AC/II(21-22).2.RUS9

S. P. Mandali's

Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for F.Y

Program: BSc (Microbiology)

Program Code: RUSMIC

(Credit Based Semester and Grading System for academic year 2021–2022)

PROGRAM OUTCOMES

PO	PO Description					
	A student completing Bachelor's Degree in Science program will be					
	able to:					
PO 1	Recall and explain acquired scientific knowledge in a comprehensive					
	manner and apply the skills acquired in their chosen discipline.					
	Interpret scientific ideas and relate its interconnectedness to various					
	fields in science.					
PO 2	Evaluate scientific ideas critically, analyse problems, explore options					
	for practical demonstrations, illustrate work plans and execute them,					
	organise data and draw inferences.					
PO 3	Explore and evaluate digital information and use it for knowledge					
	upgradation. Apply relevant information so gathered for analysis and					
	communication using appropriate digital tools.					
PO 4	Ask relevant questions, understand scientific relevance, hypothesize					
	a scientific problem, construct and execute a project plan and					
	analyse results.					
PO 5	Take complex challenges; work responsibly and independently, as					
	well as in cohesion with a team for completion of a task.					
	Communicate effectively, convincingly and in an articulate manner.					
PO 6	Apply scientific information with sensitivity to values of different					
	cultural groups. Disseminate scientific knowledge effectively for					
$n \sim n$	upliftment of the society.					
PO 7	Follow ethical practices at work place and be unbiased and critical in					
25	interpretation of scientific data. Understand the environmental issues					
	and explore sustainable solutions for it.					
PO 8	Keep abreast with current scientific developments in the specific					
	discipline and adapt to technological advancements for better					
	application of scientific knowledge as a lifelong learner					

PROGRAM SPECIFIC OUTCOMES

PSO	Description						
	A student completing Bachelor's Degree in Science program in the subject of Microbiology will be able to:						
PSO 1	Recall, explain and summarize basic concepts related to cytology,						
	biochemistry, physiology, genetics and reproduction of prokaryotes and						
	compare it with eukaryotes.						
PSO 2	Appreciate and exemplify the diversity in the microbial world and evaluate						
	their ecological role as well as state their significance to humankind.						
PSO 3	Understand the basic concepts associated with growth and control of						
	microorganisms and apply it in pure culture and preservation techniques.						
PSO 4	Differentiate, classify and characterize microorganisms based on their						
	morphological, cultural, biochemical, and molecular properties.						
PSO 5	Explore, compare and evaluate the role of microorganisms in different natural						
	environments as well as plants, animals and humans, and evaluate and						
	exemplify their interrelationships.						
PSO 6	Apply the understanding of microbial processes to diverse science areas						
	such as medical, industrial, agricultural and food and evaluate their potential						
	for human well-being, for tackling environmental issues and exploring						
	sustainable solutions						
PSO 7	Recall and explain the nature of biomolecules and metabolic processes; the						
	role and kinetics of enzymes as well as the thermodynamic laws that drive						
	these reactions.						
PSO 8	Recall the basic working principles of various bioanalytical techniques and						
	tools and apply them to detect, estimate and structurally evaluate						
	biomolecules present in the microbial cells.						
PSO 9	Understand and explain the nature of genetic material and elaborate the						
	molecular mechanisms underlying various genetic processes like replication,						
	transcription, translation, gene transfer and recombination in bacteria; and						
	explain basic concepts in virology.						

PSO 10	Apply the basics of genetics and molecular biology to understand and evaluate techniques in genetic engineering and also for the use of bioinformatic tools for presentation and processing of data.
PSO 11	Recognize and explain the role of microorganisms in different diseases, attribute pathogenesis mechanisms to their properties and extrapolate it to disease diagnosis, treatment and prevention. Outline and recall concepts in epidemiology of diseases. Classify and evaluate different chemotherapeutic agents.
PSO 12	Recall, classify and summarize mechanisms of defense in humans, detail out the functioning of our immune system, correlate it to disease and its prevention and outline its association to health. Apply immunological principles for diagnosis of diseases.
PSO 13	Understand and outline different biochemical mechanisms and their regulation; retrieve and construct biochemical pathways in microbial metabolism of major macromolecules and, recall and integrate the bioenergetics of metabolic reactions.
PSO 14	Evaluate, exemplify and outline the role of microorganisms in different industrial fermentations, summarize technological aspects of bioprocesses, recall knowledge about patents, copyright and regulatory practices and QA.
PSO 15	Demonstrate key practical skills/competencies in working with microbes for their study and use in the laboratory as well as outside, including the use of good microbiological practices. Analyze problems involving microbes, articulate them and devise innovative and creative solutions.
PSO 16	Hypothesize, design experiments, construct experimental plans, execute them and analyze data with a basic understanding of statistics. Demonstrate an ability to be unbiased and critical in interpretation of scientific data
PSO 17	Communicate effectively to express scientific ideas and/or their experimental data in an effective, precise and concise manner.

PROGRAM OUTLINE

YEAR	SEM	COURSE	COURSE TITLE	CREDITS
		CODE		
	1	RUSMIC 101	Fundamentals of Microbiology	02
		RUSMIC 102	Microorganisms – in the lab and in nature	02
FY		RUSMICP101	Practicals based on above two courses	02
	II	RUSMIC 201	Microbial world: types and inter-relations	02
		RUSMIC 202	Techniques in Microbiology	02
		RUSMICP201	Practicals based on above two courses	02
	Ш	RUSMIC 301	Microbial taxonomy and Introduction to Genetics and Molecular Biology	02
		RUSMIC 302	Introduction to Experimental Microbial Biochemistry	02
		RUSMIC 303	Environmental Microbiology	02
SY	R	RUSMICP301	Practicals based on above three courses	03
2411	IV	RUSMIC 401	Microbe interactions and host responses	02
		RUSMIC 402	Introduction to Metabolic Pathways and Enzymology	02
		RUSMIC 403	Applied Microbiology	02
		RUSMICP401	Practicals based on above three courses	03

	V	RUSMIC 501	Microbial Genetics	2.5
		RUSMIC 502	Medical Microbiology	2.5
		RUSMICP501	Practical Based on Above Two Courses	3
		RUSMIC 503	Microbial Biochemistry: Part-I	2.5
		RUSMIC 504	Bioprocess Technology	2.5
ΤY		RUSMICP502	Practical Based on Above Two Courses	3
	VI	RUSMIC 601	Genetics, Bioinformatics & Virology	2.5
		RUSMIC 602	Immunology	2.5
		RUSMICP601	Practical Based on Above Two Courses	3
		RUSMIC 603	Microbial Biochemistry Part II	2.5
		RUSMIC 604	Industrial Microbiology	2.5
		RUSMICP602	Practical Based on Above Two Courses	3

RAMMARAM

 \sim

Course Code: RUSMIC 101

Course Title: Fundamentals of Microbiology Academic year 2020-21

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
CO 1	Understand and explain the process of formation of earth and
	evolution of microorganisms on earth.
CO 2	Summarize the key events in the history of Microbiology
CO 3	Recognize the scope and relevance of Microbiology
CO 4	Recall and explain the nature, correlate function of components that
	make up a prokaryotic cell and identify them microscopically
CO 5	Compare and contrast between structural features of prokaryotic
	and eukaryotic cell
CO 6	Recall the characteristics and structures of biomolecules and
	classify and detect them in various samples
RAMMAR	

Course	Unit	Course/ Unit Title	Credits/
Code/			Lectures
Unit			
RUSMIC		FUNDAMENTALS OF MICROBIOLOGY	2/45
101			20
I		Evolution of Microbes, History and Future of	15
		Microbiology	
	1.1	The Evolution of Microorganisms	07
		a) Formation and Early History of Earth	
		b) Origin of Cellular life.	
		c) RNA world hypothesis and protein synthesis	
		d) Microbial Diversification	
		e) Endosymbiotic origin of prokaryotes	
		f) Microbial Evolution - Process	
	1.2	History, Branches and Scope of Microbiology	06
		a) Discovery of microorganisms	
		 b) Conflict over spontaneous generation 	
		c) Golden Age of Microbiology-Koch Postulate,	
		Medical Microbiology, Immunology	
		d) Development of industrial microbiology and	
		microbial ecology	
		e) Scope and relevance of microbiology	
	1.3	Future of Microbiology and unification with other	02
		a) Molecular and genemic methods to study	
	SX	microorganisms	
5	X	h) Emerging diseases	
		c) Search for extra-terrestrial life	
		d) Bio-based economies	
		Prokaryotic and Eukaryotic Cell Structure	15
で	2.1	Prokaryotic Cell Structure and functions	10
		a) Overview of prokaryotic cell structure	
		b) Cell wall	
		c) Cell membrane	
		d) Components external to cell wall-Capsule, Slime	
		layer, Flagella, Pili, Fimbriae	

		e) Cytoplasmic matrix-Inclusion bodies,	
		magnetosomes, ribosomes, gas vesicles	
		f) Nucleoid, Plasmids	
		g) Bacterial endospores and their formation	
	2.2	Eukaryotic Cell Structure	05
		a) Overview of Eukaryotic cell structure	
		b) Cytoplasmic matrix, microfilaments, intermediate	
		filaments, and microtubules, Cilia and Flagella	
		c) Organelles of the Biosynthetic-secretory and	
		endocytic pathways –Endoplasmic reticulum &	
		Golgi apparatus. Lysosome, Autophagy,	*
		Proteasome	
		d) Eukaryotic ribosomes	
		e) Mitochondria	
		f) Chloroplasts	
		g) Nucleus –Nuclear Structure	
		h) Comparison of Prokaryotic and Eukaryotic Cells	
		i) Mitosis & meiosis	
		Chemical basis of life	15
	3.1	Chemical foundations	02
		a) Biomolecules as compounds of carbon with a	
		variety of functional groups.	
		b) Universal set of small molecules.	
		c) Macromolecules as the major constituents of	
		cells.	
		d) Configuration and Conformation with definitions	
		and suitable examples only.	
		e) Types of Stereoisomers and importance of	
		stereoisomerism in biology.	
		f) Types of bonds and their importance:	
		Electrovalence, covalent, ester, phosphodiester,	
		thioester, peptide, glycosidic.	
	3.2	Water- Structure, properties in brief	01
25			
	3.3	Carbohydrates and glycobiology	04
		a) Definition, Classification, Biological role.	
		b) Monosaccharides, (Chair and boat	
		conformation) oligosaccharides (maltose,	
		cellobiose, sucrose, lactose) and polysaccharide	
		(starch, glycogen, peptidoglycan, cellulose),	

	glycoproteins (glycosaminoglycans and	
	proteoglycans), glycome.	
3.4	Lipids	02
	a) Fatty acids as basic component of lipids	
	b) Classification, nomenclature, storage lipids and	
	structural lipids.	
	c) Types of lipids with general structure of each	
	and mention examples.	
3.5	Amino acids & proteins	03
	a) General structure and features of amino acids	
	(emphasis on amphoteric nature)	
	b) Classification by R-group, Uncommon amino	
	acids and their functions Peptides and proteins-	
	Definition and general features and examples	
	with biological role.	
	c) Primary, secondary, tertiary, quaternary	
	structures of proteins- Brief outline.	
3.6	Nucleic acids	03
	a) Nitrogenous bases- Purines, Pyrimidines	
	b) Pentoses-Ribose, Deoxyribose,	
	c) Nomenclature of Nucleosides and nucleotides,	
	d) N-β-glycosidic bond,	
	e) Polynucleotide chain to show bonding between	
	nucleotides (Phosphodiester bonds).	
	f) Basic structure of RNA and DNA.	

- a) Willey, Sherwood and Woolverton, Prescott's Microbiology, 9th edition, 2013, International edition, McGraw Hill.
- b) Michael T. Madigan & J.M. Martin, Brock's Biology of Microorganisms 13th Ed. International edition 2012, Pearson Prentice Hall.
- c) https://www.hort.purdue.edu/newcrop/ncnu02/v5-011.html
- d) https://www.weforum.org/agenda/2018/04/can-a-nature-based-economy-help-us-drivegreen-growth
- e) Michael J. Pelczar Jr., E.C.S. Chan, Noel R. Krieg, Microbiology 5th Edition, 1986, Tata McGraw Hill Publishing Company
- f) Conn P. Stumpf, G. Bruening and R. Doi, Outlines of Biochemistry 5/E, 1995, John Wiley & Sons. New York
- g) D. Nelson and M. Cox, Lehninger's Principles of Biochemistry, 4th Edition, 2005, W.H.
 Freeman and Company
- h) Laurence A. Moran, H. Robert Horton, K. Gray Soringeour, Marc D. Perry, Principles of Biochemistry, 5th Edition, 2012, Pearson

X

Course Code: RUSMIC 102

Course Title: Microorganisms- in the Lab & in Nature Academic year 2020-21

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
CO 1	Understand and explain the principle, construction & functionality
	differences of various microscopes.
CO 2	Classify the microorganisms based on their growth requirements &
	explain the methods of cultivation of different microorganisms.
CO 3	Summarize the method & principle of the techniques used for
	visualization of microorganisms.
CO 4	Infer the significance of different preservation techniques &
	emphasize the role of Culture collection centers.
CO 5	Recall & explain the role of microorganisms in biogeochemical
	cycles & in maintaining balance of the ecosystem
CO6	Illustrate the different types of microbial interactions & explain the
	significance of extremophiles.
CO 7	Carry out basic staining and culturing techniques and test microbial
NAT	activities using aseptic techniques
2AM	

Course	Unit	Course/ Unit Title	Credits/
Code/			Lectures
Unit			
RUSMIC		MICROORGANISMS-IN THE LAB & IN	2/45
102		NATURE	
		Cultivating & Visualizing Bacteria	15
	1.1	Місгоѕсору	08
		a) History of microscopy, Optical spectrum, Lenses	
		and mirrors with ray diagrams	
		 b) Simple and compound light microscope. 	
		c) Dark field Microscopy	
		d) Phase contrast Microscopy	
		e) Electron Microscopy	
	1.2	Nutrition and Cultivation of Microorganisms:	07
		a) Nutritional requirements - Carbon, Oxygen,	
		Hydrogen, Nitrogen, Phosphorus, Sulfur and	
		growth factors.	
		 b) Nutritional classification based on source of 	
		energy, electron and carbon	
		c) Modes of nutrition: Endocytosis, Phagocytosis,	
		movement of solutes across membranes	
		d) Media Design and composition	
		 e) Types of Culture media with examples 	
		f) VBNC & oligotrophs	
		g) Anaerobic cultivation	
II	$\mathcal{O}_{\mathcal{X}}$	Pure Culture techniques, Characterization & Preservation of Bacteria	15
	2.1	Pure Culture Techniques	02
1/ 4		a) Streak plate method	
N4.		b) Pour plate method	
2	2.2	Characterization of Bacteria:	11
\sim		a) Morphological characteristics	
		b) Staining procedures	
		i. Dyes and stains: Types, Physicochemical	
		basis, Fixatives, Mordants, Decolorizers	
		ii. Simple and differential staining	
		iii. Special staining (Cell wall. Capsule. Lipid	

		granules, Spores, Metachromatic granules &	
		Flagella)	
		c) Physicochemical characterization: Influence of	
		environmental factors on growth- oxygen, pH,	
		temperature, osmotic pressure.	
	2.3	Preservation of microorganisms	02
		a) Methods for maintenance and Preservation of	\sim
		Bacteria	
		b) Culture Collection Centers	
III		Microbes in Natural Environments	15
	3.1	Microorganisms in Nature	03
		a) Microenvironments	
		b) Introduction to microbial biofilms	
		c) Mixed populations and microbial consortia	
		d) Introduction to Quorum Sensing	
	3.2	Role of microbes in Biogeochemical cycles	06
		a) C- cycle, N- cycle, S- cycle, Iron cycle	
		b) Interaction between elemental cycles	
		× O	
	3.3	Microbial competition and cooperation	04
		a) Types of Microbial Interactions: Mutualism,	
		Cooperation, Commensalism, Predation,	
		Parasitism, Amensalism, Competition with	
		examples	
		 b) Functions of symbiosis 	
		c) Establishment of symbiosis	
	3.4	Introduction to extremophiles and their importance	02

- a) A.J.Salle, Fundamental Principles of Bacteriology, 1984, McGraw Hill publications
- b) Michael J.Pelczar Jr., E.C.S. Chan ,Noel R , Microbiology TMH 5th Edition
- c) Stanier, Ingraham et al, General Microbiology, 5th Ed. 1987, Macmillan Education Ltd.
- d) Tortora, Funke and Case, Microbiology: An Introduction, 6th Edition.1998, Pearson.
- e) Michael T. Madigan & J.M. Martin, Brock's Biology of Microorganisms 13th Ed. International edition 2012, Pearson Prentice Hall.
- f) Willey, Sherwood and Woolverton, Prescott's Microbiology, 7th edition, 2011, International edition, McGraw Hill.

Course code	Practicals	2 Credits
RUSMICP101	PRACTICAL-1	
Unit-I	1. Demonstration of Pasteur's experiment to refute	\sim
	2 Demonstration of microbes in air cough on table	
	surface, finger tips, fomites etc.	
Unit-II	1. Study of prokaryotic subcellular structures by special	
	metachromatic granules.	
	2. Study of Motility (Hanging Drop Preparation)	
	3. Wet mount of Hay infusion	
Unit-III	1. Qualitative detection	
•••••	a. Carbohydrates- Benedicts, Molisch's test.	
	b. Proteins, amino acids- Biuret, Ninhydrin.	
	c. Nucleic acid detection by DPA and Orcinol	
RUSMICP102	PRACTICAL-2	
Unit-I	1. Parts of a microscope	
	3. Dark field and Phase Contrast Microscopy:	
	(Demonstration)	
	4. Monochrome staining	
	5. Gram staining	
	6. Negative Staining	
	food material	
	8. Preparation of standard laboratory Culture Media:	
	a. Liquid medium (Nutrient Broth)	
	b. Solid Media (Nutrient agar, Sabouraud's	
	agar)	
	9. Inoculation techniques and Study of Growth	
Q.	a. Inoculation of Liquid Medium	
	b. Inoculation of Solid Media (Slants, Butts and	
	Plates)	

Unit-II	 Pure culture techniques- Streak plate method Study of Colony Characteristics of bacteria. Use of Differential & Selective Media (MacConkey& Salt Mannitol Agar), Enriched (Blood Agar) & enrichment (Ashby's Mannitol broth) Effect of environment on growth a. Temperature b. pH c. Osmotic pressure Demonstration of anaerobic jar Methods of Preservation of culture- Soil stock, oil overlay and preparation of glycerol stocks, lyophilization (demo)
Unit-III	 Dip slide technique to demonstrate microbial biofilms Crowded plate technique for demonstration of
	antibiosis 3. Demonstration of bacteroid forms of <i>Rhizobia</i>
RAMAR	AMARUAAUTONON

6,

Modality of Assessment

Theory Examination Pattern:

A. Internal Assessment- 40%- 40 Marks per paper

Sr No	Evaluation type	Marks
1	One Assignment/Case study/Project/ Presentation	15
2	One class Test (multiple choice questions / objective)	20
3	Active participation in routine class instructional deliveries	05
	TOTAL	40

B. External Examination- 60%- 60 Marks per paper

Semester End Theory Examination:

- 1. Duration These examinations shall be of **two hours** duration.
- 2. Theory question paper pattern:
 - a. There shall be three questions each of 20 marks one on each unit.
 - b. All questions shall be compulsory with internal choice within the questions.

Question	Options	Marks	Questions Based on
Q.1) A)	Any 3 out of 5	15	
Q.1) B)	Any 1 set out of 2 (i & ii or i & ii)	03 &02	Unit I
Q.2) A)	Any 3 out of 5	15	
Q.2) B)	Any 1 set out of 2 (i & ii or i & ii)	03 &02	Unit II
Q.3) A)	Any 3 out of 5	15	
Q.3) B)	Any 1 set out of 2 (i & ii or i & ii)	03 &02	Unit III
	TOTAL	60	

Paper Pattern:

Practical Examination Pattern:

A. Internal Examination: 40%- 40 Marks

Particulars	Paper I	Paper II
Journal	05	05
Experimental tasks	10	10
Participation	05	05
Total	20	20
ernal Examination: 60%-	60 Marks	S
nester End Practical Exa		

B. External Examination: 60%- 60 Marks

Semester End Practical Examination:

Particulars	Paper I	Paper II
Laboratory work	25	25
Spots/Quiz/Viva	05	05
Total	30	30

PRACTICAL BOOK/JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.

In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Co-ordinator / In charge of the department; failing which the student will not be allowed to appear for the practical examination.

Overall Examination & Marks Distribution Pattern

Semester I

	Course	101 102		101		02		Grand Total
		Internal	External	Total	Internal	External	Total	
	Theory	40	60	100	40	60	100	200
X	Practicals	20	30	50	20	30	50	100

Owing to the pandemic situation prevailing in 2020 and continuing in 2021, the external examinations (Semester End) may be conducted online as per the instructions/circulars received from the University of Mumbai and Maharashtra State notifications from time to time. The conventional mode of external examination will commence again only after the declaration of normalcy by the Government authorities.

Course Code: RUSMIC 20. Course Title: Microbial World: types and inter-relations

COURSE OUTCOMES:

	DESCRIPTION
COTCOME	
CO 1	Understand the structure, cultivation and significance of viruses
CO 2	Explain and compare the features of Rickettsia, Chlamydia and
	Myxobacteria
CO 3	Summarize the characteristics and infer significance of
	Actinomycetes and Archaebacteria
CO 4	Categorize microorganisms like Protozoa, Algae and Fungi into
	different groups based on their characteristics
CO 5	Infer the medical and industrial significance of Protozoa, Algae and
	Fungi
CO 6	Explain the types and role of normal flora on human body and infer
	its significance
0	5
CO 7	Organizing the events of development of infection in human system
	and summarize the factors affecting host immune system
A.	

Course	Unit	Course/ Unit Title	Credits/
Code/			Lectures
Unit			
RUSMIC		MICROBIAL WORLD: TYPES AND	2/45
201		INTER-RELATIONS	
l		Microbial world (Viruses Rickettsia,	15
		Actinomycetes and Archaea)	
	1.1	Viruses	07
		a) Historical highlights, General properties of	
		viruses, prions, viroids	
		denomes-TMV Influenza and T4 as	
		representatives	
		c) Cultivation of viruses- overview	
	1.2	Rickettsia, Chlamydia, Mycoplasma	02
		General features and medical significance	
	1.3	Actinomycetes	02
		a) General features	
		c) Importance: ecological commercial and medical	
		of importance. coological, commercial and medical	
	1.4	Archaea	02
		a) Introduction- Major Archaeal physiological	
		groups,	
		b) Archaeal cell wall, lipids and membranes	
		c) Ecological importance	
	1.5	Cyanobacteria& Myxobacteria	02
		Microbial World (algae, fungi, yeasts, slime	15
		molds, protozoa)	
	2.1	Protozoa	04
		a) General characteristics	
25		b) Major categories of Protozoa based on motility,	
		reproduction	
		d) Life cycle of Entamoeba	
		.,	
	2.2	Algae	05
		a) Characteristics of algae: morphology, Pigments,	
		reproduction	

		b) Cultivation of algae	
		 Major groups of Algae –an overview 	
		d) Biological, Medical and economic importance	
		e) Differences between Algae and Cyanobacteria	
		f) Medical ecological Commercial application	
	2.3	Fungi and Yeast	05
		a) Characteristics: structure Reproduction	
		b) Cultivation of fungi and veasts	
		a) Majar fungal divisional averview	
		c) Major lungal divisions- overview	
		d) Life cycle of yeast	
		e) Biological and economical importance	
	2.4	Slime molds and Myxomycetes	01
		Microbe- Human interactions	15
	3.1	Normal flora of the human body	04
		a) Skin, Nose & Nasopharvnx, Oropharvnx,	
		Respiratory tract. Eve. External ear	
		b) Mouth Stomach Small intesting Large intesting	
		a) Conitourinary tract	
		d) Gnotoblotic animais	
		e) Introduction to the concept of microbiome	
	3.2	Development of infection	07
		 Portal of entry and infectious dose 	
		b) Attaching to host	
		c) Surviving defenses	
		d) Virulence factors	
		a) Drosses of infection	
		f) Portal of exit	
		g) Patterns of an infection-localized, systemic,	
		focal, mixed, primary, secondary, acute and	
		chronic infections	
	\mathbf{O}	 h) Signs and symptoms of disease 	
	3.3	Host defense against infection: Overview	04
	0.0	a) Easters offesting heat defenses Energies	•••
		a) Factors anecting nost defense. Species	
14.		resistance, racial resistance and individual	
		resistance	
		 b) Introduction to innate and adaptive defences, 	
		Barriers at portal of entry: Physical barriers.	
		Obernical defenses repetie resistance	
1			
		Chemical defenses, genetic resistance.	

- a) Willey, Sherwood and Woolverton, Prescott's Microbiology, 9th edition, 2013, International edition, McGraw Hill.
- b) Michael T. Madigan & J.M. Martin, Brock's Biology of Microorganisms 13th Ed. International edition 2012, Pearson Prentice Hall.
- c) Tortora, Funke and Case, Microbiology: An Introduction, 10th Edition, 2010, Pearson.
- d) Kathleen Park Talaro & Arthur Talaro Foundations in Microbiology International edition 2002, McGraw Hill.
- e) Jacquelyn Black, Laura Black, Microbiology, Principles and Explorations, 9th Ed, 2015, Wiley
- f) Michael J. Pelczar Jr., E.C.S. Chan, Noel R. Krieg, Microbiology 5th Edition, 1986, Tata McGraw Hill Publishing Company

Course Code: RUSMIC 202 Course Title: Techniques in Microbiology Academic year 2020-21

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
CO 1	Understand and explain the growth pattern with the phases of
	growth for bacteria.
CO 2	Summarize the physical, chemical &cultivation-based methods for
	enumeration of microorganisms.
CO 3	Recall & exemplify the mechanisms of physical & chemical
	antimicrobial agents.
CO 4	Infer the significance of different preservation techniques &
	emphasize the role of Culture collection centers.
CO 5	Understand & explain the concept and need of biosafety levels.
CO 6	Summarize the modern microscopic techniques & explain the
	molecular methods for detection of microorganisms.
CO 7	Execute & perform the techniques used for enumeration of
	microorganisms & evaluate the microbicidal action of physical &
	chemical agents.
M.	

22

Course	Unit	Course/ Unit Title	Credits/
Code/			Lectures
Unit			
RUSMIC 202		TECHNIQUES IN MICROBIOLOGY	2/45
I		Microbial Growth	15
	1.1	Growth Curve & Mathematical Expression of Growth Curve	05
		a) Definition of Growth, Growth phases	
		b) Determining growth constant & growth rate	
	1.2	Measurement of Growth a) Direct microscopic count i) Breed's count, ii) Petroff-Hausser counting chamber iii) Haemocytometer b) Viable count using Spread plate and Pour plate technique c) Measurements of cell constituents. d) Turbidity measurements– Brown's opacity tubes and spectrophotometer techniques e) Coulter Counter	07
	1.0		
- 11	24	Control of Microorganisms	15
	2.1	Definition of terms	01
	2.2	Physical agents for control of microorganisms (mode of action, advantages, disadvantages and applications)	06
		a) High temperature-moist heat and dry heat	
Ch.		b) Low temperatures	
		c) Radiation	
		d) Osmotic pressure	
		e) Desiccation	
		 f) Physical removal of microorganisms using bacteriological filters 	
	2.3	Chemical agents for control of microorganisms (mode of action, advantages, disadvantages and	04

	applications of all major groups of antimicrobial agents)	
2.4	Evaluation of Chemical disinfectants	01
2.5	Chemotherapeutic & antimicrobial agents- types & examples (tabular form)	01
2.6	Biosafety in Microbiology	02
	 Biosafety general principles and terminology with equipment 	
	b) Biological containment and laboratory safety levels	
	Modern techniques in Microbiology	15
3.1	Modern Microscopy	03
	a) Fluorescence microscopyb) Confocal Microscopy	
3.2	Molecular methods of microbe detection	10
	 a) Identification and quantification using nucleic acid probes and labeled antibodies (Eg: ELISA & its Types, FISH) b) Microbial activity measurements using radioisotopes and microelectrodes c) PCR, Electrophoretic techniques, Hybridization techniques, Blotting techniques 	
3.3	Introduction to Omics- What is Metagenomics, community DNA analysis	02

- a) Microbiology TMH 5th Edition by Michael J.Pelczar Jr., E.C.S. Chan ,Noel R. Krieg
- b) A.J.Salle, Fundamental Principles of Bacteriology, 1984, McGraw Hill Book Company Inc.
- c) Prescott, Hurley Klein-Microbiology, 5th edition, International edition 2002, McGraw Hill.
- d) Prescott's Microbiology, 7th Edition; Joanne M. Willey, Linda M. Sherwood, Christopher J.Woolverton, 2011, McGraw Hill International
- e) Michael T.Madigan & J.M. Martin, Brock, Biology of Microorganisms 11th Ed. International edition, 2006, Pearson Prentice Hall.
- Principles and Techniques of Biochemistry and Molecular Biology by Keith Wilson and John Walker, 7th edition, 2010, Cambridge University Press.

Course code	PRACTICALS		
RUSMICP 201	PRACTICAL-1		
Unit-I	 Demonstration of Bacteriophages in sewage Isolation of Actinomycetes from soil and Slide Culture technique for Actinomycetes Biogas production using methanogens Cultivation of algae 	Cr.	
Unit-II	 Isolation of yeast, and other fungi Fungal Wet mounts & Study of Morphological Characteristics Mucor, Rhizopus, Aspergillus, Penicillium Slide culture of fungi Cultivation of fungi- static and shaker conditions Permanent slides of Algae, Protozoa Demonstration of protozoa in hav infusion 		
Unit-III	 Demonstration of protozoa in hay initiation Normal flora of the skin, oral cavity and intestine. Role of fomites Cough plate technique 		
RUSMICP	PRACTICAL-2		
202	XO.		
Unit-I	 Study of growth curve of bacteria Enumeration of microorganisms using Haemocytometer & Breed's Count Enumeration of microorganisms Brown's opacity tubes Viable count: Spread plate and pour plate 		
Unit-II Unit-III	 Demonstration of efficiency of autoclave Effect of UV Light on bacteria Effect of surface tension on bacterial growth Study of Oligodynamic action Effect of dyes, phenolic compounds and chemotherapeutic agents on bacteria- disc diffusion method Demonstration of MIC of an antibacterial agent Introduction to laboratory equipment for electrophoresis, PCR Assignment on any modern method used in microbial detection 		
8-An			

Modality of Assessment

Theory Examination Pattern:

A. Internal Assessment- 40%- 40 Marks per paper

Sr No	Evaluation type	Marks
1	One Assignment/Case study/Project/ Presentation	15
2	One class Test (multiple choice questions / objective)	20
3	Active participation in routine class instructional deliveries	05
	TOTAL	40

B. External Examination- 60%- 60 Marks per paper

Semester End Theory Examination:

- 1. Duration These examinations shall be of two hours duration.
- 2. Theory question paper pattern:
 - a. There shall be three questions each of 20 marks one on each unit.
 - b. All questions shall be compulsory with internal choice within the questions.

Paper Pattern:

Question	Options	Marks	Questions Based on
Q.1) A)	Any 3 out of 5	15	
Q.1) B)	Any 1 set out of 2 (i & ii or i & ii)	03 &02	Unit I
Q.2) A)	Any 3 out of 5	15	
Q.2) B)	Any 1 set out of 2 (i & ii or i & ii)	03 &02	Unit II
Q.3) A)	Any 3 out of 5	15	
Q.3) B)	Any 1 set out of 2 (i & ii or i & ii)	03 &02	Unit III
	TOTAL	60	

Practical Examination Pattern:

A. Internal Examination: 40%- 40 Marks

Particulars	Paper I	Paper II	
Journal	05	05	
Experimental tasks	10	10	3
Participation	05	05	
Total	20	20	
rnal Examination: 60%-	60 Marks	S	
nester End Practical Examination:		.0	

B. External Examination: 60%- 60 Marks

Semester End Practical Examination:

Particulars	Paper I	Paper II
Laboratory work	25	25
Spots/Quiz/Viva	05	05
Total	30	30

PRACTICAL BOOK/JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.

In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Co-ordinator / Incharge of the department; failing which the student will not be allowed to appear for the practical examination.

Overall Examination & Marks Distribution Pattern

Semester II

	Course	201			2	02		Grand Total
		Internal	External	Total	Internal	External	Total	
	Theory	40	60	100	40	60	100	200
X	Practicals	20	30	50	20	30	50	100

Owing to the pandemic situation prevailing in 2020 and continuing in 2021, the external examinations (Semester End) may be conducted online as per the instructions/circulars received from the University of Mumbai and Maharashtra State notifications from time to time. The conventional mode of external examination will commence again only after the declaration of normalcy by the Government authorities.