal of ethics, trauma & Victimology, 2015, 1(2).
- v) Ajit Avasthi, Abhishek Ghosh, Sidharth Sarkar, Sandeep Grover, "Ethics in medical research: General principles with special reference to psychiatry research", 2013, Indian Journal of Psychiatry 55(1).
- w) The Protection Of Traditional Knowledge, Genetic Resources And Expressions Of Folklore Act, 2016, WIPO.

Course Code: RPSMIC 404

Course Title: Internship

Academic year 2023-24

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION				
CO 1	Understand how theoretical concepts transpire into application in				
	workplaces like research institutes or industry				
CO 2	Comprehend a scientific problem and execute prescribed protocols				
	independently				
CO 3	Demonstrate ability to complete tasks on time and record results				
	without fabrication, falsification in prescribed formats				
CO 4	Confidently communicate relevant information effectively to				
	supervisors in clear and concise manner, in writing and orally.				
CO 5	Capability to work with diverse teams with respect, empathy and				
	understanding				
CO 6	Demonstrate competency, integrity and commitment at the				
	workplace				

DETAILED SYLLABUS

Course	Course/ Unit Title	Credits
Code		
RPSMIC	INTERNSHIP	04
404		
	Internship to research institute/industry	16 weeks
		4

PRACTICAL: RPSMICP404 (60 CONTACT HRS)

Internship report

Modality of Assessment:

I) Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Evaluation type	Marks
One Review writing/ Review paper presentation/Research paper	40
presentation and Assignment / Long Answer/ Case Study or any other	
	One Review writing/ Review paper presentation/Research paper

B) External Examination- 60%- 60 Marks per paper

- 1. Duration- These examinations shall be of **two hours and thirty minutes**.
- 2. Theory question paper pattern
 - a. There shall be **five** questions each of **12** marks. On each unit there shall be one question and the fifth question will be based on all the three units.
 - b. All questions shall be compulsory with internal choice within the questions.

Paper pattern:

Question	Options	Marks	Questions based on
Q.1)	Any 2 out of 3	12	Unit 1
Q.2)	Any 2 out of 3	12	Unit 2
Q.3)	Any 2 out of 3	12	Unit 3
Q.4)	Any 2 out of 3	12	Unit 4
Q.5) a)	Any 4 out of 6	04	All four units
Q.5) b)	Any 4 out of 6	04	All four units
Q.5) c)	Any 2 out of 3	04	All four units

Theory Examination Pattern- RPSMIC 404:

Internship evaluation by guide/ mentor- 60 marks
Internship report evaluation by internal faculty- 40 marks

II) Practical Examination Pattern

	Paper I	Paper II	Paper III	Paper IV
Viva	05	05	-	-
Quiz	05	05	-	-
Laboratory work	40	40	-	-
Internship presentation	-	-	50	
Internship report	-	-	-	50
Total	50	50	50	50

Journal

- 1. The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.
- 2. In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Coordinator / In-charge of the department; failing which the student will not be allowed to appear for the practical examination.

Internship Report

- 1. Candidates are required to present duly certified Internship Report dissertation report based on the topic of Internship
- 2. The students also have to make a PowerPoint presentation of the work done during Internship for evaluation by the examiner.

Overall Examination and Marks Distribution Pattern Semester IV

Course		Theory	Practical
	Internal	40	1
401	External	60	50
	Total	100	50
	Internal	40	
402	External	60	50
	Total	100	50
	Internal	40	1
403	External	60	50
	Total	100	50
	Internal (Internship report evaluation by internal Faculty)	40	101
404	External (Internship evaluation by Guide /mentor)	60	50
	Total	100	50
	Grand total	400	200