Resolution Number: AC/I(21-22).2(II).RUS5

S.P. Mandali's

Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for SEMESTER V & VI Program : T.Y.B.Sc.

Program Code: RUSCHE

(Credit Based Semester and Grading System with effect from the academic year 2022-2023)

Semester V Course Code:RUSCHE501 Course Title: CHEMISTRY-I Academic Year 2022-2023

Course Outcomes:

After stu	After studying this course, the learner will be able to:				
CO 1	Comprehend the fundamentals of rotational, vibrational and Raman spectra of				
	molecules.				
CO 2	Outline the applications of Galvanic Cells.				
CO 3	Apply Raoult's Law and Clapeyron Equation to study Colligative Properties				
CO 4	Understand reaction dynamics.				
CO 5	Apply principles of Surface Chemistry to Colloids				

RUSCHE501		CHEMISTRY-I	Credits-2.5
	Unit	Unit Title	Lectures
	I	MOLECULAR SPECTROSCOPY	(15L)
		1.1.Rotational Spectrum: Rotational spectrum of	
		a diatomic molecule, rigid rotor, moment of	
		inertia, energy levels, conditions for obtaining	
•	0	pure rotational spectrum, selection rule, nature	
		of spectrum, determination of inter-nuclear	
4° C	-	distance and isotopic shift.	
		1.2. Vibrational spectrum: Vibrational motion,	
VO.		degrees of freedom, modes of vibration,	
		vibrational spectrum of a diatomic molecule,	
		simple harmonic oscillator, energy levels, zero	
		point energy, conditions for obtaining	
		vibrational spectrum, selection rule, nature of	
		spectrum.	

	1.3. Vibrational-Rotational (IR) spectrum of	
	diatomic molecule: vibrating rotor, energy	
	levels, selection rule, nature of spectrum, P and	. \ (
	R branch lines, anharmonic oscillator, energy	
	levels, selection rule, fundamental band,	(0)
	overtones. Applications of vibrational-	
	rotational spectrum in determining force	
	constant and its significance infrared spectra of	
	simple molecules like H ₂ O and CO ₂	/
	1.4 Raman Spectroscopy: Scattering of	
	electromagnetic radiation, Rayleigh scattering,	
	Raman scattering, nature of Raman spectrum	
	(Stoke's lines and anti Stoke's lines), Raman	
	shift, quantum theory of Raman spectrum,	
	comparative study of IR and Raman spectra, rule	
	of mutual exclusion (example of CO ₂ molecule).	
	Number of modes of vibrations for linear and	
	non-linear molecules.	
II	ELECTROCHEMISTRY- III:	(15L)
	CLASSIFICATION OF GALVANIC	
	CELLS	
	2.1 Lewis concept of Activity and Activity	
4, O-,	coefficient, Mean ionic activity and mean ionic	
	activity coefficient of an electrolyte, ionic	
00	strength of a solution, Debye-Huckel limiting	
	law.	
	2.2. Classification of galvanic cells: Chemical	
)-`	Cells and concentration cells, Cells with	
	transference and without transference,	
	Expression for EMF of each type of cell.	
	2.3 Origin of liquid junction potential and its	
	elimination.	

	I		
		2.4. Determination of solubility product and	
		solubility of a sparingly soluble salt by Chemical	
		cell and by Concentration cell.	
		2.5 Determination of liquid junction potential.	
	III	COLLIGATIVE PROPERTIES AND	(15L)
		CHEMICAL KINETICS – II	
		3.1 COLLIGATIVE PROPERTIES	(09L)
		3.1.1 Colligative properties, Raoult's	
		law.	
		3.1.2 Relative lowering of vapour	
		pressure.	
		3.1.3 Elevation of boiling point –	
		Thermodynamic derivation for relation	
		between elevation of boiling point and	
		molality.	
		3.1.4 Depression in freezing point-	
		Thermodynamic derivation for relation	
		between depression in freezing point and	
		molality	
	(3.1.5 Osmosis and Osmotic Pressure –	
		Determination of molar mass form	
		Osmotic pressure.	
		Abnormal molar masses of solute, van't Hoff	
	0	factor (Degree of dissociation and degree of	
3)		association).	
		Reverse osmosis.	
		3.2 CHEMICAL KINETICS-II	(06L)
		3.2.1 Recapitulation, Collision theory of	
0		reaction rates, applications of collision	
		theory to bimolecular reaction and	
		unimolecular reaction (Lindemann's	. \ 0
		theory), Merits and demerits of Collision	
		theory. Steric factor and Probability factor.	100
	<u> </u>		

	3.2.2 Activated complex theory of bimolecular	
	reactions. Merits of Activated complex	
	theory.	
	3.2.3 Classification of reactions- slow, fast and	
	ultra fast, study of kinetics of fast reactions	
	by Stop Flow method.	
I	SURFACE CHEMISTRY, CATALYSIS	(15L)
	AND CHEMISTRY OF COLLOIDS	
	4.1: Surface Chemistry and Catalysis	(08L)
	4.1.1 Adsorption: Physical and Chemical	
	Adsorption, Types of adsorption isotherms,	
	Langmuir's adsorption isotherm. B.E.T.	
	equation for multilayer adsorption,	
	determination of surface area of an adsorbent	
	using B.E.T. equation.	
	4.1.2. Catalysis: Homogeneous and	
	heterogeneous catalysis, catalytic activity and	
	selectivity, promoters, inhibitors, catalyst	
	poisoning and deactivation.	
	4.1.2.1 Acid catalysis and Base catalysis,	
	mechanism and kinetics of acid and base	
	catalysed reactions, effect of pH on acid	
	and base catalysed reactions.	
	4.1.2.2 Enzyme catalysis, mechanism and	
	kinetics of reaction (Michaelis-Menten	
	equation).	
	4.2 COLLOIDS	(07L)
	4.2.1 Introduction to colloidal state of matter.	
	4.2.2 Origin of charge on colloidal particles.	
	Concept of electrical double layer, zeta	
	potential, Helmholtz and Stern model, electro	
	kinetic phenomena: electrophoresis,	

electro-osmos	sis, streaming potential and
sedimentation	n potential.
4.2.3	Colloidal electrolytes.
4.2.4	Donnan Membrane Equilibrium.
4.2.5	Surfactants, Micelle formation,
applic	ation of surfactants in detergents,
food i	ndustry and pesticide
formu	lations.

Course Code: RUSCHE502
Course Title: CHEMISTRY-II
Academic year 2022-2023
Credits:2.5

Course outcomes:

After st	After studying this course, the learner will be able to:			
CO 1	Identify the elements of symmetry.			
CO 2	Assign point groups to molecules.			
CO 3	Correlate between bond angle and molecular orbitals.			
CO 4	Understand band theory and its application to metals.			
CO 5	Depict structure of solids and their defects.			
CO 6	Compare various aspects of lanthanides and actinides.			
CO 7	Describe properties and application of Uranium.			
CO 8	Distinguish between properties of Xenon and other noble gases.			

RUSCHE502		CHEMISTRY-II		
0,	Unit	Unit Title	Lectures	
	I	Molecular Symmetry and Chemical Bonding	(15L)	
		1.1 Molecular Symmetry	(07L)	

	2.2 Superconductivity	(04L)
	Frenkel and Schottky defects.	
	2.1.3 Stoichiometric point defects in solids:	()
	lattices (numerical problems expected).	
	packing density in simple cubic, bcc, fcc and hcp	
	2.1.2 Closest packing of rigid spheres (hcp, ccp),	. (
	points, unit cells and lattice constants.	
	2.1.1 Terms involved: crystal lattice, lattice	
	2.1 Structures of Solids	(11L)
II	Solid State Chemistry and Superconductivity	(15L)
	intrinsic and extrinsic semiconductors.	
	of conductors, insulators and semi conductors,	
	Band theory, explanation of electrical properties	` '
	1.3 Metallic Bonding	(03L)
	bonding): i) BeH ₂ , ii) H ₂ O iii) CH ₄	
	1.2.2 Other molecules (considering only σ-	
	orbitals).	
	(correlation between bond angle andMolecular	
	1.2.1 Simple triatomic species: H ₃ ⁺ andH ₃	
	1.2 Molecular Orbital Theory for Polyatomic Species	(05L)
	D _{3h} (BCl ₃).	(DET)
	C _{2h} (trans – trichloroethylene), and (vi)	
	(ii) $D_{\alpha h}$ (H ₂),(iii) $C_{2}v$ (H ₂ O), (iv) C_{3v} (NH ₃), (v)	
	using the following pointgroups: (i) $C_{\alpha v}$ (HCl),	
	1.1.3 Concept of a Point Group with illustrations	
	operations.	
	1.1.2 Symmetry elements and symmetry	
	in chemistry.	
	1.1.1 Introduction and Importance of symmetry	

	2.2. 1 Discovery of superconductivity.	
	2.2.1 Superconductivity, transition temperature	
	and Meissner effect.	
	2.2.2 Different types of superconductors viz,	
	conventional superconductors, alkali metal	
	fullerides (A ₃ C ₆₀) and high temperature	
	Superconductors.	
	2.2.3 Applications of superconducting materials.	
III	Chemistry of f-block elements	(12L)
	3.1 Introduction: Definition, position in periodic	(01L)
	table and electronic configuration of lanthanides	
	and actinides.	
	3.2 Chemistry of Lanthanides	(11L)
	3.2.1 Lanthanide contraction and its	
	consequences.	
	3.2.2 Oxidation states.	
	3.2.3 Magnetic and spectral properties.	
	3.2.4 Occurrence, extraction and separation of	
	lanthanides by Solvent extraction.	
	3.2.5 Applications of lanthanides.	
	3.3 Chemistry of Actinides	(03L)
	3.3.1 Comparison between lanthanides and	
	actinides.	
	3.3.2 Chemistry of Uranium and with reference	
	to occurrence and isolation (solvent extraction	
	method)	
	3.3.2 Properties and applications of Uranium.	
IV	Non Aqueous Solvents and Chemistry of	(15L)
	Pseudohalogens, Interhalogens and Xenon	
	4.1 Chemistry of Non-aqueous Solvents	(07L)
	Classification of solvents and importance of	
	non-aqueous solvents.	

· · · · · · · · · · · · · · · · · · ·	
4.1.1 Super critical carbon dioxide and ionic	
liquids as solvents	
4.1.2 Characteristics and study of liquid	
ammonia, dinitrogentetraoxide as non-aqueous	
solvents with respect to i) acid base reactions	
and ii) redox reactions.	(\mathcal{A})
4.2 Chemistry of Interhalogens:	(03L)
Introduction, preparation, reactions and	OO
structures.	
4.3 Chemistry of pseudohalogens:	(03L)
Introduction, preparation, reaction and	
structures	•
4.4 Chemistry of Xenon:	(02L)
Introduction, Compounds of Xenon: Oxides,	
fluorides, oxyfluorides w.r.t. preparation ,	
properties and bonding.	

Course Code: RUSCHE503
Course Title: CHEMISTRY-III
Academic year 2022-2023

Course Outcomes:

After studying this course, the learner will be able to:					
CO 1	Apply fundamentals of Organic Reaction Mechanism to various reactions.				
CO 2	Compare various conformations of some organic compounds				
CO 3	Apply the concepts of stereochemistry to Organic reactions.				

CO 4	Assign IUPAC names to spiro, bicyclo and heterocyclic compounds.
CO 5	Understand Basics of Polymer Chemistry.
CO 6	Illustrate basics of Green Chemistry to Organic Synthesis.

RUSCHE503		CHEMISTRY-III	Credits-02
	Unit	Unit Title	Lectures
	I	Mechanism of Organic Reactions	(15L)
		1.1 Recapitulation: Curved arrows,	
		intermediates, transition states, Electrophilicity	
		vs acidity and nucleophilicity vs basicity.	. \
		1.2 Elimination Reactions: Mechanisms and	
		stereochemistry.	
		1.2.1 E ₁ and E ₂ Mechanisms, factors influencing	
		the mechanism: nature of substrate, leaving	
		group, structure of base, solvent; Saytzeff and	5
		Hofmann elimination; elimination vs	
		substitution.	
		1.2.2 E ₁ CB mechanism	
		1.2.3 Pyrolytic elimination: Cope, Chugaev,	
		pyrolysis of acetates.	
		1.3 Neighbouring group participation in	
		nucleophilic substitution reactions: partcipation	
		of lone pair of electrons, kinetics and	
		stereochemical outcome.	
		1.4 Acyl nucleophilic substitution (Tetrahedral	
		mechanism): Acid catalysed esterification of	
		carboxylic acids and base promoted hydrolysis	
		of esters (B _{AC} 2).	

	1.5 Mechanism of following rearrangements	
	with examples and stereochemistry wherever	
	applicable.	
	1.5.1 Migration to electron deficient carbon:	
	Pinacol, Benzylic acid.	
	1.5.2 Migration to electron deficient nitrogen:	
	Beckmann, Hofmann.	
	1.5.3 Migration involving a carbanion: Favorski.	
	2.3 Name reactions: Michael, Wittig	
	(mechanism and examples).	
П	Starrage de constitution	(151.)
II	Stereochemistry	(15L)
	2.1 Molecular chirality and element of	
	symmetry: Mirror Plane symmetry, inversion	
	centre, rotation-reflection (alternating) axis.	
	Chirality of compounds without stereogenic	
	centre: cummulenes, spirans and biphenyls.	
	2.2 Conformations of cyclohexane, mono,	
	disubstituted cyclohexanes and their relative	
	stabilities	
	2.3 Stereo selectivity and Stereo specificity: Idea	
	of enantioselectivity (ee) and	
	diastereoselectivity (de). Topicity- enantiotopic	
	and diastereotopic atoms, groups and faces.	
	2.4 Stereochemistry of:	
	2.4.1 Substitution reactions- S_N^1 , S_N^2 , S_N^i	
	(reaction of alcohol with thionyl chloride).	
	2.4.2 Elimination reactions: E ₂ -Base induced	
	dehydrohalogenation of 1-bromo-1,2-	
	diphenylpropane.	
	2.4.3 Addition reactions to olefins- i) catalytic	
	hydrogenation ii) bromination (electrophilic anti	

	addition) (iii) synhydroxylation with OsO4 and	
	KMnO ₄ . iv) epoxidation followed by hydrolysis.	
		. \ (
		100
		7
Ш	IUPAC Nomenclature and Chemistry of	(15L)
	Polymers	
	3.1 IUPAC Nomenclature	(06L)
	IUPAC systematic nomenclature of the	
	following classes of compounds (including	
	substituted ones up to two substituents/	
	functional groups):	
	3.1.1 Bicyclic compounds- spiro, fused, and	
	bridged (upto 11carbon atoms) - saturated and	
	unsaturated compounds.	
• (3.1.2 Biphenyls.	
	3.1.3 Cummulenesupto three double bonds.	
(0-	3.2 Polymers	(09L)
	3.2.1 Introduction: Review of terms: monomer,	
V0.	polymer, homopolymer, copolymer,	
	thermoplastics and thermosets.	
	3.2.2 Addition polymers: polyethylene,	
	polypropylene, Teflon, PVC and polystyrene.	
	Uses, recycling	
	oses, recycling	

		3.2.3 Condensation polymers: polyesters,	
		polyamides, polyurethanes, polycarbonates and	
		phenol-formaldehyde resins. Uses	
		•	.10
		3.2.4 Mechanism of free radical addition	
		polymerization.	(0)
		3.2.5 Stereochemistry of polymers: Tacticity.	
		Mechanism and stereochemical control of	
		polymerization using Ziegler-Natta catalyst	?
		3.2.6 Natural and synthetic rubbers:	
		polymerization of isoprene: 1,2- and 1,4-	
		addition (cisand trans), styrene- butadiene	
		copolymer.	
		3.2.7 Additives to polymers: Plasticizers,	
		stabilizers and fillers.	
		3.2.8 Biodegradable polymers: Classification	
		and uses. Polylactic acid- structure, properties	
		and use for packaging and medical purposes.	
		(Note: Identification of monomer in a given	
		polymer and the structure of a polymer from	
		given monomer(s) is expected. Conditions for	
		isomerisation not expected).	
	IV	Synthesis of Organic compounds	(15L)
		4.1 Introduction: Criteria for ideal organic	
		synthesis. Calculation of yields.	
~(0		Concept of selectivity: Linear and convergent	
	ľ	synthesis, Multi-component reactions: Mannich	
(1),		reaction, Hanztsch synthesis.	116
		4.2 Introduction to retrosynthesis: Analysis and	
70		synthesis, technical terms: target molecules	(0)
		(TM), retrosynthetic analysis, FGA, FGI,	
		Disconnection, synthon and reagent.	
		Retrosynthtic analysis of Limonene, Salbutamol	
		and Proparacaine.	
	1		<u>l</u>

4.3 Green chemistry and synthesis:

4.3.1 Introduction to green chemistry: definition, need for and importance of green synthesis, Twelve principles of green chemistry, Atom economy and E-factor calculations and their significance.

4.3.2 Green synthesis in industry:

Green starting materials: D-glucose to adipic acid.

Green reagents: Selective methylation of active methylene using dimethyl carbonate.

Green solvent: Supercritical CO₂, deep eutectic solvents (DES).

Green catalyst: Heterogeneous catalysis using tellurium, biocatalysis.

Green synthesis of paracetamol.

4.4 Other methods of organic synthesis

Microwave assisted organic synthesis (Using organic solvents and in solid state).

Ultrasound in organic synthesis, Phase transfer catalysis. Polymer supported synthesis: Merrifield polypeptide synthesis.

Course Code: RUSCHE504
Course Title: CHEMISTRY-IV
Academic year 2022-2023

Course Outcomes:

After co	mpleting this course, the learner will be able to:
CO 1	Elaborate on the need and importance of sampling and the various methods used
	for sampling of solid, liquids and gases.
CO 2	Evaluate the analytical data in terms of statistics.
CO 3	Interpret the sources of random errors and their effect on analytical results.
CO 4	State the significance of confidence limits in the error analysis.
CO 5	Specify the standard deviation of calculated results.
CO 6	Explain the Q-test for rejection of data.
CO 7	Outline a procedure for the application of null hypothesis to the data.
CO 8	Discuss the importance of graphical representation of data.
CO 9	Describe the different methods used for locating endpoints in precipitation
	titrations.
CO 10	Classify the different types of solvents used for non-aqueous titrations with respect
	to their acid base properties.
CO 11	Illustrate the effect of dielectric constant and nature of solvent on solute behaviour
	in non aqueous titrations.
CO 12	Explain the basic principle involved in AAS, AES, fluorescence,
	phosphorescence, turbidimetry and nephelometry.
CO 13	Describe the function of different components of AAS,flame photometer
	,Fluorimeter, Phosphorimeter, Turbidimeter and nephelometer.
CO 14	List the factors affecting fluorescence and phosphorescence and also the factors
	affecting scattering of light in turbidimetry and nephelometry.
CO 15	Relate fluorescence intensity with concentration

RUSCHE504		CHEMISTRY-IV	Credits-2.5
	Unit	Unit Title	Lectures

Sampling and Treatment of Analytical Data	(15L)
1.1 Sampling:	(07L)
1.1.1 Sampling, need and importance, terms	
involved, sampling techniques, non-random and	
random sampling, sequential sampling,	
1.1.2 Sampling of gases, precautions, methods	
used, pressure and temperature sampling	
1.1.3 Sampling of liquids, sample thief,	
homogeneous and heterogeneous liquids,	
stationary and flowing liquids,	
1.1.4 Sampling of solids, bulk ratio, size to	
weight ratio,	
1.1.5 Sampling and equipment for sampling of	
compact solids, powdered solids,	
flowing solids and particulate solids.	
1.1.6 Methods of reduction of the size of the	
sample	
1.1.7 Preservation of sample, dissolution of the	
samples, use of fluxes	
1.2 Treatment of analytical data	(08L)
1.2.1 Collection and processing of data, concept	
of classes, and class frequencies, histogram and	
frequency polygon.	. C
1.2.3 Distribution of random errors, Gaussian	
distribution curve and its salient features.	
1.24 Concept of confidence limits and	
confidence interval, computation of both by	
using range, student's t and population standard	
deviation.	
1.2.5 Criterion for the rejection of a result,	
empirical methods like 2.5 d and 4.0 d rule,	
statistical approach.	
	1.1.1 Sampling: 1.1.1 Sampling, need and importance, terms involved, sampling techniques, non-random and random sampling, sequential sampling, 1.1.2 Sampling of gases, precautions, methods used, pressure and temperature sampling 1.1.3 Sampling of liquids, sample thief, homogeneous and heterogeneous liquids, stationary and flowing liquids, 1.1.4 Sampling of solids, bulk ratio, size to weight ratio, 1.1.5 Sampling and equipment for sampling of compact solids, powdered solids, flowing solids and particulate solids. 1.1.6 Methods of reduction of the size of the sample 1.1.7 Preservation of sample, dissolution of the samples, use of fluxes 1.2 Treatment of analytical data 1.2.1 Collection and processing of data, concept of classes, and class frequencies, histogram and frequency polygon. 1.2.3 Distribution of random errors, Gaussian distribution curve and its salient features. 1.24 Concept of confidence limits and confidence interval, computation of both by using range, student's t and population standard deviation. 1.2.5 Criterion for the rejection of a result, empirical methods like 2.5 d and 4.0 d rule,

	1.2.6 Testing for significance, null hypothesis,	
	variance ratio test.	
	1.2.7 Graphical presentation of results, scatter	
	diagram, regression analysis, method of	
	averages, least square method for line of the	
	type $y = mx + c$ and $y = mx$	
	1.2.8 Significant figures and their use in data	
	treatment.	
II	Titrimetric analysis	(15L)
	2.1 Redox Titrations	(04L)
	2.1.1 General introduction, theory of redox	
	indicators,	
	2.1.2 criterion for choosing an indicator for a	.10
	redox titration,	
	2.1.3 Construction of the titration curves in the	100
	case of	
	i) Fe(II) vsCe(IV) ii) Fe(II) vs Cr ₂ O ₇ ²	
	2.1.4 Use of diphenyl amine and ferroin as redox	
	indicator.	
	2.2 Precipitation titrations	(04L)
	2.2.1 Basic principles of precipitation titrations	
	2.2.2 Argentimetric titrations, construction of	
	the titration curve for the titration of sodium	
	chloride with silver nitrate.	
	2.2.3 Mohr's method	
	2.2.4 Volhard's method	
	2.2.5 Adsorption indicators, examples and uses.	
	2.3 Complexometric titrations	(04L)
	2.3.1 General introduction of complexometric	
	titrations	
	2.3.2 EDTA titrations	

	2.3.2.1 EDTA as a chelating agent, structure of	
	the chelate, characteristic features of the metal	
	EDTA complexes.	
	2.3.2.2 Stability constant of the EDTA	
	complexes, conditional stability constants,	
	construction of the titration curve in the titration	
	of a metal ion with EDTA with the example of	
	Ca^{2+} .	
	2.3.2.3 Types of EDTA titrations.	
	2.3.2.4 Methods of improving the selectivity of	
	EDTA titrations.	
	2.3.2.5 Metallochromic indicators	
	2.4 Non-aqueous titrations	(03L)
	2.4.1 Need for non-aqueous titrations,	
	2.4.2 Types of solvents, choice of the solvent for	
	the non-aqueous titrations,	
	2.4.3 Acid base titrations in non-aqueous media,	
	2.4.4 Use of glacial acetic acid as the solvent in	
	non-aqueous titrations, non-aqueous	
	titrations with a visual indicator using an	116
	instrument	
	2.4.5 Advantages and limitations.	(0)
III	Optical Methods	(15L)
	3.1 Atomic Absorption Spectroscopy (AAS)	(05L)
	3.1.1 Atomic energy level diagram,	
	characteristic features of atomic spectra.	
	3.1.2 Basic principles of Atomic Absorption	
	Spectroscopy, steps involved in the process of	
	atomization.	
	3.1.3 Instrumentation: Components-hollow	
	cathode lamp, chopper, types of atomizers: (i)	
	premix burner (ii) total consumption burner (iii)	
	electrothermal atomizers.	

	3.1.4 Qualitative and quantitative analysis,	
	calibration curve and standard addition method.	
	3.1.5 Applications of Atomic Absorption	
	Spectroscopy.	
	3.2 Atomic Emission Methods	(04L)
	3.2.1 Flame emission: basic principles of flame	
	photometry	. \ (
	3.2.2 Instrumentation, flames and burners,	
	detectors,	100
	3.2.3 Qualitative and quantitative analysis,	
	calibration curve, standard addition and internal	
	standard method	7
	3.2.4 Applications of flame photometry.	
	3.2.5 Comparison of atomic absorption and	
	atomic emission methods	
	3.3 Fluorescence and phosphorescence	(03L)
	spectroscopy	
	3.3.1 Basic principles of fluorescence and	
	phosphorescence, Jablonski diagram and its	
	utility, factors affecting fluorescence and	
	phosphorescence	
	3.3.2 Relation between fluorescence intensity	
	and concentration	
	3.3.3 Instrumentation of fluorimetry and	
	phosphorimetry	
	3.3.4 Applications of fluorimetry and	
	phosphorimetry	
4 O-	3.3.5 Comparison of fluorimetry and	
	phosphorimetry	
VQ.	3.3.6 Comparison of absorption and fluorimetric	
	techniques.	

		3.4 Nephelometry and turbidimetry	(03L)
		3.4.1 Scattering of radiation, basic principles of	
		nephelometry and turbidimetry,	
		3.4.2 Factors affecting scattering of radiation,	
		particle size, wavelength, concentration,	
		refractive index.	
		3.4.3 Instrumentation in nephelometry and	
		turbidimetry.	
		3.4.4 Applications of both techniques.	
	IV	Miscellaneous Methods	(15L)
		4.1 Thermal Methods	(04L)
		4.1.1 Introduction to thermal methods,	
		classification of thermal methods,	(
		4.1.2 Thermo gravimetric analysis, thermogram,	10
		factors affecting the thermogravimetric curve	1/6
		4.1.3 Instrumentation, components, thermo	
		balance, furnace, sample holder, recorder,	$(\ \ \)$
		measurement of temperature	
		4.1.4 Applications, limitations.	
		4.2 Radioanalytical techniques	(04L)
		4.2.1 Neutron Activation Analysis (NAA)	
		4.2.1.1 Basic principles, characteristic features,	
		operational procedure	
		4.2.1.2 Advantages, limitations and application	
		of NAA.	
		4.2.2 Isotope Dilution Analysis (IDA)	
		4.2.2.1 Basic principles, operational procedure	
		4.2.2.2 Applications, advantages and limitations	
		of IDA	
		4.3 Mass spectrometry	(04L)
		4.3.1 Basic principles	
		4.3.2 Instrumentation, components, sources,	
		analysers, detectors.	
•	1	<u> </u>	

4.4 Method validation	(03L)
4.4.1 Need and significance of method	
validation	
4.4.2 Parameters chosen for method validation	
4.4.3 Procedure for method validation	

Semester V Practicals

RUSCHEP501	Credits-03
	CHEMISTRY-I
	Physical Chemistry
	1. To study the effect of ionic strength on the rate of reaction between K ₂ S ₂ O ₈ and
	KI using KCl.
	2. To study the rate of adsorption of acetic acid on activated charcoal.
	3. To study the relative strength of acetic acid and monochloroacetic acid.
	4. To determine pK ₁ and pK ₂ of phosphoric acid by pH-metry.
	5. To determine the amount of weak dibasic by conductometric titration.
	6. To determine the standard reduction potential of Cu ²⁺ /Cu electrode at room
	temperature.
	CHEMISTRY-II
	Inorganic preparations
	1. Potassium diaquobis- (oxalate)cuprate(II)K2[Cu(C2O4)2.(H2O]
	2. Bis(ethylenediamine)iron(II)sulphate[C2H4(NH2)2FeSO4.4H2O].
	Volumetric analysis
	1. Determination of magnesium from the supplied commercial sample of Milk of
	magnesia tablet
	2. Estimation of Nickel(II) complexometrically using murexide indicator
	(Learners are expected to standardize supplied EDTA solution using ZnSO4.7H20)

	3. Estimation of copper(II) complexometrically using fast sulphon black-F indicator			
DATECATEDAG	(Learners are expected to standardize supplied EDTA solution using ZnSO4.7H20)			
RUSCHEP502	CHEMISTRY-III			
	I) Binary Mixture Separation: Separation of mixture containing (VL + NVL) &			
	(VL+S) components.			
	1. Minimum Six mixtures to be completed by the learners.			
	2. Components of the liq-liq mixture should include volatile liquids like acetone,			
	methylacetate, ethylacetate, isopropylalcohol, methyl alcohol, ethyl alcohol,			
	chloroform and non- volatile liquids like chlorobenzene, bromobenzene, aniline,			
	N,N-dimethylaniline, acetophenone, nitrobenzene, ethyl benzoate.			
	3. Components of the liq- solid mixture should include volatile liquids like acetone,			
	methylacetate, ethylacetate, ethyl alcohol, methyl alcohol, isopropylalcohol,			
	chloroform and solids such as water insoluble acids, phenols, bases, neutral.			
	4. A sample of the mixture one ml to be given to the learnerfor detection of the			
	physical type of the mixture.			
	5. After correct determination of physical type, separation of the binary mixture to be			
	carried out by distillation method using microscale technique.			
	6. After separation into component A and component B, the physical constants and			
	the yield of the separated components is to be determined.			
	II) Organic Preparations:			
	1. Acetylation of hydroquinone.			
	2. Bromination of acetanilide.			
	3. Hydrolysis of ethyl benzoate.			
	4. Nitration of acetanilide.			
	5. Microwave assisted synthesis of Schiff's base from aniline and p-			
	anisaldehyde.			
1	6. Microwave assisted synthesis of coumarin by Knoevenagel reaction			
	from salicylaldehyde andethylacetoacetate in presence of a base.			
	CHEMISTRY-IV:			
	1. Determination of the amount of fluoride in the given solution			
10	colorimetrically.			

- 2. Estimation of Vitamin C content of a given tablet by titration with sodium hydroxide pH metrically
- 3. To determine potassium content of a commercial salt sample by flame photometry.
- 4. To determine the amount of chloride in the given sample using Mohr's method.
- **5.** To determine the amount of persulphate in the given sample by back titration with standard Fe(II) ammonium sulphate solution.
- **6.** To estimate Fe(II) in a tablet using diphenylamine as an indicator.

Modality of Assessment

Theory Examination Pattern:

A) Internal Assessment - 40% of total marks:

(40 marks)

Sr No	Evaluation type	Marks
1	One Assignment	10
2	One class Test (multiple choice questions / objective)	20
3	Active participation in routine class instructional deliveries (seminars//presentation)	05
4	Overall conduct, participation in co-curricular activities of the department.	05

B) External examination - 60 %

Semester End Theory Assessment - 60%

60 marks

These examinations shall be of two hours duration.

There shall be Four questions each of 15 marks. On each unit there will be one question.

All questions shall be compulsory with internal choice within the questions.

Theory question paper pattern is as follows:-

Questions	Options	Marks	Questions on
Q.1)A)	Any 3 out of 5	12	Unit I
Q.1)B)	Any 1 out of 2	03	Omi i
Q.2)A)	Any 3 out of 5	12	Unit II
Q.2)B)	Any 1 out of 2	03	Ollit II
Q.3)A)	Any 3 out of 5	12	Unit III
Q.3)B)	Any 1 out of 2	03	Onit in
Q.4)A)	Any 3 out of 5	12	Unit IV
Q.4)B)	Any 1 out of 2	03	Oillt I V

Practical Examination Pattern:

(A)Internal Examin	ation: -					
	RUS	CHEP501	RUSC	RUSCHEP502		
	Paper I	Paper II	Paper III	Paper IV		
Journal	05	05	05	05		
Tests	10	10	10	10		
Active Participation	05	05	05	05		
Total	20	20	20	20		
(B) External (Seme	ster end prac	tical examinati	on):-			
Laboratory work	25	25	25	25		
Viva	05	05	05	05		
Total	30	30	30	30		
Grand Total		100		.00		

PRACTICAL JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.

In case of loss of Journal, Certificate from Head/ Co-ordinator should be submitted, failing which the student will not be allowed to appear for the practical examination.

Overall Examination and Marks Distribution Pattern

Course		501	9,		502		Grand Total
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practical	20	30	50	20	30	50	100
					1		
Course	~ //	503			504		
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practical	20	30	50	20	30	50	100
	(Total Marks : 600)						

SEMESTER VI Course Code: RUSCHE601 Course Title: CHEMISTRY-I Academic year 2022-2023

Course Outcomes:

After st	After studying this course, the learner will be able to:		
CO 1	Understand the basic principles of Nuclear Magnetic Resonance spectroscopy		
CO 2	Classify polymers based on various parameters		
CO 3	Determine overvoltage and decomposition potential		
CO 4	Illustrate the use of X-rays in the study of solid state		
CO 5	Differentiate between nuclear fission and nuclear fusion processes		
CO 6	Understand the basic operations used in Quantum Chemistry.		

RUSCHE601		CHEMISTRY-I	Credits-2.5
	Unit	Unit Title	Lectures
	I	Nuclear Magnetic Resonance Spectroscopy and	(15L)
		Polymer Chemistry	
		1.1: Nuclear Magnetic Resonance Spectroscopy	(08L)
		1.1.1. Nuclear spin, magnetic moment, criteria for	
		nuclei to be NMR active, energy levels,Larmor	
		precession, Relaxation processes in NMR (
		spin-spin relaxation and spin-lattice relaxation).	
		1.1.2. NMR Spectrometer, chemical shift, shielding	
		and deshielding ofprotons, low resolution NMR	
		spectrum, high resolution NMR spectrum.	
		1.2 Polymers	(07L)
		1.2.1 Classification of polymers based on 1)	
		source, 2) structure, 3)thermal response, 4)	
		Physical properties	
		1.2.2 Molar mass of polymers: 1) Number average	
		molar mass, 2) Weight average molar mass, 3)	
		Viscosity average molar mass, monodispersity,	
		polydispersity, polydisperity index	V

	1.2.3 Methods of determining molar mass of	
	polymers: 1) Ultracentrifugation method 2)	
	Viscosity method of Viscosity average molar	
	mass, Mark-Houwink equation.	
II	Electrochemistry – IV And Crystalline State	(15L)
	2.1electrochemistry-IV:Decomposition	(08L)
	Potential, Overvoltage And Electroplating	
	2.1.1 Polarization, concentration polarization and	
	its elimination.	
	2.1.2 Decomposition potential and its	
	experimental determination, factors affecting	
	decomposition potential.	
	2.1.3 Over voltage and its experimental	
	determination, factors affecting overvoltage.	
	2.1.4 Tafel's equation for hydrogen overvoltage	
	2.1.5 Electroplating – Objectives and process	
	2.2 Crystalline State	(07L)
	2.2.1. Recapitulation: Laws of Crystallography	
	2.2.2. Characteristics of simple cubic, face	
	centered and body centered cubic system,	
	inter planar distance in cubic lattices.	
	2.2.3 Use of X- rays in the study of crystal	
	structure, Bragg's equation, X- ray	
	diffraction method of studying crystal	
	lattices, structure of NaCl, Determination of	
	Avogadro number.	
III	Nuclear Chemistry	(15L)
	3.1 Structure of Nucleus.	
	3.2 Nuclear disintegration/ Nuclear radioactivity,	
l l	3/1	
	Types of nuclear radiations (α -ray, β -ray and γ -	(

IV	Basics of Quantum Mechanics	(15L)
	dating, isotopic labelling.	
	3.13: Applications of Radiochemistry: Carbon	
	GM Counter and Scintillation Detector	
	3.12 Detection and measurement of radioactivity –	
	cycle	
	of nuclear fusion: 1) Carbon cycle 2) Proton	
	3.11 Nuclear Fusion - Characteristics; Mechanism	
	2)Breeder Reactor.	
	Types of Nuclear Reactors: 1) Power Reactor	
	3.10 Basic components of Nuclear Reactors,	
	fertile material to fissile material.	
	3.9 Fertile and fissile materials, conversion of	
	Factor 2) Critical Mass	
	affecting Nuclear Fission: 1) Multiplication	
	features of nuclear fission process, Factors	
	3.8 Nuclear Fission process and its Characteristics	
	and Threshold energy.	
	3.7 Energy involved in Nuclear reactions: Q-value	
	electrons 3) K-electron capture.	
	emission of positrons 2) emission of	
	3.6 Mode of decay of radioactive elements: 1)	
	radioactive equilibrium.	
	Transient; Difference between chemical and	
	3.5 Radioactive Equilibrium- 1) Secular 2)	
	life of nuclear reactions.	
	expression of decay constant and its units, half	
	3.4 Kinetics of radioactivity: units of radioactivity,	
	different types of projectiles.	
	radioactivity, Nuclear transmutation with	
	3.3 Nuclear transmutation and Artificial	

- 4.1 Classical mechanics: limitations of classical mechanics: 1) Black body radiation 2) photoelectric effect 3) Compton Effect.
- 4.2 Introduction to quantum mechanics, Planck's theory of quantization, wave particle duality, de-Broglie equation, Heisenberg's uncertainty principle.
- 4.3 The Schrodinger wave equation
- 4.3 Postulates of quantum mechanics 1) State function and its significance 2) Concept of operators: definition, addition, subtraction and multiplication of operators, commutative and non-commutative operators, linear operator, Hermitian operator 3) Eigen function and eigen value, eigen value equation. 4) Wave mechanical operator for evaluating various classical properties. 5) Expectation value.
- 4.4 Solution of the Schrodinger wave equation for a simple system: Particle in one dimensional box.

Course Code: RUSCHE602 <u>Course Title: CHEMISTRY-II</u> Academic year 2022-2023

Course outcomes:

After st	udying this course, the learner will be able to:
CO 1	Compare and contrast between Crystal Field Theory and Valence Bond Theory

CO 2	Calculate CFSE of complexes, and thus predict stability
CO 3	Apply MOT to octahedral complexes
CO 4	Carry out Spectral Analysis of Inorganic Compound: determine terms, term symbols and Orgel Diagrams
CO 5	Study Thermodynamic and Kinetic Stability of Complexes.
CO 6	Differentiate between complexes based on their lability.
CO 7	Describe general characteristics of Organometallic Compounds
CO 8	Study Nanomaterials with respect to their synthesis and properties

RUSCHE602		CHEMISTRY-II	Credits-2.5
	Unit	Unit Title	Lectures
	I	Coordination Chemistry	
		1.1 Theories of metal-ligand bond	(11L)
		1.1.1 Recapitulation of VBT and its limitations.	
		1.1.2 Crystal field theory and effect of crystal	
		field on central metal valence orbitals in	. 0
4	0-	various geometries,	
3		1.1.3 Splitting of <i>d</i> orbitals in octahedral,	
100		square planar and tetrahedral crystal fields	
		1.1.4 Distortions from the octahedral geometry	
0		i) Effect of ligand field ii) Jahn- Teller	
		distortions	
		1.1.5 Crystal field splitting parameter, its	
		calculation and factors affecting it in	
		octahedral complexes, Spectrochemical series.	
		1.1.6 Crystal field stabilization energy (CFSE),	
		calculation of CFSE, for octahedral and	
		tetrahedral complexes with $d1$ to $d10$ metal ion	
		configurations.	

	1.1.7 Consequences of crystal field splitting on	
	various properties such as ionic radii,	
	hydration, energy, lattice energy, enthalpies of	
	formation, colour and magnetic properties.	
	1.1.8 Limitations of CFT	
	1.1.9: Evidences for covalence in metal	
	complexes: i) intensities of d-d transitions, ii)	
	ESR spectrum of [IrCl ₆] ²⁻ iii) Nephelauxetic	
	effect	
	1.2 Molecular Orbital Theory (MOT) of	(04L)
	Coordination Complexes:	
	Application to octahedral complexes in case of	
	(i) [Ti(H2O)]3+, (ii) Fluoro complexes of	
	Fe(II) and Fe (III) and (iii) Cyano complexes	
	of Fe(II) and Fe (III).	
II	Duanautics of Co. audination Companyeds	(151)
11	Properties of Co-ordination Compounds	(15L)
11	2.1 Electronic Spectra	(07L)
11		, ,
11	2.1 Electronic Spectra	, ,
11	2.1 Electronic Spectra 2.1.1 Origin of electronic spectra	, ,
11	 2.1 Electronic Spectra 2.1.1 Origin of electronic spectra 2.1.2 Types of electronic transitions in 	, ,
11	 2.1 Electronic Spectra 2.1.1 Origin of electronic spectra 2.1.2 Types of electronic transitions in coordination compounds: intra- ligand, charge 	, ,
11	 2.1 Electronic Spectra 2.1.1 Origin of electronic spectra 2.1.2 Types of electronic transitions in coordination compounds: intra- ligand, charge transfer and intra-metal transitions. 	` ,
11	 2.1 Electronic Spectra 2.1.1 Origin of electronic spectra 2.1.2 Types of electronic transitions in coordination compounds: intra- ligand, charge transfer and intra-metal transitions. 2.1.3 Electronic configuration and electronic 	` ,
11	 2.1 Electronic Spectra 2.1.1 Origin of electronic spectra 2.1.2 Types of electronic transitions in coordination compounds: intra- ligand, charge transfer and intra-metal transitions. 2.1.3 Electronic configuration and electronic micro states, Term symbols, coupling of spin 	` ,
11	 2.1 Electronic Spectra 2.1.1 Origin of electronic spectra 2.1.2 Types of electronic transitions in coordination compounds: intra- ligand, charge transfer and intra-metal transitions. 2.1.3 Electronic configuration and electronic micro states, Term symbols, coupling of spin momenta (Ms),orbital momenta (Ml)and spin- 	, ,
	 2.1 Electronic Spectra 2.1.1 Origin of electronic spectra 2.1.2 Types of electronic transitions in coordination compounds: intra- ligand, charge transfer and intra-metal transitions. 2.1.3 Electronic configuration and electronic micro states, Term symbols, coupling of spin momenta (Ms),orbital momenta (Ml)and spin-orbit coupling or Russell-Saunders coupling. 	, ,
	 2.1 Electronic Spectra 2.1.1 Origin of electronic spectra 2.1.2 Types of electronic transitions in coordination compounds: intra- ligand, charge transfer and intra-metal transitions. 2.1.3 Electronic configuration and electronic micro states, Term symbols, coupling of spin momenta (Ms),orbital momenta (Ml)and spin-orbit coupling or Russell-Saunders coupling. 2.1.4 Determination of Terms for p² and 	` ,
	 2.1 Electronic Spectra 2.1.1 Origin of electronic spectra 2.1.2 Types of electronic transitions in coordination compounds: intra- ligand, charge transfer and intra-metal transitions. 2.1.3 Electronic configuration and electronic micro states, Term symbols, coupling of spin momenta (Ms),orbital momenta (Ml)and spin-orbit coupling or Russell-Saunders coupling. 2.1.4 Determination of Terms for p² and d²electronic configuration 	` ,
	 2.1 Electronic Spectra 2.1.1 Origin of electronic spectra 2.1.2 Types of electronic transitions in coordination compounds: intra- ligand, charge transfer and intra-metal transitions. 2.1.3 Electronic configuration and electronic micro states, Term symbols, coupling of spin momenta (Ms),orbital momenta (Ml)and spin-orbit coupling or Russell-Saunders coupling. 2.1.4 Determination of Terms for p² and d²electronic configuration 2.1.5 Terms and micro-states for transition 	` ,
	 2.1 Electronic Spectra 2.1.1 Origin of electronic spectra 2.1.2 Types of electronic transitions in coordination compounds: intra- ligand, charge transfer and intra-metal transitions. 2.1.3 Electronic configuration and electronic micro states, Term symbols, coupling of spin momenta (Ms),orbital momenta (Ml)and spin-orbit coupling or Russell-Saunders coupling. 2.1.4 Determination of Terms for p² and d²electronic configuration 2.1.5 Terms and micro-states for transition metal atoms/ions. 	, ,

	2.1.7 Selection rules for electronic transitions :	
	Spin and orbital forbidden transitions (Laporte	
	selection rules)	
		(0.17.)
	2.2 Stability of Metal Complexes	(04L)
	2.2.1 Thermodynamic stability and kinetic	
	stability of complexes with examples.	
	2.2.2 Stability constants: Stepwise and overall	
	constants and their interrelationship.	
	2.2.3 Factors affecting thermodynamic	
	stability (Factors related to nature of central	
	metal atom, nature of ligand, chelate effect to	
	be discussed)	
	2.3 : Reactivity of Metal Complexes :	(04L)
	2.3.1 Comparison between inorganic and	
	organic reactions	
	2.3. 2 Types of reactions in metal complexes	
	2.3.3 Inert and labile complexes: Correlation	
	between electronic configuration and lability	
	of Complexes	
	2.3.4 Ligand substitution reactions:	
	Associative and Dissociative mechanisms	
	2.3.5 Acid hydrolysis, base hydrolysis and	
	anation reaction	
III	Organometallic Chemistry	(15L)
	3.1 Organometallic Compounds of main	(09L)
	group metals	
	3.1.1 General characteristics of various types	
	of Organometallic compounds, viz., ionic,	
	sigma bonded and electron deficient	5
	compounds)
	3.1.2 General synthetic methods: (i) Oxidative	
	addition (ii) Metal-Metal exchange	

	(Transmetallation) (iii) Carbanion-Halide	
	exchange (iv) Metal Hydrogen exchange (v)	
	Methylene insertion reactions.	
	3.1.3Chemical reactions: (i) Reactions with	
	oxygen (ii) Alkylation and arylation reactions	
	(iii) Reactions with protic reagents (iv)	
	Complex formation reactions.	
	3.2 Metallocenes	(04L)
	Introduction, Ferrocene; Synthesis, properties,	
	structure and bonding on the basis of VBT	
	3.3 d- bonding in rhenium and molybdenum	(02L)
	halide complexes.	
IV	Some Selected Topics	(15L)
	4.1 Nanomaterials	(08L)
	4.1.1Introduction and importance of	
	nanomaterials	
	4.1.2 Chemical methods of synthesis of	
	nanomaterials	
	4.1.3 Characterisation of Nanomaterials (UV	
	and XRD techniques)	
	4.1.4 Dimensions and forms of Nanomaterials	
	: Nano films , nano layers , nano tubes ,	
	nanowires and nano particles.	
	4.1.5 Properties (comparison between bulk and	
	nano materials): 1. Optical 2. Electrical and 3.	
	Mechanical properties	
	4.2.Bio-inorganic and Medicinal Chemistry	(07L)
	4.2.1 Metal Co-ordination in biological	
	system: Enzymes, apoenzymes and	
	Coenzymes.	
	4.2.2 Metal complexes in medicine: cis- platin	
	and gold complexes	
	4.2.3 Inorganic pharmaceuticals.	
	IV	exchange (iv) Metal Hydrogen exchange (v) Methylene insertion reactions. 3.1.3Chemical reactions: (i) Reactions with oxygen (ii) Alkylation and arylation reactions (iii) Reactions with protic reagents (iv) Complex formation reactions. 3.2 Metallocenes Introduction, Ferrocene; Synthesis, properties, structure and bonding on the basis of VBT 3.3 d-bonding in rhenium and molybdenum halide complexes. IV Some Selected Topics 4.1 Nanomaterials 4.1.1Introduction and importance of nanomaterials 4.1.2 Chemical methods of synthesis of nanomaterials 4.1.3 Characterisation of Nanomaterials (UV and XRD techniques) 4.1.4 Dimensions and forms of Nanomaterials: Nano films, nano layers, nano tubes, nanowires and nano particles. 4.1.5 Properties (comparison between bulk and nano materials): 1. Optical 2. Electrical and 3. Mechanical properties 4.2.Bio-inorganic and Medicinal Chemistry 4.2.1 Metal Co-ordination in biological system: Enzymes, apoenzymes and Coenzymes. 4.2.2 Metal complexes in medicine: cis- platin and gold complexes

Course Code: RUSCHE603 <u>Course Title: CHEMISTRY-III</u> Academic year 2022-2023.

Course Outcomes:

After st	cudying this course, the learner will be able to:			
CO 1	Classify carbohydrates.			
CO 2	Study reactions shown by Glucose			
CO 3	Illustrate general applications of various catalysts and Reagents			
CO 4	Understand basic principles of Photochemistry			
CO 5	Know basics of Natural Product chemistry- Including Amino acids, nucleic acids etc			
CO 6	Apply Spectral techniques to Structure Determination			

RUSCHE603		CHEMISTRY-III	Credits-2.5
	Unit	Unit Title	Lectures
	I	Chemistry of Carbohydrates and Catalysts	(15L)
	5	and Reagents	
~(0-)		1.1 Chemistry of Carbohydrates	(09L)
		1.1.1 Introduction: Classification, reducing and	(0)
		non-reducing sugars, DL notation.	
		1.1.2 Structures of monosaccharides: Fischer	
0-		projection (4-6 carbon monosaccharides) and	
		Haworth formula (Furanose and pyranose forms	
		of pentoses and hexoses). Interconversion: open	
		and Haworth forms of monosaccharides with 5	

,	
and 6 carbons. Chair conformation with	
stereochemistry of D-glucose. Stability of chair	
forms of D- glucose.	
1.1.3 Stereoisomers of D-glucose: Enantiomers	
and diastereomers, anomers and epimers.	
1.1.4 Mutarotation in D-glucose with	
mechanism.	
1.1.5 Chain lengthening and shortening	
reactions: Modified Kiliani-Fischer synthesis	
(D- arabinose to D-glucose and D-mannose),	
Wohl method (D-glucose to D-arabinose).	
1.1.6 Reactions of D-glucose and D-fructose: (a)	
osazone formation (b) reduction- H ₂ /Ni, NaBH ₄	
c) oxidation: bromine water, HNO ₃ , HIO _{4 d})	
acetylation e) methylation (d and e with cyclic	
pyranose forms).	
1.1.7 Glycosides: general structure, formation of	
alkyl glycosides and anomeric effect.	
1.1.8 Disaccharides: Structures of sucrose and	
maltose (cyclic forms: Haworth/chair).	. 0
1.2 Catalysts and Reagents :	(06L)
Study of the following catalysts and reagents	
with respect to functional group transformations	(
and selectivity (no mechanism)	
1.2.1 Catalysts: Catalysts for hydrogenation:	
Raney Ni, Pt and PtO ₂ : C=C, CN, NO ₂ , aromatic	
ring; Pd/C: C=C, COCl→ CHO (Rosenmund);	
Lindlar catalyst: alkynes; Wilkinson's catalyst:	
olefins.	
1.2.2 Reagents : (a) LiAlH4 and Red-Al:	
reduction of CO, COOR, CN, and NO ₂ . (b)	
NaBH ₄ : reduction of CO (c) SeO ₂ :	
hydroxylation of allylic and benzylic positions,	

		oxidation of CH ₂ to CO (d) <i>m</i> -CPBA	
		epoxidation of C=C	
		(e) NBS: allylic and benzylicbromination.	
<u> </u>	II	Chemistry of Amino Acids, Proteins and	(15L)
		Nucleic Acids and Photochemistry	, ,
		2.1 Chemistry of Amino acids, Proteins and	(08L)
		Nucleic acids:	
		2.1.1 α-Amino acids: General structure,	
		configuration, essential (valine, leucine,	
		phenylalanine), neutral (glycine, alanine), acidic	
		(glutamic acid) and basic (lysine) amino acids	
		(systematic names with abbreviations). pH	
		dependency of ionic structure and isoelectric	
		point.	
		2.1.2 Polypeptides and Proteins: Nature of	
		Peptide bond. Nomenclature and representation	d
		of peptides (di and tripeptides)	
		2.1.3 Proteins: general idea of primary,	116
		secondary, tertiary and quartenary structures.	
		2.1.4 Nucleic acids: Controlled hydrolysis of	
		nucleic acids. Sugars and bases in nucleic acids.	
		Structures of nucleosides and nucleotides in	
		DNA and RNA. Structure of nucleic acids (DNA	
		and RNA including base pairing).	
		2.2 Photochemistry:	(07L)
		2.2.1 Introduction: Difference between thermal	
		and photochemical reactions. Jablonski diagram,	
		singlet and triple states, allowed and forbidden	
		transitions, fate of excited molecules,	
		photosensitization.	
		2.2.2 Photochemical reactions of olefins:	
		photoisomerisation, photochemical	
		rearrangement of 1,4-dienes (di π methane)	

		2.2.3 Photochemistry of carbonyl compounds:	
		Norrish I, Norrish II cleavages, photoreduction	
		(e.g. benzophenone to benzpinacol).	
	TIT	Construction of the William of the	(151)
	III	Spectroscopy-I (UV-Visible, IR and ¹ H	(15L)
		NMR)	
		3.1 Introduction: Electromagnetic spectrum,	
		units of wavelength and frequency.	
		3.2 UV- Visible spectroscopy: Basic theory,	. (
		solvents, nature of UV-VIS spectrum, concept of	
		Chromophore, auxochrome,bathochromic shift,	
		Hypsochromic shift, hyperchromic and	
		hypochromic effects, chromophore-	
		chromophore and chromophore -auxochrome	
		interactions. Calculation of absorption maxima	
		by Woodward-Fieser Rule for conjugated	
		polyenes. Applications of UV-Visible	
		spectroscopy.	
		3.3 IR Spectroscopy: Basic theory, selection	
		rule, nature of IR spectrum, characteristic	
		vibrational frequencies of functional groups,	
		fingerprint region. Applications IR	
		Spectroscopy.	
		1.2 ¹ H NMR Spectroscopy: Basic theory of	
		¹ H NMR, nature of ¹ H NMR spectrum,	
		chemical shift (∂ unit), standard for ¹H	
		NMR, solvents used. Factors affecting	
		chemical shift: inductive effect and	
		anisotropic effect (with reference to	
. 7		C=C, C=C, C=O and benzene ring).	
		Spin- spin coupling and coupling	
~0.		constant. Application of deuterium	

NMR in structure determination. IV Spectroscopy-II and Natural Products 4.1 Spectroscopy-II (08L) 4.1.1 Mass Spectrometry: Basic theory. Nature of mass spectrum. General rules of fragmentation. Importance of molecular ion peak, isotopic peaks, base peak, Nitrogen rule. Fragmentation of alkanes and aliphatic carbonyl compounds including Mclafferty rearrangement. 4.1.2 Spectral characteristics of following classes of organic compounds, including benzene and monosubstituted benzenes with respect to UV-VIS, IR, ¹H NMR: (1) alkanes (2) alkenes and polyenes (3) alkynes (4) haloalkanes (5) alcohols (6) carbonyl compounds (7) ethers (8) carboxylic acids (9) esters (10) amines (11) amides (broad regions characteristic of different groups are expected). 4.1.3 Problems of structure elucidation of simple organic compounds using individual or
4.1 Spectroscopy-II 4.1.1 Mass Spectrometry: Basic theory. Nature of mass spectrum. General rules of fragmentation. Importance of molecular ion peak, isotopic peaks, base peak, Nitrogen rule. Fragmentation of alkanes and aliphatic carbonyl compounds including Mclafferty rearrangement. 4.1.2 Spectral characteristics of following classes of organic compounds, including benzene and monosubstituted benzenes with respect to UV-VIS, IR, ¹H NMR: (1) alkanes (2) alkenes and polyenes (3) alkynes (4) haloalkanes (5) alcohols (6) carbonyl compounds (7) ethers (8) carboxylic acids (9) esters (10) amines (11) amides (broad regions characteristic of different groups are expected). 4.1.3 Problems of structure elucidation of simple organic compounds using individual or
4.1 Spectroscopy-II 4.1.1 Mass Spectrometry: Basic theory. Nature of mass spectrum. General rules of fragmentation. Importance of molecular ion peak, isotopic peaks, base peak, Nitrogen rule. Fragmentation of alkanes and aliphatic carbonyl compounds including Mclafferty rearrangement. 4.1.2 Spectral characteristics of following classes of organic compounds, including benzene and monosubstituted benzenes with respect to UV-VIS, IR, ¹H NMR: (1) alkanes (2) alkenes and polyenes (3) alkynes (4) haloalkanes (5) alcohols (6) carbonyl compounds (7) ethers (8) carboxylic acids (9) esters (10) amines (11) amides (broad regions characteristic of different groups are expected). 4.1.3 Problems of structure elucidation of simple organic compounds using individual or
4.1.1 Mass Spectrometry: Basic theory. Nature of mass spectrum. General rules of fragmentation. Importance of molecular ion peak, isotopic peaks, base peak, Nitrogen rule. Fragmentation of alkanes and aliphatic carbonyl compounds including Mclafferty rearrangement. 4.1.2 Spectral characteristics of following classes of organic compounds, including benzene and monosubstituted benzenes with respect to UV-VIS, IR, ¹ H NMR: (1) alkanes (2) alkenes and polyenes (3) alkynes (4) haloalkanes (5) alcohols (6) carbonyl compounds (7) ethers (8) carboxylic acids (9) esters (10) amines (11) amides (broad regions characteristic of different groups are expected). 4.1.3 Problems of structure elucidation of simple organic compounds using individual or
of mass spectrum. General rules of fragmentation. Importance of molecular ion peak, isotopic peaks, base peak, Nitrogen rule. Fragmentation of alkanes and aliphatic carbonyl compounds including Mclafferty rearrangement. 4.1.2 Spectral characteristics of following classes of organic compounds, including benzene and monosubstituted benzenes with respect to UV-VIS, IR, ¹H NMR: (1) alkanes (2) alkenes and polyenes (3) alkynes (4) haloalkanes (5) alcohols (6) carbonyl compounds (7) ethers (8) carboxylic acids (9) esters (10) amines (11) amides (broad regions characteristic of different groups are expected). 4.1.3 Problems of structure elucidation of simple organic compounds using individual or
fragmentation. Importance of molecular ion peak, isotopic peaks, base peak, Nitrogen rule. Fragmentation of alkanes and aliphatic carbonyl compounds including Mclafferty rearrangement. 4.1.2 Spectral characteristics of following classes of organic compounds, including benzene and monosubstituted benzenes with respect to UV-VIS, IR, ¹ H NMR: (1) alkanes (2) alkenes and polyenes (3) alkynes (4) haloalkanes (5) alcohols (6) carbonyl compounds (7) ethers (8) carboxylic acids (9) esters (10) amines (11) amides (broad regions characteristic of different groups are expected). 4.1.3 Problems of structure elucidation of simple organic compounds using individual or
peak, isotopic peaks, base peak, Nitrogen rule. Fragmentation of alkanes and aliphatic carbonyl compounds including Mclafferty rearrangement. 4.1.2 Spectral characteristics of following classes of organic compounds, including benzene and monosubstituted benzenes with respect to UV-VIS, IR, ¹ H NMR: (1) alkanes (2) alkenes and polyenes (3) alkynes (4) haloalkanes (5) alcohols (6) carbonyl compounds (7) ethers (8) carboxylic acids (9) esters (10) amines (11) amides (broad regions characteristic of different groups are expected). 4.1.3 Problems of structure elucidation of simple organic compounds using individual or
Fragmentation of alkanes and aliphatic carbonyl compounds including Mclafferty rearrangement. 4.1.2 Spectral characteristics of following classes of organic compounds, including benzene and monosubstituted benzenes with respect to UV-VIS, IR, ¹ H NMR: (1) alkanes (2) alkenes and polyenes (3) alkynes (4) haloalkanes (5) alcohols (6) carbonyl compounds (7) ethers (8) carboxylic acids (9) esters (10) amines (11) amides (broad regions characteristic of different groups are expected). 4.1.3 Problems of structure elucidation of simple organic compounds using individual or
compounds including Mclafferty rearrangement. 4.1.2 Spectral characteristics of following classes of organic compounds, including benzene and monosubstituted benzenes with respect to UV-VIS, IR, ¹ H NMR: (1) alkanes (2) alkenes and polyenes (3) alkynes (4) haloalkanes (5) alcohols (6) carbonyl compounds (7) ethers (8) carboxylic acids (9) esters (10) amines (11) amides (broad regions characteristic of different groups are expected). 4.1.3 Problems of structure elucidation of simple organic compounds using individual or
4.1.2 Spectral characteristics of following classes of organic compounds, including benzene and monosubstituted benzenes with respect to UV-VIS, IR, ¹ H NMR: (1) alkanes (2) alkenes and polyenes (3) alkynes (4) haloalkanes (5) alcohols (6) carbonyl compounds (7) ethers (8) carboxylic acids (9) esters (10) amines (11) amides (broad regions characteristic of different groups are expected). 4.1.3 Problems of structure elucidation of simple organic compounds using individual or
classes of organic compounds, including benzene and monosubstituted benzenes with respect to UV-VIS, IR, ¹ H NMR: (1) alkanes (2) alkenes and polyenes (3) alkynes (4) haloalkanes (5) alcohols (6) carbonyl compounds (7) ethers (8) carboxylic acids (9) esters (10) amines (11) amides (broad regions characteristic of different groups are expected). 4.1.3 Problems of structure elucidation of simple organic compounds using individual or
benzene and monosubstituted benzenes with respect to UV-VIS, IR, ¹ H NMR: (1) alkanes (2) alkenes and polyenes (3) alkynes (4) haloalkanes (5) alcohols (6) carbonyl compounds (7) ethers (8) carboxylic acids (9) esters (10) amines (11) amides (broad regions characteristic of different groups are expected). 4.1.3 Problems of structure elucidation of simple organic compounds using individual or
respect to UV-VIS, IR, ¹ H NMR: (1) alkanes (2) alkenes and polyenes (3) alkynes (4) haloalkanes (5) alcohols (6) carbonyl compounds (7) ethers (8) carboxylic acids (9) esters (10) amines (11) amides (broad regions characteristic of different groups are expected). 4.1.3 Problems of structure elucidation of simple organic compounds using individual or
alkenes and polyenes (3) alkynes (4) haloalkanes (5) alcohols (6) carbonyl compounds (7) ethers (8) carboxylic acids (9) esters (10) amines (11) amides (broad regions characteristic of different groups are expected). 4.1.3 Problems of structure elucidation of simple organic compounds using individual or
 (5) alcohols (6) carbonyl compounds (7) ethers (8) carboxylic acids (9) esters (10) amines (11) amides (broad regions characteristic of different groups are expected). 4.1.3 Problems of structure elucidation of simple organic compounds using individual or
(8) carboxylic acids (9) esters (10) amines (11) amides (broad regions characteristic of different groups are expected). 4.1.3 Problems of structure elucidation of simple organic compounds using individual or
amides (broad regions characteristic of different groups are expected). 4.1.3 Problems of structure elucidation of simple organic compounds using individual or
groups are expected). 4.1.3 Problems of structure elucidation of simple organic compounds using individual or
4.1.3 Problems of structure elucidation of simple organic compounds using individual or
organic compounds using individual or
combined use of the LIV VIC ID III NIMD and
combined use of the UV-VIS, IR, ¹ H NMR and
Mass spectroscopic techniques. (index of
hydrogen deficiency expected).
4.2 Natural Products: (07L)
4.2.1 Introduction, sources, classification and
functions to the following natural products
(Structures of the compounds specified are
expected)
(a) Terpenoids: (isoprene rule). citral, α-
terpeniol, camphor and α-pinene.
(b) Alkaloids: nicotine, atropine.

	(c) Vitamins: vitamin A and vitamin C.
	(c) vitalinis. vitalinii A and vitalinii C.
	(d) Hormones: adrenaline, thyroxine.
	(e) Steroids: cholesterol, progesterone.
	4.2.2 Structure determination of natural
	products:
	(a) Ozonolysis in terpenoids: Examples
	of open chain and monocyclic
	monoterpenoids.
	(b) Hofmann exhaustive methylation and
	degradation in alkaloids: simple open
	chain and monocyclic amines.
	4.2.3 Commercial synthesis: (a) camphor from
	α-pinene (b) α- and β- ionones from citral.
	4.2.4 Introduction to primary and secondary
	metabolites and broad classification of
	natural products based on biosynthesis.
L	

Course Code: RUSCHE604
Course Title: CHEMISTRY-IV
Academic year 2022-2023

Course Outcomes:

After stu	After studying this course, the learner will be able to:			
CO 1	Outline the basic principles, instrumentation of these advanced separation			
	techniques and electroanalytical methods.			
CO 2	Assess advantages and limitations of these techniques.			
CO 3	Correlate these techniques with industrial applications.			
CO 4	Relate the applications of analytical methods in day-to-day life.			

DETAILED SYLLABUS

RUSCHE604		CHEMISTRY-IV	Credits-2.5
	Unit	Unit Title	Lectures

I	Separation Techniques.	(15L)
	1.1 Gas Chromatography	(06L)
	1.1.1 Introduction, basic principles, terms	
	involved,	
	1.1.2 Rate theory and plate theory of	
	chromatography	
	1.1.3 Instrumentation, components of the	
	instruments, Types of columns, packing	
	materials.	
	1.1.4Types of detectors, TCD, FID, ECD, their	
	relative advantages and imitations	
	1.1.5 Qualitative and quantitative analysis,	.16
	1.1.6 Applications of GC	
	1.2 High Pressure Liquid Chromatography	(05L)
	1.2.1 Introduction, basic principles.	U
	1.2.2 Instrumentation and its components.	
	1.2.3 Solvent reservoirs, degassing system,	
	1.2.4 Types of pumps, pneumatic, reciprocating,	
	syringe type, their advantages and limitations,	
	1.2.5Pre-column, types of columns, packed and	
	capillary, sample injection systems	
	1.2.6 Detectors, UV-Visible, refractive index,	
	1.2.7 Applications of HPLC	
	1.3 Ion Exchange Chromatography	(04L)
	1.3.1 Introduction, types of ion exchangers,	(0 12)
	synthetic and natural, cation and anion,	
	properties of resins	
	1.3.2 Ion exchange equilibria, selectivity	
	coefficient, separation factors, factors affecting	
	separation of ions	
	1.3.3 Ion exchange capacity and its	
	determination	

	1.3.4 Applications of ion exchange	
	chromatography, preparation of demineralized	
	water, separation of amino acids, separation of	
	lanthanides, preparation of exact concentration	
	of acids or bases	
II	Electroanalytical Methods	(15L)
	2.1: Introduction and classification of	(01L)
	electroanalytical methods and specific features	
	of each of the major category.	.16
	2.2 Ion Selective Electrodes:	(04L)
	2.2.1 Ion selective and ion specific electrodes,	
	components of ion selective electrode,	
	properties of membrane in ion selective	
	electrode, classification of ion selective	
	electrodes	
	2.2.2 Solid membrane electrodes: Fluoride ion	
	selective electrode, Glass membrane electrode,	
	Glass electrode.	
	2.2.3 Liquid membrane electrode: Calcium ion	
	electrode	
	2.3 Polarography	(07L)
	2.3.1 Basic principles, polarizable and	
	nonpolarizable electrodes, supporting	
	electrolyte, its function, selection of supporting	
	electrolyte	
	2.3.2 The polarogram, terms involved, residual	
	current, limiting current, diffusion current, half	
()	wave potential.	
	2.3.3 Oxygen interference and its removal,	
₹0.	polarographic maxima and use of maxima	
	suppressors.	

determination of half wave potential and diffusion current from the polarogram 2.3.5llkovic equation, terms involved and their explanation 2.3.6 DME, Construction, working, advantages and limitations; 2.3.7 Instrumentation, H- shaped polarographic cell , Qualitative and quantitative analysis, calibration curve method, standard addition method. 2.3.8 Applications of polarography. 2.4 Amperometric titrations 2.4.1 Basic principles: construction of the titration curve, Different types of amperometric titration curves, 2.4.2 Rotating platinum electrode, construction, working, advantages and limitations. 2.4.3 Applications of amperometric titrations, 2.4.4 Comparison of amperometry and polarography III Miscellaneous Methods 3.1.1 Potentiometric titrations 3.1.1 Potentiometric titrations (041.) 3.1.2 Experimental set up & procedures for the potentiometric titrations, 3.1.3 Determination of equivalence point in reportiometric titrations, 3.1.3 Determination of equivalence point in reportiometric titrations.		2.3.4 Equation of polarographic wave,	
2.3.5 llkovic equation, terms involved and their explanation 2.3.6 DME, Construction, working, advantages and limitations; 2.3.7 Instrumentation, H- shaped polarographic cell , Qualitative and quantitative analysis, calibration curve method, standard addition method. 2.3.8 Applications of polarography. 2.4 Amperometric titrations (03L) 2.4.1 Basic principles: construction of the titration curve, Different types of amperometric titration curves, 2.4.2 Rotating platinum electrode, construction, working, advantages and limitations. 2.4.3 Applications of amperometric titrations, 2.4.4 Comparison of amperometry and polarography III Miscellancous Methods (15L) 3.1 Potentiometric titrations (04L) 3.1.1Potentiometry and potentiometric titrations, basic principles, indicator and reference electrode, types of titrations and indicator electrodes used for each type. 3.1.2 Experimental set up & procedures for the potentiometric titrations, 3.1.3 Determination of equivalence point in		determination of half wave potential and	
explanation 2.3.6 DME, Construction, working, advantages and limitations; 2.3.7 Instrumentation, H- shaped polarographic cell , Qualitative and quantitative analysis, calibration curve method, standard addition method. 2.3.8 Applications of polarography. 2.4 Amperometric titrations (03L) 2.4.1 Basic principles: construction of the titration curve, Different types of amperometric titration curves, 2.4.2 Rotating platinum electrode, construction, working, advantages and limitations. 2.4.3 Applications of amperometric titrations, 2.4.4 Comparison of amperometry and polarography III Miscellaneous Methods (15L) 3.1.1 Potentiometric titrations (04L) 3.1.1 Potentiometry and potentiometric titrations, basic principles, indicator and reference electrode, types of titrations and indicator electrodes used for each type. 3.1.2 Experimental set up & procedures for the potentiometric titrations, 3.1.3 Determination of equivalence point in		diffusion current from the polarogram	(
2.3.6 DME, Construction, working, advantages and limitations; 2.3.7 Instrumentation, H- shaped polarographic cell , Qualitative and quantitative analysis, calibration curve method, standard addition method. 2.3.8 Applications of polarography. 2.4 Amperometric titrations (03L) 2.4.1 Basic principles: construction of the titration curve, Different types of amperometric titration curves, 2.4.2 Rotating platinum electrode, construction, working, advantages and limitations. 2.4.3 Applications of amperometric titrations, 2.4.4 Comparison of amperometry and polarography III Miscellaneous Methods (15L) 3.1 Potentiometric titrations (04L) 3.1.1Potentiometry and potentiometric titrations, basic principles, indicator and reference electrode, types of titrations and indicator electrodes used for each type. 3.1.2 Experimental set up & procedures for the potentiometric titrations, 3.1.3 Determination of equivalence point in		2.3.5Ilkovic equation, terms involved and their	
and limitations; 2.3.7 Instrumentation, H- shaped polarographic cell , Qualitative and quantitative analysis, calibration curve method, standard addition method. 2.3.8 Applications of polarography. 2.4 Amperometric titrations (03L) 2.4.1 Basic principles: construction of the titration curve, Different types of amperometric titration curves, 2.4.2 Rotating platinum electrode, construction, working, advantages and limitations. 2.4.3 Applications of amperometric titrations, 2.4.4 Comparison of amperometry and polarography III Miscellaneous Methods (15L) 3.1 Potentiometric titrations (04L) 3.1.1Potentiometry and potentiometric titrations, basic principles, indicator and reference electrode, types of titrations and indicator electrodes used for each type. 3.1.2 Experimental set up & procedures for the potentiometric titrations, 3.1.3 Determination of equivalence point in		explanation	100
2.3.7 Instrumentation, H- shaped polarographic cell , Qualitative and quantitative analysis, calibration curve method, standard addition method. 2.3.8 Applications of polarography. 2.4 Amperometric titrations (03L) 2.4.1 Basic principles: construction of the titration curve, Different types of amperometric titration curves, 2.4.2 Rotating platinum electrode, construction, working, advantages and limitations. 2.4.3 Applications of amperometric titrations, 2.4.4 Comparison of amperometry and polarography III Miscellaneous Methods (15L) 3.1 Potentiometric titrations (04L) 3.1.1Potentiometry and potentiometric titrations, basic principles, indicator and reference electrode, types of titrations and indicator electrodes used for each type. 3.1.2 Experimental set up & procedures for the potentiometric titrations, 3.1.3 Determination of equivalence point in		2.3.6 DME, Construction, working, advantages	
cell , Qualitative and quantitative analysis, calibration curve method, standard addition method. 2.3.8 Applications of polarography. 2.4 Amperometric titrations (03L) 2.4.1 Basic principles: construction of the titration curve, Different types of amperometric titration curves, 2.4.2 Rotating platinum electrode, construction, working, advantages and limitations. 2.4.3 Applications of amperometric titrations, 2.4.4 Comparison of amperometry and polarography III Miscellaneous Methods (15L) 3.1.1Potentiometric titrations (04L) 3.1.1Potentiometry and potentiometric titrations, basic principles, indicator and reference electrode, types of titrations and indicator electrodes used for each type. 3.1.2 Experimental set up & procedures for the potentiometric titrations, 3.1.3 Determination of equivalence point in		and limitations;	
calibration curve method, standard addition method. 2.3.8 Applications of polarography. 2.4 Amperometric titrations (03L) 2.4.1 Basic principles: construction of the titration curve, Different types of amperometric titration curves, 2.4.2 Rotating platinum electrode, construction, working, advantages and limitations. 2.4.3 Applications of amperometric titrations, 2.4.4 Comparison of amperometry and polarography III Miscellaneous Methods (15L) 3.1 Potentiometric titrations (04L) 3.1.1Potentiometry and potentiometric titrations, basic principles, indicator and reference electrode, types of titrations and indicator electrodes used for each type. 3.1.2 Experimental set up & procedures for the potentiometric titrations, 3.1.3 Determination of equivalence point in		2.3.7 Instrumentation, H- shaped polarographic)
method. 2.3.8 Applications of polarography. 2.4 Amperometric titrations (03L) 2.4.1 Basic principles; construction of the titration curve, Different types of amperometric titration curves, 2.4.2 Rotating platinum electrode, construction, working, advantages and limitations. 2.4.3 Applications of amperometric titrations, 2.4.4 Comparison of amperometry and polarography III Miscellaneous Methods (15L) 3.1 Potentiometric titrations (04L) 3.1.1Potentiometry and potentiometric titrations, basic principles, indicator and reference electrode, types of titrations and indicator electrodes used for each type. 3.1.2 Experimental set up & procedures for the potentiometric titrations, 3.1.3 Determination of equivalence point in		cell , Qualitative and quantitative analysis,	
2.3.8 Applications of polarography. 2.4 Amperometric titrations (03L) 2.4.1 Basic principles: construction of the titration curve, Different types of amperometric titration curves, 2.4.2 Rotating platinum electrode, construction, working, advantages and limitations. 2.4.3 Applications of amperometric titrations, 2.4.4 Comparison of amperometry and polarography III Miscellaneous Methods (15L) 3.1 Potentiometric titrations (04L) 3.1.1Potentiometry and potentiometric titrations, basic principles, indicator and reference electrode, types of titrations and indicator electrodes used for each type. 3.1.2 Experimental set up & procedures for the potentiometric titrations, 3.1.3 Determination of equivalence point in		calibration curve method, standard addition	
2.4 Amperometric titrations 2.4.1 Basic principles: construction of the titration curve, Different types of amperometric titration curves, 2.4.2 Rotating platinum electrode, construction, working, advantages and limitations. 2.4.3 Applications of amperometric titrations, 2.4.4 Comparison of amperometry and polarography III Miscellaneous Methods 3.1 Potentiometric titrations 3.1.1Potentiometry and potentiometric titrations, basic principles, indicator and reference electrode, types of titrations and indicator electrodes used for each type. 3.1.2 Experimental set up & procedures for the potentiometric titrations, 3.1.3 Determination of equivalence point in		method.	
2.4.1 Basic principles: construction of the titration curve, Different types of amperometric titration curves, 2.4.2 Rotating platinum electrode, construction, working, advantages and limitations. 2.4.3 Applications of amperometric titrations, 2.4.4 Comparison of amperometry and polarography III Miscellaneous Methods (15L) 3.1 Potentiometric titrations (04L) 3.1.1Potentiometry and potentiometric titrations, basic principles, indicator and reference electrode, types of titrations and indicator electrodes used for each type. 3.1.2 Experimental set up & procedures for the potentiometric titrations, 3.1.3 Determination of equivalence point in		2.3.8 Applications of polarography.	
titration curve, Different types of amperometric titration curves, 2.4.2 Rotating platinum electrode, construction, working, advantages and limitations. 2.4.3 Applications of amperometric titrations, 2.4.4 Comparison of amperometry and polarography III Miscellaneous Methods (15L) 3.1 Potentiometric titrations (04L) 3.1.1Potentiometry and potentiometric titrations, basic principles, indicator and reference electrode, types of titrations and indicator electrodes used for each type. 3.1.2 Experimental set up & procedures for the potentiometric titrations, 3.1.3 Determination of equivalence point in		2.4 Amperometric titrations	(03L)
titration curves, 2.4.2 Rotating platinum electrode, construction, working, advantages and limitations. 2.4.3 Applications of amperometric titrations, 2.4.4 Comparison of amperometry and polarography III Miscellaneous Methods (15L) 3.1 Potentiometric titrations (04L) 3.1.1Potentiometry and potentiometric titrations, basic principles, indicator and reference electrode, types of titrations and indicator electrodes used for each type. 3.1.2 Experimental set up & procedures for the potentiometric titrations, 3.1.3 Determination of equivalence point in		2.4.1 Basic principles: construction of the	
2.4.2 Rotating platinum electrode, construction, working, advantages and limitations. 2.4.3 Applications of amperometric titrations, 2.4.4 Comparison of amperometry and polarography III Miscellaneous Methods (15L) 3.1 Potentiometric titrations (04L) 3.1.1Potentiometry and potentiometric titrations, basic principles, indicator and reference electrode, types of titrations and indicator electrodes used for each type. 3.1.2 Experimental set up & procedures for the potentiometric titrations, 3.1.3 Determination of equivalence point in		titration curve, Different types of amperometric	
working, advantages and limitations. 2.4.3 Applications of amperometric titrations, 2.4.4 Comparison of amperometry and polarography III Miscellaneous Methods (15L) 3.1 Potentiometric titrations (04L) 3.1.1Potentiometry and potentiometric titrations, basic principles, indicator and reference electrode, types of titrations and indicator electrodes used for each type. 3.1.2 Experimental set up & procedures for the potentiometric titrations, 3.1.3 Determination of equivalence point in		titration curves,	
2.4.3 Applications of amperometric titrations, 2.4.4 Comparison of amperometry and polarography III Miscellaneous Methods (15L) 3.1 Potentiometric titrations (04L) 3.1.1Potentiometry and potentiometric titrations, basic principles, indicator and reference electrode, types of titrations and indicator electrodes used for each type. 3.1.2 Experimental set up & procedures for the potentiometric titrations, 3.1.3 Determination of equivalence point in		2.4.2 Rotating platinum electrode, construction,	
2.4.4 Comparison of amperometry and polarography III Miscellaneous Methods (15L) 3.1 Potentiometric titrations (04L) 3.1.1Potentiometry and potentiometric titrations, basic principles, indicator and reference electrode, types of titrations and indicator electrodes used for each type. 3.1.2 Experimental set up & procedures for the potentiometric titrations, 3.1.3 Determination of equivalence point in		working, advantages and limitations.	
polarography III Miscellaneous Methods (15L) 3.1 Potentiometric titrations (04L) 3.1.1Potentiometry and potentiometric titrations, basic principles, indicator and reference electrode, types of titrations and indicator electrodes used for each type. 3.1.2 Experimental set up & procedures for the potentiometric titrations, 3.1.3 Determination of equivalence point in		2.4.3 Applications of amperometric titrations,	
III Miscellaneous Methods 3.1 Potentiometric titrations (04L) 3.1.1Potentiometry and potentiometric titrations, basic principles, indicator and reference electrode, types of titrations and indicator electrodes used for each type. 3.1.2 Experimental set up & procedures for the potentiometric titrations, 3.1.3 Determination of equivalence point in		2.4.4 Comparison of amperometry and	
3.1 Potentiometric titrations (04L) 3.1.1Potentiometry and potentiometric titrations, basic principles, indicator and reference electrode, types of titrations and indicator electrodes used for each type. 3.1.2 Experimental set up & procedures for the potentiometric titrations, 3.1.3 Determination of equivalence point in		polarography	
3.1.1Potentiometry and potentiometric titrations, basic principles, indicator and reference electrode, types of titrations and indicator electrodes used for each type. 3.1.2 Experimental set up & procedures for the potentiometric titrations, 3.1.3 Determination of equivalence point in	Ш	Miscellaneous Methods	(15L)
titrations, basic principles, indicator and reference electrode, types of titrations and indicator electrodes used for each type. 3.1.2 Experimental set up & procedures for the potentiometric titrations, 3.1.3 Determination of equivalence point in		3.1 Potentiometric titrations	(04L)
reference electrode, types of titrations and indicator electrodes used for each type. 3.1.2 Experimental set up & procedures for the potentiometric titrations, 3.1.3 Determination of equivalence point in		3.1.1Potentiometry and potentiometric	
indicator electrodes used for each type. 3.1.2 Experimental set up & procedures for the potentiometric titrations, 3.1.3 Determination of equivalence point in		titrations, basic principles, indicator and	
3.1.2 Experimental set up & procedures for the potentiometric titrations, 3.1.3 Determination of equivalence point in	~0.	reference electrode, types of titrations and	
potentiometric titrations, 3.1.3 Determination of equivalence point in		indicator electrodes used for each type.	
3.1.3 Determination of equivalence point in		3.1.2 Experimental set up & procedures for the	
		potentiometric titrations,	
notantiamatria titrations, use of Eye V, first and		3.1.3 Determination of equivalence point in	
potentionnettic utrations, use of E vs. v, first and		potentiometric titrations, use of E vs.V, first and	
second derivative plots vs. V for the		second derivative plots vs. V for the	
determination of the equivalence point.		determination of the equivalence point.	

	3.1.4 Advantages and limitations.	
	3.2 Biamperometric titrations,	(02L)
	3.2.1 Basic principles, experimental set up,	
	3.2.2 Biamperometric titration curves,	
	determination of the equivalence point	
	3.2.3 Determination of water content by Karl	
	Fischer method.	100
	3.3 Gel electrophoresis	(06L)
	3.3.1 Basic principle,	
	3.3.2 Factors affecting migration rate,	7
	supporting media, SDS page, Isoelectric	
	focussing	
	3.3.3 2D gel support, application of the sample,	
	procedure.	
	3.3.4 Separation and identification methods	
	3.3.5 Applications	
	3.4 Size exclusion Chromatography	(03L)
	3.4.1 Introduction, principles,	
	3.4.2 Operational procedures,	
	3.4.3 Applications of size exclusion	
	chromatography	
IV	Selected Industrial Applications of Analytical	(15L)
	Chemistry	
	4.1 Food analysis	(05L)
	4.1 .1 Milk powder	
	4.1.1.1 Determination of lactose	
~0.	4.1.1.2 Determination of calcium and iron	
	4.1.2 Honey	
	4.1.2.1 Total reducing sugars in honey	
	4.2 Cosmetic analysis	(02L)

4.2.1 Talcum powder	
4.2.2 Analysis of face powder	
4.3 Detergent analysis	(03L)
4.3.1 Determination of active anionic matter	
4.3.2 Determination of alkalinity	
4.3.3 Determination of oxygen releasing	
capacity.	.16
4.4 Water analysis	(03L)
4.4.1 Determination of dissolved oxygen	100
4.4.2 Determination of chemical oxygen	
demand	
4.5 Pharmaceutical Analysis	(02L)
4.5.1 Determination of drugs by non-aqueous	
titration	

Semester-VI Practicals

RUSCHEP601			Credits-3
	CHEM	IISTRY-I	
	1.	To determine the energy of activat	tion for the acid catalyzed
		hydrolysis of methyl acetate.	
	2.	To determine the molecular weight	of high polymer polyvinyl
		alcohol (PVA) by viscosity measurer	nent.
	3.	To determine acidic and basic dissoci	ation constant of amino acid
	0	and hence calculate isoelectric point.	
A	4.	To determine the amount of weak a	acid and strong acid in the
		given mixture by conductometric titra	ation.
	5.	To determine the solubility and se	olubility product of AgCl
~.0-,		potentiometrically using chemical ce	11.
	6.	To determine Critical Micelle Co	oncentration (CMC) using
11,		conductometer.	

CHEMISTRY-II

Inorganic preparations

- 1. Mercury tetrathiocyanatoCobaltate (II) Hg[Co(SCN)4]
- 2. Magnesium oxinate[Mg(Ox)2]
- 3. Tris-acetyl acetonato iron(III) [Fe(AcAc)3]
- 4. Tetramminecopper(II) sulphate. [Cu(NH3)4]SO4.H2O

Inorganic estimations/ Analysis

- 1. Estimation of copper iodometrically using sodium thiosulphate.
- 2. Estimation of lead by complexometrically using EDTA solution.

RUSCHEP602

CHEMISTRY-III

Binary Mixture Separation & identification (Solid + Solid)

(2.0 g mixture to be given)

- 1. Minimum six mixtures to be completed by the learners.
- 2. Components of the mixture should include water soluble and water insoluble acids (carboxylic acid), water insoluble phenols (α -naphthol, β -naphthol), water insoluble bases (nitroanilines), water soluble (urea and thiourea) and water insoluble neutrals (Aromatic hydrocarbons, m-dinitrobenzene, anilides, amides)
- 3. A sample of binary mixture to be given (<1.0 gram) to the learners for detection of chemical type of mixture. After correct determination of the chemical type, the fixing reagent should be decided by the learners for separation.
- 4. Follow separation scheme with the bulk sample of the binary mixture.
- 5. After separation of the components into independent components A and B,
- a. One component (decided by the examiner) is to be analyzed and identified by chemical method with melting point and also by IR spectroscopy. (This component is not to be weighed).
- b. The other component is to be purified, dried, weighed and melting point is to be determined.

CHEMISTRY-IV:

1. Estimation of Chromium in water sample by using diphenylcarbazide spectrophotometrically.

- 2. Determination of acetic acid content in vinegar sample by using quinhydrone electrode potentiometrically.
- 3. Determination of phosphoric acid in cola sample pH metrically.
- 4. Estimation of calcium and magnesium content in Talcum powder.
- 5. Estimation of reducing sugar in honey by Wilstatter method.
- 6. Separation and estimation of Mg(II) and Zn(II) from given sample solution using an anion exchanger.

Physical Chemistry

- 1. Physical Chemistry, Ira Levine, 5th Edition, 2002 Tata McGraw Hill Publishing Co.Ltd.
- 2. The Elements of Physical Chemistry, P.W. Atkins, Oxford University Press, Oxford...
- 3. Modern Electrochemistry, J.O.M Bockris& A.K.N. Reddy, Maria Gamboa Aldeco 2nd Edition, 1st Indian reprint,2006 Springer
- 4. Physical Chemistry, G.M. Barrow, 6th Edition, Tata McGraw Hill Publishing Co. Ltd. New Delhi.
- 5. The Elements of Physical Chemistry, P.W. Atkins, 2nd Edition, Oxford UniversityPress Oxford
- 6. Physical Chemistry, G.K. Vemullapallie, 1997, Prentice Hall of India, Pvt.Ltd. New Delhi.

Inorganic Chemistry

- 1. D. Banerjea, Coordination chemistry, Tata McGraw Hill, New Delhi, (1993).
- 2. D. F. Shriver and P. W. Atkins, *Inorganic chemistry*, 3rd Ed., Oxford University Press, (1999).
- 3. N. N. Greenwood and E. Earnshaw, *Chemistry of elements*, Pergamon Press, Singapore, (1989).
- 4. W. L. Jolly, Modern inorganic chemistry, 2nd Ed. McGraw Hill Book Co., (1991).
- 5. B. E. Douglas and H. McDaniel, *Concepts and models in inorganic chemistry*, 3rd Ed., John Wiley & Sons, Inc., New York, (1994).
- 6. G. N. Mukherjee and A. Das, *Elements of bioinorganic chemistry*, Dhuri and Sons, Calcutta, (1988).
- 7. R. W. Hay, *Bioinorganic chemistry*, Ellis Harwood, England, (1984).
- 8. R. C. Mehrotra and A. Singh, *Organometallic chemistry: A unified approach*, Wiley Eastern, New Delhi, (1991).

- 9. Practical Inorganic Chemistry by G. Marr and B. W. Rockett, VanNostrand Reinhold Company London1972. P 34. (For synthesis of iron ethylenediamine sulphate)
- 10. Microscale Inorganic Chemistry by Z. Szafran, Ronald M. Pike and Mono M. Singh. Pub.John Wiley and Sons1991.p.218.(For preparation of CuCl₂.2DMSO.

Organic Chemistry

- 1. Organic Chemistry, Francis A Carey, Pearson Education, 6th Edition, Special Indian Edition 2008.
- 2. Organic Chemistry, R.T. Morrison and R.N. Boyd, 6th Edition, Pearson Edition.
- 3. Organic Chemistry, T.W.G. Solomon and C.B. Fryhle, 8th Edition, John Wiley & Sons, 2004.
- 4. Organic Chemistry Baula Y. Bruice, Pearson Edition, 2008.
- 5. Organic Chemistry, J.G. Smith, 2nd Editionm Special Indian Edition, Tata. McGraw Hill.
- 6. Stereochemistry, P.S. Kalsi, New Age International Ltd. 4th Edition, 2006
- 7. Organic Spectroscopy by Jag Mohan
- 8. Furniss, B. S.; Hannaford, A. J.; Rogers, V.; Smith, P. W. G.; Tatchell, A. R. Vogel's Textbook of Practical Organic Chemistry, ELBS.

Analytical Chemistry

- 1. D. Harvey, Modern Analytical Chemistry, The McGraw-Hill Pub. 1st Edition (2000)
- 2. H.S. Ray, R Sridhar and K.P. Abraham, Extraction of Nonferrous Metals, AffiliatedEast-West Press Pvt. Ltd. New Delhi (1985) reprint 2007.
- 3. G.H. Jeffery, J. Bassett, J. Mendham and R.C. Denney, Vogel's Textbook of Qunatitative Chemical Analysis, Fifth edition, ELBS Publication (1996)
- 4. D.A. Skoog D.M. West and F.J. Holler, Fundametals of Analytical Chemistry, 7thEdition (printed in India in 2001) ISBN Publication.
- 5. Analytical Chemistry, J.G. Dick, 1973 Tata McGraw Hill Publishing Co. Ltd. New Delhi.
- 6. Quantitative analysis, Dey& Underwood, Prentice Hall of India, Pvt. Ltd. New Delhi
- 7. Fundamentals of Analytical Chemistry, Skoog 8th edition, Saunders college publishing.

Modality of Assessment

Theory Examination Pattern:

A) Internal Assessment - 40% of total marks:

(40 marks)

Sr No	Evaluation type	Marks
1	One Assignment	10
2	One class Test (multiple choice questions / objective)	20
3	Active participation in routine class instructional deliveries (seminars//presentation)	05
4	Overall conduct, participation in co-curricular activities of the department.	05

B) External examination – 60 % Semester End Theory Assessment - 60%

60 marks

These examinations shall be of **two hours** duration.

There shall be Four questions each of 15 marks. On each unit there will be one question.

All questions shall be compulsory with internal choice within the questions.

Theory question paper pattern is as follows:-

Questions	Options	Marks	Questions on	
Q.1)A)	Any 3 out of 5	12	Unit I	
Q.1)B)	Any 1 out of 2	03		
Q.2)A)	Any 3 out of 5	12	Unit II	
Q.2)B)	Any 1 out of 2	03	Omi n	
Q.3)A)	Any 3 out of 5	12	Unit III	
Q.3)B)	Any 1 out of 2	03		
Q.4)A)	Any 3 out of 5	12	Unit IV	
Q.4)B)	Any 1 out of 2	03		

Practical Examination Pattern:

(A)Internal Examin	ation: -				
	RUSC	HEP601	RUSCHEP602		
	Paper I	Paper II	Paper III	Paper IV	
Journal	05	05	05	05	
Tests	10	10	10	10	
Active Participation	05	05	05	05	
Total	20	20	20	20	
(B) External (Seme	ster end practi	cal examination):-	1	
Laboratory work	25	25	25	25	
Viva	05	05	05	05	
Total	30	30	30	30	
Grand Total	1	100	10	00	

PRACTICAL JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.

In case of loss of Journal, Certificate from Head/Co-ordinator should be submitted, failing which the student will not be allowed to appear for the practical examination.

Overall Examination and Marks Distribution Pattern

Course	601	602	Grand
Course	001	002	Total

	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practical	20	30	50	20	30	50	100
				•			
Course	603		604				
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practical	20	30	50	20	30	50	100
	1		1	1	(Total Mar	ks : 600)