AC/II (21-22).2.RPS9

S. P. Mandali's

Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for MSc Part II

Program: MSc (Microbiology)

Program Code: RPSMIC

(Credit Based Semester and Grading System for academic year 2021–2022)

PROGRAM OUTCOMES

In the post graduate courses, S.P.Mandali's Ramnarain Ruia Autonomous College is committed to impart conceptual and procedural knowledge in specific subject areas that would build diverse creative abilities in the learner. The College also thrives to make its Science post graduates research/ job ready as well as adaptable to revolutionary changes happening in this era of Industry 4.0.

РО	PO Description
	A student completing Master's Degree in Science program
	will be able to:
PO 1	Demonstrate in depth understanding in the relevant science
	discipline. Recall, explain, extrapolate and organize conceptual
	scientific knowledge for execution and application and also to
	evaluate its relevance.
PO 2	Critically evaluate, analyze and comprehend a scientific problem.
	Think creatively, experiment and generate a solution
	independently, check and validate it and modify if necessary.
PO 3	Access, evaluate, understand and compare digital information
	from various sources and apply it for scientific knowledge
	acquisition as well as scientific data analysis and presentation.
PO 4	Articulate scientific ideas, put forth a hypothesis, design and
	execute testing tools and draw relevant inferences. Communicate
	the research work in appropriate scientific language.
PO 5	Demonstrate initiative, competence and tenacity at the
	workplace. Successfully plan and execute tasks independently as
	well as with team members. Effectively communicate and
	present complex information accurately and appropriately to
	different groups.
PO 6	Use an objective, unbiased and non-manipulative approach in
	collection and interpretation of scientific data and avoid
	plagiarism and violation of Intellectual Property Rights.
	Appreciate and be sensitive to environmental and sustainability

	issues and understand its scientific significance and global
	relevance.
PO 7	Translate academic research into innovation and creatively
	design scientific solutions to problems. Exemplify project plans,
	use management skills and lead a team for planning and
	execution of a task.
PO 8	Understand cross disciplinary relevance of scientific
	developments and relearn and reskill so as to adapt to
	technological advancements.
	\mathcal{O}^{\vee}
V I	
OV.	
	RAMPINA

PROGRAM SPECIFIC OUTCOMES

PSO	Description
	A student completing Master's Degree in Science program in the
	subject of Microbiology will be able to:
PSO 1	Recall the basic concepts of gene expression and regulation, exemplify
	cytoplasmic inheritance and transposons. Analyse the genetics
	underlying cancer and cell cycle. Solve problems based on allelic and
	genotypic frequencies
PSO 2	Apply the principles of thermodynamics to understand stability of
	biological molecules, execute experiments for their detection and
	estimation in samples. Summarize the metabolism of one and two
	carbon compounds by microorganisms
PSO 3	Attribute pathogenesis of diseases to virulence mechanisms, outline the
	pathogenesis, transmission and treatment of emerging bacterial and
	viral infections. Recognize the role of microbiome in the overall
	physiology of humans. Execute antibiotic susceptibility assays and
	evaluate efficacy in context of antibiotic resistance. Also, implement
	diagnostic tests for infectious diseases
PSO 4	Formulate a hypothesis, design a research project, execute the
	experiments including appropriate calibrations and controls, implement
	appropriate methods for data collection and analyse data with
	appropriate statistical tools. Abstract and paraphrase scientific
	information, extrapolate it and present it creatively in the appropriate
	scientific language for verbal and non-verbal communication, using ICT
10	tools.
PSO 5	Recall the structure and functions of cell membrane and cytoskeleton
	as well as the concept of protein trafficking and transport. Compare
	various transport mechanisms, and analyse the significance of cell to
	cell communication. Explain the process of development and
	organogenesis in higher animals and correlate it to genes with specific
	reference to Drosophila.

PSO 6	Execute extraction, purification and analysis of various biomolecules.
	Compare the mechanisms of enzyme catalysis of different classes of
	enzymes and solve problems on enzyme kinetics. Recall different cell
	signalling mechanisms. Outline the biochemistry of degradation of
	various xenobiotics by microorganisms
PSO 7	Recall methods used to study microbial ecology and execute analysis
	of samples from varied environments. Extrapolate potential of
	extremophilic proteins to industrial applications, attribute problems like
	biofouling and biocorrosion to microbial activity. Recall the role of
	microbes in soil and demonstrate their role in plant growth. Outline,
	appreciate and apply the principles of solid and hazardous waste
	management and appreciate various regulations enacted with respect
	to biosafety.
PSO 8	Access appropriate biological databases and apply various
	bioinformatics tools for varied analysis, recall concepts of synthetic
	biology and systems biology. Extrapolate understanding of
	contemporary tools in Molecular Biotechnology for DNA sequencing,
	mutagenesis and protein expression studies. Execute experiments for
	preparation of nanoparticles and their analysis
PSO 9	Understand and evaluate the significance of viral genetics in
	representative bacterial viruses and apply it in rDNA technology. Recall
	and extrapolate the types of animal and plant viruses, describe their
	mechanisms of infections, control and treatment. Explain and give an
	overview of emerging & re-emerging viral infections responsible for
	causing pandemics. Outline the mechanism of tumorigenesis by
	oncogenic viruses.
PSO 10	Recall detailed mechanisms of innate and adaptive immunity, and
6%	emphasize the molecular interactions that help distinction of self from
	non self in immune mechanisms. Outline the mechanisms of immune
	tolerance and exemplify reasons for autoimmune diseases as well as
	cancer. Apply principles of immunoassays for execution of diagnosis of
	disorders and diseases. Summarize and illustrate concepts in
	immunotherapy. Extrapolate basics of vaccine development to combat
	<u> </u>

	emerging infections
PSO 11	Understand and illustrate different concepts in food microbiology like- fermentations, preservation, microbial analysis and quality control. Check food and water samples for microbiological quality as per prescribed standards and maintain records. Recall concepts and monitor processes in food industry and bottled water manufacturing units with emphasis on BIS regulations, regulatory frameworks, GMP and HACCP.
PSO 12	Recall and explain the principle and working of techniques like spectroscopy, chromatography, hyphenated techniques, PCR based assays, microarrays, electrophoresis, X ray diffraction and SPR and compare all the different types included under each technique. Understand and extrapolate these concepts to analyse biological samples for biomolecular composition and/or structure.
PSO 13	Understand, explain and monitor processes in pharmaceutical industry with respect to regulatory aspects, QA, QC, GLP, ISO standards and validation. Check microbial quality of bulk and finished pharmaceutical products, judge their quality and maintain records. Apply concepts in bioinformatics, proteomics, high throughput screening and pharmacogenomics for discovering new drugs
PSO 14	Recall and apply various concepts in modern Biotechnology like gene therapy, stem cell technology, 16SrRNA sequencing in fields like diagnostics, therapeutics and genetic counselling. Summarize and evaluate the biotechnological potential of fungi and algae for production of commercial products like pharmaceutics, pigments, enzymes, biofuels etc. and in processes like bioremediation and wastewater treatment. Summarize and interpret the laws for IPR, biodiversity conservation and recall the perspectives of bioethics. Implement patent searches and outline prerequisites and steps in patentability.
PSO 15	Recall aspects in epidemiological study designs and public health surveillance and detect agents that could be associated with

bioterrorism. Categorize biofuels and outline fermentation technologies for their manufacture. Exemplify enzymes with industrial potential and recall and explore technologies like immobilization for their application in industrial products. Explain techniques in protein engineering for increasing activity and specificity.

- **PSO 16** Outline work plans and execute tasks independently and to completion. Coordinate and cooperate with team members for execution of experiments. Maintain records, make reports and interpret them for making summaries. Communicate information accurately and effectively. Follow ethical practices at workplace, take initiative, exhibit competency and imbibe other professional skills.
- **PSO 17** Apply theoretical concepts effectively and think innovatively to translate ideas to research projects and projects to products. Understand the significance of microbiology as a science that has transdisciplinary relevance and immense potential to improve quality of life for all humankind.

PROGRAM OUTLINE

YEAR	SEM	COURSE	COURSE TITLE	CREDITS
		CODE		
		RPSMIC 101	MICROBIAL GENETICS	04
		RPSMIC 1P1	Practicals based on Microbial Genetics	02
		RPSMIC 102	MICROBIAL BIOCHEMISTRY	04
		RPSMIC 1P2	Practicals based on Microbial Biochemistry	02
		RPSMIC 103	MEDICAL AND CLINICAL MICROBIOLOGY	04
		RPSMIC 1P3	Practicals based on Medical And Clinical Microbiology	02
		RPSMIC 104	RESEARCH METHODOLOGY	04
MSc I		RPSMIC 1P4	Practicals based on Research Methodology	02
	8	RPSMIC 201	CELL BIOLOGY	04
		RPSMIC 2P1	Practicals based on Cell Biology	02
		RPSMIC 202	MICROBIAL BIOCHEMISTRY	04
E.K.	II	RPSMIC 2P2	Practicals based on Microbial Biochemistry II	02
		RPSMIC 203	ENVIRONMENTAL MICROBIOLOGY	04
		RPSMIC 2P3	Practicals based on Environmental Microbiology	02
		RPSMIC	EMERGING AREAS IN	04

		204	BIOLOGY	
		RPSMIC 2P4	Practicals based on Emerging	00
			Areas In Biology	02
		RPSMIC	VIROLOGY	04
		301	VIROLOGI	04
		RPSMIC 3P1	Practicals based on Virology	02
		RPSMIC		
		302	IMMUNOLOGY	04
		RPSMIC 3P2	Practicals based on Immunology	02
	- III	RPSMIC	FOOD AND WATER	
		303	MICROBIOLOGY	04
		RPSMIC 3P3	Practicals based on Food And Water Microbiology	02
		RPSMIC	TOOLS AND TECHNIQUES:	
		304	BIOMOLECULAR ANALYSIS	04
		RPSMIC 3P4	Practicals based on Tools And Techniques: Biomolecular Analysis	02
MSc II		RPSMIC	PHARMACEUTICAL AND	0.4
		401	COSMETIC MICROBIOLOGY	04
		OO	Practicals based on	
		RPSMIC 4P1	Pharmaceutical And Cosmetic	02
28	1		Microbiology	
	0	RPSMIC	ADVANCES IN	0.4
		402	BIOTECHNOLOGY	04
	IV	RPSMIC 4P2	Practicals based on Advances In Biotechnology	02
		RPSMIC 403	EMERGING AREAS IN BIOLOGY	04
		RPSMIC 4P3	Practicals based on Emerging Areas In Biology II	02
		RPSMIC 404	INTERNSHIP	04
		RPSMIC 4P4	Practicals based on Internship	02

Course Code: RPSMIC 301 Course Title: Virology Academic year 2020-21

COURSE	DESCRIPTION
OUTCOME	
CO 1	Understand and compare the types of bacterial viruses, their
	structure, mode of replication and their characteristic features
CO 2	Summarize and infer the significance of viral genetics to map the
	genes and decode the ways to construct and use phage vectors
	in rDNA technology
CO 3	Recall the types of plant viruses, their general mechanisms of
	infections, steps in inducing the infection, diagnosis & control of
	plant viral infections
CO 4	Demonstrate an in depth understanding of the types and
	structure of animal viruses, their pathogenesis and attribute it to
	the mode of transmission, diagnosis, control & therapy of different
	animal viral infections
CO 5	Differentiate between the mechanisms of pathogenesis of plant
	and animal viruses
CO 6	Illustrate and exemplify the types and mechanisms of oncolytic
	viruses and their tumorigenic characteristics.
CO 7	Integrate knowledge on the novel emerging & re-emerging viral
\mathcal{N}	infections to attribute to pandemics
CO 8	Apply molecular biology techniques& bioinformatics tools to
	diagnose & control viral infections

DETAILED SYLLABUS

Course Code/Unit	Sub- Unit	Course/ Unit Title	Credits/ Lectures
RPSMIC		VIROLOGY	4/60
301			
I		Viral Genetics & Bacterial Viruses	15
	1.1	Viral genetics	04
		a) Mapping the Bacteriophage genome.	
		b) Phage phenotypes	
		c) Genetic recombination in phages	
		d) Genetic fine structure mapping	
		e) Deletion mapping	
		f) Genes within genes: Bacteriophage ΦX174	
		 g) Constructing phage vectors-phage display vectors, suicide vectors, combining phage vectors and transposons 	
	1.2	Bacteriophages	02
		General properties of phages, properties of phage infected Bacterial cultures, Specificity of Phage Infection	
	1.3	E.coli Phage T4	02
		Properties of T4 DNA, Genetic organization, the T4 growth cycle, Replication of T4 DNA	
	1.4	E.coli PhageT7 and Lambda	03
		Organization of theT7 genes, Growth Cycle,	
1	K.	Regulation of transcription of T7phage.	
	1.5	<i>E.coli</i> Phage (phi) X174, Filamentous DNA phages, Single stranded RNA phages, Lysogenic cycle.	04
N N		Plant Viruses	15
6,	2.1	Plant viruses: General features & infection process	04
		a) Morphologyb) Modes of Transmissionc) General life cycle	
		d) Symptoms of infection	
	2.2 2.3	Virus-plant interactions: steps in induction of disease Plant satellite viruses and satellite Nucleic acids	04 02
	2.3	Fiant Salenne viruses and Salenne Nucleic acids	UZ

	2.4	Citrus Tristeza Virus (CTV): Viral structure, Genome,	03
		Host range, Transmission, Symptoms and Control.	
	2.5	Diagnosis and control of viral infections in plants	02
III		Animal Viruses	15
		Study of Structure, replication, life cycle,	
		pathogenesis, transmission, clinical features- Signs &	
		symptoms, diagnosis and control of following viral	
		infections:	
	3.1	Rabies	02
	3.2	Polio	03
	3.3	Hepatitis	04
	3.4	Pox virus, Vaccinia Virus, Orthopox virus, Variola Virus	03
	3.5	HSV and Varicella Zoster	02
	3.6	Epstein Barr & Cytomegalovirus	01
IV		Oncogenic Viruses & Emerging Viral infections	15
	4.1	a) Molecular mechanisms of virally induced	07
		tumor formation by	
		i. RNA tumor viruses (Retroviruses)	
		ii. DNA tumor viruses	
		b) Oncolytic Viruses	
	4.2	Ebola Virus	02
	4.3	Nipah Virus	02
	4.4	Corona Virus	02
	4.5	Methods to deal with emerging viral infections	02

REFERENCES:

- a) Luria, General Virology, 3rd Edition, John Wiley & Sons, 1978
- b) Edward Birge, Bacterial and Bacteriophage Genetics, 5th edition, Springer Publications, 2006
- c) Flint, Enquist, Racaniello & Skalka, Principles of Virology– Vol I and II, 3rd Edition, ASM, 2008
- d) Teri Shors, Understanding Viruses, 3rd Edition, Jones and Bartlett pub, 2016.
- e) Roger Hull, Matthew's Plant Virology, 4th edition, Academic Press, 2001.
- f) Edward K Wagner, Basic Virology, 3rd Edition, Blackwell Publishing house, 2008.
- g) CDC, "Preventing Emerging Infectious Diseases: A Strategy for the 21st Century Overview of the Updated CDC Plan", *MMWR*, September 11, 1998 / 47(RR15):1-14
- h) Devendra T Mourya *et al*, "Emerging/re-emerging viral diseases & new viruses on the Indian horizon", *Indian Journal of Medical research*, 2019, (149): 447- 467

- Aditi, M. Shariff, "Nipah virus infection: a review", *Epidemiology and infection*, 2019, (95):147.
- j) Raj K Singh *et al*, "Nipah virus: epidemiology, pathology, immunobiology and advances in diagnosis, vaccine designing and control strategies – a comprehensive review", *Veterinary Quarterly*, 2019, (39): 26-55
- k) Shamimul H et al, "Ebola virus: A global public health menace: A narrative review", Journal of Family Medicine and Primary Care, 2019, 8(7): 2189–2201.
- I) Denis M et al, "Ebola virus disease", The Lancet, 2019, (393):936-948
- m) Yan-Rong Guo *et al*, "The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak an update on the status", *Military Medical Research*, 2020, (7) 11
- n) Xiaowei L *et al*, "Molecular immune pathogenesis and diagnosis of COVID-19", *Journal of Pharmaceutical Analysis*, 2020
- o) Hussain A Rathod *et al*, "The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak", *Journal of Autoimmunity*, 2020, (109): 102433

PRACTICALS: RPSMIC 3P1 (60 CONTACT HRS)

- a) Enrichment of coliphages & phage assay.
- b) One step growth curve.
- c) Induction of lytic cycle.
- d) Chick embryo inoculation.
- e) Case Studies on emerging viral infections.

Course Code: RPSMIC 302 Course Title: Immunology Academic year 2020-21

COURSE OUTCOME	DESCRIPTION
CO 1	Explain the defense mechanisms in the human body against various infectious agents
CO 2	Recall the key players of innate and adaptive immune response
CO 3	Compare the T cell dependent and T cell independent immune responses
CO 4	Integrate the understanding of immune tolerance to distinguish between autoimmune and Immunity Mediated Inflammatory Disease
CO 5	Distinguish between immune tolerance and immune therapy and extend its application to treatment of Cancer
CO 6	Apply the understanding of immunological techniques for analysis of immune responses
CO 7	Critically evaluate the newer methods of vaccine developments
CO 8	Demonstrate the presence of immune cells in human peripheral blood

DETAILED SYLLABUS

Course Code	Unit	Course/ Unit Title	Credits/ Lectures
RPSMIC 302		IMMUNOLOGY	04/60
I		Defense against infectious agents	15
		a) Viral infections	4
		b) Bacterial infections	4
		c) Fungal infections	23
		d) Parasitic and worm infections	3
		e) Emerging and re-emerging infections	~ ~
II		Mechanisms of Innate immunity and Acquired	15
	2.1	Immunity	7
	2.1	a) Inflammation	1
		i) Role of cytokines and chemokines in	
		leucocyte recruitment	
		ii) Inflammatory mediators	
		b) Phagocytosis	
		i) Role of PAMP's	
		ii) Soluble pattern recognition molecules	
		iii) TLR's and CLR's	
		c) Evasion of Innate immune mechanisms	
	2.2	Acquired Immunity	8
		a) Molecular basis of diversity of immunoglobulin	
		molecules	
		i) Mechanism of VDJ recombination	
		ii) Other mechanisms of generation of antibody	
		diversity	
		b) Mechanisms of T dependent responses	
		i) Antigen presentation by B cells	
		ii) Formation of germinal centres	
		iii) Somatic hypermutations and class switching	
		 Mechanisms of T independent responses 	
		 Types of T independent antigens 	
V/A.		ii) B-1 B cells and Marginal zone B cells	
III		Immune tolerance and Autoimmunity	15
\mathcal{C}	3.1	Establishment of immune tolerance	6
-		a) Central Tolerance, Peripheral Tolerance,	
		Regulatory T cells	
		b) B cell tolerance	
	3.2	Autoimmunity and Immune Linked Inflammatory	7
	3.2	Autoimmunity and Immune Linked Inflammatory diseases	7
	3.2	Autoimmunity and Immune Linked Inflammatory	7

	1	iii la des Comptonet a de la compte	
		iii. Induction of autoimmunity	
		iv. Treatment of autoimmune diseases	
		b) Immune linked inflammatory diseases (IMID)	
		i. Definition and examples	
		ii. Inflammation & IMID	
		iii. Genetic basis of IMID	
		iv. Epidemiology of IMID	
		v. Treatment of IMID	
	3.3	Cancer Immunology	2
		a) Tumor antigens	
		b) Anti-Tumor Immune responses	
IV		Techniques in Immunology, Immunotherapy and	15
		Vaccines	
	4.1	Techniques in Immunology	8
		a) Cellular Techniques	
		i. Flow Cytometry	
		ii. Fluorescence-activated cell sorting (FACS)	
		iii. Immunohistochemistry	
		b) Methodologies for developing therapeutic	
		antibodies- Humanization of mAbs and Human	
		antibody-producing mice	
	4.2	Immunotherapy	4
		a) Cancer Immunotherapy	
		b) Using cytokines and Mab's for Immunotherapy	
		c) Plantibodies	
	4.3	Vaccines	3
		a) Newer approaches to vaccine development	
		b) Malarial vaccine	

REFERENCES:

- a) Oven, Punt, Stranford, Kuby "Immunology", 7th Ed W.H. Freeman, 2013
- b) Male, Brostoff, Roth, Roitt, "Immunology", 8th Ed, Elsevier, 2013
- c) Sulabha Pathak, Urmi Palan, "Immunology: Essential and Fundamental", 3rd Ed, Anshan Ltd, 2011
- d) Roitt, Delves, Roitt's , "Essential Immunology", 10th Ed Blackwell Science, 2001
- e) Delves, Martin, Burton, Roitt, Roitt's "Essential Immunology", 13th Ed, Wiley Blackwell, 2011
- Ruei-Min Lu, Yu-Chyi Hwang *etal*, "Development of therapeutic antibodies for the treatment of diseases", *Journal of Biomedical Science*, 2020, 27:1
- g) Gueven Edgue, Richard M Twyman, et al., "Antibodies from plants for Bionanomaterials", WIREs Nanomedicine and Nanobiotechnology, 2017, Volume 9
- h) Krupa Naran, Trishana Nundalall, "Principles of Immunotherapy: Implications for Treatment Strategies in Cancer and Infectious Diseases", *Frontiers in Microbiology*, 2018, Volume:9, Article 3158

- i) Laura Walker, Dennis Burton, "Passive Immunotherapy of Viral Infections: 'Super-antibodies' enter the fray", *Nature Reviews Immunology*, 2018, Volume 18.
- j) Annabel Kuek, Brian L Hazleman, Andrew J K Ostor, "Immune-mediated inflammatory diseases (IMIDs) and biologic therapy: a medical revolution", *Postgrad Med J*, 2007;83:251– 260. doi: 10.1136/pgmj.2006.052688
- k) Hani El-Gabalawy, Lyn C. Guenther And Charles N. Bernstein, "Epidemiology of Immune-Mediated Inflammatory Diseases: Incidence, Prevalence, Natural History, and Comorbidities", *The Journal of Rheumatology*, 2010;85;2-10
- I) T. David, S. F. Ling and A. Barton, "Genetics of immune-mediated inflammatory diseases", *Clinical and Experimental Immunology*, 2018, 193: 3–12
- m) Linlin Chen, Huidan Deng, *etal,* "Inflammatory responses and inflammation-associated diseases in organs", *Oncotarget*, 2018, Vol. 9, (No. 6), pp: 7204-7218
- n) Caroline L. Sokol and Andrew D. Luster, "The Chemokine System in Innate Immunity", *Cold spring Harbour Perspectives in Biology*, 2019.
- o) Taro Kawai and Shizuo Akira, "Toll-like Receptors and Their Crosstalk with Other Innate Receptors in Infection and Immunity", *Immunity*, 2011
- p) Shirly Frizinsky, *et al.,* "The innate immune perspective of autoimmune and autoinflammatory conditions", *Rheumatology*, 2019;58:vi1vi8

PRACTICALS RPSMIC 3P2 (60 Contact Hrs)

- a) Phagocytosis & Phagocytic index
- b) Collection of human blood & separation of mononuclear cells by Ficoll Hypaque density gradient centrifugation,
- c) Counting of viable cells by trypan blue
- d) Separation of T and B cells
- e) Rocket immunoelectrophoresis
- f) SRID
- g) Demonstration of Flow cytometry
- h) Assignment on modern vaccines

Course Code: RPSMIC 303

Course Title: Food and water Microbiology

Academic year 2020-21

COURSE OUTCOME	DESCRIPTION
CO 1	Outline the process of production of different fermented foods
CO 2	Construct a cause and effect model system for effective preservation of foods
CO 3	Understand microbiology of modern foods like probiotics, nutraceuticals and dehydrated foods
CO 4	Execute collection, processing and microbiological analysis of food and water samples
CO 5	Implement monitoring protocols for the quality of food and water using principles of HACCP
CO 6	Apply basic knowledge of fermented foods, food preservation, microbial analysis and standards to evaluate current techniques and improvise technology in food manufacturing or bottled water manufacturing units

DETAILED SYLLABUS

Course Code	Unit	Course/ Unit Title	Credits/ Lectures
RPSMIC		FOOD MICROBIOLOGY AND WATER	04/60
303		MICROBIOLOGY	
I		Microbiology of fermented and non-fermented foods	15
	1.1	Basic concepts of Food Microbiology	02
		Revision of	\sim
		a) Sources of microbes in food	
		b) Normal microbiological quality of food	
		c) Factors influencing microbial growth in food	
	1.2	Production of fermented foods	07
		a) Starter cultures and their stress adaptations	
		b) Fermented meat product- Sausage	
		c) Fermented cereal product- Soy sauce,	
		d) Fermented milk product- Blue cheese and Swiss	
		cheese	
		e) Fermented legume product - Idli	
	1.3	Nutraceuticals and Probiotics	04
		a) Microbial fructooligosaccharides	
		b) Probiotics and Prebiotics	
		i. Probiotics	
		ii. Screening of Potential Probiotics	
		iii. Industrial Aspects of Probiotic Production	
		iv. Prebiotics	
	1.4	Non- fermented food products	02
		a) Desiccated foods	
		b) Dehydrated foods	
11		Control of microbes in food	15
	2.1	Methods of control	01
77		a) Control of access	
		b) Control by physical removal	
	2.2	Control by regulating the factors that affect	10
$\mathcal{T}\mathcal{K}$		microbial growth	
\mathcal{N}		a) Control by temperature	
		b) Control by reduced a _w	
		c) Control by low pH and organic acids	
		d) Control by modified atmosphere	
	2.3	Control by chemicals and physical methods	02
		a) Control by antimicrobial preservatives and	
		additives	
		b) Control by irradiation	

	2.4	Newer methods of Controlling Microbial growth	02
	a) Novel emerging techniques of food preservation		
		b) Control by combination of methods (Hurdle	
		concept)	
III		Detection of Microbes in food and water	15
	3.1	Conventional methods	05
		a) Sampling for microbial analysis	
		b) Qualitative methods of microbial detection	
		c) Quantitative microbial enumeration in food	
		 d) Detection of Bacterial toxins 	CX
		e) Toxicological evaluation of food additives	$\langle \rangle \rangle$
	3.2	Modern methods	05
		a) Nucleic acid-based methods	
		i. Oligonucleotide DNA microarray	
		ii. Loop-mediated isothermal amplification	
		(LAMP)	
		iii. Nucleic acid sequence-based amplification	
		(NASBA)	
		b) Biosensors for food analysis	
	3.3	Microbiological analysis of Potable water	05
		a) Drinking water risk assessment	
		b) Regulatory Framework	
		c) Types of bottled water	
		 d) Microbiology of bottled water 	
		e) Potential chemical and microbiological hazards	
IV		Controlling the Microbiological Quality of food	15
		and water	
	4.1	Controlling the Microbiological Quality of food	07
		a) Quality and Criteria	
		b) Sampling Schemes	
		c) QC using microbiological control	
	1	d) Control at source	
	\circ	e) Codes of GMP	
	\mathcal{N}	f) HACCP	
		g) Laboratory Accreditation	
	4.2	Controlling the Microbiological Quality of water	08
		 a) BIS Regulations regarding the production of 	
		bottled waters with respect to final quality of the	
		product.	
		b) The application of HACCP in the bottling plants	
		c) Point of use water purifier units	
		 d) Types of water purifiers.: Microbiological 	
		specifications and methods used to certify water	
		purifiers	1

REFERENCES:

- a) Bibek Ray and Arun Bhunia, "Fundamental Food Microbiology", 4th Ed. CRC Press, 2008
- b) James Jay, M Loessner and D Golden, "Modern Food Microbiology", 7th Ed, 2005
- c) Adams M R and Moss M O, "Food Microbiology", 3rd Ed. RSC Publishing. 2008
- d) Petra Foerst, Chalat Santivarangkna, "Advances in Probiotic Technology", CRC Press A Science Publishers Book, 2016
- e) Edward R. Farnworth, "Handbook of Fermented Functional Foods", 2nd Ed. CRC Press, 2003
- f) Elmer H Marth, James Steele, "Applied Dairy Microbiology", 2nd Ed. CRC Press, 2001
- g) Pressman P., Clemens R., Hayes W., & Reddy, "Food additive safety", Toxicology Research and Application, 2017, 1, 239784731772357. doi:10.1177/2397847317723572
- h) Fei Law Jodi Woan et al, "Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations", Frontiers in Microbiology, 2014, 5:770 doi: 10.3389/fmicb.2014.00770
- i) Guidelines For Drinking-Water Quality WHO 2008
- j) Rosenberg, F. A., "The microbiology of bottled water", Clinical Microbiology Newsletter, 2003, 25(6), 41–44. doi:10.1016/s0196-4399(03)80019-3
- k) Manual For Packaged Drinking, Water Bureau Of Indian Standards, January 2005
- I) Damikouka, I., Katsiri, A., & Tzia, C., "Application of HACCP principles in drinking water treatment", Desalination, 2007, 210(1-3), 138-145. doi:10.1016/j.desal.2006.05.039
- m)Pooi, C. K., & Ng, H. Y. (2018). Review of low-cost point-of-use water treatment systems for developing communities. Npj Clean Water, 1(1). doi:10.1038/s41545-018-0011-0

PRACTICALS: RPSMIC3P3 (60 CONTACT HRS)

- a) Microbiological study of fermented foods (Idli batter)
- b) Microbiological load in carrot and apple juice, salad, mayonnaise
- c) Quality Assessment and Analysis of Raw and Pasteurized milk
- d) Film medium for detection of coliforms in water and food
- e) To detect coliform and faecal coliform bacteria in water by the membrane filtration method
- f) Study of efficiency of water purifiers and comparative assessment

Course Code: RPSMIC 304

Course Title: Tools and Techniques: Biomolecular analysis Academic year 2020-21

COURSE OUTCOME	DESCRIPTION
CO 1	Understand the principles of various spectroscopic methods
CO 2	Attribute various applications in biological sciences to the appropriate chromatographic technique
CO 3	Summarize principle and applications of variants of PCR technique
CO 4	Recall the basics of electrophoresis technique and apply it to study recent advances of the technique
CO 5	Explain the use of microscopic and diffraction techniques to study nanostructures
CO 6	Summarize methods other than microscopy and diffraction to study nanomaterials
CO 7	Implement the knowledge of various techniques to carryout research project

DETAILED SYLLABUS

Course Code/ Unit	Unit	Course/ Unit Title	Credits/ Lectures
RPSMIC		TOOLS AND TECHNIQUES:	4/60
304		BIOMOLECULAR ANALYSIS	
l		Spectroscopic Techniques	15
		Principle and applications of:	
	1.1	UV-visible spectroscopy	02
	1.2	IR spectroscopy	02
	1.3	Atomic Absorption Spectroscopy	02
	1.4	Raman Spectroscopy	02
	1.5	Mass spectroscopy	05
	1.6	Circular Dichroism Spectroscopy	02
		Chromatographic Techniques	15
	2.1	Gas Chromatography	05
		 a) Principle b) Instrumentation c) Operation d) Calibration e) Accuracy f) Applications 	
	2.2	High Performance Liquid Chromatography	05
		 a) Principles b) Instrumentation c) Operation d) Calibration, e) Accuracy f) Applications 	
	2.3	High Performance Thin Layer Chromatography	02
		 a) Theory of TLC b) HPTLC: Development, data and results c) Applications 	
$\langle N \rangle$	2.4	Hyphenated techniques	03
SK,		a) Principle b) LC-MS c) GC-MS	
III		Molecular Biology Techniques	15
	3.1	Variations/ Modifications of PCRa)Hot- Start PCR,b)Multiplex PCR,c)Nested PCR,d)RT-PCR,e)Broad Range PCR,	05

		c) Zeta Sizer d) SPR	
		b) Zeta Potential	
		a) Dynamic Light Scattering	
	4.3	Other methods	04
	4.2	Diffraction Techniques- X Ray Diffraction	02
		c) Confocal Microscopy	
		ii. Transmission Electron Microscopy	
		i. Scanning Electron Microscopy	
		ii. Atomic force microscope (AFM)b) Electron Microscopy:	
		i. Scanning tunneling microscope (STM)	
		a) Scanning Probe Microscopes –	
	4.1	Microscopy	09
		Techniques	
IV		Microscopy and Nanotechnological	15
		b) Capillary Electrophoresis	45
		a) 2D- Gel Electrophoresis	
	3.3	Electrophoresis	05
		microarrays)	NY/
		(oligonucleotide microarrays, cDNA	
		b) Microarray platform technologies	
	0.2	a) Applications of microarrays in microbiology,	
	3.2	Hybridization array technology	05
		k) Digital PCR –Dropletl) Loop mediated isothermal amplification	
		j) Colony PCR	
		i) Touchdown PCR	
		h) Real time PCR	
		g) Quantitative PCR,	

REFERENCES:

- a) Kulkarni Sulabha, "Nantotechnology: Principles and Practices", New Delhi, Capital Publishing Company, 2011.
- b) Persing, H.D. et al., "Molecular Microbiology: Diagnostic principles and Practice", Washington D.C., ASM press, 2004.
- c) Upadhyay, Upadhyay and Nath, "Biophysical Chemistry: Principles and Techniques", Mumbai, Himalaya Publishing House, 2012
- d) Skoog, Holler and Nieman, "Principles of Instrumental Analysis", 5th Ed. Australia, Thomson Brock/Cole
- e) Wilson and Walker, "Principles and Techniques of Biochemistry and Molecular Biology", 7th Ed., Cambridge University Press, 2010.

- f) Sauer, S., & Kliem, M., "Mass spectrometry tools for the classification and identification of bacteria". *Nature Reviews Microbiology*, 2010, 8(1), 74–82.
- g) Singhal N. et al "MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis", *Front Microbiol*. 2015; 6: 791.
- h) Don R, Cox P, Wainwright B, Baker K, Mattick J., "'Touchdown' PCR to circumvent spurious priming during gene amplification", *Nucleic Acids Res*, 1991, 19 (14): 4008.
- i) Hecker K, Roux K., "High and low annealing temperatures increase both specificity and yield in touchdown and stepdown PCR". *BioTechniques*. 1996, 20 (3): 478–85.
- j) Bergkessel, M., & Guthrie, C., "Colony PCR. Laboratory Methods in Enzymology: DNA", 2013, 299–309.
- k) <u>https://www.bio-rad.com/en-in/applications-technologies/droplet-digital-pcr-ddpcr-</u> technology?ID=MDV31M4VY
- Kanagal-Shamanna, R., "Digital PCR: Principles and Applications. Methods in Molecular Biology", 2016, 43–50.
- m) Notomi, T., Mori, Y., Tomita, N., & Kanda, H., "Loop-mediated isothermal amplification (LAMP): principle, features, and future prospects", *Journal of Microbiology*, 2015, 53(1), 1–5.
- n) A. Zlatkis and R.E. Kaiser, "HPTLC High Performance thin-layer chromatography Journal of Chromatography", Library Vol 9 Elsevier Scientific Publishing Company, 1977
- https://www.chem.uci.edu/~dmitryf/manuals/Fundamentals/DLS%20measurement%20principles.pdf
- p) Sourav Bhattacharjee, "DLS and zeta potential What they are and what they are not?", Journal of Controlled Release, 2016, 235:337–351 Review Article
- q) Patel Kalpesh et al, "Introduction to hyphenated techniques and their applications in pharmacy", *Pharm Methods*. 2010 Oct-Dec; 1(1): 2–13.

PRACTICALS: RPSMIC3P4 (60 CONTACT HRS)

- a) Research project and Dissertation
- b) Research poster presentation

Modality of Assessment:

I) Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1	One Review writing/ Review paper presentation/Research paper presentation and Assignment / Long Answer/ Case Study or any other	40

B) External Examination- 60%- 60 Marks per paper

- 1. Duration- These examinations shall be of two hours and thirty minutes.
- 2. Theory question paper pattern
 - a. There shall be **five** questions each of **12** marks. On each unit there shall be one question and the fifth question will be based on all the three units.
 - b. All questions shall be compulsory with internal choice within the questions.

Paper	pattern:
-------	----------

Question	Options	Marks	Questions based on
Q.1)	Any 2 out of 3	12	Unit 1
Q.2)	Any 2 out of 3	12	Unit 2
Q.3)	Any 2 out of 3	12	Unit 3
Q.4)	Any 2 out of 3	12	Unit 4
Q.5) a)	Any 4 out of 6	04	All four units
Q.5) b)	Any 4 out of 6	04	All four units
Q.5) c)	Any 2 out of 3	04	All four units

II) Practical Examination Pattern

	Paper I	Paper II	Paper III	Paper IV
Journal	05	05	05	-
Viva	05	05	05	-
Quiz	05	05	05	-
Laboratory work	35	35	35	
Thesis Writing	-	-	-	30
Research Poster Presentation	-	-	6	20
Total	50	50	50	50

Journal

- 1. The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.
- 2. In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Coordinator / Incharge of the department; failing which the student will not be allowed to appear for the practical examination.

Research project work

Candidates are required to present duly certified dissertation report based on the topic of research along with the laboratory notebook containing raw data and make the poster presentation of the research work for evaluation by the examiner.

Overall Examination and Marks Distribution Pattern

Course 301 302 303 304 External External External External nternal nternal Grand total nternal nternal Total Total Total Total 40 100 40 40 Theory 60 60 100 60 100 40 60 100 400 Practicals 50 50 50 50 50 50 50 50 200

Semester III

Semester End Examination: (Deviation from the usual modality)

Owing to the pandemic situation prevailing in 2020 and continuing in 2021, the external examinations (Semester End) may be conducted online as per the instructions/circulars received from the University of Mumbai and Maharashtra State notifications from time to time. The conventional mode of external examination will commence again only after the declaration of normalcy by the Government authorities.

Course Code: RPSMIC 401 Course Title: Pharmaceutical Microbiology

Academic year 2020-21

COURSE OUTCOME	DESCRIPTION
CO 1	Recall the principles and terminologies used in pharmaceutical industry
CO 2	Design experiments on bioburden determination
CO 3	Execute microbial and sterility testing of pharmaceutical products
CO 4	Monitor the factors which affect the quality of a pharmaceutical product
CO 5	Outline the process of validation and audit validation
CO 6	Apply various softwares used for studying 3D structures of drug and target molecule for drug discovery
CO 7	Critique suitable candidates as potential drugs based on theoretical knowledge
CO 8	Design effective antimicrobial preservation methods for cosmetic products

DETAILED SYLLABUS

Course	Unit	Course/ Unit Title	Credits/
Code			Lectures
RPSMIC		PHARMACEUTICAL MICROBIOLOGY	04/60
401			
I		Principles and applications of GMP in	15
		pharmaceuticals	
	1.1	General Principles of QC,QA and GMP	07
		a) The concept of Quality	
		b) The regulatory factors	
		c) QC, QA and GMP	
		d) Quality assurance beyond GMP	
	10	e) IS and ISO standards: 9000, 17025	00
	1.2	Microbiology for Pharmaceutical industries	08
		 a) Microbiological culture media and laboratory 	
		techniques	
		b) Laboratory managementc) Bioburden determination	
			15
		Quality management and regulatory aspects	
	2.1	Premises and contamination control	02
		a) Location	
		b) Design	
		c) Structure	
		d) Layout	
		e) Services and cleaning	
	2.2	Introduction to Documentation and Validation	03
	2.3	Auditing and Sterilization	05
		a) Auditing in Pharmaceutical Industry	
		b) Audit Validation	
		c) Sterilization and Sterility Assurance	
	-	d) Chemical and Biological Indicators: Measuring	
		sterilization	
	0.4	e) Auditing Sterilization Processes and Facilities	00
	2.4	Endotoxin and pyrogen testing	03
	2.5	Risk assessment and Microbiology	02
		Cosmetic Microbiology	15
	3.1	History of cosmetic microbiology	01
	3.2	Global regulatory and toxicological aspects of cosmetic preservation	04
		preservation	

	3.3	Antimicrobial preservation efficacy and microbial content testing	06
	3.4	Preservation of cosmetics	04
		A. Preservation strategy	
		B. Antimicrobial mechanisms of selected	
		preservatives and the bacterial response	
IV		Drug Discovery and Pharmacology	15
	4.1	Modern Methods of Drug Discovery	02
	4.2	Proteomics	02
	4.3	Bioinformatics	02
	4.4	High throughput screening technology	02
	4.5	Natural products for lead identification	02
	4.6	The role of protein 3D structures in the drug discovery process	03
	4.7	Introduction to pharmacogenomics, Pharmacogenetics and toxicogenomics	02

REFERENCES:

- a) Sharp John, "Quality in the manufacture of medicines and other healthcare products" Pharmaceutical Press, 2000.
- b) Tim Sandle, "Pharmaceutical Microbiology- Essentials for Quality Assurance and Quality control", Woodhead Publishing, Elsevier, 2016
- c) Philip A, Taylor and Francis, "Cosmetic Microbiology a practical approach", 2nd Ed. 2006
- d) Hillisch A and Hilgenfeld R, "Modern Methods of drug discovery", Springer International, 2009
- e) S.B.Primrose, "Principles of Gene Manipulation and Genomics", 7th Ed, Blackwell Publishing, 2006
- Rosamund Baird and Norman A Hodges, "Handbook of Microbiological Quality Control Pharmaceutical and Medical Device", Taylor & Francis e-Library, 2005.

PRACTICAL: RPSMIC4P1 (60 CONTACT HRS)

- a) Sterility testing and reporting (as per Pharmacopia)
- b) Preparation of cosmetic product and its stability study
- *c)* Microbial load in cosmetic product as per IS 14648:2011 w.r.t heterotrophic counts, presence of *Pseudomonas spp, Staphylococci spp, P.acne*
- d) Efficacy testing of preservatives like parabens as per ISO 11930
- e) Performance of an audit of a test with proper documentation

Course Code: RPSMIC402 Course Title: Advances in Biotechnology Academic year 2020-21

COURSE OUTCOME	DESCRIPTION	
CO 1	Summarize the prenatal diagnostic techniques used for diagnosing genetic disorders.	
CO 2	Justify the significance of gene therapy & understand antisense technology used for treatment of genetic disorders.	
CO 3	Explain the importance of stem cell technology in regenerative medicine.	
CO 4	Analyze and compare the advanced techniques & its utility for detection of pathogens.	
CO 5	Evaluate the commercialization potential of fungal strains & understand the current trends in fungal biotechnology.	
CO 6	Interpret the potential of microalgae in producing biofuels & biofertilizers.	
CO 7	Explain IPR, traditional bill law, biodiversity law & ethics in biological research.	
CO 8	Design & execute experiments to harness the commercial potential of fungal & algal strains, also to write, read and understand the patent claims.	

DETAILED SYLLABUS

Course Code	Unit	Course/ Unit Title	Credits/ Lectures
RPSMIC 402		ADVANCES IN BIOTECHNOLOGY	04/60
I		Medical Biotechnology	15
	1.1	Diagnostics & therapeutic approach for Genetic	07
		disorders	
		a. Pre- natal diagnosis- Sample collection,	01
		processing, Advantages, disadvantages	
		b. Karyotyping, FISH & PCR	02
		c. Gene Therapy: Vectors, Gene targeting & Tissue	
		Specific Expression	02
		d. Antisense Technology	01
	10	e. Introduction to Genetic Counselling	01
	1.2	Modern Diagnostic approach for pathogens	05
		a. Optical Tweezer	
		b. 16S rRNA Sequencing	
		c. Spectrometry d. VITEK	
		e. API 20	
		f. FAME	
		g. BIOLOG	
	1.3	Stem Cell Technology	03
		a. Introduction to Stem cells & types	
		b. Regenerative medicine	
		c. Genomic Reprogramming of cells	
		d. Stem cells in Neurodegenerative disorders	
		e. Stem cells in physiological dysfunctions Eg:	
		Diabetes	
II	~~	Exploring microbes for commercial products	15
	\sim	(Fungal Biotechnology)	
	2.1	Introduction Fungal world	02
		a. An overview of Fungi and fungal activities	
		b. Fungal growth and Fungal nutrition	
O.V.		c. Mycology: A Neglected Megascience	
	2.2	Genetics of Fungus	02
		a. Fungal Genetics	
		b. Fungal Genomics	
	2.3	Fungal Pigments	03
		a. Genetic basis of pigment production	
		b. Factors affecting pigment production	
		c. Fermentation for pigment synthesis	
		d. Mycotoxins and their replacement	
		e. Relevance of pigments in various fields	

	2.4	Applications of Fungal Biotechnology	04
		a. Metabolic capacities of fungi for bioremediation	
		 Fungal biomolecules and their Implications 	
		c. Fungal Biocatalysts in the textile industry and	
		waste water treatment	
	2.5	Current trends in Fungal Biotechnology	04
		a. Myconanotechnology	
		b. Fungal Antitumor agents	
		c. Production of recombinant Peptides like	
		Peptaibiotics and peptaibols	
III		Exploring microbes for commercial products	15
		(Algal Biotechnology)	
	3.1	The microalgal cell	03
		a. Introduction	
		b. Structural and Morphological features of	
		Microalgae	
		c. Ultrastructure and cell division	
		d. Cell growth and development	
		e. Microalgal systematics	
	3.2	Basic culturing Techniques	03
		a. Isolation of Microalgae	
		b. Screening of Microalgae for bioactive molecules	
		c. Measurement of Growth Parameters	
		d. Modes of culture	
	3.3	Mass Production of Microalgae: Photobioreactors	03
		a. Definition of photobioreactors	
		b. Classification of photobioreactors	
		c. Types of bioreactors	
		d. Tubular photobioreactors	
		e. Flat photobioreactors	
		f. Vertical cylinders and sleeves	
		g. Axenic photobioreactors	
		h. Scale up of photobioreactors	
	3.4	Applications of Algal Biotechnology	03
		a. Microalgae as platforms for Recombinant proteins	
1		b. Algae as a source of Biofuel	
		c. Algae as biofertilizer for rice	
H	3.5	Current trends in Algal Biotechnology	03
	5.5	a. Targeted Genetic Modification of Cyanobacteria	03
\sim		b. Phylogenomics in Algal research	
			45
IV		IPR and Bioethics Traditional Knowledge &	15
		Biodiversity conservation.	00
	4.1	Types of IPR & the Need of IPR in Biotechnology	02
		a. What is IPR?	
		b. Types of IPR: Patents, Trade Marks & Service	
		Marks, Design Registration, Trade Secrets,	
	1	Geographical indications, Protection of New	

	Plant Variation Converset	
	Plant Varieties, Copyright.	
	c. Need & Implications: Technology Transfer,	
	Commercialization, Economic and policy	
	implications	
	d. Global Harmonization: TRIPS Agreement	
4.2	Pre-requisites for patentability, the process & its Implications	03
	a. Criteria to be fulfilled for Patentability - new/novel,	
	non-obvious/inventive step, useful/capable of	
	industrial application.	
	b. Steps in patentability: Application to the grant of	
	patent	
	c. Implications of IPR in Biotechnology	
4.3	Patentability in Biology: What Can and What Cannot	03
	be patented?	
	a. Indian Scenario of patentability	
	b. Global Scenario of patentability	
	c. Implications in policy making and	
	commercialization due to variables	
4.4	Bioethics: Issues & Perspectives in the discipline of	02
	Microbiology	
	a. Ethics involved while working with	
	Microorganisms	
	b. Bioweapons- an Ethical issue	
	c. Bioethics: An Indian perspective	
4.5	Ethical guidelines for Biomedical research in Human	01
	subjects	
4.6	Safety, ethical, moral implications of Genetic	01
	engineering	
4.7	The protection of Traditional Knowledge Bill, 2016	01
4.8	Biodiversity Law	02
	a. Need for a biodiversity law	
	b. National Guidelines	
	c. International Guidelines	

REFERENCES:

- a) Jogdand S. N., Medical Biotechnology, 2008, Himalaya Publishing House.
- b) Judit Pongracz, Mary Keen, Medical Biotechnology, 2009, Churchill Livingstone, Elsevier.
- c) Pratibha Nallari & V. Venugopal Rao, Medical Biotechnology, 2010, Oxford University Press, India
- d) Richard Re, The application of Antisense technology to medicine, 2000, The Oschner Journal, 2(4).
- e) Robert Lanza, Anthony Atala, Essentials of Stem Cell Biology, 3rd edition, 2012, Academic Press, Elsevier.

- f) Gary. S. Stein, Maria Borowski, Mai. X. Luong, Meng-Jiao Shi, Kelly. P. Smith, Priscilla Vazquez, Human stem cell technology & biology: A Research guide & Laboratory Manual, 2011, Wiley- Blackwell.
- g) Ricardo Franco-Duarte, Lucia Cernáková 3, Snehal Kadam, Karishma S. Kaushik, Bahare Salehi, , Antonio Bevilacqua, Maria Rosaria Corbo, Hubert Antolak, Katarzyna Dybka-Stepien, Martyna Leszczewicz, Saulo Relison Tintino, Veruska Cintia Alexandrino de Souza, Javad Sharifi-Rad, Henrique Douglas Melo Coutinho, Natália Martins and Célia F. Rodrigues. Advances in Chemical and Biological Methods to Identify Microorganisms—From Past to Present, 2019, Microorganisms, 7(130).
- h) Singhal N. et al "MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis", Front Microbiol. 2015; 6: 791.
- i) MICROBIAL IDENTIFICATION USING THE BIOMÉRIEUX VITEK® 2 SYSTEM David H. Pincus bioMérieux
- j) Wenhuan Xu* & Zhiwei Ge "Application and Optimization of Biolog EcoPlates in Functional Diversity Studies of Soil Microbial Communities" Matec web of conferences 22 04015 (2015)
- k) Bacterial Identification by Gas Chromatographic Analysis of Fatty Acid Methyl Esters (GC-FAME) Technical Note #101 Myron Sasser May 1990 Last Revised July 2006
- I) Jim Deacon, "Fungal Biology", 4th Ed, Blackwell Publishing, 2006
- m) Tulasi Satyanarayana and Sunil K. Deshmukh, "Developments in Fungal Biology and Applied Mycology", Springer, 2017
- n) Dinabandhu Sahoo, "The Algae World", Volume 26, Springer, 2015.
- o) Robert Andersen, "Algal culturing Techniques", Elsevier Academic Press, 2005
- P) Yuan Kun Lee, Microbial Biotechnology: Principles & Applications, 2nd edition, 2006, World Scientific Publishing Company.
- Prabuddha Ganguli, IPR- Unleading the knowledge economy, 1st Edition, 2017, McGraw Hill education.
- r) Kshitij Kumar Singh, Biotechnology and IPR Legal and Social Implications, 2015, Springer Publications.
- s) Law and National Biodiversity Strategies and Action Plans by the Law Division for the United Nations Environment Programme. A booklet issued by UN Environment committee.
- t) P Desikan, A Chakrabarti, V Muthuswamy. "Ethical issues in microbiology", *Indian Journal of Medical Microbiology*, 2011, 29(4).
- u) Dr. Mohammed Sarosh Khan, Dr. Rakesh Kumar Gorea, Dr. Shafqat Qamar, Dr. Gulam Mustafa, Abhinav Gorea, "Some ethical Perspectives in the Discipline of Microbiology", International Journal of ethics, trauma & Victimology, 2015, 1(2).

- v) Ajit Avasthi, Abhishek Ghosh, Sidharth Sarkar, Sandeep Grover, "Ethics in medical research: General principles with special reference to psychiatry research", 2013, Indian Journal of Psychiatry 55(1).
- w) The Protection Of Traditional Knowledge, Genetic Resources And Expressions Of Folklore Act, 2016, WIPO.

PRACTICAL: RPSMIC 4P2 (60 CONTACT HRS)

- a) IPR Case studies: An innovative approach to understand IPR & it's Implications.
- b) Case study on Bioethics: An innovative approach to understand bioethics & it's significance.
- c) Study of pigment production & purification from Trichoderma
- d) Isolation and detection of laccase producing fungi
- e) Production, purification and immobilization of fungal amylase.
- f) Culturing microalgae in the lab & studying the effect of growth parameters on its multiplication.
- g) Bioprospecting algae for oils and flavouring compounds
- h) Visit to algal cultivation units

Course Code: RPSMIC403 Course Title: Emerging areas in Biology II Academic year 2020-21

COURSE OUTCOME	DESCRIPTION	
CO 1	Demonstrate a basic understanding of epidemiological strategies, study designs and evaluate the data for its statistical relevance.	
CO 2	Discuss and understand the strategies to detect & monitor biological agents used for bioterrorism & exemplify the significance of biosecurity.	
CO 3	Identify & implement potential solutions for energy needs by evaluating existing & novel biomass to energy technologies	
CO 4	Explain and recall the alternative sources for exhaustible fuels in the form of variety of biofuels.	
CO 5	Critique the current and emerging trends of enzyme technology & discuss the applications of enzymes.	
CO 6	Understand & execute methods for production, purification, characterization & immobilization of enzymes.	
CO 7	Discuss & recall the principles & procedure of protein engineering techniques.	

Course	Sub-	Course/ Unit Title	Credits/
Code	Unit		Lectures
RPSMIC		EMERGING AREAS IN BIOLOGY II	04/60
403			
403		Enidomiology Biotorrorism and Biosocurity	01/15
•	11	Epidemiology, Bioterrorism and Biosecurity	
	1.1	 Epidemiology a. Historical aspects-definition b. Descriptive Epidemiology-aims and uses c. Epidemiological principles in prevention and control of Diseases d. Study Designs: Introduction Observational Versus Experimental approaches in Epidemiology Overview of study designs used in Epidemiology V. Ecologic Studies Cross-Sectional studies Case-Control studies e. Public health surveillance: Purpose and characteristics Identifying health problems for surveillance Collecting data for surveillance Analyzing and interpreting data 	
		vi. Evaluating and improving surveillance	
	1.2	Bioterrorism	03
	Chille Chille	 a. Introduction b. Threat Agents by category c. Detection, Monitoring, and Identification of BT Agents d. The Potential for Misuse of Biotechnology e. Some examples of biological agents as warfare Smallpox, Bacillus anthracis, Yersinia pestis 	
N	1.3	Biosecurity	02
		a. Introductionb. Constituents of a Biosecurity hazard	
II		Bioenergy and Bioconversions	15
	2.1	Classification of biofuels: a. Conventional and Advanced Biofuels 1st generation biofuels- sugar and starch-based ethanol, conventional biodiesel, biogas b. 2nd generation biofuels – cellulosic ethanol,	09

	1		
		advanced biodiesel, biooils and biobutanol	
		c. 3rd generation biofuels- Biohydrogen and algal	
		based fuels.	
		d. 4th generation biofuels	
		e. Syngas/ Biogas production	
		i. Types of feedstocks	
		ii. Process types and digestors used	
	2.2	Microbial fuel cells	03
	2.3	a. Bioconversion of Lignocelluloses into food and	03
		feed rich in protein	
		b. Bioconversion of industrial cellulosic pulp	
		materials to protein-enriched food and feeds	
III		Enzyme Technology	15
	3.1	Different types enzymes, production and enzymatic	08
	_	analysis and assay methods	
		a. Amylases	
		b. Cellulases	
		c. Lipases	
		d. Laccases	
		e. Proteases	
	3.2	Enzyme immobilization- Need, methods, Carriers and	05
		applications	
	3.3	Therapeutic enzymes	02
IV		Protein Engineering	15
	4.1	Modifications of proteins	05
		a. Adding disulphide bonds	
		b. Changing Asparagine to other amino acids	
		c. Reducing number of free sulfhydryl residues	
	4.2	Modifications of enzymes	10
		a. Increasing enzyme activity, enzyme stability and	
		specificity	
		b. Modifying metal cofactor requirement and	
		protein specificity	
		c. Decreasing protease sensitivity	
		d. Altering multiple properties	
		e. Directed Evolution of Industrial enzymes	
		6. Directed Evolution of muustilal enzymes	

REFERENCES:

- a) Principles of epidemiology in public health practices 3rd Ed. (<u>www.cdc.gov/training/products/ss1000</u>)
- b) Ann Aschengrau, George R Seage, Essentials of Epidemiology in Public Health, 3rd Ed.
- c) Kenrad E Nelson, Carolyn Maters Williams, "Infectious Disease Epidemiology theory and practice", 3rd Ed, Jones & Bartlett Learning (Year)
- d) Burt Anderson, Herman Friedman, Mauro Bendinelli, "Microorganisms and Bioterrorism", Springer Science, 2006

- e) FAO Biosecurity Tool Kit, Food and Agriculture Organization of the United Nations Rome, 2007 (<u>http://www.fao.org/3/a1140e/a1140e.pdf</u>)
- f) Biofuels Production, Ed by Vikash Babu, Ashish Thapliyal & Girijesh Kumar Patel, 2014, Scrivener Publishing LLC. Co-published by John Wiley & Sons, Inc.
- g) Introduction to Biofuels, David M. Mousdale, 2010, CRC Press Taylor & Francis Group
- h) Biofuels, Alternative Feedstocks and Conversion Processes, Ed by Ashok Pandey, Christian Larroche, Steven Cricke, Claude-Gilles Dussap, Edgard Gnansounou, 2011, Academic Press
- i) Advances in agricultural Microbiology 1st edition, Editor: N.S. Subba Rao
- j) Cui, H., Wang, L., & Yu, Y. (2015). Production and Characterization of Alkaline Protease from a High Yielding and Moderately Halophilic Strain of SD11 Marine Bacteria. Journal of Chemistry, 2015, e798304. https://doi.org/10.1155/2015/798304
- k) Gopinath, S. C. B., Anbu, P., Arshad, M. K. M., Lakshmipriya, T., Voon, C. H., Hashim, U., & Chinni, S. V. (2017). Biotechnological Processes in Microbial Amylase Production. BioMed Research International, 2017, e1272193. https://doi.org/10.1155/2017/1272193
- I) Javed, S., Azeem, F., Hussain, S., Rasul, I., Siddique, M. H., Riaz, M., Afzal, M., Kouser, A., & Nadeem, H. (2018). Bacterial lipases: A review on purification and characterization. Progress in Biophysics and Molecular Biology, 132, 23–34. https://doi.org/10.1016/j.pbiomolbio.2017.07.014
- m) Microbial Laccases and their Applications: A Review. (n.d.). https://doi.org/10.3923/ajbkr.2011.98.124
- n) Sadhu, S., & Maiti, T. K. (2013). Cellulase Production by Bacteria: A Review. Microbiology Research Journal International, 235–258 Bernard R.
- Industrial Biocatalysis, (2015) Edited by Peter Grunwald, Pan Standard Publishing, CRC
 Press Taylor & Comparis Group
- p) Glick, Jack J. Pasternak, "Molecular Biotechnology: Principles and Applications of Recombinant DNA", ASM Press, 2010

PRACTICALS: RPSMIC3P3 (60 CONTACT HRS):

- a) Case Studies of epidemiological strategies
- b) Internship presentation

Course Code: RPSMIC 404

Course Title: Internship

Academic year 2020-21

COURSE OUTCOME	DESCRIPTION	
CO 1	Understand how theoretical concepts transpire into application in workplaces like research institutes or industry	
CO 2	Comprehend a scientific problem and execute prescribed protocols independently	
CO 3	Demonstrate ability to complete tasks on time and record results without fabrication, falsification in prescribed formats	
CO 4	Confidently communicate relevant information effectively to supervisors in clear and concise manner, in writing and orally.	
CO 5	Capability to work with diverse teams with respect, empathy and understanding	
CO 6	Demonstrate competency, integrity and commitment at the workplace	

DETAILED SYLLABUS

Course Code	Course/ Unit Title	Credits
RPSMIC 404	INTERNSHIP	04
	Internship to research institute/industry	16 weeks

PRACTICALS: RPSMIC4P4 (60 CONTACT HRS)

Internship report

Modality of Assessment:

I) Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1	One Review writing/ Review paper presentation/Research paper	40
	presentation and Assignment / Long Answer/ Case Study or any other	S

B) External Examination- 60%- 60 Marks per paper

- 1. Duration- These examinations shall be of two hours and thirty minutes.
- 2. Theory question paper pattern
 - a. There shall be **five** questions each of **12** marks. On each unit there shall be one question and the fifth question will be based on all the three units.
 - b. All questions shall be compulsory with internal choice within the questions.

Paper pattern:

12 12 12 12	Unit 1 Unit 2 Unit 3 Unit 4
12	Unit 3
12	Lipit 4
1	01111 4
04	All four units
04	All four units
04	All four units

Theory Examination Pattern- RPSMIC 404:

Internship evaluation by guide/ mentor- 60 marks

Internship report evaluation by internal faculty- 40 marks

II) Practical Examination Pattern

	Paper I	Paper II	Paper III	Paper IV
Viva	05	05	-	
Quiz	05	05	-	
Laboratory work	40	40	-	
Internship presentation	-	-	50	0
Internship report	-	-	.5	50
Total	50	50	50	50

Journal

- 1. The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.
- 2. In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Co-ordinator / In-charge of the department; failing which the student will not be allowed to appear for the practical examination.

Internship Report

- 1. Candidates are required to present duly certified Internship Report dissertation report based on the topic of Internship
- 2. The students also have to make a PowerPoint presentation of the work done during Internship for evaluation by the examiner.

Semester IV													
Course	401		402			403			404				
	Internal	External	Total	Internal	External	Total	Internal	External	Total	Internal (Internship report evaluation by internal Faculty)	External (Internship evaluation by Guide /mentor)	Total	Grand total
Theory	40	60	100	40	60	100	40	60	100	40	60	100	400
Practical	-	50	50	-	50	50	-	50	50	<u>O</u>	50	50	200

Overall Examination and Marks Distribution Pattern

Semester End Examination: (Deviation from the usual modality)

Owing to the pandemic situation prevailing in 2020 and continuing in 2021, the external examinations (Semester End) may be conducted online as per the instructions/circulars received from the University of Mumbai and Maharashtra State notifications from time to time. The conventional mode of external examination will commence again only after the declaration of normalcy by the Government authorities.