Resolution Number : AC/II(23-24).3.RUS5

S. P. Mandali's

Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for

Program: B.Sc (Chemistry)

Program Code: RUSCHE

(Credit Based Semester and Grading System for academic year 2023-2024)

PROGRAM OUTCOMES

S. P. Mandali's Ramnarain Ruia Autonomous College has adopted the Outcome Based Education model to make its science graduates globally competent and capable of advancing in their careers. The Bachelors Program in Science also encourages students to reflect on the broader purpose of their education.

PO	Description					
A stude	udent completing Bachelor's Degree in Science program will be able to:					
PO 1	Recall and explain acquired scientific knowledge in a comprehensive manner and apply the skills acquired in their chosen discipline. Interpret scientific ideas and relate its interconnectedness to various fields in science.					
PO 2	Evaluate scientific ideas critically, analyse problems, explore options for practical demonstrations, illustrate work plans and execute them, organise data and draw inferences.					
PO 3	Explore and evaluate digital information and use it for knowledge upgradation. Apply relevant information so gathered for analysis and communication using appropriate digital tools.					
PO 4	Ask relevant questions, understand scientific relevance, hypothesize a scientific problem, construct and execute a project plan and analyse results.					
PO 5	Take complex challenges, work responsibly and independently, as well as in cohesion with a team for completion of a task. Communicate effectively, convincingly and in an articulate manner.					
PO 6	Apply scientific information with sensitivity to values of different cultural groups. Disseminate scientific knowledge effectively for upliftment of the society.					
PO 7	Follow ethical practices at work place and be unbiased and critical in interpretation of scientific data. Understand the environmental issues and explore sustainable solutions for it.					
PO 8	Keep abreast with current scientific developments in the specific discipline and adapt to technological advancements for better application of scientific knowledge as a lifelong learner.					

PROGRAM SPECIFIC OUTCOMES

PSO	Description
A studen	it completing Bachelor's Degree in Science program in the subject of Chemistry
will be a	ble to:
DSO 1	Acquire the fundamental knowledge of the main branches of chemistry viz. Physical,
1501	Inorganic, Organic and Analytical.
PSO 2	Identify and separate components of organic or inorganic origin and will also be able
150 2	to analyse them by making use of the modern instrumental methods learned.
DSO 3	Communicate the results of the scientific work in oral as well as written format to
1505	both the scientists and the public at large.
	Establish themselves as effective professionals and function as a member of an
	interdisciplinary problem solving team by demonstrating the critical thinking, problem
PSO 4	solving & analytical reasoning skills while developing solutions or strategies for solving
	the real problems through the use of the chemistry knowledge gain during the
	course.
	Appreciate the central role of chemistry in our society and use this as a basis for ethical
DCO 5	behaviour in issues facing chemists including an understanding of safe handling of
1303	chemicals, environmental issues and key issues facing our society in terms of energy,
	health and medicine.
	Develop skills that will prepare them not only for immediate employment but also for
1300	life-long learning in advanced areas of Chemistry and related fields.

PROGRAM OUTLINE

Year	Semester	Course Code	Course T	itle / Unit Title	Credits
S.Y.B.Sc	III	RUSCHE301	Chemistry-I		
			Unit-I	Chemical Thermodynamics-II	
			Unit-II	Electrochemistry-I :	2
				Electrolytic Conductance And	2
				Transport Number	
			Unit-III	Chemical Bonding	

	RUSCHE302	Chemistr	y-II	
		Unit-I	Reactivity and reactions of	
			halogenated hydrocarbons,	
			Organomagnesium and	
			organolithium compounds,	
			Alcohols, phenols and	2
			epoxides.	2
		Unit-II	Chemistry of Carbonyl	
			Compounds	
		Unit-III	Chemistry of p-block	
			elements:	
			(Group 13 and 14)	
	RUSCHE303	Chemistr	y-III	
		Unit-I	Introduction to Analytical	
			Chemistry	
		Unit-II	Classical methods of analysis	•
			Gravimetric Analysis	2
			Titrimetric Analysis	
		Unit-III	Environmental Chemistry:	
			Chemistry of Water	
	RUSCHEP301	Practical		2
IV	RUSCHE401	Chemistr	y-I	
		Unit-I	Electrochemistry-II:	
			Electromotive Force of	
			Galvanic Cells.	
			pH and Buffers	
		Unit-II	Solutions of Liquid In Liquid	2
			Phase Equilibria	2
		Unit-III	Comparative Chemistry of the	
			transition metal.	
			Coordination Chemistry.	
			Nature of the Metal-Ligand	
			Bond.	
	RUSCHE402	Chemistr	y-II	
		Unit-I	Carboxylic acids and their	
			derivatives, Sulphonic acids.	2
		Unit-II	Amines, Diazonium Salts,	
			Heterocyclic Compounds	

			Unit-III	Chemistry of Group 15 and 16	
				elements	
				Organometallic Chemistry	
		RUSCHE403	Chemistr	y-III	
			Unit-I	Separation Techniques	
				Solvent Extraction	
				Chromatography (PC, TLC,	
				HPTLC)	2
			Unit-II	UV- Visible Absorption	2
				spectroscopy	
				Photometric titrations	
				Conductometric titrations	
			Unit-III	Industrial Chemistry	
		RUSCHEP401	Practical		2
T.Y.B.Sc	V	RUSCHE501	Chemistr	y-I	
			Unit-I	Molecular spectroscopy	
			Unit-II	Electrochemistry-III	
				Classification of galvanic cells	25
			Unit-III	Colligative properties	2.0
				Chemical kinetics-II	
			Unit-IV	Surface chemistry & catalysis	
				Colloids	
		RUSCHE502	Chemistr	y-II	
			Unit-I	Chemical bonding:	
				Molecular symmetry	
				Molecular orbital theory for	
				polyatomic species	
				Metallic bonding.	2.5
			Unit-II	Solid state chemistry	
			Unit-III	Chemistry of elements:	
				lanthanides & actinides	
			Unit-IV	Chemistry of non aqueous	
				solvents, inter-halogen	
				compounds and xenon	
		RUSCHE503	Chemistr	y-III	
			Unit-I	Mechanism of organic	
				reactions	2.5
			Unit-II	Stereochemistry	
			Unit-III	IUPAC nomenclature	

RAMNARAIN RUIA AUTONOMOUS COLLEGE, SYLLABUS FOR B.Sc CHEMISTRY 2023-2024

			Polymers	
		Unit IV	Synthesis of organic	
			compounds	
	DUSCHE504	Chomistr	v W	
	KUSCIIE304	Unit I	Sampling	
		0111-1	Treatment of analytical data	
		Ilm:4 II	Titrimetrie enclusie	
		0111-11	Paday titrations	
			Proginitation titrations	
			Complexemetric titrations	
			Non aquaque titrations	
		TL.º4 TTT	A tamia	
		Unit-III	Atomic absorption	
			spectroscopy.	2.5
			Atomic emission methods	2.0
			Fluorescence and	
			phosphorescence	
			spectroscopy.	
			inephetometry and	
		T T •4 T T7	turbidimetry.	
		Unit-IV	Thermal methods	
			Radioanalytical techniques	
			Mass spectrometry	
			Method validation	
	RUSCHEP501	Practical	(RUSCHEP501 +	2
		RUSCHE	(P502)	3
	RUSCHEP502	Practical	(RUSCHEP503 +	2
		RUSCHE	(P504)	3
VI	RUSCHE601	Chemistr	y-I	
		Unit-I	NMR spectroscopy	
			Polymers	
		Unit-II	Electrochemistry-IV:	
			Decomposition potential,	2.5
			overvoltage and electroplating	
			Crystalline State	
		Unit-III	Nuclear chemistry-III	
		Unit-IV	Basics of quantum chemistry	
	RUSCHE602	Chemistr	y-II	25
		Unit-I	Coordination chemistry	2.3

		Unit-II	Properties of coordination	
			compounds	
		Unit-III	Organometallic chemistry	
		Unit-IV	Nanomaterials	
			Bioinorganic chemistry	
	RUSCHE603	Chemistry	y-III	
		Unit-I	Chemistry of carbohydrates	
			Catalysts & reagents	
		Unit-II	Chemistry of amino acids,	
			proteins and nucleic acids	2.5
			Photochemistry	
		Unit-III	Spectroscopy –I	
		Unit-IV	Spectroscopy –II	
			Natural products	
	RUSCHE604	Chemistry	y-IV	2.5
		Unit-I	Separation techniques	
			(GC, HPLC, ion exchange	
			chromatography)	
		Unit-II	Electro-analytical techniques:	
			Ion selective electrodes	
			Polarography	
			Amperometric titrations	
		Unit-III	Miscellaneous Methods	
			Potentiometric Titrations	
			Bi-amperometric titrations	
			Gel electrophoresis	
			Size exclusion	
			chromatography	
		Unit-IV	Applications to different	
			fields:	
			Food analysis	
			Cosmetic analysis	
			Detergent analysis	
			water analysis	
	DUCCHERAN	Dec ett 1		
	KUSCHEP601	Practical	(KUSCHEP601 + B602)	3
	DUSCHED(02	RUSCHE Dractical	(DUSCHEDCO2	
	KUSCHEP602	Practical	(KUSCHEP003 +	3
		KUSCHE	P004)	

Resolution Number : AC/I(23-24).2(II).RUS5

S.P. Mandali's

Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for Semester III & IV Program: S.Y.B.Sc. Program Code : RUSCHE

(Credit Based Semester and Grading System with effect from the academic year 2023-2024)

Semester III Course Code: RUSCHE301 <u>Course Title : CHEMISTRY-I</u> Academic Year 2023-2024

Course Outcomes :

After stu	dying the course, the learner will be able to:						
CO 1	Understand significance of Gibb's and Helmholtz Free Energy and its applications.						
CO 2	Apply Clapeyron equation to various phase transitions.						
CO 3	Derive van't Hoff's Reaction Isochore and Isotherm.						
CO 4	Derive various Maxwell relations.						
CO 5	Give relationship between conductance, specific conductance, equivalent conductance and molar conductance.						
CO 6	Describe the concept of Transport Number.						
CO 7	Know the applications and Limitations of Valence Bond Theory						
CO 8	Predict geometry of molecules based on Hybridization.						
CO 9	Determine Bond Order, bond energy and magnetic behaviour of the compound based						
	on Molecular Orbital Theory.						

RUSCHE301		CHI	EMISTRY-I	Credits-02
	Unit	Unit	Title	Lectures
	Ι	Chen	nical Thermodynamics-II	(15L)
		1.0	Recapitulation	
		1.1	Variation of Gibb's free energy with	
			Pressure and Temperature, Gibbs-	
			Helmholtz equation.	
		1.2	Thermodynamics of open systems:	
			partial molal properties, chemical	
			potential and its variation with pressure	

		and temperature, Gibb's Duhem	
		equation.	
	1.3	Clapeyron equation and its application to	
		phases in equilibria. Clausius-Clapeyron	
		equation and its application to Liquid-	
		Vapour equilibrium.	
	1.4	Concept of fugacity and activity	
	1.5	van't Hoff reaction isotherm and van't	
		Hoff reaction isochore.	
	1.6	Maxwell's relations.	
II	Elect	rochemistry-I:	(15L)
	Elect	rolytic Conductance And Transport	
	2.1 E	lectronic and electrolytic Conductors:	
	C	onductance, cell constant, specific	
	co	onductance, equivalent conductance and	
	m	olar conductance and their relationships.	
	V	ariation of Molar conductance with	
	co	oncentration, for weak and strong	
	el	ectrolytes. Concept of limiting molar	
	сс	onductance. (Numericals are expected).	
	2.2 D	ebye-Huckel theory for strong electrolytes:	
	1)	Relaxation effect 2) Electrophoretic effect.	
	2.2 K	ohlrausch's law of independent migration	
	of	ions. Limiting molar conductances for ions,	
	de	etermination of limiting molar conductance	
	fo	r weak electrolytes.	
	2.3 M	easurement of conductance and	
	de	etermination of cell constant.	
	2.4 A	pplications of conductance measurements:	
	1)	Determination of degree of dissociation	

	and dissociation constant of weak electrolyte.	
	2) Determination of solubility and solubility	
	product of sparingly soluble salts.	
	2.5 Transport number, relation between transport	
	number and velocity of ions. Factors	
	affecting transport number.	
	2.6 Hittorf's Rule and experimental	
	determination of transport number using	
	Hittorf's method	
	2.7 Experimental determination of transport	
	number by moving boundary method.	
	(Numericals are expected).	
	2.8 Absolute ionic mobility, relation between	
	transport number absolute ionic mobility and	
	limiting molar conductance of ion.	
	limiting molar conductance of ion.	(151)
III	limiting molar conductance of ion. Chemical Bonding	(15L)
III	limiting molar conductance of ion. Chemical Bonding 3.1. Valence Bond Theory	(15L) (07L)
III	limiting molar conductance of ion. Chemical Bonding 3.1. Valence Bond Theory 1.1.1 Valence bond theory: postulates of	(15L) (07L)
III	limiting molar conductance of ion. Chemical Bonding 3.1. Valence Bond Theory 1.1.1 Valence bond theory: postulates of VBT, need for hybridisation, Orbitals	(15L) (07L)
III	limiting molar conductance of ion. Chemical Bonding 3.1. Valence Bond Theory 1.1.1 Valence bond theory: postulates of VBT, need for hybridisation, Orbitals involved in hybridisation sp, sp ² , sp ³ ,	(15L) (07L)
III	limiting molar conductance of ion. Chemical Bonding 3.1. Valence Bond Theory 1.1.1 Valence bond theory: postulates of VBT, need for hybridisation, Orbitals involved in hybridisation sp , sp	(15L) (07L)
III	limiting molar conductance of ion. Chemical Bonding 3.1. Valence Bond Theory 1.1.1 Valence bond theory: postulates of VBT, need for hybridisation, Orbitals involved in hybridisation sp , sp	(15L) (07L)
III	limiting molar conductance of ion. Chemical Bonding 3.1. Valence Bond Theory 1.1.1 Valence bond theory: postulates of VBT, need for hybridisation, Orbitals involved in hybridisation sp , sp , sp , sp , sp , dsp ,	(15L) (07L)
III	limiting molar conductance of ion. Chemical Bonding 3.1. Valence Bond Theory 1.1.1 Valence bond theory: postulates of VBT, need for hybridisation, Orbitals involved in hybridisation sp , sp , sp , sp , sp , dsp ,	(15L) (07L)
III	limiting molar conductance of ion. Chemical Bonding 3.1. Valence Bond Theory 1.1.1 Valence bond theory: postulates of VBT, need for hybridisation, Orbitals involved in hybridisation sp , sp , sp , sp , dsp , sp d, and sp d, d^2 , sd), energetics of hybridisation, interaction between two hydrogen atoms and their Potential energy diagram, Bond energy of hydrogen molecule (experimental)	(15L) (07L)
	limiting molar conductance of ion. Chemical Bonding 3.1. Valence Bond Theory 1.1.1 Valence bond theory: postulates of VBT, need for hybridisation, Orbitals involved in hybridisation sp , sp , sp , p , sp , dsp , sp , $dand sp$, d^2 , sd), energetics of hybridisation, interaction between two hydrogen atoms and their Potentia energy diagram, Bond energy of hydrogen molecule (experimental value). Theoretical improvements in	(15L) (07L)
	limiting molar conductance of ion. Chemical Bonding 3.1. Valence Bond Theory 1.1.1 Valence bond theory: postulates of VBT, need for hybridisation, Orbitals involved in hybridisation sp , sp , sp , sp , dsp ,	(15L) (07L)

1.1.2 Concept of resonance and Formal Charge;	
rules for resonance or canonical	
structures with examples.	
3.2 Molecular Orbital Theory	(08L)
3.2.1. Concept of orbital overlaps, types of orbital	
overlaps (s-s,s-p,p-p)	
3.2.2. Linear combination of atomic orbitals to	
form molecular orbitals (LCAO-MO approach).	
3.2.3. Application of MOT to Homonuclear	
diatomic molecules from He_2 molecule and for all	
the elements of second period, heteronuclear	
diatomic molecules	
(HCl, NO)	
3.2.4 Molecular orbital Theory and determination	
of Bond Order and magnetic behaviour for	
$O_{2}, O_{2}^{+}O_{2}^{-}, O_{2}^{-2}$	
(Problems are expected wherever applicable)	

Course Code: RUSCHE302 <u>Course Title : CHEMISTRY-II</u> Academic year 2023-2024.

Course Outcomes:

After s	After studying the course, the learner will be able to:		
CO 1	Know the reactions of halogenated hydrocarbons.		
CO 2	Assign Nomenclature to organometallic compounds, alcohols, phenols and epoxides.		
CO 3	Compare the acidic strengths of alcohols and phenols.		
CO 4	Write mechanisms of condensation reactions.		
CO 5	Know the use of active methylene compounds in organic synthesis.		
CO 6	Understand the concept of electron deficient compounds and its correlation with Lewis		
	acidity.		
CO 7	Draw the structure and bonding involved in diborane and tetraborane.		
CO 8	Comprehend the chemistry of Silicon and its compounds.		

RUSCHE302		CHEMISTRY-II	Credits-02
	Unit	Unit Title	Lectures
	Ι	Organic Chemistry – I	(15L)
		1.1. Reactivity and reactions of halogenated	(04L)
		hydrocarbons:	
		1.1.1. Alkyl halides: Nucleophilic substitution	
		reactions: S_N^{1} , S_N^{2} and S_N^{i} mechanisms with	
		stereochemical aspects, factors affecting	
		nucleophilic substitution reactions: nature of	
		substrate, solvent, nucleophile and leaving group.	
		1.1.2. Aryl halides: Reactivity of aryl halides	
		towards nucleophilic substitution reactions.	

Nucleophilic aromatic substitution $(S \Delta r)$	
addition-elimination and benzyne mechanism	
addition-eminiation and benzyne meenanism.	
1.2 Organomagnesium and Organolithium	(03L)
compounds:	
Type, Nomenclature. Nature, and reactivity of	
carbon-metal bond. Method of preparation using	
alkyl / aryl halide. Structure, stability and reactions	
of these compounds with compounds containing,	
acidic hydrogen, carbonyl, cyanides group,	
epoxides and CO ₂ .	
1.3.Alcohols, phenols and epoxides:	(08L)
1.3.1. Alcohols: Nomenclature, Methods of	
Preparation:	
1. Hydration of alkenes 2. Hydrolysis of alkyl	
halides 3. Reduction of aldehydes and ketones 4.	
Using Grignard reagent.	
Properties: Hydrogen bonding, effect of hydrogen	
bonding on properties. Acidity of alcohols,	
Reactions of alcohols	
1.3.2. Phenols: methods of preparation, physical	
properties and acidic character, comparative acidic	
strengths of alcohols and phenols, resonance	
stabilization of phenoxide ion, reactions of	
phenols.	
1.3.3. Epoxides: Nomenclature, methods of	
preparation and reactivity of epoxides, reactions of	
epoxides, ring opening reactions by nucleophiles,	
acid hydrolysis, reaction with halogen halide,	
alcohol, hydrogen cyanide. Reactions with	
ammonia, amines, Grignard reagents, alkoxides.	

II	Organic Chemistry II:	(15L)
	Chemistry of Carbonyl Compounds	
	2.1 Carbonyl Compounds:	
	Nomenclature of aliphatic, alicyclic and aromatic	
	carbonyl compounds, structure, reactivity of	
	aldehydes and ketones .	
	methods of preparation: oxidation of primary and	
	secondary alcohols using PCC, hydration of	
	alkynes, action of Grignard reagent on esters,	
	Rosenmund reduction, Gattermann – Koch	
	formylation and Friedel Craft acylation of arenes.	
	2.2 Mechanism of nucleophilic addition, and acid	
	catalyzed nucleophilic addition reactions.	
	2.3 Reactions of aldehydes and ketones with	
	NaHSO ₃ , HCN, RMgX, alcohol, amine, phenyl	
	hydrazine, 2,4-Dinitrophenyl hydrazine, LiAlH ₄	
	and NaBH _{4.}	
	2.4 Mechanism of the following reactions:	
	Benzoin condensation, Knoevenagel	
	condensation, Claisen-Schmidt and Cannizzaro	
	reaction.	
	2.5 Keto-enol tautomerism: mechanism of acid	
	and base catalysed enolization	
	2.6 Compounds with active methylene:	
	Acetylacetone, ethyl acetoacetate diethyl	
	malonate, stabilised enols.	
	Reactions of Acetylacetone and ethyl	
	acetoacetate: alkylation, conversion to ketone,	
	mono- and dicarboxylic acid.	

RAMNARAIN RUIA AUTONOMOUS COLLEGE, SYLLABUS FOR SY.B.Sc Sem-III & Sem-IV CHEMISTRY 2023-2024
--

III	Chemistry of p block elements (Group 13	(15L)
	& 14)	
	3.1 Chemistry of Group 13 elements	
	3.1.1 Electronic configuration, Trends in metallic	
	characters: Oxidation states and Inert pair effect.	
	3.1.2 Electron deficient compounds $-BH_3$, BF_3 ,	
	BCl ₃ with respect to Lewis acidity and	
	applications.	
	3.1.3 Preparation of simple boranes like diborane	
	and tetraborane.	
	3.1.4 Structure and bonding in diborane and	
	tetraborane (2e-3c bonds)	
	3.1.5 Borazine – Preparation, properties, Structure	
	and bonding.	
	3.2 Chemistry of Group 14 elements	
	3.2.1 Electronic configuration, Trends in metallic	
	characters: Oxidation states and Inert pair effect.	
	3.2.1 Silica: Occurrence, Structure and inertness.	
	3.2.2 Methods of preparation of $SiCl_4$ and its	
	structure.	
	3.2.3 Preparation of extra pure Silicon – Zone	
	refining and Single Crystal method	
	3.2.4 Silicones – Preparation, classification,	
	properties and uses.	

Course Code: RUSCHE303 Course Title : CHEMISTRY-III Academic year 2023-2024

Course Outcomes:

After stud	lying this course, the learner will be able to:
CO 1	Elaborate on the scope and importance of Analytical Chemistry.
CO 2	Describe and compare a range of classical and instrumental methods and will be
	able to explain their underlying theoretical principles.
CO 3	Enlist the advantages/disadvantages of classical & instrumental methods of analysis.
CO 4	Outline the steps involved in the analysis of a sample.
CO 5	Choose an appropriate analytical method to prepare , separate and quantify samples
	from various matrices.
CO 6	Classify different errors according to their sources
CO 7	Determine the different kinds of errors involved in chemical analysis.
CO 8	Suggest methods that can be adopted to minimize the different types of errors.
CO 9	Apply the scientific process, including statistical treatment of data, in the conduct
	and reporting of chemical analysis.
CO 10	Discuss the factors affecting the solubility of a precipitate.
CO 11	Enumerate the different steps involved in a precipitation gravimetry.
CO 12	Explain the effect of various experimental factors on the particle size of the
	precipitate.
CO 13	Define the various terms involved in titrimetric analysis.
CO 14	Explain the theory of acid-base indicators and choose a suitable indicator for a
	particular acid-base titration.
CO 15	Relate some of the properties of the water to its chemical makeup.
CO 16	Describe the composition of ground water.

RUSCHE303		CHEMISTRY-III	Credits-02
	Unit	Unit Title	Lectures
	Ι	Introduction to analytical chemistry	(15L)
		1.1 Scope and importance of analytical	
		chemistry, difference between analytical	
		chemistry and chemical analysis, qualitative and	
		quantitative analysis, steps involved in analytical	
		chemistry, types of analysis on the basis of	
		sample size and the components estimated.	
		Factors for choosing a method.	
		1.2 Classification of analytical methods, classical	
		and instrumental, subdivision of classical and	
		instrumental methods with the emphasis on the	
		property measured, devices used and the nature of	
		analysis.	
		1.3 Steps involved in chemical analysis from	
		sampling to presentation of results and the	
		conclusions.	
		1.4 Performance characteristics of an analytical	
		method- qualitative and quantitative: LOD,	
		LOQ, dynamic range, working range, sensitivity,	
		selectivity.	
		1.5 Quantitative analysis using calibration curve	
		method, standard addition method and internal	
		standard method	
		1.6 LR and AR grade chemicals, MSDS of	
		chemicals, glassware and its categories,	

1		
	calibration of volumetric glassware, burettes,	
	pipettes and volumetric flasks.	
	1.7 Measurement, errors involved in the	
	measurement, propagation of errors, random,	
	gross and determinate errors, classification of	
	determinate errors, instrumental, methodic,	
	operational personal errors, minimization of	
	errors.	
	1.8 Accuracy and precision, measures of	
	accuracy: absolute error and relative error,	
	constant error and proportionate error, measures	
	of central tendency and dispersion: mean, mode,	
	median, deviation, absolute, relative, average,	
	standard deviation, range, review of data with	
	respect to accuracy and precision. (Numericals	
	are expected).	
II	are expected). Classical methods of analysis	(15L)
II	are expected). Classical methods of analysis 2.1 Gravimetric analysis:	(15L) (07L)
п	 are expected). Classical methods of analysis 2.1 Gravimetric analysis: 2.1.1 Introduction to gravimetric analysis, types 	(15L) (07L)
Π	 are expected). Classical methods of analysis 2.1 Gravimetric analysis: 2.1.1 Introduction to gravimetric analysis, types of gravimetric analysis, conditions for a reaction 	(15L) (07L)
Π	 are expected). Classical methods of analysis 2.1 Gravimetric analysis: 2.1.1 Introduction to gravimetric analysis, types of gravimetric analysis, conditions for a reaction to be used in gravimetric analysis, solubility and 	(15L) (07L)
Π	 are expected). Classical methods of analysis 2.1 Gravimetric analysis: 2.1.1 Introduction to gravimetric analysis, types of gravimetric analysis, conditions for a reaction to be used in gravimetric analysis, solubility and solubility product, factors affecting solubility: 	(15L) (07L)
Π	 are expected). Classical methods of analysis 2.1 Gravimetric analysis: 2.1.1 Introduction to gravimetric analysis, types of gravimetric analysis, conditions for a reaction to be used in gravimetric analysis, solubility and solubility product, factors affecting solubility: temperature, common and diverse ion effect, pH, 	(15L) (07L)
Π	 are expected). Classical methods of analysis 2.1 Gravimetric analysis: 2.1.1 Introduction to gravimetric analysis, types of gravimetric analysis, conditions for a reaction to be used in gravimetric analysis, solubility and solubility product, factors affecting solubility: temperature, common and diverse ion effect, pH, nature of the solvent, complexation. 	(15L) (07L)
Π	 are expected). Classical methods of analysis 2.1 Gravimetric analysis: 2.1.1 Introduction to gravimetric analysis, types of gravimetric analysis, conditions for a reaction to be used in gravimetric analysis, solubility and solubility product, factors affecting solubility: temperature, common and diverse ion effect, pH, nature of the solvent, complexation. 2.1.2 Unit operations in gravimetric analysis, 	(15L) (07L)
Π	 are expected). Classical methods of analysis 2.1 Gravimetric analysis: 2.1.1 Introduction to gravimetric analysis, types of gravimetric analysis, conditions for a reaction to be used in gravimetric analysis, solubility and solubility product, factors affecting solubility: temperature, common and diverse ion effect, pH, nature of the solvent, complexation. 2.1.2 Unit operations in gravimetric analysis, precipitation, homogenous and heterogeneous 	(15L) (07L)
Π	 are expected). Classical methods of analysis 2.1 Gravimetric analysis: 2.1.1 Introduction to gravimetric analysis, types of gravimetric analysis, conditions for a reaction to be used in gravimetric analysis, solubility and solubility product, factors affecting solubility: temperature, common and diverse ion effect, pH, nature of the solvent, complexation. 2.1.2 Unit operations in gravimetric analysis, precipitation, homogenous and heterogeneous precipitation, relative super saturation, 	(15L) (07L)
Π	 are expected). Classical methods of analysis 2.1 Gravimetric analysis: 2.1.1 Introduction to gravimetric analysis, types of gravimetric analysis, conditions for a reaction to be used in gravimetric analysis, solubility and solubility product, factors affecting solubility: temperature, common and diverse ion effect, pH, nature of the solvent, complexation. 2.1.2 Unit operations in gravimetric analysis, precipitation, homogenous and heterogeneous precipitation, relative super saturation, nucleation and crystal growth, their effect on 	(15L) (07L)
Π	 are expected). Classical methods of analysis 2.1 Gravimetric analysis: 2.1.1 Introduction to gravimetric analysis, types of gravimetric analysis, conditions for a reaction to be used in gravimetric analysis, solubility and solubility product, factors affecting solubility: temperature, common and diverse ion effect, pH, nature of the solvent, complexation. 2.1.2 Unit operations in gravimetric analysis, precipitation, homogenous and heterogeneous precipitation, relative super saturation, nucleation and crystal growth, their effect on particle size, Ostwald's ripening, impurities 	(15L) (07L)
Π	 are expected). Classical methods of analysis 2.1 Gravimetric analysis: 2.1.1 Introduction to gravimetric analysis, types of gravimetric analysis, conditions for a reaction to be used in gravimetric analysis, solubility and solubility product, factors affecting solubility: temperature, common and diverse ion effect, pH, nature of the solvent, complexation. 2.1.2 Unit operations in gravimetric analysis, precipitation, homogenous and heterogeneous precipitation, relative super saturation, nucleation and crystal growth, their effect on particle size, Ostwald's ripening, impurities associated with precipitate formation, filtration, 	(15L) (07L)

	washing of the precipitate, drying and	
i	incineration, use of thermal methods.	
	2.2 Titrimetric analysis	(08L)
	2.2.1 Introduction to titrimetric analysis,	
	conditions for a reaction to be used in titrimetric	
	analysis, terms involved: titrant, titrand, indicator,	
	equivalence point, endpoint, titration error, types	
	of titrations.	
	2.2.2 Acid –base titrations	
	2.2.2.1 Acid base indicators, theory of acid base	
i	indicators, conditions for choosing an indicator.	
	2.2.2.2 Types of acid base titrations, titration	
	curves.	
	2.2.2.3 Construction of the titration curves and	
1	the choosing of the indicator for	
	A) strong acid –strong base	
	B) strong acid –weak base	
	C) weak acid – strong base	
	D) weak acid –weak base	
	2.2.4 Titration of dibasic acid with a strong base,	
	condition for obtaining two separate equivalence	
	points, qualitative description of the titration	
	curve, determination of the dissociation constant.	
	2.2.4 Titration of phosphoric acid with a strong	
	base.	
III	Environmental Chemistry	(15L)

3.1 Chemistry of water	
3.1.1 Water as a natural resource : Physical and	
Chemical properties of water, significance of	
water as an universal solvent and its properties	
viz. pH , Dielectric constant ,boiling point.	
Anomalous behaviour of water.	
3.1.2 Hydrological cycle. chemical composition	
of ground water.	
3.1.3 Factors affecting solubility of gases in	
water . Solubility of CO_2 and O_2 in water	
3.1.4 Water quality : Parameters for determining	
water quality i) Physical parameters: - pH, pE,	
conductivity, TS , TSS, TDS ii) Chemical	
Parameters- acidity, alkalinity, hardness, salinity	
, chlorine demand , DO, COD, iii) Biological	
parameter – BOD, MPN	
3.1.5 Standards for Potable and industrial water.	

Semester-III Practical Credits: 3

RUSCHEP301	CHEMISTRY-I
	1. To study the kinetics of the reaction between $K_2S_2O_8$ and KI for equal concentration.
	2. To determine conductance, specific conductance and molar conductance for given
	electrolyte solution.
	3. To determine degree of dissociation and dissociation constant of weak electrolyte and
	hence to verity Ostwald's dilution law.
	4. To determine solubility of a sparingly soluble salt conductometrically.
	5. To determine the amount of strong acid in the given solution by conductometric
	titration.
	6. To determine the amount of strong acid in the given solution by pH-metric titration.
RUSCHEP302	CHEMISTRY-II
	Qualitative determination of anion and molecular composition of the salts such as copper
	sulphate pentahydrate, nickel chloride hexahydrate, anhydrous cupric chloride using
	volumetric methods. (Learners will prepare EDTA solution).
	Minimum four salt samples will be given to every student.
	Organic preparation and their purification: Use 0.5-1.0g of the organic compound.
	Purify the product by recrystallization. Report theoretical yield, percentage yield and
	melting point of the purified product.
	Preparation of:
	1. Cyclohexanoneoxime from cyclohexanone.
	2. Tribromoaniline from aniline.
	3. m-Dinitrobenzene from nitrobenzene
	4. Phthalic anhydride from phthalic acid by sublimation
	5. Preparation of 5-nitrosalicylic acid from salicylic acid.
	6.Benzoic acid from benzamide.
	7. Magneson – II from p-nitroaniline
RUSCHEP303	CHEMISTRY-III

1. Gravimetric estimation of Nickel (II) as Ni-DMG.
2. Gravimetric estimation of barium ions as BaSO ₄ .
3. To carry out the calibration ofpipette and burette.
4. To determine hardness of given water sample.
5. To determine Dissolved Oxygen of the given water sample.
6. To determine the COD of water sample.

Modality of Assessment

Theory Examination Pattern:

A) Internal Assessment - 40% (40 Marks)

Sr No	Evaluation Type	Marks
1	Assignment	15
2	Class Test (MCQ / Objectives)	20
3	Active Participation in Class (Case studies/Seminars/Presentations)	05
	Total	40

B) External Examination : 60 % (60 marks) Semester End Theory Examination :

- (A) Duration These examinations shall be of **two hours** duration.
- (**B**) Theory question paper pattern :-

There shall be **three** questions each of **20** marks. On each unit there will be one question.

All questions shall be compulsory with internal choice within the questions.

Questions	Options	Marks	Questions based on
Q.1)	Any 5 out of 7	20	Unit I
Q.2)	Any 5 out of 7	20	Unit II
Q.3)	Any 5 out of 7	20	Unit III
	Total	60	

Practical Examination Pattern:

(A) Internal Examination:- 40 % (20 Marks)

Particulars	Paper I	Paper II	Paper-III
Journal	05	05	05
Experimental Work	10	10	10
Participation	05	05	05
Total	20	20	20

(A) External Examination : 60 % (30 Marks)

Semester End Practical Examination:

Particulars	Paper I	Paper II	Paper II
Laboratory Work	25	25	25
Viva	05	05	05
Total	30	30	30

PRACTICAL BOOK/JOURNAL

- > The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.
- In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Co-ordinator / In-charge of the department ; failing which the student will not be allowed to appear for the practical examination.

Course	301		302		303		Grand Total			
	Internal	External	Total	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	40	60	100	300
Practicals	20	30	50	20	30	50	20	30	50	150

Overall Examination and Marks Distribution Pattern:

(Total: 450 marks)

Semester IV Course Code: RUSCHE401 <u>Course Title : CHEMISTRY-I</u> Academic year 2023-2024

Course Outcomes :

After studying the course, the learner will be able to:								
CO 1	Apply the concepts of Gibbs' and Helmholtz Free Energy to EMF measurements.							
CO 2	Understand the significance of Gibbs' and Helmholtz Free Energy and its							
	applications to EMF measurements.							
CO 3	Describe the types of Electrodes and Electrochemical Cells							
CO 4	Derive Nernst Equation and can give its applications.							
CO 5	Calculate the pH for strong and weak electrolytes and Buffer Action.							
CO 6	Classify solutions on the basis of intermolecular forces.							
CO 7	Determine molecular weight of a component in a given mixture by steam							
	distillation.							
CO 8	Apply phase rule to One-Component and Two-Component systems.							
CO 9	Comprehend various Properties of Transition Metals.							
CO 10	Define basic Terms involved in Co-ordination chemistry.							
CO 11	Apply Werner's Theory to understand the model of co-ordination compounds.							
CO 12	Know the significance of co-ordination compounds.							
CO 13	Describe the nature of the Metal-Ligand Bond.							

RUSCHE401			Credits-02			
	Unit		Unit Title	Lectures		
	Ι	Electi	cochemistry II and Concept of pH and	(15L)		
		Buffe	rs			
		1.1. El	ectromotive Force of Galvanic Cells	(10L)		
		1.1.1	Electrochemical cells, galvanic cells,			
			reversible cells and reversible electrodes,			
			conventions to represent Galvanic cells.			
		1.1.2	Types of electrodes, standard electrode			
			potential, electrochemical series.			
		1.1.3	Cell potential and standard cell potential.			
		1.1.4	Nernst equation and its importance.			
		1.1.5	1.1.5 Calculation of thermodynamic parameters:			
			ΔG , ΔH , ΔS and equilibrium constant from			
			EMF data.			
		1.1.6	Classification of galvanic cells: chemical			
			cells and concentration cells			
		1.1.7	Determination of pH using glass electrode			
			and quinhydrone electrode.			
		1.2 p	H and Buffers	(05 L)		
		1.2.1	pH concept, calculation of pH for strong and			
		weak	electrolytes			
		1.2.2				
		basic				
		1.2.3				
		(Num	ericals are expected).			
	II	Soluti	ons of Liquid in Liquid and Phase	(15L)		
		Equil	ibria			

	2.1 Solutions of Liquid In Liquid	(08 L)
	2.1.1 Thermodynamics of ideal solutions: ideal	
	solutions and Raoult's law, deviations from	
	Raoult's law.	
	2.1.2 Vapour pressure-composition and	
	temperature -composition curves of ideal and non-	
	ideal solutions. Distillation of liquids forming ideal	
	and non-ideal solution, Azeotropes, steam	
	distillation.	
	2.1.3 Partially miscible liquids: critical solution	
	temperature; systems with upper critical solution	
	temperature, lower critical solution temperature	
	and having both.	
	2.1.4 Nernst distribution law and its applications	
	to solvent extraction	
	2.2 Phase Equilibria	(07L)
	2.2.1 Terms involved: Phases, components and	
	degrees of freedom. Gibbs Phase Rule.	
	2.2.2 Phase diagrams of one-component systems	
	(water, CO ₂ and sulphur).	
	2.2.3 Two component systems involving	
	eutectic (lead-silver system)	
III	Comparative Chemistry of transition metals and	(15L)
	Co-Ordination Chemistry	
	3.1: Chemistry of Transition Metals	(06 L)
	3.1.1 Position in the periodic table, electronic	
	configuration.	
	3.1.2 Significance of special stability of d^0 , d^5 and	
	¹⁰ d configurations, Variable oxidation states and	
	their stabilities in aqueous solutions; ability to form	

complexes, colour, magnetic property, catal	lytic
property.	
3.2 Coordination Chemistry:	(05 L)
3.2.1 Historical perspectives;	
3.2.2 Molecular compounds – Double salts	and
Complex salts	
3.2.3 Werner's theory	
3.2.4 Basic terms viz complex ion, charge or	n the
complex, ligands, coordination number, oxid	ation
state, & Nomenclature	
3.2.5 Sidgwick – Powel Theory of coordin	ation
compounds; Effective atomic number rule.	
3.2.6 Stereoisomerism and optical isomerism	n of
coordination compounds (C.N.= 4 and 6).	
3.2.7 Evidence for the formation of coordin	ation
compounds.	
3.2.8 Application of coordination compounds.	
3.3. Nature of the Metal-Ligand Bond:	(04L)
3.3.1 Application of VBT to complexes with	
coordination number 4, 5 & 6, Inner and outer	
orbital complexes.	

Course Code: RUSCHE402 <u>Course Title : CHEMISTRY-II</u> Academic year 2023-2024.

Course Outcomes:

After st	After studying this course, the learner will be able to:					
CO 1	Write reactions of Carboxylic and sulphonic acids and their derivatives					
CO 2	Assign Nomenclature and explain the nature, type and reactivity of Amines and					
	Diazonium Compounds					
CO 3	Write reactions for the preparation of given heterocyclic Compounds.					
CO 4	Classify Organometallic compounds and illustrate their catalytic applications.					
CO 5	Comprehend the chemistry of metal carbonyls.					

RUSCHE402		Credits-02	
	Unit	Unit Title	Lectures
	Ι	Chemistry of Carboxylic and Sulphonic Acids	(15L)
		1.1 Carboxylic Acids and their derivatives`	(11L)
		1.1.1. Nomenclature, structure and physical	
		properties, acidity of carboxylic acids, effects of	
		substituents on acid strength of aliphatic and	
		aromatic carboxylic acids.	
		1.1.2. Preparation of carboxylic acids: oxidation of	
		alcohols and alkyl benzene, carbonation of	
		Grignard reagent and hydrolysis of nitriles.	
		1.1.3. Reactions: Acidity, salt formation,	
		decarboxylation, reduction of carboxylic acids with	
		LiAlH ₄ , diborane, Hell-Volhard-Zelinsky	
		reaction, conversion to acid chlorides, esters,	

(4L)
(15L)
(15L)
(15L) (4L)

(IIEM) Hefmann elimination and elemination	
(HEM), Holmann-elimination, carbylamine	
reaction, reaction with nitrous acid, Electrophilic	
substitution in aromatic amines: bromination,	
nitration and sulphonation.	
2.2 Diazonium Salts:	(3L)
2.2.1 Preparation: - Sandmeyer reaction,	
Gattermann reaction, Gomberg reaction.	
Reactions: Replacement of diazo group by -H,-	
OH. Azo coupling with phenols, naphthols and	
aromatic amines, reduction of diazonium salt to	
aryl hydrazine and hydroazobenzene. Synthetic	
application.	
2.3 Heterocyclic Compounds:	(8L)
2.3.1. Classification, nomenclature, electronic	
structure, aromaticity in 5-numbered and 6-	
membered rings containing one heteroatom.	
2.3.2 Synthesis of Furan, Pyrrole (Paal-Knorr	
synthesis, Knorr pyrrole synthesis, and Hantzsch	
synthesis), Thiophene, Pyridine (Hantzsch	
synthesis).	
2.3.3. Reactivity of furan, pyrrole and thiophene	
towards electrophilic substitution reactions on the	
basis of stability of intermediate and of pyridine	
on the basis of electron distribution. Reactivity of	
pyridine towards nucleophilic substitution on the	
basis of electron distribution.	
2.3.4. Reactions of furan, pyrrole and thiophene:	
halogenation, nitration, sulphonation, Vilsmeier-	
Haack reaction, Friedel-Crafts reaction. Furan:	
Diels-Alder reaction, ring opening. Pyrrole:	

	Acidity and basicity of pyrrole. Comparison of	
	basicity of pyrrole and pyrrolidine.	
	2.3.5. Pyridine: Basicity. Comparison of basicity of	
	pyridine, pyrrole and piperidine. Reaction:	
	sulphonation (with and without catalyst),	
	Chichibabin reaction.	
III	Chemistry of Group 15 and Group 16 Elements	(15L)
	and Basics of Organometallic Chemistry	
	3.1 Chemistry of Group 15 and 16 Elements	(08L)
	3.1.1 Trends in physical and chemical properties of	
	Group – 15 and Group – 16 Elements	
	3.1.2 Study of Compounds such as oxyacids of N	
	and S with respect to preparation, properties and	
	structure.	
	3.1.3 Physical properties of Hydrides of Group 15	
	and 16 Elements with respect to H- bonding.	
	3.2Organometallic Chemistry	(07L)
	3.1.1 Introduction, definition, classification based	
	on hapticity and nature of metal-carbon bond.	
	Eighteen electron rule and its applications,	
	exceptions	
	3.1.2 Importance and few applications of	
	organometallic compounds as catalysts (e.g.	
	Ziegler-Natta catalyst, Wilkinson), reagentsin	
	organic synthesis etc.	
	3.1.3 Metal carbonyls: Bonding, general method	
	of preparation and properties of Ni(CO)4,	
	$Fe(CO)_5$.	

Course Code: RUSCHE403 <u>Course Title : CHEMISTRY-III</u> Academic year 2023-2024

Course Outcomes:

After com	pleting this course, the learner will be able to:
CO 1	Categorize the different types of separation methods under physical, chemical,
	mechanical methods.
CO 2	Explain the basic principle of the solvent extraction and chromatography techniques.
CO 3	Define the terms partition coefficient & distribution ratio.
CO 4	Know the factors that affect extraction efficiency.
CO 5	Describe the different types of solvent extraction and will be able to enlist the
	advantages and limitation of each type.
CO 6	Illustrate the role of chelating agents in solvent extraction.
CO 7	Develop simple separation schemes and determine the optimal conditions for
	isolating and separating analyte, based on distribution ratios.
CO 8	Choose an appropriate mobile phase for the effective separation of different
	components present in a sample.
CO 9	Develop the chromatogram skilfully and will be able the apply the most suitable
	method for the detection of the resolved components.
CO 10	Apply the theoretical principles of chromatography learned to separate and quantify
	different components present in a sample.
CO 11	Explain the basic principle involved in quantitative analysis using UV-Vis
	spectroscopy.
CO 12	Derive the mathematical expression of Beer-Lambert's law.
CO 13	Describe the function of the different components of a colorimeter and
	spectrophotometer.
CO 14	Distinguish between colorimeters & spectrophotometers.
CO 15	Recognize the limitations of UV-Vis spectroscopy.
CO 16	Explain the basic principle involved in different types of conductometric titrations.
CO 17	Enlist the advantages and limitations of conductometric titrations.

RUSCHE403		CHEMISTRY-III	Credits-02
	Unit	Unit Title	Lectures
	Ι	Methods of Separation	(15L)
		1.1 Separation Techniques in analytical	(04L)
		Chemistry	
		1.1.1 Introduction to separation Techniques	
		1.1.2 Separation and its importance in analytical	
		chemistry, estimation without separation.	
		1.1.3 Classification of separation methods	
		physical and chemical	
		1.1.4 Chemical methods, precipitation, complex	
		formation.	
		1.1.5 Physical methods of separation,	
		precipitation, fractional precipitation,	
		volatilization, distillation, fractional distillation,	
		vacuum distillation.	
		1.2 Solvent Extraction	(04L)
		1.2.1 Nernst's distribution law, partition	
		coefficient, distribution ratio,	
		1.2.2 Percentage extraction, extraction	
		efficiency, percentage extraction for single step	
		and multistep process with the same total volume	
		of the extracting solvent	
		1.2.3. Modes of extraction: Chelation, ion-pair	
		formation and solvation.	
		1.2.4 Batch and continuous extraction, Counter	
		current extraction	

1.3 Chromatography	(05L)
1.3.1 Introduction, Stationary and mobile phase,	
common features of all chromatographic	
techniques, classification of chromatographic	
methods on the basis of physical state of the two	
phases.	
1.3.2 Paper chromatography	
1.3.2.1 Introduction and basic principles.	
1.3.2.2 Stationary phase, transfer of the sample,	
mobile phase.	
1.3.2.3 Methods of developing the	
chromatogram, methods of detection, physical,	
chemical and enzymatic.	
1.3.2.4 Applications.	
1.3.2.5 Comparison of the paper and thin layer	
techniques.	
1.3.3 Thin layer chromatography	
1.3.3.1 Introduction, mechanism of separation,	
retardation factor, basic principles.	
1.3.3.2 Stationary phase, preparation and transfer	
of the sample, mobile phases and their nature.	
1.3.3.3 Methods of development of the	
chromatogram, detection methods, physical and	
chemical.	
1.3.3.4 Applications, for determination of purity,	
following the course of a chemical reaction.	

	1.4 High Performance Thin Layer	(02L)
	Chromatography	
	1.4.1 Introduction, Choice of stationary and	
	mobile phases, sample application,	
	1.4.2 Development and recording in HPTLC,	
	1.4.3 Detectors used, single beam and double	
	beam detectors, fluorometric detector,	
	1.4.4 Quantitative determination,	
	1.4.5 Applications of HPTLC	
	1.4.6 Advantages and limitations	
	1.4.7 Comparison between TLC and HPTLC	
П	UV-VIS Spectroscopy and Conductometric	(15L)
	Titrations	
	2.1 UV- Visible Absorption spectroscopy:	(12L)
	2.1.1 Recapitulation of basic concept of	
	spectroscopy.	
	2.1.2 Terms involved in absorption	
	spectroscopy, monochromatic and	
	polychromatic radiation, radiant power,	
	absorbance, transmittance, absorptivity, molar	
	extinction coefficient, wavelength of maximum	
	absorption.	
	2.1.3 Statement of Beer's law & Lamberts' law	
	combined mathematical expression for Beer-	
	Lambert's Law, deviations from Beer-Lambert's	
	law, types of deviations.	
	2.1.4 Components of an optical instrument and	
	their functions, photometers and	
	spectrophotometers.	

	2.1.5 Photometers: Sources, monochromators,	
	sample containers and detectors, block diagram	
	for a single and double beam photometer.	
	(Numerical problems expected.)	
	2.1.6 Photometric titrations	
	2.1.6.1 Basic principles, experimental set up and	
	operational procedures,	
	2.1.6.2 Requirements for a photometric titration,	
	types of photometric titration curves, and	
	determination of equivalence point.	
	2.1.6.3 Advantages and limitations	
	2.2 Conductometric titrations	(03L)
	2.2.1 Conductometry and conductometric	
	titrations, basic principles, operational	
	procedure, determination of the equivalence	
	point.,	
	2.2.2 Conductometric titration curves for the	
	titration of	
	1] Acid –base titrations of all types	
	2] Displacement titration	
	3] Precipitation titrations	
	4] Complexometric titrations	
	2.2.3 Advantages and limitations.	
III	Industrial Chemistry	(15L)
	3.1 Concept of quality, Quality assurance,	
	Product Development (Formulation), Stability	
	Study, Quality control.	
	3.2 International Standards and their significance	
1		

3.3 Unit Operations- Filtration, Distillation,	
Fractional distillation, Crystallisation	

Semester IV Practicals

RUSCHEP401	CHEMISTRY-I	Credits: 3
	1. To determine order of the reaction between $K_2S_2O_8$ and	nd KI for unequal
	concentrations.	
	2. To determine dissociation constant of weak acid by in	complete titration
	method using pH meter.	
	3. To determine dissociation constant of weak acid by pH	metric titration.
	4. To determine the amount of strong acid in the given	solution by
	potentiometric titration	
	5. To determine standard cell potential (E^{O}_{cell}), standard f	ree energy change
	(ΔG^{0}) and equilibrium constant (K) for a given galvani	c cell.
	6. To determine the amount of weak acid in the given	solution by
	conductometric titration.	
	CHEMISTRY-II	
	1. Qualitative Analysis of bi-functional organic compounds	s (minimum four)
	on the basis of	
	i. Preliminary examination	
	ii. Solubility profile	
	iii. Detection of elements C, H, (O), N, S and X.	
	iv. Detection of functional groups	
	v. Determination of physical constants (M.P/B.P)	
	Solid or liquid Compounds containing not more than two	o functional groups
	from among the following classes may be given for an	alysis to be given:
	Carboxylic acids, phenol, carbohydrates, aldehydes, keto	nes, ester, amides,
	nitro, anilides, amines, alkyl and aryl halides.	

2. Separation of binary organic mixture (solid+solid) and (solid+liquid) on
the basis of type and nature. (Nature and physical constant expected).
Minimum four binary mixtures will be given to every student.
3. Inorganic preparation –
1. Tris(ethylene diamine) nickel (II) thiosulphate.
2. preparation of Copper DMSO
3. Preparation of magnesium oxalate.
CHEMISTRY-III
1. Chromatography: Separation of cations Fe(III), Ni(II) and Cu(II) in a
sample by paper chromatography
2. To determine partition coefficient of iodine between water and CCl ₄
3. Estimation of Fe(II) in the given solution by titrating against
Ce(IV)potentiometrically.
4. Determination of amount of Fe (III) in the given solution by photometric
titration using salicylic acid.
5. To verify Beer Lamberts law.

6. Determination of Calcium and Magnesium in the given sample of

7. To determine the purity of the given commercial sample of aspirin using

RAMNARAIN RUIA AUTONOMOUS COLLEGE, SYLLABUS FOR S..Y.B.Sc Sem-III & Sem-IV CHEMISTRY 2023-2024

Dolomite ore.

phenol red indicator.

Reference Books for Physical Chemistry:

- 1) The Elements of Physical Chemistry, P.W. Atkins, Oxford University Press, Oxford.
- Principles of Physical Chemistry. By Maron and Pruton 4th Ed. Oxford and IBH publication.
- 3) Physical Chemistry, G.M. Barrow, Tata McGraw Hill Publishing Co.Ltd. New Delhi.
- Modern Electrochemistry, J.O'M. Bockris& A.K.N. Reddy, Maria. Gamboa Aldeco. Springer.
- Khosla B.D., Garg V.C. and Gulati A., Senior Practical Physical Chemistry, R. Chand and Co., New Delhi (2011).
- 6) Athawale V.D. and Mathur P., Experimental Physical Chemistry, New Age International, New Delhi (2001)

References for Organic Chemistry:

- 1. Organic Chemistry, F. A. Carey, Tata McGraw-Hill Publishing company Ltd.
- 2. Paula Y. Bruice, Organic Chemistry, Pearson Education.
- 3. Organic Chemistry, Finar, I. L. (Volume 1), Dorling Kindersley (India) Pvt. Ltd.
- **4.** Heterocyclic Chemistry, Synthesis reactions and Mechanisms, R.K Bansal, Wiley Eastern Ltd.
- 5. Mann, F.G. & Saunders, B.C. Practical Organic Chemistry, Pearson Education (2009)
- Vogel, A.I., Tatchell, A.R., Furnis, B.S., Hannaford, A.J. & Smith, P.W.G., Textbook of Practical Organic Chemistry, Prentice-Hall, 5th edition, 1996

Reference Books for Inorganic Chemistry:

1. A.I. Vogel. "Textbook of Quantitative Inorganic Analysis," Longman, London (1961).

2. J. D. Lee, 4thEdn., Concise Inorganic Chemistry, ELBS, The group III elements Pg. 359-648.

3. D. F. Shriver and P. W. Atkins, Inorganic chemistry, 3rd edition, Oxford University Press (1999) page 325-446.

4. Puri, Sharma and Kalia, Milestone publishers, Principles of Inorganic Chemistry, page 416-628.

- 5. Concepts of Inorganic Chemistry by James Huheey
- 6. Inorganic Chemistry by R.L. Madan

References for Analytical Chemistry:

- D. A. Skoog, D. M. West, F. J. Holler, and S. R. Crouch, Analytical Chemistry: An Introduction, 7th ed., Chapter 15, pp. 345-381.
- 2. A.I. Vogel. "Textbook of Quantitative Inorganic Analysis," Longman, London (1961).
- 3. R.V. Dilts. "Analytical Chemistry. Methods of Separation," van Nostrand, N.Y. (1974).
- 4. Asim K. Das, 'Environmental Chemistry with Green Chemistry' Books & Allied (P) Ltd.
- 5. K.A. Gavhane, 'Unit operations-I and II'

Modality of Assessment

Theory Examination Pattern:

A) Internal Assessment - 40% (40 Marks)

Sr No	Evaluation Type	Marks
1	Assignment	15
2	Class Test (MCQ / Objectives)	20
3	Active Participation in Class (Case studies/Seminars/Presentations)	05
	Total	40

B) External Examination : 60 % (60 marks) Semester End Theory Examination :

(B) Duration - These examinations shall be of **two hours** duration.

(C) Theory question paper pattern :-

- 3. There shall be **three** questions each of **20** marks. On each unit there will be one question.
- 4. All questions shall be compulsory with internal choice within the questions.

Questions	Options	Marks	Questions based on		
Q.1)	Any 5 out of 7	20	– Unit I		
Q.2)	Any 5 out of 7	20	– Unit II		
Q.3)	Any 5 out of 7	20	– Unit III		
	Total	60			

Practical Examination Pattern:

A) Internal Examination:- 40 % (20 Marks)

Particulars	Paper I	Paper II	Paper-III		
Journal	05	05	05		
Experimental Work	10	10	10		
Participation	05	05	05		
Total	20	20	20		

(B) External Examination : 60 % (30 Marks)

Semester End Practical Examination:

Particulars	Paper I	Paper II	Paper II		
Laboratory Work	25	25	25		
Viva	05	05	05		
Total	30	30	30		

PRACTICAL BOOK/JOURNAL

- The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.
- In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Co-ordinator / In-charge of the department ; failing which the student will not be allowed to appear for the practical examination.

Course	401		402			403			Grand Total	
	Internal	External	Total	Internal	External	Total	Internal	External	Total	l
Theory	40	60	100	40	60	100	40	60	100	300
Practicals	20	30	50	20	30	50	20	30	50	150

Overall Examination and Marks Distribution Pattern:

(Total: 450 marks)