Resolution Number: AC/II(20-21).2.RUS5

S.P. Mandali's

Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for T.Y.B.Sc. SEMESTER V & VI

Program : B.Sc. (Chemistry)

Program Code: RUSCHE

(Credit Based Semester and Grading System with effect from the academic year 2020-21)

Semester V Course Code:RUSCHE501 Course Title: CHEMISTRY-I Academic Year 2020-21

Course Outcomes:

After st	After studying this course, the learner will be able to:					
CO 1	Comprehend the fundamentals of rotational, vibrational and Raman spectra of					
	molecules.					
CO 2	Outline the applications of Galvanic Cells.					
CO 3	Apply Raoult's Law and Clapeyron Equation to study Colligative Properties					
CO 4	Understand reaction dynamics.					
CO 5	Apply principles of Surface Chemistry to Colloids					

RUSCHE501		CHEMISTRY-I	Credits-2.5
	Unit	Unit Title	Lectures
	I	MOLECULAR SPECTROSCOPY	(15L)
		1.1. Rotational Spectrum: Rotational spectrum of a	
		diatomic molecule, rigid rotor, moment of inertia,	
	,	energy levels, conditions for obtaining pure	
•	.0	rotational spectrum, selection rule, nature of	
		spectrum, determination of inter-nuclear distance	
(*))- `	and isotopic shift.	
		1.2. Vibrational spectrum: Vibrational motion,	
VQ.		degrees of freedom, modes of vibration,	
		vibrational spectrum of a diatomic molecule,	
		simple harmonic oscillator, energy levels, zero	
0.		point energy, conditions for obtaining vibrational	
		spectrum, selection rule, nature of spectrum.	

diatomic molecule: vibrating rotor, energy levels, selection rule, nature of spectrum, P and R branch lines, anharmonic oscillator, energy levels, selection rule, fundamental band, overtones. Applications of vibrational- rotational spectrum in determining force constant and its significance infrared spectra of simple molecules like H ₂ O and CO ₂ 1.4 Raman Spectroscopy: Scattering of electromagnetic radiation, Rayleigh scattering, Raman scattering, nature of Raman spectrum (Stoke's lines and anti Stoke's lines), Raman shift, quantum theory of Raman spectrum, comparative study of IR and Raman spectrum, comparative study of IR and Raman spectru, rule of mutual exclusion (example of CO ₂ molecule). Number of modes of vibrations for linear and non-linear molecules. II ELECTROCHEMISTRY- III: (15L) CLASSIFICATION OF GALVANIC CELLS 2.1 Lewis concept of Activity and Activity coefficient, Mean ionic activity and mean ionic activity coefficient of an electrolyte, ionic strength of a solution, Debye-Huckel limiting law. 2.2. Classification of galvanic cells: Chemical Cells and concentration cells, Cells with transference and without transference, Expression for EME of each type of cell			1.3. Vibrational-Rotational (IR) spectrum of	
lines, anharmonic oscillator, energy levels, selection rule, fundamental band, overtones. Applications of vibrational- rotational spectrum in determining force constant and its significance infrared spectra of simple molecules like H ₂ O and CO ₂ 1.4 Raman Spectroscopy: Scattering of electromagnetic radiation, Rayleigh scattering, Raman scattering, nature of Raman spectrum (Stoke's lines and anti Stoke's lines), Raman shift, quantum theory of Raman spectrum, comparative study of IR and Raman spectra, rule of mutual exclusion (example of CO ₂ molecule). Number of modes of vibrations for linear and non-linear molecules. II ELECTROCHEMISTRY- III: (15L) CLASSIFICATION OF GALVANIC CELLS 2.1 Lewis concept of Activity and Activity coefficient, Mean ionic activity and mean ionic activity coefficient of an electrolyte, ionic strength of a solution, Debye-Huckel limiting law. 2.2. Classification of galvanic cells: Chemical Cells and concentration cells, Cells with transference and without transference, Expression			diatomic molecule: vibrating rotor, energy levels,	
selection rule, fundamental band, overtones. Applications of vibrational- rotational spectrum in determining force constant and its significance infrared spectra of simple molecules like H ₂ O and CO ₂ 1.4 Raman Spectroscopy: Scattering of electromagnetic radiation, Rayleigh scattering, Raman scattering, nature of Raman spectrum (Stoke's lines and anti Stoke's lines), Raman shift, quantum theory of Raman spectrum, comparative study of IR and Raman spectru, rule of mutual exclusion (example of CO ₂ molecule). Number of modes of vibrations for linear and non-linear molecules. II ELECTROCHEMISTRY- III: (15L) CLASSIFICATION OF GALVANIC CELLS 2.1 Lewis concept of Activity and Activity coefficient, Mean ionic activity and mean ionic activity coefficient of an electrolyte, ionic strength of a solution, Debye-Huckel limiting law. 2.2. Classification of galvanic cells: Chemical Cells and concentration cells, Cells with transference and without transference, Expression			selection rule, nature of spectrum, P and R branch	.16
Applications of vibrational- rotational spectrum in determining force constant and its significance infrared spectra of simple molecules like H ₂ O and CO ₂ 1.4 Raman Spectroscopy: Scattering of electromagnetic radiation, Rayleigh scattering, Raman scattering, nature of Raman spectrum (Stoke's lines and anti Stoke's lines), Raman shift, quantum theory of Raman spectrum, comparative study of IR and Raman spectru, rule of mutual exclusion (example of CO ₂ molecule). Number of modes of vibrations for linear and non-linear molecules. II ELECTROCHEMISTRY- III: (15L) CLASSIFICATION OF GALVANIC CELLS 2.1 Lewis concept of Activity and Activity coefficient, Mean ionic activity and mean ionic activity coefficient of an electrolyte, ionic strength of a solution, Debye-Huckel limiting law. 2.2. Classification of galvanic cells: Chemical Cells and concentration cells, Cells with transference and without transference, Expression			lines, anharmonic oscillator, energy levels,	
determining force constant and its significance infrared spectra of simple molecules like H ₂ O and CO ₂ 1.4 Raman Spectroscopy: Scattering of electromagnetic radiation, Rayleigh scattering, Raman scattering, nature of Raman spectrum (Stoke's lines and anti Stoke's lines), Raman shift, quantum theory of Raman spectrum, comparative study of IR and Raman spectrum, comparative study of IR and Raman spectra, rule of mutual exclusion (example of CO ₂ molecule). Number of modes of vibrations for linear and non-linear molecules. II ELECTROCHEMISTRY- III: (15L) CLASSIFICATION OF GALVANIC CELLS 2.1 Lewis concept of Activity and Activity coefficient, Mean ionic activity and mean ionic activity coefficient of an electrolyte, ionic strength of a solution, Debye-Huckel limiting law. 2.2. Classification of galvanic cells: Chemical Cells and concentration cells, Cells with transference and without transference, Expression			selection rule, fundamental band, overtones.	(0)
infrared spectra of simple molecules like H ₂ O and CO ₂ 1.4 Raman Spectroscopy: Scattering of electromagnetic radiation, Rayleigh scattering, Raman scattering, nature of Raman spectrum (Stoke's lines and anti Stoke's lines), Raman shift, quantum theory of Raman spectrum, comparative study of IR and Raman spectrum, comparative study of IR and Raman spectrum, rule of mutual exclusion (example of CO ₂ molecule). Number of modes of vibrations for linear and non-linear molecules. II ELECTROCHEMISTRY- III: (15L) CLASSIFICATION OF GALVANIC CELLS 2.1 Lewis concept of Activity and Activity coefficient, Mean ionic activity and mean ionic activity coefficient of an electrolyte, ionic strength of a solution, Debye-Huckel limiting law. 2.2. Classification of galvanic cells: Chemical Cells and concentration cells, Cells with transference and without transference, Expression			Applications of vibrational- rotational spectrum in	
1.4 Raman Spectroscopy: Scattering of electromagnetic radiation, Rayleigh scattering, Raman scattering, nature of Raman spectrum (Stoke's lines and anti Stoke's lines), Raman shift, quantum theory of Raman spectrum, comparative study of IR and Raman spectrum, comparative study of IR and Raman spectra, rule of mutual exclusion (example of CO ₂ molecule). Number of modes of vibrations for linear and non-linear molecules. II ELECTROCHEMISTRY- III: (15L) CLASSIFICATION OF GALVANIC CELLS 2.1 Lewis concept of Activity and Activity coefficient, Mean ionic activity and mean ionic activity coefficient of an electrolyte, ionic strength of a solution, Debye-Huckel limiting law. 2.2. Classification of galvanic cells: Chemical Cells and concentration cells, Cells with transference and without transference, Expression			determining force constant and its significance	
1.4 Raman Spectroscopy: Scattering of electromagnetic radiation, Rayleigh scattering, Raman scattering, nature of Raman spectrum (Stoke's lines and anti Stoke's lines), Raman shift, quantum theory of Raman spectrum, comparative study of IR and Raman spectra, rule of mutual exclusion (example of CO2 molecule). Number of modes of vibrations for linear and non-linear molecules. II ELECTROCHEMISTRY- III: (15L) CLASSIFICATION OF GALVANIC CELLS 2.1 Lewis concept of Activity and Activity coefficient, Mean ionic activity and mean ionic activity coefficient of an electrolyte, ionic strength of a solution, Debye-Huckel limiting law. 2.2. Classification of galvanic cells: Chemical Cells and concentration cells, Cells with transference and without transference, Expression			infrared spectra of simple molecules like H ₂ O and	
electromagnetic radiation, Rayleigh scattering, Raman scattering, nature of Raman spectrum (Stoke's lines and anti Stoke's lines), Raman shift, quantum theory of Raman spectrum, comparative study of IR and Raman spectra, rule of mutual exclusion (example of CO2 molecule). Number of modes of vibrations for linear and non-linear molecules. II ELECTROCHEMISTRY- III: (15L) CLASSIFICATION OF GALVANIC CELLS 2.1 Lewis concept of Activity and Activity coefficient, Mean ionic activity and mean ionic activity coefficient of an electrolyte, ionic strength of a solution, Debye-Huckel limiting law. 2.2. Classification of galvanic cells: Chemical Cells and concentration cells, Cells with transference and without transference, Expression			CO_2	
Raman scattering, nature of Raman spectrum (Stoke's lines and anti Stoke's lines), Raman shift, quantum theory of Raman spectrum, comparative study of IR and Raman spectra, rule of mutual exclusion (example of CO ₂ molecule). Number of modes of vibrations for linear and non-linear molecules. II ELECTROCHEMISTRY- III: (15L) CLASSIFICATION OF GALVANIC CELLS 2.1 Lewis concept of Activity and Activity coefficient, Mean ionic activity and mean ionic activity coefficient of an electrolyte, ionic strength of a solution, Debye-Huckel limiting law. 2.2. Classification of galvanic cells: Chemical Cells and concentration cells, Cells with transference and without transference, Expression			1.4 Raman Spectroscopy: Scattering of	
(Stoke's lines and anti Stoke's lines), Raman shift, quantum theory of Raman spectrum, comparative study of IR and Raman spectra, rule of mutual exclusion (example of CO ₂ molecule). Number of modes of vibrations for linear and non-linear molecules. II ELECTROCHEMISTRY- III: (15L) CLASSIFICATION OF GALVANIC CELLS 2.1 Lewis concept of Activity and Activity coefficient, Mean ionic activity and mean ionic activity coefficient of an electrolyte, ionic strength of a solution, Debye-Huckel limiting law. 2.2. Classification of galvanic cells: Chemical Cells and concentration cells, Cells with transference and without transference, Expression			electromagnetic radiation, Rayleigh scattering,	
quantum theory of Raman spectrum, comparative study of IR and Raman spectra, rule of mutual exclusion (example of CO ₂ molecule). Number of modes of vibrations for linear and non-linear molecules. II ELECTROCHEMISTRY- III: (15L) CLASSIFICATION OF GALVANIC CELLS 2.1 Lewis concept of Activity and Activity coefficient, Mean ionic activity and mean ionic activity coefficient of an electrolyte, ionic strength of a solution, Debye-Huckel limiting law. 2.2. Classification of galvanic cells: Chemical Cells and concentration cells, Cells with transference and without transference, Expression			Raman scattering, nature of Raman spectrum	
study of IR and Raman spectra, rule of mutual exclusion (example of CO ₂ molecule). Number of modes of vibrations for linear and non-linear molecules. II ELECTROCHEMISTRY- III: (15L) CLASSIFICATION OF GALVANIC CELLS 2.1 Lewis concept of Activity and Activity coefficient, Mean ionic activity and mean ionic activity coefficient of an electrolyte, ionic strength of a solution, Debye-Huckel limiting law. 2.2. Classification of galvanic cells: Chemical Cells and concentration cells, Cells with transference and without transference, Expression			(Stoke's lines and anti Stoke's lines), Raman shift,	
exclusion (example of CO ₂ molecule). Number of modes of vibrations for linear and non-linear molecules. II ELECTROCHEMISTRY- III: (15L) CLASSIFICATION OF GALVANIC CELLS 2.1 Lewis concept of Activity and Activity coefficient, Mean ionic activity and mean ionic activity coefficient of an electrolyte, ionic strength of a solution, Debye-Huckel limiting law. 2.2. Classification of galvanic cells: Chemical Cells and concentration cells, Cells with transference and without transference, Expression			quantum theory of Raman spectrum, comparative	
modes of vibrations for linear and non-linear molecules. II ELECTROCHEMISTRY- III: (15L) CLASSIFICATION OF GALVANIC CELLS 2.1 Lewis concept of Activity and Activity coefficient, Mean ionic activity and mean ionic activity coefficient of an electrolyte, ionic strength of a solution, Debye-Huckel limiting law. 2.2. Classification of galvanic cells: Chemical Cells and concentration cells, Cells with transference and without transference, Expression			study of IR and Raman spectra, rule of mutual	
II ELECTROCHEMISTRY- III: (15L) CLASSIFICATION OF GALVANIC CELLS 2.1 Lewis concept of Activity and Activity coefficient, Mean ionic activity and mean ionic activity coefficient of an electrolyte, ionic strength of a solution, Debye-Huckel limiting law. 2.2. Classification of galvanic cells: Chemical Cells and concentration cells, Cells with transference and without transference, Expression			exclusion (example of CO ₂ molecule). Number of	
II ELECTROCHEMISTRY- III: (15L) CLASSIFICATION OF GALVANIC CELLS 2.1 Lewis concept of Activity and Activity coefficient, Mean ionic activity and mean ionic activity coefficient of an electrolyte, ionic strength of a solution, Debye-Huckel limiting law. 2.2. Classification of galvanic cells: Chemical Cells and concentration cells, Cells with transference and without transference, Expression			modes of vibrations for linear and non-linear	
CLASSIFICATION OF GALVANIC CELLS 2.1 Lewis concept of Activity and Activity coefficient, Mean ionic activity and mean ionic activity coefficient of an electrolyte, ionic strength of a solution, Debye-Huckel limiting law. 2.2. Classification of galvanic cells: Chemical Cells and concentration cells, Cells with transference and without transference, Expression			molecules.	
2.1 Lewis concept of Activity and Activity coefficient, Mean ionic activity and mean ionic activity coefficient of an electrolyte, ionic strength of a solution, Debye-Huckel limiting law. 2.2. Classification of galvanic cells: Chemical Cells and concentration cells, Cells with transference and without transference, Expression		II	ELECTROCHEMISTRY- III:	(15L)
coefficient, Mean ionic activity and mean ionic activity coefficient of an electrolyte, ionic strength of a solution, Debye-Huckel limiting law. 2.2. Classification of galvanic cells: Chemical Cells and concentration cells, Cells with transference and without transference, Expression			CLASSIFICATION OF GALVANIC CELLS	
activity coefficient of an electrolyte, ionic strength of a solution, Debye-Huckel limiting law. 2.2. Classification of galvanic cells: Chemical Cells and concentration cells, Cells with transference and without transference, Expression			2.1 Lewis concept of Activity and Activity	
of a solution, Debye-Huckel limiting law. 2.2. Classification of galvanic cells: Chemical Cells and concentration cells, Cells with transference and without transference, Expression			coefficient, Mean ionic activity and mean ionic	
2.2. Classification of galvanic cells: Chemical Cells and concentration cells, Cells with transference and without transference, Expression)-`	activity coefficient of an electrolyte, ionic strength	
Cells and concentration cells, Cells with transference and without transference, Expression			of a solution, Debye-Huckel limiting law.	
transference and without transference, Expression	VQ.		2.2. Classification of galvanic cells: Chemical	
			Cells and concentration cells, Cells with	
for EME of each type of cell			transference and without transference, Expression	
for Elvir of each type of cen.	0-,		for EMF of each type of cell.	
2.3 Origin of liquid junction potential and its			2.3 Origin of liquid junction potential and its	
elimination.		1		

	2.4. Determination of solubility product and	
	solubility of a sparingly soluble salt by Chemical	
	cell and by Concentration cell.	.16
	2.5 Determination of liquid junction potential.	
III	COLLIGATIVE PROPERTIES AND	(15L)
	CHEMICAL KINETICS – II	5
	3.1 COLLIGATIVE PROPERTIES	(09L)
	3.1.1 Colligative properties, Raoult's	
	law.	
	3.1.2 Relative lowering of vapour	
	pressure.	
	3.1.3 Elevation of boiling point –	
	Thermodynamic derivation for relation	
	between elevation of boiling point and	
	molality.	
	3.1.4 Depression in freezing point-	
	Thermodynamic derivation for relation	
	between depression in freezing point and	
	molality	
	3.1.5 Osmosis and Osmotic Pressure –	
	Determination of molar mass form	
	Osmotic pressure.	
	Abnormal molar masses of solute, van't Hoff	
4.0-	factor (Degree of dissociation and degree of	
	association).	
70	Reverse osmosis.	
	3.2 CHEMICAL KINETICS-II	(06L)

		3.2.1 Recapitulation, Collision theory of reaction	
		rates, applications of collision theory to	
		bimolecular reaction and unimolecular	
		reaction (Lindemann's theory), Merits and	.16
		demerits of Collision theory. Steric factor	
		and Probability factor.	(0)
		3.2.2 Activated complex theory of bimolecular	
		reactions. Merits of Activated complex	
		theory.	
		3.2.3 Classification of reactions- slow, fast and	
		ultra fast, study of kinetics of fast reactions	
		by Stop Flow method.	
	IV	SURFACE CHEMISTRY, CATALYSIS AND	(15L)
		CHEMISTRY OF COLLOIDS	
		4.1: Surface Chemistry and Catalysis	(08L)
		4.1.1 Adsorption: Physical and Chemical	
		Adsorption, Types of adsorption isotherms,	
		Langmuir's adsorption isotherm. B.E.T. equation	
		for multilayer adsorption, determination of surface	
		area of an adsorbent using B.E.T. equation.	
		4.1.2. Catalysis: Homogeneous and heterogeneous	
		catalysis, catalytic activity and selectivity,	
		promoters, inhibitors, catalyst poisoning and	
		deactivation.	
	D	4.1.2.1 Acid catalysis and Base catalysis,	
)- ·		
10 J)- ·	4.1.2.1 Acid catalysis and Base catalysis,	
Mal	D -	4.1.2.1 Acid catalysis and Base catalysis, mechanism and kinetics of acid and base catalysed reactions, effect of pH on acid	
Willgr). 	4.1.2.1 Acid catalysis and Base catalysis, mechanism and kinetics of acid and base catalysed reactions, effect of pH on acid and base catalysed reactions.	
illilar)- ·	4.1.2.1 Acid catalysis and Base catalysis, mechanism and kinetics of acid and base catalysed reactions, effect of pH on acid	

4.2 COLLOIDS	(07L)
4.2.1 Introduction to colloidal state of matter	r.
4.2.2 Origin of charge on colloidal par	ticles.
Concept of electrical double layer, zeta pote	ential,
Helmholtz and Stern model, electro k	tinetic
phenomena: electrophoresis, electro-osr	nosis,
streaming potential and sedimentation poten	tial.
4.2.3 Colloidal electrolytes.	19
4.2.4 Donnan Membrane Equilibriu	um.
4.2.5 Surfactants, Micelle formatio	on,
application of surfactants in detergen	its,
food industry and pesticide formulati	ions.

Course Code: RUSCHE502 <u>Course Title : CHEMISTRY-II</u> Academic year 2020-21

Course outcomes:

After studying this course, the learner will be able to:					
CO 1	Identify the elements of symmetry.				
CO 2	Assign point groups to molecules.				
CO 3	orrelate between bond angle and molecular orbitals.				
CO 4	Understand band theory and its application to metals.				
CO 5	Depict structure of solids and their defects.				
CO 6	Compare various aspects of lanthanides and actinides.				
CO 7	Describe properties and application of Uranium.				
CO 8	Distinguish between properties of Xenon and other noble gases.				

RUSCHE502		CHEMISTRY-II	Credits-2.5
	Unit	Unit Title	Lectures
	I	Molecular Symmetry and Chemical Bonding	(15L)
		1.1 Molecular Symmetry	(07L)
		1.1.1 Introduction and Importance of symmetry in	
		chemistry.	
		1.1.2 Symmetry elements and symmetry operations.	
		1.1.3 Concept of a Point Group with illustrations	
		using the following point groups: (i) $C_{\alpha \nu}$ (HCl), (ii)	
		$D_{\alpha h}$ (H ₂),(iii) C_2v (H ₂ O), (iv) C_{3v} (NH ₃), (v)	
		$C_{2h}(trans-trichloroethylene)$, and (vi) $D_{3h}(BCl_3)$.	
		1.2 Molecular Orbital Theory for Polyatomic	(05L)
		Species	
		1.2.1 Simple triatomic species: H_3^+ and H_3	
		(correlation between bond angle andMolecular	
		orbitals).	
		1.2.2 Other molecules (considering only σ -	
		bonding): i) BeH ₂ , ii) H ₂ O iii) CH ₄	
9		1.3 Metallic Bonding	(03L)
.9		Band theory, explanation of electrical properties	
	5	of conductors, insulators and semi conductors,	
~()		intrinsic and extrinsic semiconductors.	
	II	Solid State Chemistry and Superconductivity	(15L)
$\langle \langle \rangle \rangle$		2.1 Structures of Solids	(11L)
		2.1.1 Terms involved: crystal lattice, lattice	
		points, unit cells and lattice constants.	

	2.1.2 Closest packing of rigid spheres (hcp, ccp),	
	packing density in simple cubic, bcc, fcc and hcp	
	lattices (numerical problems expected).	. 0
	2.1.3 Stoichiometric point defects in solids:	1//
	Frenkel and Schottky defects.	
	2.2 Superconductivity	(04L)
	2.2. 1 Discovery of superconductivity.	\cup
	2.2.1 Superconductivity, transition temperature	
	and Meissner effect.	
	2.2.2 Different types of superconductors viz,	
	conventional superconductors, alkali metal	
	fullerides (A_3C_{60}) and high temperature	
	Superconductors.	
	2.2.3 Applications of superconducting materials.	
I	II Chemistry of f-block elements	(15L)
	3.1 Introduction: Definition, position in periodic	(01L)
	table and electronic configuration of lanthanides	
	and actinides.	
	3.2 Chemistry of Lanthanides	(11L)
	3.2.1 Lanthanide contraction and its	
	consequences.	
	3.2.2 Oxidation states.	
	3.2.3 Magnetic and spectral properties.	
	3.2.4 Occurrence, extraction and separation of	
	lanthanides by Solvent extraction.	
~(0-)	3.2.5 Applications of lanthanides.	
	3.3 Chemistry of Actinides	(03L)
	3.3.1 Comparison between lanthanides and	
	actinides.	
5		

3.3.2 Chemistry of Uranium and with reference to	
occurrence and isolation (solvent extraction	d
method)	. 0
3.3.2 Properties and applications of Uranium.	1/10
Non Aqueous Solvents and Chemistry of	(15L)
Pseudohalogens, Interhalogens and Xenon	
4.1 Chemistry of Non-aqueous Solvents	(07L)
Classification of solvents and importance of non-	
aqueous solvents.	
4.1.1 Super critical carbon dioxide and ionic	
liquids as solvents	
4.1.2 Characteristics and study of liquid ammonia,	
dinitrogentetraoxide as non-aqueous solvents with	
respect to i) acid base reactions and ii) redox	
reactions.	
4.2 Chemistry of Interhalogens:	(03L)
Introduction, preparation, reactions and structures.	
4.3 Chemistry of pseudohalogens:	(03L)
Introduction, preparation, reaction and structures	
4.4 Chemistry of Xenon:	(02L)
Introduction, Compounds of Xenon: Oxides,	
fluorides, oxyfluorides w.r.t. preparation ,	
properties and bonding.	
	occurrence and isolation (solvent extraction method) 3.3.2 Properties and applications of Uranium. Non Aqueous Solvents and Chemistry of Pseudohalogens, Interhalogens and Xenon 4.1 Chemistry of Non-aqueous Solvents Classification of solvents and importance of non-aqueous solvents. 4.1.1 Super critical carbon dioxide and ionic liquids as solvents 4.1.2 Characteristics and study of liquid ammonia, dinitrogentetraoxide as non-aqueous solvents with respect to i) acid base reactions and ii) redox reactions. 4.2 Chemistry of Interhalogens: Introduction, preparation, reactions and structures. 4.3 Chemistry of pseudohalogens: Introduction, preparation, reaction and structures 4.4 Chemistry of Xenon: Introduction, Compounds of Xenon: Oxides, fluorides, oxyfluorides w.r.t. preparation ,

Course Code: RUSCHE503 Course Title: CHEMISTRY-III Academic year 2020-21

Course Outcomes:

After s	After studying this course, the learner will be able to:				
CO 1	Apply fundamentals of Organic Reaction Mechanism to various reactions.				
CO 2	Compare various conformations of some organic compounds				
CO 3	Apply the concepts of stereochemistry to Organic reactions.				
CO 4	Assign IUPAC names to spiro, bicyclo and heterocyclic compounds.				
CO 5	Understand Basics of Polymer Chemistry.				
CO 6	Illustrate basics of Green Chemistry to Organic Synthesis.				

RUSCHE503		CHEMISTRY-III	Credits-2.5
	Unit	Unit Title	Lectures
	I	Mechanism of Organic Reactions	(15L)
		1.1 Recapitulation: Curved arrows, intermediates,	
		transition states, Electrophilicity vs acidity and	
		nucleophilicity vs basicity.	
		1.2 Elimination Reactions: Mechanisms and	
		stereochemistry.	
		1.2.1 E ₁ and E ₂ Mechanisms, factors influencing	
	0	the mechanism: nature of substrate, leaving group,	
		structure of base, solvent; Saytzeff and Hofmann	
100		elimination; elimination vs substitution.	
		1.2.2 E ₁ CB mechanism	
		1.2.3 Pyrolytic elimination: Cope, Chugaev,	
0.		pyrolysis of acetates.	

	1.3 Neighbouring group participation in nucleophilic substitution reactions: partcipation of lone pair of electrons, kinetics and stereochemical outcome. 1.4 Acyl nucleophilic substitution (Tetrahedral mechanism): Acid catalysed esterification of carboxylic acids and base promoted hydrolysis of esters (B _{AC} 2). 1.5 Mechanism of following rearrangements with examples and stereochemistry wherever applicable.	
	 1.5.1 Migration to electron deficient carbon: Pinacol, Benzylic acid. 1.5.2 Migration to electron deficient nitrogen: Beckmann, Hofmann. 1.5.3 Migration involving a carbanion: Favorski. 2.3 Name reactions: Michael, Wittig (mechanism and examples). 	
II	Stereochemistry	(15L)
	2.1 Molecular chirality and element of symmetry: Mirror Plane symmetry, inversion centre, rotation- reflection (alternating) axis. Chirality of compounds without stereogenic centre: cummulenes, spirans and biphenyls. 2.2 Conformations of cyclohexane, mono, disubstitutedcyclohexanes and their relative stabilities 2.3 Stereo selectivity and Stereo specificity: Idea of enantioselectivity (ee) and diastereoselectivity	

		(de). Topicity- enantiotopic and diastereotopic	
		atoms, groups and faces.	
		2.4 Stereochemistry of:	
		2.4.1 Substitution reactions- S_N^1 , S_N^2 , S_N^i	
		(reaction of alcohol with thionyl chloride).	
		2.4.2 Elimination reactions: E ₂ -Base induced	
		dehydrohalogenation of 1-bromo-1,2-	
		diphenylpropane.	
		2.4.3 Addition reactions to olefins- i) catalytic	
		hydrogenation ii) bromination (electrophilic anti	
		addition) (iii) synhydroxylation with OsO4 and	
		KMnO ₄ . iv) epoxidation followed by hydrolysis.	
	III	IUPAC Nomenclature and Chemistry of	(15L)
		Polymers	
		3.1 IUPAC Nomenclature	(06L)
		IUPAC systematic nomenclature of the following	
		classes of compounds (including substituted ones	
		up to two substituents/ functional groups):	
		3.1.1 Bicyclic compounds- spiro, fused, and	
		bridged (upto 11carbon atoms) - saturated and	
		unsaturated compounds.	
		3.1.2 Biphenyls.	
•		3.1.3 Cummulenesupto three double bonds.	
.0		3.2 Polymers	(09L)
	J-	3.2.1 Introduction: Review of terms: monomer,	
3)		polymer, homopolymer, copolymer,	
100		thermoplastics and thermosets.	
		3.2.2 Addition polymers: polyethylene,	
		polypropylene, Teflon, PVC and polystyrene.	
		Uses, recycling	
		, ,	

	3.2.3 Condensation polymers: polyesters,	
	polyamides, polyurethanes, polycarbonates and	Č
	phenol-formaldehyde resins. Uses	. 0
	3.2.4 Mechanism of free radical addition	
	polymerization.	
	3.2.5 Stereochemistry of polymers: Tacticity.	
	Mechanism and stereochemical control of	
	polymerization using Ziegler-Natta catalyst	
	3.2.6 Natural and synthetic rubbers:	
	polymerization of isoprene: 1,2- and 1,4- addition	
	(cisand trans), styrene- butadiene copolymer.	
	3.2.7 Additives to polymers: Plasticizers,	
	stabilizers and fillers.	
	3.2.8 Biodegradable polymers: Classification and	
	uses. Polylactic acid- structure, properties and use	
	for packaging and medical purposes.	
	(Note: Identification of monomer in a given	
	polymer and the structure of a polymer from given	
	monomer(s) is expected. Conditions for	
	isomerisation not expected).	
IV	Synthesis of Organic compounds	(15L)
	4.1 Introduction: Criteria for ideal organic	
.7	synthesis. Calculation of yields.	
	Concept of selectivity: Linear and convergent	
~(0)	synthesis, Multi-component reactions: Mannich	
	reaction, Hanztsch synthesis.	
	4.2 Introduction to retrosynthesis: Analysis and	
201.	synthesis, technical terms: target molecules (TM),	
	retrosynthetic analysis, FGA, FGI, Disconnection,	

synthon and reagent. Retrosynthtic analysis of Limonene, Salbutamol and Proparacaine.

- 4.3 Green chemistry and synthesis:
- 4.3.1 Introduction to green chemistry: definition, need for and importance of green synthesis, Twelve principles of green chemistry, Atom economy and E-factor calculations and their significance.
- 4.3.2 Green synthesis in industry:

Green starting materials: D-glucose to adipic acid.

Green reagents: Selective methylation of active methylene using dimethyl carbonate.

Green solvent: Supercritical CO₂, deep eutectic solvents (DES).

Green catalyst: Heterogeneous catalysis using tellurium, biocatalysis.

Green synthesis of paracetamol.

4.4 Other methods of organic synthesis

Microwave assisted organic synthesis (Using organic solvents and in solid state).

Ultrasound in organic synthesis, Phase transfer catalysis. Polymer supported synthesis: Merrifield polypeptide synthesis.

Course Code: RUSCHE504 Course Title: CHEMISTRY-IV

Academic year 2020-21

Course Outcomes:

After co	mpleting this course, the learner will be able to:
CO 1	Elaborate on the need and importance of sampling and the various methods used for
	sampling of solid, liquids and gases.
CO 2	Evaluate the analytical data in terms of statistics.
CO 3	Interpret the sources of random errors and their effect on analytical results.
CO 4	State the significance of confidence limits in the error analysis.
CO 5	Specify the standard deviation of calculated results.
CO 6	Explain the Q-test for rejection of data.
CO 7	Outline a procedure for the application of null hypothesis to the data.
CO 8	Discuss the importance of graphical representation of data.
CO 9	Describe the different methods used for locating endpoints in precipitation titrations.
CO 10	Classify the different types of solvents used for non-aqueous titrations with respect to
	their acid base properties.
CO 11	Illustrate the effect of dielectric constant and nature of solvent on solute behaviour in
	non aqueous titrations.
CO 12	Explain the basic principle involved in AAS, AES, fluorescence, phosphorescence,
	turbidimetry and nephelometry.
CO 13	Describe the function of different components of AAS,flame photometer
	,Fluorimeter, Phosphorimeter, Turbidimeter and nephelometer.
CO 14	List the factors affecting fluorescence and phosphorescence and also the factors
	affecting scattering of light in turbidimetry and nephelometry.
CO 15	Relate fluorescence intensity with concentration

RUSCHE504		CHEMISTRY-IV	Credits-2.5
	Unit	Unit Title	Lectures
	I	Sampling and Treatment of Analytical Data	(15L)
		1.1 Sampling:	(07L)
		1.1.1 Sampling, need and importance, terms	
		involved, sampling techniques, non-random and	3
		random sampling, sequential sampling,)*
		1.1.2 Sampling of gases, precautions, methods	
		used, pressure and temperature sampling	
		1.1.3 Sampling of liquids, sample thief,	
		homogeneous and heterogeneous liquids,	
		stationary and flowing liquids,	
		1.1.4 Sampling of solids, bulk ratio, size to weight	
		ratio,	
		1.1.5 Sampling and equipment for sampling of	
		compact solids, powdered solids,	
		flowing solids and particulate solids.	
		1.1.6 Methods of reduction of the size of the	
		sample	
		1.1.7 Preservation of sample, dissolution of the	
		samples, use of fluxes	
(0-	1.2 Treatment of analytical data	(08L)

		1.2.1 Collection and processing of data, concept of	
		classes, and class frequencies, histogram and	
		frequency polygon.	. 0
		1.2.3 Distribution of random errors, Gaussian	
		distribution curve and its salient features.	
		1.24 Concept of confidence limits and	
		confidence interval, computation of both by using	
		range, student's t and population standard	
		deviation.	
		1.2.5 Criterion for the rejection of a result,	
		empirical methods like 2.5 d and 4.0 d rule,	
		statistical approach.	
		1.2.6 Testing for significance, null hypothesis,	
		variance ratio test.	
		1.2.7 Graphical presentation of results, scatter	
		diagram, regression analysis, method of averages,	
		least square method for line of the type $y = mx +$	
		c and $y = mx$	
		1.2.8 Significant figures and their use in data	
		treatment.	
	II	Titrimetric analysis	(15L)
		2.1 Redox Titrations	(04L)
		2.1.1 General introduction, theory of redox	
.0		indicators,	
()		2.1.2 criterion for choosing an indicator for a	
		redox titration,	
		2.1.3 Construction of the titration curves in the	
		case of	
		i) Fe(II) vsCe(IV) ii) Fe(II) vs Cr ₂ O ₇ ²⁻	

	 2.1.4 Use of diphenyl amine and ferroin as redox indicator. 2.2 Precipitation titrations 2.2.1 Basic principles of precipitation titrations 2.2.2 Argentimetric titrations, construction of the titration curve for the titration of sodium chloride with silver nitrate. 2.2.3 Mohr's method 2.2.4 Volhard's method 	(04L)
	2.2.5 Adsorption indicators, examples and uses.	
	2.3 Complexometric titrations	(04L)
	2.3.1 General introduction of complexometric	
	titrations	
	2.3.2 EDTA titrations	
	2.3.2.1 EDTA as a chelating agent, structure of the	
	chelate, characteristic features of the metal EDTA	
	complexes.	
	2.3.2.2 Stability constant of the EDTA complexes,	
	conditional stability constants, construction of the	
	titration curve in the titration of a metal ion with	
	EDTA with the example of Ca ²⁺ .	
•	2.3.2.3 Types of EDTA titrations.	
	2.3.2.4 Methods of improving the selectivity of	
₹. C	EDTA titrations.	
	2.3.2.5 Metallochromic indicators	
VO.	2.4 Non-aqueous titrations	(03L)
	2.4.1 Need for non-aqueous titrations,	
	2.4.2 Types of solvents, choice of the solvent for	
	the non-aqueous titrations,	
	2.4.3 Acid base titrations in non-aqueous media,	

	2.4.4 Use of glacial acetic acid as the solvent in	
	non-aqueous titrations, non-aqueous	
	titrations with a visual indicator using an	116
	instrument	
	2.4.5 Advantages and limitations.	
III	Optical Methods	(15L)
	3.1 Atomic Absorption Spectroscopy (AAS)	(05L)
	3.1.1 Atomic energy level diagram, characteristic	
	features of atomic spectra.	
	3.1.2 Basic principles of Atomic Absorption	
	Spectroscopy, steps involved in the process of	
	atomization.	
	3.1.3 Instrumentation: Components-hollow	
	cathode lamp, chopper, types of atomizers: (i)	
	premix burner (ii) total consumption burner (iii)	
	electrothermal atomizers.	
	3.1.4 Qualitative and quantitative analysis,	
	calibration curve and standard addition method.	
	3.1.5 Applications of Atomic Absorption	
	Spectroscopy.	
	3.2 Atomic Emission Methods	(04L)
	3.2.1 Flame emission: basic principles of flame	
(0-	photometry	
	3.2.2 Instrumentation, flames and burners,	
00	detectors,	
	3.2.3 Qualitative and quantitative analysis,	
	calibration curve, standard addition and internal	
) -'	standard method	
	3.2.4 Applications of flame photometry.	

	3.2.5 Comparison of atomic absorption and atomic	
	emission methods	(2)
	3.3 Fluorescence and phosphorescence	(03L)
	spectroscopy	100
	3.3.1 Basic principles of fluorescence and	
	phosphorescence, Jablonski diagram and its	
	utility, factors affecting fluorescence and	
	phosphorescence	
	3.3.2 Relation between fluorescence intensity and	
	concentration	
	3.3.3 Instrumentation of fluorimetry and	
	phosphorimetry	
	3.3.4 Applications of fluorimetry and	
	phosphorimetry	
	3.3.5 Comparison of fluorimetry and	
	phosphorimetry	
	3.3.6 Comparison of absorption and fluorimetric	
	techniques.	
	3.4 Nephelometry and turbidimetry	(03L)
	3.4.1 Scattering of radiation, basic principles of	
	nephelometry and turbidimetry,	
	3.4.2 Factors affecting scattering of radiation,	
x O-	particle size, wavelength, concentration, refractive	
	index.	
VO.	3.4.3 Instrumentation in nephelometry and	
	turbidimetry.	
	3.4.4 Applications of both techniques.	
IV	Miscellaneous Methods	(15L)
	4.1 Thermal Methods	(04L)

	4.1.1 Introduction to thermal methods,	
	classification of thermal methods,	
	4.1.2 Thermo gravimetric analysis, thermogram,	. 0
	factors affecting the thermogravimetric curve	1//
	4.1.3 Instrumentation, components, thermo	
	balance, furnace, sample holder, recorder,	
	measurement of temperature	
	4.1.4 Applications, limitations.	
	4.2 Radioanalytical techniques	(04L)
	4.2.1 Neutron Activation Analysis (NAA)	
	4.2.1.1 Basic principles, characteristic features,	
	operational procedure	
	4.2.1.2 Advantages, limitations and application of	
	NAA.	
	4.2.2 Isotope Dilution Analysis (IDA)	
	4.2.2.1 Basic principles, operational procedure	
	4.2.2.2 Applications, advantages and limitations	
	of IDA	
	4.3 Mass spectrometry	(04L)
	4.3.1 Basic principles	
	4.3.2 Instrumentation, components, sources,	
	analysers, detectors.	
	4.4 Method validation	(03L)
	4.4.1 Need and significance of method validation	
	4.4.2 Parameters chosen for method validation	
~0.	4.4.3 Procedure for method validation	

Semester V Practicals

RUSCHEP501	Credits-03
CHI	EMISTRY-I
Phy	sical Chemistry
	. To study the effect of ionic strength on the rate of reaction between $K_2S_2O_8 \mbox{and}$
	KI using KCl.
	2. To study the rate of adsorption of acetic acid on activated charcoal.
	3. To study the relative strength of acetic acid and monochloroacetic acid.
	4. To determine pK_1 and pK_2 of phosphoric acid by pH -metry.
	5. To determine the amount of weak dibasic by conductometric titration.
	5. To determine the standard reduction potential of Cu ²⁺ /Cu electrode at room
	temperature.
CH	EMISTRY-II
	ganic preparations
	otassium diaquobis- (oxalate)cuprate(II)K2[Cu(C2O4)2.(H2O]
	is(ethylenediamine)iron(II)sulphate[C2H4(NH2)2FeSO4.4H2O].
	imetric analysis
	etermination of magnesium from the supplied commercial sample of Milk of
	nesia tablet
	stimation of Nickel(II) complexometrically using murexide indicator
	rners are expected to standardize supplied EDTA solution using ZnSO4.7H20)
	stimation of copper(II) complexometrically using fast sulphon black-F indicator
	rners are expected to standardize supplied EDTA solution using ZnSO4.7H20)
RUSCHEP502 CH	EMISTRY-III
I) B	inary Mixture Separation: Separation of mixture containing (VL + NVL) &
(VL	+ S) components.
1. M	inimum Six mixtures to be completed by the learners.

- 2. Components of the liq-liq mixture should include volatile liquids like acetone, methylacetate, ethylacetate, isopropylalcohol, methyl alcohol, ethyl alcohol, chloroform and non- volatile liquids like chlorobenzene, bromobenzene, aniline, N,N-dimethylaniline, acetophenone, nitrobenzene, ethyl benzoate.
- 3. Components of the liq- solid mixture should include volatile liquids like acetone, methylacetate, ethylacetate, ethyl alcohol, methyl alcohol, isopropylalcohol, chloroform and solids such as water insoluble acids, phenols, bases, neutral.
- 4. A sample of the mixture one ml to be given to the learnerfor detection of the physical type of the mixture.
- 5. After correct determination of physical type, separation of the binary mixture to be carried out by distillation method using microscale technique.
- 6. After separation into component A and component B, the physical constants and the yield of the separated components is to be determined.

II) Organic Preparations:

- 1. Acetylation of hydroquinone.
- 2. Bromination of acetanilide.
- 3. Hydrolysis of ethyl benzoate.
- 4. Nitration of acetanilide.
- 5. Microwave assisted synthesis of Schiff's base from aniline and panisaldehyde.
- 6. Microwave assisted synthesis of coumarin by Knoevenagel reaction from salicylaldehyde andethylacetoacetate in presence of a base.

CHEMISTRY-IV:

- 1. Determination of the amount of fluoride in the given solution colorimetrically.
- 2. Estimation of Vitamin C content of a given tablet by titration with sodium hydroxide pH metrically
- 3. To determine potassium content of a commercial salt sample by flame photometry.

- 4. To determine the amount of chloride in the given sample using Mohr's method.
- **5.** To determine the amount of persulphate in the given sample by back titration with standard Fe(II) ammonium sulphate solution.
- **6.** To estimate Fe(II) in a tablet using diphenylamine as an indicator.

Modality of Assessment

Theory Examination Pattern:

A) Internal Assessment - 40% of total marks:

(40 marks)

Sr No	Evaluation type	Marks
1	One Assignment	10
2	One class Test (multiple choice questions / objective)	20
3	Active participation in routine class instructional deliveries (seminars//presentation)	05
4	Overall conduct, participation in co-curricular activities of the department.	05

B) External examination - 60 %

Semester End Theory Assessment - 60%

60 marks

- 1. Duration: These examinations shall be of **two hours** duration.
- 2. Theory question paper pattern is as follows:-

There shall be **Four** questions each of **15** marks. On each unit there will be one question. All questions shall be compulsory with internal choice within the questions.

Questions	Options	Marks	Questions on
Q.1)A)	Any 3 out of 5	12	Unit I
Q.1)B)	Any 1 out of 2	03	Ullit I
Q.2)A)	Any 3 out of 5	12	Unit II
Q.2)B)	Any 1 out of 2	03	Unit II
Q.3)A)	Any 3 out of 5	12	Unit III
Q.3)B)	Any 1 out of 2	03	Omit m
Q.4)A)	Any 3 out of 5	12	Unit IV
Q.4)B)	Any 1 out of 2	03	Oill IV

Practical Examination Pattern:

(A)Internal Examin	ation: -				
	RUSC	HEP501	RUSC	RUSCHEP502	
	Paper I	Paper II	Paper III	Paper IV	
Journal	05	05	05	05	
Tests	10	10	10	10	
Active Participation	05	05	05	05	
Total	20	20	20	20	
(B) External (Seme	ster end practi	cal examination):-		
Laboratory work	25	25	25	25	
Viva	05	05	05	05	
Total	30	30	30	30	
Grand Total 100 100					

PRACTICAL JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.

In case of loss of Journal, Certificate from Head/ Co-ordinator should be submitted, failing which the student will not be allowed to appear for the practical examination.

Overall Examination and Marks Distribution Pattern

Course	501			502			Grand Total
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practical	20	30	50	20	30	50	100
					•	•	
Course		503			504		
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practical	20	30	50	20	30	50	100
				•	•	(Total Ma	rks : 600)

SEMESTER VI Course Code: RUSCHE601 Course Title: CHEMISTRY-I Academic year 2020-21

Course Outcomes:

After studying this course, the learner will be able to:				
CO 1	Understand the basic principles of Nuclear Magnetic Resonance spectroscopy			
CO 2	Classify polymers based on various parameters			
CO 3	Determine overvoltage and decomposition potential			
CO 4	Illustrate the use of X-rays in the study of solid state			
CO 5	Differentiate between nuclear fission and nuclear fusion processes			
CO 6	Understand the basic operations used in Quantum Chemistry.			

RUSCHE601		CHEMISTRY-I	Credits-2.5
	Unit	Unit Title	Lectures
	I	Nuclear Magnetic Resonance Spectroscopy and	(15L)
		Polymer Chemistry	
		1.1: Nuclear Magnetic Resonance Spectroscopy	(08L)
		1.1.1. Nuclear spin, magnetic moment, criteria for	
	5	nuclei to be NMR active, energy levels, Larmor	
A		precession, Relaxation processes in NMR (spin-spin	
		relaxation and spin-lattice relaxation).	
		1.1.2. NMR Spectrometer, chemical shift, shielding	
~0.		and deshielding ofprotons, low resolution NMR	
		spectrum, high resolution NMR spectrum.	
		1.2 Polymers	(07L)

	1.2.1 Classification of polymers based on 1) source,	
	2) structure, 3)thermal response, 4) Physical	
	properties	
	1.2.2 Molar mass of polymers: 1) Number average	116
	molar mass, 2) Weight average molar mass, 3)	
	Viscosity average molar mass, monodispersity,	0
	polydispersity, polydisperity index	
	1.2.3 Methods of determining molar mass of	
	polymers: 1) Ultracentrifugation method 2)	
	Viscosity method of Viscosity average molar mass,	
	Mark-Houwink equation.	
II	Electrochemistry – IV And Crystalline State	(15L)
	2.1electrochemistry-IV:Decomposition Potential,	(08L)
	Overvoltage And Electroplating	
	2.1.1 Polarization, concentration polarization and its	
	elimination.	
	2.1.2 Decomposition potential and its experimental	
	determination, factors affecting decomposition	
	potential.	
	2.1.3 Over voltage and its experimental	
	determination, factors affecting overvoltage.	
	2.1.4 Tafel's equation for hydrogen overvoltage	
	2.1.5 Electroplating – Objectives and process	
	2.2 Crystalline State	(07L)
	2.2.1. Recapitulation: Laws of Crystallography	
	2.2.2. Characteristics of simple cubic, face centered	
	and body centered cubic system, inter planar	
	distance in cubic lattices.	
	2.2.3 Use of X- rays in the study of crystal structure,	
5	Bragg's equation, X- ray diffraction method of	

	studying crystal lattices, structure of NaCl,	
	Determination of Avogadro number.	
III	Nuclear Chemistry	(15L)
	3.1 Structure of Nucleus.	11/6
	3.2 Nuclear disintegration/ Nuclear radioactivity,	
	Types of nuclear radiations (α -ray, β -ray and γ -	
	ray).	
	3.3 Nuclear transmutation and Artificial	
	radioactivity, Nuclear transmutation with	
	different types of projectiles.	
	3.4 Kinetics of radioactivity: units of radioactivity,	
	expression of decay constant and its units, half	
	life of nuclear reactions.	
	3.5 Radioactive Equilibrium- 1) Secular 2) Transient;	
	Difference between chemical and radioactive	
	equilibrium.	
	3.6 Mode of decay of radioactive elements: 1)	
	emission of positrons 2) emission of	
	electrons 3) K-electron capture.	
	3.7 Energy involved in Nuclear reactions: Q-value	
4	and Threshold energy.	
	3.8 Nuclear Fission process and its Characteristics	
	features of nuclear fission process, Factors	
	affecting Nuclear Fission: 1) Multiplication	
(0.	Factor 2) Critical Mass	
	3.9 Fertile and fissile materials, conversion of fertile	
	material to fissile material.	
	3.10 Basic components of Nuclear Reactors,	
	Types of Nuclear Reactors: 1) Power Reactor	
0.	2)Breeder Reactor.	

	3.11 Nuclear Fusion - Characteristics; Mechanism of	
	nuclear fusion: 1) Carbon cycle 2) Proton cycle	
	3.12 Detection and measurement of radioactivity –	0
	GM Counter and Scintillation Detector	
	3.13: Applications of Radiochemistry: Carbon	
	dating, isotopic labelling.	
IV	Basics of Quantum Mechanics	(15L)
	4.1 Classical mechanics: limitations of classical	
	mechanics: 1) Black body radiation 2) photoelectric	
	effect 3) Compton Effect.	
	4.2 Introduction to quantum mechanics, Planck's	
	theory of quantization, wave particle duality,	
	de-Broglie equation, Heisenberg's uncertainty	
	principle.	
	4.3 The Schrodinger wave equation	
	4.3 Postulates of quantum mechanics 1) State	
	function and its significance 2) Concept of operators:	
	definition, addition, subtraction and multiplication of	
	operators, commutative and non-commutative	
	operators, linear operator, Hermitian operator 3)	
	Eigen function and eigen value, eigen value equation.	
	4) Wave mechanical operator for evaluating various	
	classical properties. 5) Expectation value.	
	4.4 Solution of the Schrodinger wave equation for a	
	simple system: Particle in one dimensional box.	

Course Code: RUSCHE602 <u>Course Title: CHEMISTRY-II</u> Academic year 2020-21

Course outcomes:

After st	After studying this course, the learner will be able to:				
CO 1	Compare and contrast between Crystal Field Theory and Valence Bond Theory				
CO 2	Calculate CFSE of complexes, and thus predict stability				
CO 3	Apply MOT to octahedral complexes				
CO 4	Carry out Spectral Analysis of Inorganic Compound: determine terms, term symbols				
	and Orgel Diagrams				
CO 5	Study Thermodynamic and Kinetic Stability of Complexes.				
CO 6	Differentiate between complexes based on their lability.				
CO 7	Describe general characteristics of Organometallic Compounds				
CO 8	Study Nanomaterials with respect to their synthesis and properties				

RUSCHE602		CHEMISTRY-II	Credits-2.5
	Unit	Unit Title	Lectures
	I	Coordination Chemistry	(15L)
		1.1 Theories of metal-ligand bond	(11L)
		1.1.1 Recapitulation of VBT and its limitations.	
	()	1.1.2 Crystal field theory and effect of crystal	
		field on central metal valence orbitals in various	
	0	geometries,	
3		1.1.3 Splitting of <i>d</i> orbitals in octahedral, square	
		planar and tetrahedral crystal fields	
		1.1.4 Distortions from the octahedral geometry :	
		i) Effect of ligand field ii) Jahn- Teller	
		distortions	

1.1.5 Crystal field splitting	g parameter, its
calculation and factors affecting	ng it in octahedral
complexes, Spectrochemical se	eries.
1.1.6 Crystal field stabilization	n energy (CFSE),
calculation of CFSE, for	octahedral and
tetrahedral complexes with d1	to d10 metal ion
configurations.	
1.1.7 Consequences of crystal	field splitting on
various properties such as ionic	c radii, hydration,
energy, lattice energy, enthalp	pies of formation,
colour and magnetic properties	
1.1.8 Limitations of CFT	
1.1.9: Evidences for cova	lence in metal
complexes: i) intensities of de	-d transitions, ii)
ESR spectrum of [IrCl ₆] ²⁻ ii	ii) Nephelauxetic
effect	
1.2 Molecular Orbital The	eory (MOT) of (04L)
Coordination Complexe	es:
Angliation to established com	wlaves in asses of
Application to octahedral com	
(i) [Ti(H2O)]3+, (ii) Fluoro con	
and Fe (III) and (iii) Cyano con	mplexes of Fe(II)
and Fe (III).	Q (4.57)
II Properties of Co-ordination (Compounds (15L)
2.1 Electronic Spectra	(07L)
2.1.1 Origin of electronic spec	etra
2.1.2 Types of electronic	transitions in
coordination compounds: intra	a- ligand, charge
transfer and intra-metal transiti	one
transfer and intra-metal transfer	ons.
2.1.3 Electronic configuration	

orbit coupling or Russell-Saunders coupling. 2.1.4 Determination of Terms for p² and d²electronic configuration 2.1.5 Terms and micro-states for transition metal atoms/ions. 2.1.6Orgel diagrams for D and F terms (i.e. d¹ to d⁰ electronic configurations in octahedral crystal fields) 2.1.7 Selection rules for electronic transitions: Spin and orbital forbidden transitions (Laporte selection rules) 2.2 Stability of Metal Complexes 2.2.1 Thermodynamic stability and kinetic stability of complexes with examples. 2.2.2 Stability constants: Stepwise and overall constants and their interrelationship. 2.2.3 Factors affecting thermodynamic stability (Factors related to nature of central metal atom, nature of ligand, chelate effect to be discussed) 2.3: Reactivity of Metal Complexes: 2.3.1 Comparison between inorganic and organic reactions 2.3.2 Types of reactions in metal complexes 2.3.3 Inert and labile complexes: Correlation between electronic configuration and lability of Complexes 2.3.4 Ligand substitution reactions: Associative and Dissociative mechanisms			momenta (Ms),orbital momenta (Ml)and spin-	
d²electronic configuration 2.1.5 Terms and micro-states for transition metal atoms/ions. 2.1.6Orgel diagrams for D and F terms (i.e. d¹ to d² electronic configurations in octahedral crystal fields) 2.1.7 Selection rules for electronic transitions: Spin and orbital forbidden transitions (Laporte selection rules) 2.2 Stability of Metal Complexes (04L) 2.2.1 Thermodynamic stability and kinetic stability of complexes with examples. 2.2.2 Stability constants: Stepwise and overall constants and their interrelationship. 2.2.3 Factors affecting thermodynamic stability (Factors related to nature of central metal atom, nature of ligand, chelate effect to be discussed) 2.3: Reactivity of Metal Complexes: (04L) 2.3.1 Comparison between inorganic and organic reactions 2.3.2 Types of reactions in metal complexes 2.3.3 Inert and labile complexes: Correlation between electronic configuration and lability of Complexes 2.3.4 Ligand substitution reactions: Associative			orbit coupling or Russell-Saunders coupling.	
2.1.5 Terms and micro-states for transition metal atoms/ions. 2.1.6Orgel diagrams for D and F terms (i.e. d¹ to d² electronic configurations in octahedral crystal fields) 2.1.7 Selection rules for electronic transitions: Spin and orbital forbidden transitions (Laporte selection rules) 2.2 Stability of Metal Complexes (04L) 2.2.1 Thermodynamic stability and kinetic stability of complexes with examples. 2.2.2 Stability constants: Stepwise and overall constants and their interrelationship. 2.2.3 Factors affecting thermodynamic stability (Factors related to nature of central metal atom, nature of ligand, chelate effect to be discussed) 2.3: Reactivity of Metal Complexes: (04L) 2.3.1 Comparison between inorganic and organic reactions 2.3.2 Types of reactions in metal complexes 2.3.3 Inert and labile complexes: Correlation between electronic configuration and lability of Complexes 2.3.4 Ligand substitution reactions: Associative			2.1.4 Determination of Terms for p^2 and	.16
atoms/ions. 2.1.6Orgel diagrams for D and F terms (i.e. d¹ to d⁰ electronic configurations in octahedral crystal fields) 2.1.7 Selection rules for electronic transitions: Spin and orbital forbidden transitions (Laporte selection rules) 2.2 Stability of Metal Complexes 2.2.1 Thermodynamic stability and kinetic stability of complexes with examples. 2.2.2 Stability constants: Stepwise and overall constants and their interrelationship. 2.2.3 Factors affecting thermodynamic stability (Factors related to nature of central metal atom, nature of ligand, chelate effect to be discussed) 2.3: Reactivity of Metal Complexes: (04L) 2.3.1 Comparison between inorganic and organic reactions 2.3.2 Types of reactions in metal complexes 2.3.3 Inert and labile complexes: Correlation between electronic configuration and lability of Complexes 2.3.4 Ligand substitution reactions: Associative			d^2 electronic configuration	
2.1.6Orgel diagrams for D and F terms (i.e. d¹ to d⁰ electronic configurations in octahedral crystal fields) 2.1.7 Selection rules for electronic transitions: Spin and orbital forbidden transitions (Laporte selection rules) 2.2 Stability of Metal Complexes (04L) 2.2.1 Thermodynamic stability and kinetic stability of complexes with examples. 2.2.2 Stability constants: Stepwise and overall constants and their interrelationship. 2.2.3 Factors affecting thermodynamic stability (Factors related to nature of central metal atom, nature of ligand, chelate effect to be discussed) 2.3: Reactivity of Metal Complexes: (04L) 2.3.1 Comparison between inorganic and organic reactions 2.3.2 Types of reactions in metal complexes 2.3.3 Inert and labile complexes: Correlation between electronic configuration and lability of Complexes 2.3.4 Ligand substitution reactions: Associative			2.1.5 Terms and micro-states for transition metal	(0)
d ⁹ electronic configurations in octahedral crystal fields) 2.1.7 Selection rules for electronic transitions: Spin and orbital forbidden transitions (Laporte selection rules) 2.2 Stability of Metal Complexes (04L) 2.2.1 Thermodynamic stability and kinetic stability of complexes with examples. 2.2.2 Stability constants: Stepwise and overall constants and their interrelationship. 2.2.3 Factors affecting thermodynamic stability (Factors related to nature of central metal atom, nature of ligand, chelate effect to be discussed) 2.3: Reactivity of Metal Complexes: (04L) 2.3.1 Comparison between inorganic and organic reactions 2.3.2 Types of reactions in metal complexes 2.3.3 Inert and labile complexes: Correlation between electronic configuration and lability of Complexes 2.3.4 Ligand substitution reactions: Associative			atoms/ions.	
fields) 2.1.7 Selection rules for electronic transitions: Spin and orbital forbidden transitions (Laporte selection rules) 2.2 Stability of Metal Complexes (04L) 2.2.1 Thermodynamic stability and kinetic stability of complexes with examples. 2.2.2 Stability constants: Stepwise and overall constants and their interrelationship. 2.2.3 Factors affecting thermodynamic stability (Factors related to nature of central metal atom, nature of ligand, chelate effect to be discussed) 2.3: Reactivity of Metal Complexes: (04L) 2.3.1 Comparison between inorganic and organic reactions 2.3.2 Types of reactions in metal complexes 2.3.3 Inert and labile complexes: Correlation between electronic configuration and lability of Complexes 2.3.4 Ligand substitution reactions: Associative			2.1.6 Orgel diagrams for D and F terms (i.e. d ¹ to	
2.1.7 Selection rules for electronic transitions: Spin and orbital forbidden transitions (Laporte selection rules) 2.2 Stability of Metal Complexes (04L) 2.2.1 Thermodynamic stability and kinetic stability of complexes with examples. 2.2.2 Stability constants: Stepwise and overall constants and their interrelationship. 2.2.3 Factors affecting thermodynamic stability (Factors related to nature of central metal atom, nature of ligand, chelate effect to be discussed) 2.3: Reactivity of Metal Complexes: (04L) 2.3.1 Comparison between inorganic and organic reactions 2.3.2 Types of reactions in metal complexes 2.3.3 Inert and labile complexes: Correlation between electronic configuration and lability of Complexes 2.3.4 Ligand substitution reactions: Associative			d ⁹ electronic configurations in octahedral crystal	
Spin and orbital forbidden transitions (Laporte selection rules) 2.2 Stability of Metal Complexes (04L) 2.2.1 Thermodynamic stability and kinetic stability of complexes with examples. 2.2.2 Stability constants: Stepwise and overall constants and their interrelationship. 2.2.3 Factors affecting thermodynamic stability (Factors related to nature of central metal atom, nature of ligand, chelate effect to be discussed) 2.3: Reactivity of Metal Complexes: (04L) 2.3.1 Comparison between inorganic and organic reactions 2.3.2 Types of reactions in metal complexes 2.3.3 Inert and labile complexes: Correlation between electronic configuration and lability of Complexes 2.3.4 Ligand substitution reactions: Associative			fields)	
2.2 Stability of Metal Complexes (04L) 2.2.1 Thermodynamic stability and kinetic stability of complexes with examples. 2.2.2 Stability constants: Stepwise and overall constants and their interrelationship. 2.2.3 Factors affecting thermodynamic stability (Factors related to nature of central metal atom, nature of ligand, chelate effect to be discussed) 2.3: Reactivity of Metal Complexes: (04L) 2.3.1 Comparison between inorganic and organic reactions 2.3.2 Types of reactions in metal complexes 2.3.3 Inert and labile complexes: Correlation between electronic configuration and lability of Complexes 2.3.4 Ligand substitution reactions: Associative			2.1.7 Selection rules for electronic transitions :	
2.2 Stability of Metal Complexes 2.2.1 Thermodynamic stability and kinetic stability of complexes with examples. 2.2.2 Stability constants: Stepwise and overall constants and their interrelationship. 2.2.3 Factors affecting thermodynamic stability (Factors related to nature of central metal atom, nature of ligand, chelate effect to be discussed) 2.3: Reactivity of Metal Complexes: (04L) 2.3.1 Comparison between inorganic and organic reactions 2.3.2 Types of reactions in metal complexes 2.3.3 Inert and labile complexes: Correlation between electronic configuration and lability of Complexes 2.3.4 Ligand substitution reactions: Associative			Spin and orbital forbidden transitions (Laporte	
2.2.1 Thermodynamic stability and kinetic stability of complexes with examples. 2.2.2 Stability constants: Stepwise and overall constants and their interrelationship. 2.2.3 Factors affecting thermodynamic stability (Factors related to nature of central metal atom, nature of ligand, chelate effect to be discussed) 2.3: Reactivity of Metal Complexes: (04L) 2.3.1 Comparison between inorganic and organic reactions 2.3.2 Types of reactions in metal complexes 2.3.3 Inert and labile complexes: Correlation between electronic configuration and lability of Complexes 2.3.4 Ligand substitution reactions: Associative			selection rules)	
stability of complexes with examples. 2.2.2 Stability constants: Stepwise and overall constants and their interrelationship. 2.2.3 Factors affecting thermodynamic stability (Factors related to nature of central metal atom, nature of ligand, chelate effect to be discussed) 2.3: Reactivity of Metal Complexes: (04L) 2.3.1 Comparison between inorganic and organic reactions 2.3.2 Types of reactions in metal complexes 2.3.3 Inert and labile complexes: Correlation between electronic configuration and lability of Complexes 2.3.4 Ligand substitution reactions: Associative			2.2 Stability of Metal Complexes	(04L)
2.2.2 Stability constants: Stepwise and overall constants and their interrelationship. 2.2.3 Factors affecting thermodynamic stability (Factors related to nature of central metal atom, nature of ligand, chelate effect to be discussed) 2.3: Reactivity of Metal Complexes: (04L) 2.3.1 Comparison between inorganic and organic reactions 2.3.2 Types of reactions in metal complexes 2.3.3 Inert and labile complexes: Correlation between electronic configuration and lability of Complexes 2.3.4 Ligand substitution reactions: Associative			2.2.1 Thermodynamic stability and kinetic	
constants and their interrelationship. 2.2.3 Factors affecting thermodynamic stability (Factors related to nature of central metal atom, nature of ligand, chelate effect to be discussed) 2.3: Reactivity of Metal Complexes: (04L) 2.3.1 Comparison between inorganic and organic reactions 2.3.2 Types of reactions in metal complexes 2.3.3 Inert and labile complexes: Correlation between electronic configuration and lability of Complexes 2.3.4 Ligand substitution reactions: Associative			stability of complexes with examples.	
2.2.3 Factors affecting thermodynamic stability (Factors related to nature of central metal atom, nature of ligand, chelate effect to be discussed) 2.3: Reactivity of Metal Complexes: (04L) 2.3.1 Comparison between inorganic and organic reactions 2.3.2 Types of reactions in metal complexes 2.3.3 Inert and labile complexes: Correlation between electronic configuration and lability of Complexes 2.3.4 Ligand substitution reactions: Associative			2.2.2 Stability constants: Stepwise and overall	
Factors related to nature of central metal atom, nature of ligand, chelate effect to be discussed) 2.3: Reactivity of Metal Complexes: (04L) 2.3.1 Comparison between inorganic and organic reactions 2.3.2 Types of reactions in metal complexes 2.3.3 Inert and labile complexes: Correlation between electronic configuration and lability of Complexes 2.3.4 Ligand substitution reactions: Associative			constants and their interrelationship.	
nature of ligand, chelate effect to be discussed) 2.3: Reactivity of Metal Complexes: (04L) 2.3.1 Comparison between inorganic and organic reactions 2.3.2 Types of reactions in metal complexes 2.3.3 Inert and labile complexes: Correlation between electronic configuration and lability of Complexes 2.3.4 Ligand substitution reactions: Associative			2.2.3 Factors affecting thermodynamic stability (
2.3: Reactivity of Metal Complexes: (04L) 2.3.1 Comparison between inorganic and organic reactions 2.3.2 Types of reactions in metal complexes 2.3.3 Inert and labile complexes: Correlation between electronic configuration and lability of Complexes 2.3.4 Ligand substitution reactions: Associative			Factors related to nature of central metal atom,	
2.3.1 Comparison between inorganic and organic reactions 2.3.2 Types of reactions in metal complexes 2.3.3 Inert and labile complexes: Correlation between electronic configuration and lability of Complexes 2.3.4 Ligand substitution reactions: Associative			nature of ligand, chelate effect to be discussed)	
reactions 2.3.2 Types of reactions in metal complexes 2.3.3 Inert and labile complexes: Correlation between electronic configuration and lability of Complexes 2.3.4 Ligand substitution reactions: Associative		5	2.3: Reactivity of Metal Complexes:	(04L)
 2.3.2 Types of reactions in metal complexes 2.3.3 Inert and labile complexes: Correlation between electronic configuration and lability of Complexes 2.3.4 Ligand substitution reactions: Associative 			2.3.1 Comparison between inorganic and organic	
2.3.3 Inert and labile complexes: Correlation between electronic configuration and lability of Complexes 2.3.4 Ligand substitution reactions: Associative			reactions	
between electronic configuration and lability of Complexes 2.3.4 Ligand substitution reactions: Associative			2.3. 2 Types of reactions in metal complexes	
Complexes 2.3.4 Ligand substitution reactions: Associative	VO.		2.3.3 Inert and labile complexes: Correlation	
2.3.4 Ligand substitution reactions: Associative			between electronic configuration and lability of	
			Complexes	
and Dissociative mechanisms			2.3.4 Ligand substitution reactions: Associative	
			and Dissociative mechanisms	

		2.3.5 Acid hydrolysis, base hydrolysis and	
		anation reaction	
	III	Organometallic Chemistry	(15L)
		3.1 Organometallic Compounds of main	(09L)
		group metals	
		3.1.1 General characteristics of various types of	
		Organometallic compounds, viz., ionic, sigma	
		bonded and electron deficient compounds)
		3.1.2 General synthetic methods: (i) Oxidative	
		addition (ii) Metal-Metal exchange	
		(Transmetallation) (iii) Carbanion-Halide	
		exchange (iv) Metal Hydrogen exchange (v)	
		Methylene insertion reactions.	
		3.1.3Chemical reactions: (i) Reactions with	
		oxygen (ii) Alkylation and arylation reactions	
		(iii) Reactions with protic reagents (iv) Complex	
		formation reactions.	
		3.2 Metallocenes	(04L)
		Introduction, Ferrocene; Synthesis, properties,	
		structure and bonding on the basis of VBT	
		3.3 d- bonding in rhenium and molybdenum	(02L)
•		halide complexes.	
	IV	Some Selected Topics	(15L)
(()	4.1 Nanomaterials	(08L)
		4.1.1Introduction and importance of	
		nanomaterials	
		4.1.2 Chemical methods of synthesis of	
		nanomaterials	
0-		4.1.3 Characterisation of Nanomaterials (UV and	
		XRD techniques)	

4.1.4 Dimensions and forms of Nanomaterials :	
Nano films, nano layers, nano tubes, nanowires	
and nano particles.	\ O
4.1.5 Properties (comparison between bulk and	
nano materials): 1. Optical 2. Electrical and 3.	
Mechanical properties	
4.2.Bio-inorganic and Medicinal Chemistry	(07L)
4.2.1 Metal Co-ordination in biological system:	
Enzymes, apoenzymes and Coenzymes.	
4.2.2 Metal complexes in medicine: cis- platin	
and gold complexes	
	1

Course Code: RUSCHE603
Course Title: CHEMISTRY-III
Academic year 2020-21.

Course Outcomes:

After studying this course, the learner will be able to:				
CO 1	Classify carbohydrates.			
CO 2	Study reactions shown by Glucose			
CO 3	Illustrate general applications of various catalysts and Reagents			
CO 4	Understand basic principles of Photochemistry			
CO 5	Know basics of Natural Product chemistry- Including Amino acids, nucleic acids etc			
CO 6	Apply Spectral techniques to Structure Determination			

RUSCHE603		CHEMISTRY-III	Credits-2.5
	Unit	Unit Title	Lectures
	I	Chemistry of Carbohydrates and Catalysts and	(15L)
		Reagents	.16
		1.1 Chemistry of Carbohydrates	(09L)
		1.1.1 Introduction: Classification, reducing and	
		non-reducing sugars, DL notation.)
		1.1.2 Structures of monosaccharides: Fischer	
		projection (4-6 carbon monosaccharides) and	
		Haworth formula (Furanose and pyranose forms of	
		pentoses and hexoses). Interconversion: open and	
		Haworth forms of monosaccharides with 5 and 6	
		carbons. Chair conformation with stereochemistry	
		of D-glucose. Stability of chair forms of D-	
		glucose.	
		1.1.3 Stereoisomers of D-glucose: Enantiomers	
		and diastereomers, anomers and epimers.	
		1.1.4 Mutarotation in D-glucose with mechanism.	
		1.1.5 Chain lengthening and shortening reactions:	
		Modified Kiliani-Fischer synthesis (D- arabinose	
		to D-glucose and D-mannose), Wohl method (D-	
		glucose to D-arabinose).	
		1.1.6 Reactions of D-glucose and D-fructose: (a)	
		osazone formation (b) reduction- H ₂ /Ni, NaBH ₄	
00.		c) oxidation: bromine water, HNO ₃ , HIO _{4 d})	
		acetylation e) methylation (d and e with cyclic	
		pyranose forms).	
0-		1.1.7 Glycosides: general structure, formation of	
		alkyl glycosides and anomeric effect.	

	1.1.8 Disaccharides: Structures of sucrose and	A
	maltose (cyclic forms: Haworth/chair).	
	1.2 Catalysts and Reagents :	(06L)
	• 0	(OOL)
	Study of the following catalysts and reagents with	0
	respect to functional group transformations and	
	selectivity (no mechanism)	
	1.2.1 Catalysts: Catalysts for hydrogenation:	
	Raney Ni, Pt and PtO ₂ : C=C, CN, NO ₂ , aromatic	
	ring; Pd/C: C=C, COCl→ CHO (Rosenmund);	
	Lindlar catalyst: alkynes; Wilkinson's catalyst:	
	olefins.	
	1.2.2 Reagents : (a) LiAlH4 and Red-Al: reduction	
	of CO, COOR, CN, and NO ₂ . (b) NaBH ₄ :	
	reduction of CO (c) SeO ₂ : hydroxylation of allylic	
	and benzylic positions, oxidation of CH ₂ to CO (d)	
	<i>m</i> -CPBA epoxidation of C=C	
	(e) NBS: allylic and benzylicbromination.	
II	Chemistry of Amino Acids, Proteins and	(15L)
	Nucleic Acids and Photochemistry	
	2.1 Chemistry of Amino acids, Proteins and	(08L)
	Nucleic acids:	
	2.1.1 α-Amino acids: General structure,	
	configuration, essential (valine, leucine,	
~0.	phenylalanine), neutral (glycine, alanine), acidic	
	(glutamic acid) and basic (lysine) amino acids	
	(systematic names with abbreviations). pH	
	dependency of ionic structure and isoelectric	
	point.	

	2.1.2 Polypeptides and Proteins: Nature of Peptide	
	bond. Nomenclature and representation of	
	peptides (di and tripeptides)	~0
	2.1.3 Proteins: general idea of primary, secondary,	116
	tertiary and quartenary structures.	
	2.1.4 Nucleic acids: Controlled hydrolysis of	O
	nucleic acids. Sugars and bases in nucleic acids.	
	Structures of nucleosides and nucleotides in DNA	
	and RNA. Structure of nucleic acids (DNA and	
	RNA including base pairing).	
	2.2 Photochemistry:	(07L)
	2.2.1 Introduction: Difference between thermal	
	and photochemical reactions. Jablonski diagram,	
	singlet and triple states, allowed and forbidden	
	transitions, fate of excited molecules,	
	photosensitization.	
	2.2.2 Photochemical reactions of olefins:	
	photoisomerisation, photochemical rearrangement	
	of 1,4-dienes (di π methane)	
	2.2.3 Photochemistry of carbonyl compounds:	
	Norrish I, Norrish II cleavages, photoreduction	
	(e.g. benzophenone to benzpinacol).	
III	Spectroscopy-I (UV-Visible, IR and ¹ H NMR)	(15L)
	3.1 Introduction: Electromagnetic spectrum, units	
	of wavelength and frequency.	
	3.2 UV- Visible spectroscopy: Basic theory,	
	solvents, nature of UV-VIS spectrum, concept of	
	Chromophore, auxochrome,bathochromic shift,	
	Hypsochromic shift, hyperchromic and	
	hypochromic effects, chromophore- chromophore	

		and chromophore -auxochrome interactions.	
		Calculation of absorption maxima by Woodward-	
		Fieser Rule for conjugated polyenes. Applications	
		of UV-Visible spectroscopy.	.\ (?
		3.3 IR Spectroscopy: Basic theory, selection rule,	
		nature of IR spectrum, characteristic vibrational	000
		frequencies of functional groups, fingerprint	
		region. Applications IR Spectroscopy.	
		3.2. ¹ H NMR Spectroscopy: Basic theory of ¹ H	
		NMR, nature of ¹ H NMR spectrum,	
		chemical shift (∂ unit), standard for 1 H	
		NMR, solvents used. Factors affecting	
		chemical shift: inductive effect and	
		anisotropic effect (with reference to C=C,	
		C≡C, C=O and benzene ring). Spin- spin	
		coupling and coupling constant.	
		Application of deuterium exchange	
		technique. Application of ¹ H NMR in	
		structure determination.	
	IV	Spectroscopy-II and Natural Products	(15L)
		4.1 Spectroscopy-II	(08L)
•		4.1.1 Mass Spectrometry: Basic theory. Nature of	
.0		mass spectrum. General rules of fragmentation.	
< (Importance of molecular ion peak, isotopic peaks,	
		base peak, Nitrogen rule. Fragmentation of	
100		alkanes and aliphatic carbonyl compounds	
		including Mclafferty rearrangement.	
		4.1.2 Spectral characteristics of following classes	
) -'		of organic compounds, including benzene and	
		monosubstituted benzenes with respect to UV-	

	VIC ID 111 NIMD (1) 11 (2) 11 1	
	VIS, IR, ¹ H NMR: (1) alkanes (2) alkenes and	
	polyenes (3) alkynes (4) haloalkanes (5) alcohols	
	(6) carbonyl compounds (7) ethers (8) carboxylic	\ O
	acids (9) esters (10) amines (11) amides (broad	1/10
	regions characteristic of different groups are	
	expected).	
	4.1.3 Problems of structure elucidation of simple	
	organic compounds using individual or combined	
	use of the UV-VIS, IR, ¹ H NMR and Mass	
	spectroscopic techniques. (index of hydrogen	
	deficiency expected).	
	4.2 Natural Products :	(07L)
	4.2.1 Introduction, sources, classification and	
	functions to the following natural products	
	(Structures of the compounds specified are	
	expected)	
	(a) Terpenoids: (isoprene rule). citral, α -	
	terpeniol, camphor and α -pinene.	
	(b) Alkaloids: nicotine, atropine.	
	(c) Vitamins: vitamin A and vitamin C.	
	(d) Hormones: adrenaline, thyroxine.	
	(e) Steroids: cholesterol, progesterone.	
	4.2.2 Structure determination of natural products:	
	(a) Ozonolysis in terpenoids: Examples of	
(0.	open chain and monocyclic	
	monoterpenoids.	
	(b) Hofmann exhaustive methylation and	
	degradation in alkaloids: simple open	
	chain and monocyclic amines.	

4.2.3 Commercial synthesis: (a) camphor from α -	
pinene (b) α - and β - ionones from citral.	
4.2.4 Introduction to primary and secondary	10
metabolites and broad classification of	111
natural products based on biosynthesis.	$O_{r_{i}}$

Course Code: RUSCHE604
Course Title: CHEMISTRY-IV
Academic year 2020-21

Course Outcomes:

After st	udying this course, the learner will be able to:
CO 1	Outline the basic principles, instrumentation of these advanced separation
	techniques and electroanalytical methods.
CO 2	Assess advantages and limitations of these techniques.
CO 3	Correlate these techniques with industrial applications.
CO 4	Relate the applications of analytical methods in day-to-day life.

DETAILED SYLLABUS

RUSCHE604		CHEMISTRY-IV	Credits-2.5
	Unit	Unit Title	Lectures
	I	Separation Techniques.	(15L)
		1.1 Gas Chromatography	(06L)
		1.1.1 Introduction, basic principles, terms	
~0.		involved,	
		1.1.2 Rate theory and plate theory of	
		chromatography	
		1.1.3 Instrumentation, components of the	
		instruments, Types of columns, packing	
		materials.	

		1.1.4Types of detectors, TCD, FID, ECD, their	
		relative advantages and imitations	
		1.1.5 Qualitative and quantitative analysis,	.16
		1.1.6 Applications of GC	
		1.2 High Pressure Liquid Chromatography	(05L)
		1.2.1 Introduction, basic principles.	
		1.2.2 Instrumentation and its components.	
		1.2.3Solvent reservoirs, degassing system,	
		1.2.4 Types of pumps, pneumatic, reciprocating,	
		syringe type, their advantages and limitations,	
		1.2.5Pre-column, types of columns, packed and	
		capillary, sample injection systems	
		1.2.6 Detectors, UV-Visible, refractive index,	
		1.2.7 Applications of HPLC	
		1 2 Ion Euchan as Chromotography	(041.)
		1.3 Ion Exchange Chromatography	(04L)
		1.3.1 Introduction, types of ion exchangers,	
		synthetic and natural, cation and anion, properties	
		of resins	
		1.3.2 Ion exchange equilibria, selectivity	
		coefficient, separation factors, factors affecting	
		separation of ions	
		1.3.3 Ion exchange capacity and its determination	
(0		1.3.4 Applications of ion exchange	
		chromatography, preparation of demineralized	
00		water, separation of amino acids, separation of	
		lanthanides, preparation of exact concentration of	
		acids or bases	
) -'	II	Electroanalytical Methods	(15L)

electroanalytical methods and specific features of each of the major category. 2.2 Ion Selective Electrodes: (04L) 2.2.1 Ion selective and ion specific electrodes, components of ion selective electrode, properties of membrane in ion selective electrode, classification of ion selective electrodes 2.2.2 Solid membrane electrodes: Fluoride ion selective electrode, Glass membrane electrode, Glass electrode. 2.2.3 Liquid membrane electrode: Calcium ion electrode 2.3 Polarography (07L) 2.3.1 Basic principles, polarizable and nonpolarizable electrodes, supporting electrolyte, its function, selection of supporting electrolyte 2.3.2 The polarogram, terms involved, residual current, limiting current, diffusion current, half wave potential. 2.3.3 Oxygen interference and its removal, polarographic maxima and use of maxima suppressors. 2.3.4 Equation of polarographic wave, determination of half wave potential and diffusion current from the polarogram 2.3.5 Ilkovic equation, terms involved and their explanation 2.3.6 DME, Construction, working, advantages and limitations:		2.1: Introduction and classification of	(01L)
2.2 Ion Selective Electrodes: (04L) 2.2.1 Ion selective and ion specific electrodes, components of ion selective electrode, properties of membrane in ion selective electrode, classification of ion selective electrodes 2.2.2 Solid membrane electrodes: Fluoride ion selective electrode, Glass membrane electrode, Glass electrode. 2.2.3 Liquid membrane electrode: Calcium ion electrode 2.3 Polarography (07L) 2.3.1 Basic principles, polarizable and nonpolarizable electrodes, supporting electrolyte, its function, selection of supporting electrolyte 2.3.2 The polarogram, terms involved, residual current, limiting current, diffusion current, half wave potential. 2.3.3 Oxygen interference and its removal, polarographic maxima and use of maxima suppressors. 2.3.4 Equation of polarographic wave, determination of half wave potential and diffusion current from the polarogram 2.3.5 Elkovic equation, terms involved and their explanation 2.3.6 DME, Construction, working, advantages		electroanalytical methods and specific features of	
2.2.1 Ion selective and ion specific electrodes, components of ion selective electrode, properties of membrane in ion selective electrode, classification of ion selective electrodes 2.2.2 Solid membrane electrodes: Fluoride ion selective electrode, Glass membrane electrode, Glass electrode. 2.2.3 Liquid membrane electrode: Calcium ion electrode 2.3 Polarography (07L) 2.3.1 Basic principles, polarizable and nonpolarizable electrodes, supporting electrolyte, its function, selection of supporting electrolyte 2.3.2 The polarogram, terms involved, residual current, limiting current, diffusion current, half wave potential. 2.3.3 Oxygen interference and its removal, polarographic maxima and use of maxima suppressors. 2.3.4 Equation of polarographic wave, determination of half wave potential and diffusion current from the polarogram 2.3.5 Ilkovic equation, terms involved and their explanation 2.3.6 DME, Construction, working, advantages		each of the major category.	.16
components of ion selective electrode, properties of membrane in ion selective electrode, classification of ion selective electrodes: 2.2.2 Solid membrane electrodes: Fluoride ion selective electrode, Glass membrane electrode, Glass electrode. 2.2.3 Liquid membrane electrode: Calcium ion electrode 2.3 Polarography (07L) 2.3.1 Basic principles, polarizable and nonpolarizable electrodes, supporting electrolyte, its function, selection of supporting electrolyte 2.3.2 The polarogram, terms involved, residual current, limiting current, diffusion current, half wave potential. 2.3.3 Oxygen interference and its removal, polarographic maxima and use of maxima suppressors. 2.3.4 Equation of polarographic wave, determination of half wave potential and diffusion current from the polarogram 2.3.5llkovic equation, terms involved and their explanation 2.3.6 DME, Construction, working, advantages		2.2 Ion Selective Electrodes:	(04L)
of membrane in ion selective electrode, classification of ion selective electrodes 2.2.2 Solid membrane electrodes: Fluoride ion selective electrode, Glass membrane electrode, Glass electrode. 2.2.3 Liquid membrane electrode: Calcium ion electrode 2.3 Polarography (07L) 2.3.1 Basic principles, polarizable and nonpolarizable electrodes, supporting electrolyte, its function, selection of supporting electrolyte 2.3.2 The polarogram, terms involved, residual current, limiting current, diffusion current, half wave potential. 2.3.3 Oxygen interference and its removal, polarographic maxima and use of maxima suppressors. 2.3.4 Equation of polarographic wave, determination of half wave potential and diffusion current from the polarogram 2.3.5 Ilkovic equation, terms involved and their explanation 2.3.6 DME, Construction, working, advantages		2.2.1 Ion selective and ion specific electrodes,	
classification of ion selective electrodes 2.2.2 Solid membrane electrodes: Fluoride ion selective electrode, Glass membrane electrode, Glass electrode. 2.2.3 Liquid membrane electrode: Calcium ion electrode 2.3 Polarography (07L) 2.3.1 Basic principles, polarizable and nonpolarizable electrodes, supporting electrolyte, its function, selection of supporting electrolyte 2.3.2 The polarogram, terms involved, residual current, limiting current, diffusion current, half wave potential. 2.3.3 Oxygen interference and its removal, polarographic maxima and use of maxima suppressors. 2.3.4 Equation of polarographic wave, determination of half wave potential and diffusion current from the polarogram 2.3.5 Ilkovic equation, terms involved and their explanation 2.3.6 DME, Construction, working, advantages		components of ion selective electrode, properties	
2.2.2 Solid membrane electrodes: Fluoride ion selective electrode, Glass membrane electrode, Glass electrode. 2.2.3 Liquid membrane electrode: Calcium ion electrode 2.3 Polarography (07L) 2.3.1 Basic principles, polarizable and nonpolarizable electrodes, supporting electrolyte, its function, selection of supporting electrolyte 2.3.2 The polarogram, terms involved, residual current, limiting current, diffusion current, half wave potential. 2.3.3 Oxygen interference and its removal, polarographic maxima and use of maxima suppressors. 2.3.4 Equation of polarographic wave, determination of half wave potential and diffusion current from the polarogram 2.3.51lkovic equation, terms involved and their explanation 2.3.6 DME, Construction, working, advantages		of membrane in ion selective electrode,	
selective electrode, Glass membrane electrode, Glass electrode. 2.2.3 Liquid membrane electrode: Calcium ion electrode 2.3 Polarography (07L) 2.3.1 Basic principles, polarizable and nonpolarizable electrodes, supporting electrolyte, its function, selection of supporting electrolyte 2.3.2 The polarogram, terms involved, residual current, limiting current, diffusion current, half wave potential. 2.3.3 Oxygen interference and its removal, polarographic maxima and use of maxima suppressors. 2.3.4 Equation of polarographic wave, determination of half wave potential and diffusion current from the polarogram 2.3.5llkovic equation, terms involved and their explanation 2.3.6 DME, Construction, working, advantages		classification of ion selective electrodes	
Glass electrode. 2.2.3 Liquid membrane electrode: Calcium ion electrode 2.3 Polarography (07L) 2.3.1 Basic principles, polarizable and nonpolarizable electrodes, supporting electrolyte, its function, selection of supporting electrolyte 2.3.2 The polarogram, terms involved, residual current, limiting current, diffusion current, half wave potential. 2.3.3 Oxygen interference and its removal, polarographic maxima and use of maxima suppressors. 2.3.4 Equation of polarographic wave, determination of half wave potential and diffusion current from the polarogram 2.3.5Ilkovic equation, terms involved and their explanation 2.3.6 DME, Construction, working, advantages		2.2.2 Solid membrane electrodes: Fluoride ion	
2.2.3 Liquid membrane electrode: Calcium ion electrode 2.3 Polarography (07L) 2.3.1 Basic principles, polarizable and nonpolarizable electrodes, supporting electrolyte, its function, selection of supporting electrolyte 2.3.2 The polarogram, terms involved, residual current, limiting current, diffusion current, half wave potential. 2.3.3 Oxygen interference and its removal, polarographic maxima and use of maxima suppressors. 2.3.4 Equation of polarographic wave, determination of half wave potential and diffusion current from the polarogram 2.3.5 Ilkovic equation, terms involved and their explanation 2.3.6 DME, Construction, working, advantages		selective electrode, Glass membrane electrode,	
electrode 2.3 Polarography (07L) 2.3.1 Basic principles, polarizable and nonpolarizable electrodes, supporting electrolyte, its function, selection of supporting electrolyte 2.3.2 The polarogram, terms involved, residual current, limiting current, diffusion current, half wave potential. 2.3.3 Oxygen interference and its removal, polarographic maxima and use of maxima suppressors. 2.3.4 Equation of polarographic wave, determination of half wave potential and diffusion current from the polarogram 2.3.5 Ilkovic equation, terms involved and their explanation 2.3.6 DME, Construction, working, advantages		Glass electrode.	
2.3 Polarography 2.3.1 Basic principles, polarizable and nonpolarizable electrodes, supporting electrolyte, its function, selection of supporting electrolyte 2.3.2 The polarogram, terms involved, residual current, limiting current, diffusion current, half wave potential. 2.3.3 Oxygen interference and its removal, polarographic maxima and use of maxima suppressors. 2.3.4 Equation of polarographic wave, determination of half wave potential and diffusion current from the polarogram 2.3.5 Ilkovic equation, terms involved and their explanation 2.3.6 DME, Construction, working, advantages		2.2.3 Liquid membrane electrode: Calcium ion	
2.3.1 Basic principles, polarizable and nonpolarizable electrodes, supporting electrolyte, its function, selection of supporting electrolyte 2.3.2 The polarogram, terms involved, residual current, limiting current, diffusion current, half wave potential. 2.3.3 Oxygen interference and its removal, polarographic maxima and use of maxima suppressors. 2.3.4 Equation of polarographic wave, determination of half wave potential and diffusion current from the polarogram 2.3.5 Ilkovic equation, terms involved and their explanation 2.3.6 DME, Construction, working, advantages		electrode	
nonpolarizable electrodes, supporting electrolyte, its function, selection of supporting electrolyte 2.3.2 The polarogram, terms involved, residual current, limiting current, diffusion current, half wave potential. 2.3.3 Oxygen interference and its removal, polarographic maxima and use of maxima suppressors. 2.3.4 Equation of polarographic wave, determination of half wave potential and diffusion current from the polarogram 2.3.5Ilkovic equation, terms involved and their explanation 2.3.6 DME, Construction, working, advantages		2.3 Polarography	(07L)
its function, selection of supporting electrolyte 2.3.2 The polarogram, terms involved, residual current, limiting current, diffusion current, half wave potential. 2.3.3 Oxygen interference and its removal, polarographic maxima and use of maxima suppressors. 2.3.4 Equation of polarographic wave, determination of half wave potential and diffusion current from the polarogram 2.3.5 Ilkovic equation, terms involved and their explanation 2.3.6 DME, Construction, working, advantages		2.3.1 Basic principles, polarizable and	
 2.3.2 The polarogram, terms involved, residual current, limiting current, diffusion current, half wave potential. 2.3.3 Oxygen interference and its removal, polarographic maxima and use of maxima suppressors. 2.3.4 Equation of polarographic wave, determination of half wave potential and diffusion current from the polarogram 2.3.5Ilkovic equation, terms involved and their explanation 2.3.6 DME, Construction, working, advantages 		nonpolarizable electrodes, supporting electrolyte,	
current, limiting current, diffusion current, half wave potential. 2.3.3 Oxygen interference and its removal, polarographic maxima and use of maxima suppressors. 2.3.4 Equation of polarographic wave, determination of half wave potential and diffusion current from the polarogram 2.3.5llkovic equation, terms involved and their explanation 2.3.6 DME, Construction, working, advantages		its function, selection of supporting electrolyte	
wave potential. 2.3.3 Oxygen interference and its removal, polarographic maxima and use of maxima suppressors. 2.3.4 Equation of polarographic wave, determination of half wave potential and diffusion current from the polarogram 2.3.5 Ilkovic equation, terms involved and their explanation 2.3.6 DME, Construction, working, advantages		2.3.2 The polarogram, terms involved, residual	
 2.3.3 Oxygen interference and its removal, polarographic maxima and use of maxima suppressors. 2.3.4 Equation of polarographic wave, determination of half wave potential and diffusion current from the polarogram 2.3.5Ilkovic equation, terms involved and their explanation 2.3.6 DME, Construction, working, advantages 		current, limiting current, diffusion current, half	
polarographic maxima and use of maxima suppressors. 2.3.4 Equation of polarographic wave, determination of half wave potential and diffusion current from the polarogram 2.3.5Ilkovic equation, terms involved and their explanation 2.3.6 DME, Construction, working, advantages		wave potential.	
suppressors. 2.3.4 Equation of polarographic wave, determination of half wave potential and diffusion current from the polarogram 2.3.5 Ilkovic equation, terms involved and their explanation 2.3.6 DME, Construction, working, advantages		2.3.3 Oxygen interference and its removal,	
2.3.4 Equation of polarographic wave, determination of half wave potential and diffusion current from the polarogram 2.3.5Ilkovic equation, terms involved and their explanation 2.3.6 DME, Construction, working, advantages		polarographic maxima and use of maxima	
determination of half wave potential and diffusion current from the polarogram 2.3.5Ilkovic equation, terms involved and their explanation 2.3.6 DME, Construction, working, advantages		suppressors.	
current from the polarogram 2.3.5Ilkovic equation, terms involved and their explanation 2.3.6 DME, Construction, working, advantages	(0.	2.3.4 Equation of polarographic wave,	
2.3.5Ilkovic equation, terms involved and their explanation 2.3.6 DME, Construction, working, advantages		determination of half wave potential and diffusion	
explanation 2.3.6 DME, Construction, working, advantages		current from the polarogram	
2.3.6 DME, Construction, working, advantages		2.3.5Ilkovic equation, terms involved and their	
		explanation	
and limitations:	5	2.3.6 DME, Construction, working, advantages	
——————————————————————————————————————		and limitations;	

	 2.3.7 Instrumentation, H- shaped polarographic cell , Qualitative and quantitative analysis, calibration curve method, standard addition method. 2.3.8 Applications of polarography. 2.4 Amperometric titrations 2.4.1 Basic principles: construction of the titration curve, Different types of amperometric titration curves, 	(03L)
	 2.4.2 Rotating platinum electrode, construction, working, advantages and limitations. 2.4.3 Applications of amperometric titrations, 2.4.4 Comparison of amperometry and 	
	polarography	
III	Miscellaneous Methods	(15L)
	3.1 Potentiometric titrations	(04L)
	3.1.1 Potentiometry and potentiometric titrations,	
	basic principles, indicator and reference electrode,	
	types of titrations and indicator electrodes used for	
	each type.	
	3.1.2 Experimental set up & procedures for the	
	potentiometric titrations,	
	3.1.3 Determination of equivalence point in	
4 O-	potentiometric titrations, use of E vs.V, first and	
	second derivative plots vs. V for the determination	
VQ.	of the equivalence point.	
	3.1.4 Advantages and limitations.	(021)
	3.2 Biamperometric titrations,	(02L)
	3.2.1 Basic principles, experimental set up,	

	3.2.2 Biamperometric titration curves,	
	determination of the equivalence point	
	3.2.3 Determination of water content by Karl	.16
	Fischer method.	
	3.3 Gel electrophoresis	(06L)
	3.3.1 Basic principle,	U
	3.3.2 Factors affecting migration rate, supporting	
	media, SDS page, Isoelectric focussing	
	3.3.3 2D gel support, application of the sample,	
	procedure.	
	3.3.4 Separation and identification methods	
	3.3.5 Applications	
	3.4 Size exclusion Chromatography	(03L)
	3.4.1 Introduction, principles,	
	3.4.2 Operational procedures,	
	3.4.3 Applications of size exclusion	
	chromatography	
IV	Selected Industrial Applications of Analytical	(15L)
	Chemistry	
	4.1 Food analysis	(05L)
	4.1 .1 Milk powder	
	4.1.1.1 Determination of lactose	
	4.1.1.2 Determination of calcium and iron	
(0.	4.1.2 Honey	
	4.1.2.1 Total reducing sugars in honey	
	4.2 Cosmetic analysis	(02L)
	4.2.1 Talcum powder	
	4.2.2 Analysis of face powder	
5	4.3 Detergent analysis	(03L)

4.5.1 Determination of drugs by non-aqueous titration	
4.5 Pharmaceutical Analysis	(02L)
4.4.2 Determination of chemical oxygen demand	
4.4.1 Determination of dissolved oxygen	
4.4 Water analysis	(03L)
4.3.3 Determination of oxygen releasing capacity.	.\(\C\)
4.3.2 Determination of alkalinity	
4.3.1 Determination of active anionic matter	

Semester-VI Practicals

RUSCHEP601	Credits-3
	CHEMISTRY-I
	1. To determine the energy of activation for the acid catalyzed
	hydrolysis of methyl acetate.
	2. To determine the molecular weight of high polymer polyvinyl
	alcohol (PVA) by viscosity measurement.
	3. To determine acidic and basic dissociation constant of amino acid
	and hence calculate isoelectric point.
	4. To determine the amount of weak acid and strong acid in the given
	mixture by conductometric titration.
	5. To determine the solubility and solubility product of AgCl
	potentiometrically using chemical cell.
~(0-)	6. To determine Critical Micelle Concentration (CMC) using
	conductometer.
4//	CHEMICIPAY II
	CHEMISTRY-II
D -	Inorganic preparations

- 1. Mercury tetrathiocyanatoCobaltate (II) Hg[Co(SCN)4]
- 2. Magnesium oxinate[Mg(Ox)2]
- 3. Tris-acetyl acetonato iron(III) [Fe(AcAc)3]
- 4. Tetramminecopper(II) sulphate. [Cu(NH3)4]SO4.H2O

Inorganic estimations/ Analysis

- 1. Estimation of copper iodometrically using sodium thiosulphate.
- 2. Estimation of lead by complexometrically using EDTA solution.

RUSCHEP602

CHEMISTRY-III

Binary Mixture Separation & identification (Solid + Solid)

(2.0 g mixture to be given)

- 1. Minimum six mixtures to be completed by the learners.
- 2. Components of the mixture should include water soluble and water insoluble acids (carboxylic acid), water insoluble phenols (α -naphthol, β -naphthol), water insoluble bases (nitroanilines), water soluble (urea and thiourea) and water insoluble neutrals (Aromatic hydrocarbons, m-dinitrobenzene, anilides, amides)
- 3. A sample of binary mixture to be given (<1.0 gram) to the learners for detection of chemical type of mixture. After correct determination of the chemical type, the fixing reagent should be decided by the learners for separation.
- 4. Follow separation scheme with the bulk sample of the binary mixture.
- 5. After separation of the components into independent components A and B,
- a. One component (decided by the examiner) is to be analyzed and identified by chemical method with melting point and also by IR spectroscopy. (This component is not to be weighed).
- b. The other component is to be purified, dried, weighed and melting point is to be determined.

CHEMISTRY-IV:

1. Estimation of Chromium in water sample by using diphenylcarbazide spectrophotometrically.

- 2. Determination of acetic acid content in vinegar sample by using quinhydrone electrode potentiometrically.
- 3. Determination of phosphoric acid in cola sample pH metrically.
- 4. Estimation of calcium and magnesium content in Talcum powder.
- 5. Estimation of reducing sugar in honey by Wilstatter method.
- 6. Separation and estimation of Mg(II) and Zn(II) from given sample solution using an anion exchanger.

Physical Chemistry

- 1. Physical Chemistry, Ira Levine, 5th Edition, 2002 Tata McGraw Hill Publishing Co.Ltd.
- 2. The Elements of Physical Chemistry, P.W. Atkins, Oxford University Press, Oxford...
- 3. Modern Electrochemistry, J.O.M Bockris& A.K.N. Reddy, Maria Gamboa Aldeco 2nd Edition, 1st Indian reprint,2006 Springer
- 4. Physical Chemistry, G.M. Barrow, 6th Edition, Tata McGraw Hill Publishing Co. Ltd. New Delhi.
- 5. The Elements of Physical Chemistry, P.W. Atkins, 2nd Edition, Oxford UniversityPress Oxford
- 6. Physical Chemistry, G.K. Vemullapallie, 1997, Prentice Hall of India, Pvt.Ltd. New Delhi.

Inorganic Chemistry

- 1. D. Banerjea, Coordination chemistry, Tata McGraw Hill, New Delhi, (1993).
- 2. D. F. Shriver and P. W. Atkins, *Inorganic chemistry*, 3rd Ed., Oxford University Press, (1999).
- 3. N. N. Greenwood and E. Earnshaw, *Chemistry of elements*, Pergamon Press, Singapore, (1989).
- 4. W. L. Jolly, *Modern inorganic chemistry*, 2nd Ed. McGraw Hill Book Co., (1991).
- 5. B. E. Douglas and H. McDaniel, *Concepts and models in inorganic chemistry*, 3rd Ed., John Wiley & Sons, Inc., New York, (1994).
- 6. G. N. Mukherjee and A. Das, *Elements of bioinorganic chemistry*, Dhuri and Sons, Calcutta, (1988).
- 7. R. W. Hay, *Bioinorganic chemistry*, Ellis Harwood, England, (1984).
- 8. R. C. Mehrotra and A. Singh, *Organometallic chemistry: A unified approach*, Wiley Eastern, New Delhi, (1991).

- 9. Practical Inorganic Chemistry by G. Marr and B. W. Rockett, VanNostrand Reinhold Company London1972. P 34. (For synthesis of iron ethylenediamine sulphate)
- 10. Microscale Inorganic Chemistry by Z. Szafran, Ronald M. Pike and Mono M. Singh. Pub.John Wiley and Sons1991.p.218.(For preparation of CuCl₂.2DMSO.

Organic Chemistry

- 1. Organic Chemistry, Francis A Carey, Pearson Education, 6th Edition, Special Indian Edition 2008.
- 2. Organic Chemistry, R.T. Morrison and R.N. Boyd, 6th Edition, Pearson Edition.
- 3. Organic Chemistry, T.W.G. Solomon and C.B. Fryhle, 8th Edition, John Wiley & Sons, 2004.
- 4. Organic Chemistry Baula Y. Bruice, Pearson Edition, 2008.
- 5. Organic Chemistry, J.G. Smith, 2nd Editionm Special Indian Edition, Tata. McGraw Hill.
- 6. Stereochemistry, P.S. Kalsi, New Age International Ltd. 4th Edition, 2006
- 7. Organic Spectroscopy by Jag Mohan
- 8. Furniss, B. S.; Hannaford, A. J.; Rogers, V.; Smith, P. W. G.; Tatchell, A. R. Vogel's Textbook of Practical Organic Chemistry, ELBS.

Analytical Chemistry

- 1. D. Harvey, Modern Analytical Chemistry, The McGraw-Hill Pub. 1st Edition (2000)
- 2. H.S. Ray, R Sridhar and K.P. Abraham, Extraction of Nonferrous Metals, AffiliatedEast-West Press Pvt. Ltd. New Delhi (1985) reprint 2007.
- 3. G.H. Jeffery, J. Bassett, J. Mendham and R.C. Denney, Vogel's Textbook of Qunatitative Chemical Analysis, Fifth edition, ELBS Publication (1996)
- 4. D.A. Skoog D.M. West and F.J. Holler, Fundametals of Analytical Chemistry, 7thEdition (printed in India in 2001) ISBN Publication.
- 5. Analytical Chemistry, J.G. Dick,1973 Tata McGraw Hill Publishing Co. Ltd. New Delhi.
- 6. Quantitative analysis, Dey& Underwood, Prentice Hall of India, Pvt. Ltd. New Delhi
- 7. Fundamentals of Analytical Chemistry, Skoog 8th edition, Saunders college publishing.

Modality of Assessment

Theory Examination Pattern:

A) Internal Assessment - 40% of total marks:

(40 marks)

Sr No	Evaluation type	Marks
1	One Assignment	10
2	One class Test (multiple choice questions / objective)	20
3	Active participation in routine class instructional deliveries (seminars//presentation)	05
4	Overall conduct, participation in co-curricular activities of the department.	05

B) External examination - 60 %

Semester End Theory Assessment - 60%

60 marks

- 1. Duration: These examinations shall be of **two hours** duration.
- 2. Theory question paper pattern is as follows:There shall be **Four** questions each of **15** marks. On each unit there will be one question.
 All questions shall be compulsory with internal choice within the questions.

Questions	estions Options		Questions on	
Q.1)A)	Any 3 out of 5	12	Unit I	
Q.1)B)	Any 1 out of 2	03		
Q.2)A)	Any 3 out of 5	12	Unit II	
Q.2)B)	Any 1 out of 2	03	Omt II	
Q.3)A)	Any 3 out of 5	12	Unit III	
Q.3)B)	Any 1 out of 2	03	Unit III	
Q.4)A)	Any 3 out of 5	12	Unit IV	
Q.4)B)	Any 1 out of 2	03	Omt IV	

Practical Examination Pattern:

Paper II 05 10	05 10	05 10
10	10	10
)
05	05	05
		US
20	20	20
ctical examinatio	on):-	
25	25	25
05	05	05
30	30	30
	ctical examination 25 05	25 25 05 05 30 30

PRACTICAL JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.

In case of loss of Journal, Certificate from Head/ Co-ordinator should be submitted, failing which the student will not be allowed to appear for the practical examination.

Overall Examination and Marks Distribution Pattern

Course	601			602			Grand Total
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practical	20	30	50	20	30	50	100
		•		-			
Course		603		604			
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practical	20	30	50	20	30	50	100
	•	•		•		(Total Ma	rks : 600)