Resolution Number : AC/II (20-21).2.RUS20

S.P. Mandali's

Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for Semester V & VI

Program: B.Sc. Non-Conventional Energy Sources and Waste Recycling

Program code : RUSACNCE

(Credit Based Semester and Grading System with effect from the academic year 2021-22)

PROGRAM OUTCOMES

S. P. Mandali's Ramnarain Ruia Autonomous College has adopted the Outcome Based Education model to make its science graduates globally competent and capable of advancing in their careers. The Bachelors Program in Science also encourages students to reflect on the broader purpose of their education.

PO	Description						
A stude	A student completing Bachelor's Degree in Science program will be able to:						
	Recall and explain acquired scientific knowledge in a comprehensive manner and						
PO 1	apply the skills acquired in their chosen discipline. Interpret scientific ideas and						
	relate its interconnectedness to various fields in science.						
	Evaluate scientific ideas critically, analyse problems, explore options for practical						
PO 2	demonstrations, illustrate work plans and execute them, organise data and draw						
	inferences.						
	Explore and evaluate digital information and use it for knowledge upgradation.						
PO 3	Apply relevant information so gathered for analysis and communication using						
	appropriate digital tools.						
PO 4	Ask relevant questions, understand scientific relevance, hypothesize a scientific						
104	problem, construct and execute a project plan and analyse results.						
	Take complex challenges, work responsibly and independently, as well as in						
PO 5	cohesion with a team for completion of a task. Communicate effectively,						
	convincingly and in an articulate manner.						
PO 6	Apply scientific information with sensitivity to values of different cultural groups.						
100	Disseminate scientific knowledge effectively for upliftment of the society.						
	Follow ethical practices at work place and be unbiased and critical in interpretation						
PO 7	of scientific data. Understand the environmental issues and explore sustainable						
	solutions for it.						
	Keep abreast with current scientific developments in the specific discipline and						
PO 8 adapt to technological advancements for better application of scientific k							
	as a lifelong learner.						

PROGRAM SPECIFIC OUTCOMES

PSO	Description
A studen	it completing Bachelor Degree in science program with applied component as
NCE-WI	R will be able to:
PSO 1	Recognize the issues faced by our environment, and the repercussions of its
	mishandling which they, and their future generations would most suffer from in
	the coming years.
PSO 2	Devise suitable actions that are needed to reform the society to avert the
	environmental crisis
PSO 3	Develop the sense of rights and responsibilities towards the resources that
	support us.
PSO 4	Create awareness in self & the society that , solution to each and every problem
	begins with oneself.
	pag 29

PROGRAM OUTLINE

			RUIA COLLEGE Explore o Experience o Excel
		PROGRAM OUTLINE	3.
		SEMESTER V	
Course Code	Unit	Course Title / Unit Title	Credits
RUSACNCE501	No	on-Conventional Sources of Energy & Waste	2
		Recycling	
	I II	NON-CONVENTIONAL SOURCES OF ENERGY: Perspectives on Energy Sources and UtilizationStudy of the following non-conventional energy sources with respect to scope, present scenario, applications, limitations and future prospects:• Solar Energy • Wind Energy • Geothermal Energy:	
	III IV	WASTE RECYCLING: Introduction to waste management. Management of gaseous waste Introduction to liquid waste Particulate matter and its management	
RUSACNCEP501		Practical	2

		SEMESTER VI				
Course Code	Course Code Unit Course Title / Unit Title Credits					
RUSACNCE601	Non-C	Conventional Sources of Energy & Waste Recycling	2			
	Ι	Ocean Thermal Energy Conversion Tidal Energy Fuel Cells and Hydrogen as a potential fuel				
	Π	Biomass				
	III	Solid Waste Management				
<u>3</u>	IV	Liquid Waste Management				
RUSACNCEP601	RUSACNCEP601 Practical 2					

SEMESTER V Course Code : RUSACNCE501 Course Title : Non-Conventional Sources of Energy & Waste Recycling Academic year 2020-21

Course Outcomes:

After s	After studying this course, the learner will be able to:					
CO 1	Comprehend the need for energy from the perspective of man, and describe the					
	various energy sources.					
CO 2	Define energy efficiency, and correlate the current energy crisis with the energy					
	efficiency gap					
CO 3	Review different non-conventional energy sources such as solar, wind, geothermal,					
	etc. and assess them critically with respect to feasibility and energy value.					
CO 4	Define the concept of waste, and illustrate the different methods of waste disposal.					
CO 5	Evaluate the parameters to judge the quality of water and management of gaseous					
	waste.					

DETAILED SYLLABUS

RUSACNCE501	Non-C	Credits-02		
	Waste	Waste Recycling		
	Unit	Unit Title	Lectures	
	Ι	Perspectives on Energy Sources and	(15L)	
		Utilization:		
		1.1. Definitions, units and concept, energy		
		requirements of man and society, unequal		
		distribution of energy resources around		
		the world, Energy consumption patterns,		
		Contrast in energy demands of developed,		
		developing and under-developed		
		countries.		
		1.2. Sector wise need for energy: Domestic,		
		industrial, agricultural, and transport		
AN.		sectors. Environmental implications of		
		energy use, Concept of sustainable		
		development and its energy execution,		
U		Energy audit and its types.		
		1.3. Various types of energy sources,		
		conventional/ non-conventional,		

		renewable / non-renewable, fossil fuels: coal, oil, natural gas; thermal,	3
		hydroelectric and nuclear.	
		1.4. Energy storage and conservation methods. Role of government and Non-	
		Governmental Organizations, socio-	
		economic aspects, Government policies.	0
		1.5. Fundamentals of energy efficiency, the energy efficiency gap, participants in the	
		field of energy efficiency, Energy	
		efficiency policies.	
		1.6. The climate debate: History of climate policy, clashing positions on climate	
		change: skeptics and supporters, climate	
		realists, case studies on climate change	
		activism around the world. Role of individual on the climate crisis, concept of	
		carbon footprint.	
		1.7. Entrepreneurship opportunities in the	
	II	energy sector. Study of the following non-conventional	(7L)
		energy sources with respect to scope, present	(71)
		scenario, applications, limitations and future	
		prospects:	
		2.1 Solar Energy	
	•	2.1.1 Solar spectrum and its relevance as the energy source, solar radiation,	(4L)
		conversion of solar energy into heat	
		energy in solar collectors, Fresnel lenses,	
		parabolic reflectors.	(4L)
		2.1.2 Photovoltaic effect, semi-conductors as solar energy converters, different	
		materials used, factors affecting	
		photovoltaic efficiency, effect of	
		temperature, solar cells.	
		2.1.3 Photo-electrochemical process for the conversion of solar energy; a pplications	
		of solar energy for different purposes.	
		2.2 Wind Energy	
		2.2.1 Wind velocity and generation of wind	
		energy	
		2.2.2 Types of wind mills and their working,	
		rotor with blades, gear generator, vertical and horizontal axis of rotation.	
		2.3 Geothermal Energy:	
· · · · · · · · · · · · · · · · · · ·			·J

			2.3.1: Origin of geothermal heat, temperature		
			gradient, geothermal steam and hot		
			spring, geysers.		\mathbf{O}
			2.3.2: Power production from geysers, mantle		
			as heat source.		
		III	WASTE RECYCLING:	(9L)	
			3.1 Introduction to waste management:		Þ
			3.1.1 Definition of waste, types of waste,		
			changing trends in waste generation,		
			resources, development, population and		
			waste generation, concept of waste	(6L)	
			management and approaches to it: end of		
			the pipe treatment, in plant treatment, goal		
			of zero waste and its feasibility,		
			Introduction to green chemistry.		
			3.1.2 Waste disposal and its three 'R's		
			Recovery, reuse, recycle and disposal of		
			waste, economic viability of each of the above, waste audit.		
			3.1.3 Waste generation: Types of waste on the		
			basis of usage, sources, physical state,		
			feasibility with respect to three Rs.		
			domestic, industrial, agricultural and		
			commercial wastes; gaseous, solid and		
			liquid waste.		
			3.2 Management of gaseous waste:		
			3.2.1 : Generation of gaseous waste, smoke, fog		
			mist, emission of gases, Sources,		
			contribution of different sources to total		
			waste. Effects: vehicular and chimney		
			exhaust		
			3.2.2 Treatment methods, adsorption,		
			absorption, catalytic conversion, their		
			feasibility cost and regulation		
	S O		3.2.3 Minimization methods, economic		
			viability of reuse.		
	- 0-	IV	4.1 Introduction to liquid waste	(8 L)	
			4.1.1 : Liquid Waste: Generation, local and		
			global sources, variation in the amount		
	AV.		generated.		
			4.1.2 Characterization of liquid waste	(7 L)	
	` ^`		4.1.3 Physical parameters; colour, odour, turbidity, TSS. TDS, TS		
			4.1.4 Chemical parameters: pH, acidity,		
X			alkalinity, hardness, DO, COD, TOC,		
		l			

THOD and BOD, chemical composition,	
classification.	
4.2 Particulate matter and its management:	
4.2.1: Particulate matter: sources, relation to	
energy consumption, characterization, effects.	
4.2.2 Disposal methods, cyclone separator, wet	
scrubber, electrostatic precipitator, fabric	
filter.	
4.2.3 Regulations and their implementation in	
case of waste disposal, Role of the	
government.	

Semester-V Practical

RUSACNCEP501		Non-Conventional Sources of Energy & Waste	Credits-02
		Recycling	
	1.	Determination of acidity, alkalinity and hardness of	
		the given water sample.	
	2.	Construction of the breakthrough curve and	
		determination of breakthrough capacity of the given	
		ion exchanges resin.	
	3.	Determination of T.S., T.S.S. and T.D.S. present in	
		the given water sample.	
	4.	Estimation of chloride in water sample by	
		argentometric method	
	5.	Determination of nitrite colorimetrically from the	
2		waste water sample.	
	6.	Determination of sulphate in the given water sample	
		by benzidine sulphate method.	
	7.	Determination of Cr (VI) spectrophotometrically in	
		the given water sample.	
	8.	Determination of phosphates in water by stannous	
5		chloride method.	
P	(2 0	experiments to be done at the time of examination)	

Modality of Assessment

Theory Examination Pattern:

A) Internal Assessment – 40 % (40 marks).

Sr No	Evaluation type	Marks
1	One class Test (multiple choice questions / objective)	20
2	Seminar Presentations/ Assignments	15
3	Active participation in routine class activities	05
	Total	40 Marks

B) External examination - 60 %

Semester End Theory Assessment - 60%

60 marks

i. **Duration -** These examinations shall be of **two hours** duration.

ii. Theory question paper pattern: -There shall be **four** questions each of **15** marks, one on each unit. All questions shall be compulsory with internal choice within the questions.

Questions	Options	Marks	Questions on
Q.1) a)	Any 3 out of 5	12	Unit I
Q.1) b)	Any 1 out of 2	03	Unit I
Q.2) a)	Any 3 out of 5	12	Unit II
Q.2) b)	Any 1 out of 2	03	Onit II
Q.3) a)	Any 3 out of 5	12	Unit III
Q.3) b)	Any 1 out of 2	03	Onit III
Q.4) a)	Any 3 out of 5	12	Unit IV
Q.4) b)	Any 1 out of 2	03	

Practical Examination Pattern:

A)Internal Examination: - 501

Activity	Marks
Internal of Practical Test	10
Laboratory work	15
Biogas Plant Maintenance or site visit with relevant reports	15
Total	40

B) External Examination 501 (Semester end practical examination):-60 Marks

Sr. No.	Particulars	Marks
1	Laboratory Work	25 + 25
2	Viva and Journal	5+5
	Total	60

PRACTICAL BOOK / JOURNAL:

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.

In case of loss of Journal and/ or Project Report, a Lost Certificate should be obtained from Head/ Co-ordinator / In charge of the department; failing which the student will not be allowed to appear for the practical examination.

Overall Examination and Marks Distribution Pattern

Course			
	Internal	External	Total
Theory	40	60	100
Practicals	40	60	100

(Total Marks : 200)

Semester - VI Course Code: RUSACNCE601 <u>Course Title: Non-Conventional Sources of Energy & Waste Recycling</u> Academic year 2020-21

Course Outcomes:

11.

After s	tudying this course, the learner will be able to:
CO 1	Summarize the ocean-based non-conventional energy sources- namely OTEC and
	Tidal, and appraise them in keeping with the current local and global scenario.
CO 2	Explain the construction and working of fuel cells, and recognize their potential as
	the solution to the global energy crisis
CO 3	Explore the prospects of hydrogen as a fuel.
CO 4	Define biomass, describe the use of biomass as an energy source.
CO 5	Outline the use of biomass in India.
CO 6	Characterize the management of solid waste with respect to its sources, and disposal methods.
CO 7	Appreciate the significance of recycling, reuse & reclamation of solid waste.
CO 8	Describe the various treatment methods used for three step (physical, chemical and
	biological processes) treatment of liquid waste in general, applications in specific
	industries like fertilizer, food & beverage, petrochemical industry.
CO 9	Examine the government policies and regulations with regarding consumable and
	non-consumable water.

DETAILED SYLLABUS

RUSACNCE601	Non-Conventional Sources of Energy & Waste Recycling		Credits-02
	Unit	Unit Title	Lectures
	Ι	Study of the following non-conventional	(3L)
		energy sources	
		1.1 Tidal Energy:	
		1.1.1 :Tide height and its potential for power	
		generation.	(6L)
		1.1.2: Construction of dam across sea basin,	
		installation of the turbine, specification of the basin.	
		1.2. Ocean Thermal Energy Conversion	(3 L)
		1.2.1 Difference in surface temperatures and	
		at a depth in ocean, its use as a source	
		for power generation	(3 L)
		1.2.2Requirements for a practical OTEC	
		plant, different working fluids.	
		1.2.3 Relevance to the present scenario,	
		feasibility and future projection.	
		1.3. Fuel Cells:	
		1.3.1 Electrochemical energy conversion,	
		basic principle of fuel cells, advantages	
		of energy conversion in fuel cells,	
		distinction between fuel cell and battery.	
		1.3.2 Hydrogen – oxygen fuel cell, organic	
		oxygen fuel cell 1.3.3 Applications of fuel cells.	
20		1.4 Use of hydrogen as a potential fuel:	
	•	availability, generation and use,	
. C `		feasibility and economic viability,	
		advantages, Economically viable	
		hydrogen production, photolysis of water.	
	II	Biomass:	(15L)
		2.1 Solar energy and generation of biomass,	
		Bio-energy: Biomass as a resource,	
N		Advantages of biomass energy among	
		alternative resources, opportunities and	
r		challenges, forms of biomass: solid,	
		liquid, gas.	

2.2 Biomass properties, types and energy value, utilization with and without conversion.	6
conversion.	
2.3 Importance of lignin with respect to	
biomass energy, lignin content in various	
biomass, Non-lignocellulosic biomass	
(algae) and microalgae cultivation,	
macroalgae (seaweed) cultivation.	
2.5 Biomass processing methods: Physical,	
thermochemical (pyrolysis, torrefaction,	
gasification, trans-esterification),	
biochemical (anaerobic digestion,	
fermentation, enzymatic conversion).	
2.6 Biogas and biofuels: Production and case	
studies on its use. Contribution of	
biomass-based energy resources on	
India's energy use, Role of government,	
policies introduced as incentives for	
furthering biomass energy resources, role	
of NGOs.	
III WASTE RECYCLING: (15L)	
3.1 Solid Waste Management:	
3.1.1 Solid waste, sources and their	
characterization.	
3.1.2 Classification of solid waste: chemical	
nature, biodegradable and non bio-	
degradable, their feasibility with respect	
to the use of three 'R's.	
3.1.3 Feasibility of recycling: metal, paper,	
plastic rubber and glass, costs and	
economic viability, need of the	
treatment at the source level, role of the	
government and awareness in citizens.	
3.1.4: Methods of disposal of solid waste:	
3.1.4.1 Dumping of garbage,	
3.1.4.2 Sanitary landfills,	
3.1.4.3 Composting, soil conditioning, vermi-	
composting.	
3.1.4.4 Incineration;	
3.1.5 Hazardous and toxic waste, definition,	
classification, difference between the	
hazardous and toxic waste, methods of	
minimization/	

	216 Dadiagativa master sources offerts on	
	3.1.6 Radioactive waste: sources, effects on	0
	plants, animal and man, activity level	
	and its management, minimization and	
	treatment.	
	3.1.7 e-waste: types, effects and management.	
	3.1.8Hospital and medical waste, disposal	
	and preventive measures.	
	3.1.9 Disaster management and risk analysis,	
	restriction of hazardous substances.	
IV	Liquid Waste Management:	(15L)
	4.1 Waste water, industrial effluent, need for	
	the treatment. sources,	
	4.2 Use of COD, BOD and TOC for deciding	
	the treatment process.	
	-	
	4.3 Pre-primary treatment: neutralization,	
	equalization.	
	4.4 Primary treatment: screening,	
	sedimentation, coagulation, filtration	
	4.5 Secondary treatment: principles of the	
	biological treatment of liquid waste,	
	4.6 Various processes used: aerobic and	
	anaerobic process.	
	4.6.1 Aerobic process, oxidation ponds,	
	oxidation ditch, Aerated lagoons,	
	activated sludge process and trickling	
	filter process.	
	4.6.2 Anaerobic processes, anaerobic contact	
	process	
	4.7 Tertiary treatment: reverse osmosis,	
	ultrafiltration, electro-dialysis, ion	
	exchange, ozone treatment.	
	4.8 Government regulations, permissible	
	levels for drinking water and for other	
	•	
	uses. 4.10 Characterization of effluent from i)	
	,	
	Petrochemical ii) food and beverage iii)	
	Fertilizer industry.	
10		
60		

Semester-VI	
Drastical	

		Practical	
RUSACNCEP601	No	n-Conventional Sources of Energy & Waste Recycling	Credits-02
	1.	Determination of COD of the waste water sample.	
	2.	Determination of dissolved oxygen present in the	
		given water sample.	0
	3.	Determination of dosage of coagulant by Jar Test.	
	4.	Determination of iron in water sample by	
		phenanthroline method / AAS method	
	5.	Group Activities:	
	6.	Preparation of Biofuel from waste oil	
	7.	Soil analysis.	
	8.	Introduction to survey methodology, designing	
		mock surveys in relation to non-conventional energy	
		sources and waste recycling.	

REFERENCE BOOKS

1.Solar energy: principles of thermal collection and storage – S.P. Sukhatme, Tata Mcgraw Hill, New Delhi 1990.

2.Fuel Cell Will Mitchell, Academic Press 1963.

3.Photo electrochemical Cells: Studies in Physical and theoretical Chemistry, Vol.50 K.V.S.Santham & M.Sharma, Elsevier Publishing Company, Amsterdam, 1988.

4. Wastewater Treatment and pollution control : S.A.Arsewala, Tata Mcgraw Hill, New Delhi 1990.

5. Pollution Control in Process Industries: S.P.Mahajan, Tata Mcgraw Hill, New Delhi 1990.

6. Waste Water Treatment: M.N. Rao and A.K. Datta, Oxford and IBH Publishing.

Modality of Assessment

	Theory	Examination	Pattern:	
--	--------	-------------	----------	--

A) Internal Assessment –40 % (40 marks).

Sr No	Evaluation type	Marks
1	One class Test (multiple choice questions / objective)	20
2	Seminar Presentations/ Assignments	15
3	Active participation in routine class activities	05
	Total	40 Marks

B) External examination - 60 %

Semester End Theory Assessment - 60%

60 marks

i)Duration - These examinations shall be of two hours duration.

ii)Theory question paper pattern: -There shall be **four** questions each of **15** marks, one on each unit. All questions shall be compulsory with internal choice within the questions.

Questions	Options	Marks	Questions on
Q.1) a)	Any 3 out of 5	12	Unit I
Q.1) b)	Any 1 out of 2	03	Onit I
Q.2) a)	Any 3 out of 5	12	Unit II
Q.2) b)	Any 1 out of 2	03	
Q.3) a)	Any 3 out of 5	12	Unit III
Q.3) b)	Any 1 out of 2	03	
Q.4) a)	Any 3 out of 5	12	Unit IV
Q.4) b)	Any 1 out of 2	03	Omt IV

Practical Examination Pattern:

A) Internal Examination: - 601

Activity	Marks	
Internal of Practical Test	10	
Laboratory work	15	
Biogas Plant Maintenance or	15	
site visit with relevant reports	15	
Total	40	

B) External Examination 601(Semester end practical examination):-60 Marks

Sr. No.	Particulars	Marks
1	Laboratory Work	25
2	Viva and Journal	5+5
3	Project work	25
Total		60

PRACTICAL BOOK / JOURNAL:

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination. In case of loss of Journal and/ orProject Report, a Lost Certificate should be obtained from Head/ Co-ordinator / In charge of the department; failing which the student will not be allowed to appear for the practical examination.

Overall Examination and Marks Distribution Pattern

Course			
	Internal	External	Total
Theory	40	60	100
Practicals	40	60	100

⁽Total Marks : 200)