Resolution Number : AC/I(21-22).2(II).RUS5

S.P. Mandali's

Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for Semester III & IV Program: S.Y.B.Sc. Program Code : RUSCHE

(Credit Based Semester and Grading System with effect from the academic year 2022-2023)

Semester III Course Code: RUSCHE301 <u>Course Title : CHEMISTRY-I</u> Academic Year 2022-2023

Course Outcomes :

After st	udying the course, the learner will be able to:
CO 1	Understand significance of Gibb's and Helmholtz Free Energy and its applications.
CO 2	Apply Clapeyron equation to various phase transitions.
CO 3	Derive van't Hoff's Reaction Isochore and Isotherm.
CO 4	Derive various Maxwell relations.
CO 5	Give relationship between conductance, specific conductance, equivalent conductance and molar conductance.
CO 6	Describe the concept of Transport Number.
CO 7	Know the applications and Limitations of Valence Bond Theory
CO 8	Predict geometry of molecules based on Hybridization.
CO 9	Determine Bond Order, bond energy and magnetic behaviour of the compound based on Molecular Orbital Theory.

DETAILED SYLLABUS

RUSCHE301		CH	EMISTRY-I	Credits-02
	Unit	Unit	t Title	Lectures
-	I	Cher	nical Thermodynamics-II	(15L)
	0	1.0	Recapitulation	
		1.1	Variation of Gibb's free energy with	
			Pressure and Temperature, Gibbs-	
			Helmholtz equation.	
		1.2	Thermodynamics of open systems:	
0			partial molal properties, chemical	
			potential and its variation with pressure	

		and temperature, Gibb's Duhem equation.	
	1.3	Clapeyron equation and its application	.0
		to phases in equilibria. Clausius-	
		Clapeyron equation and its application	
		to Liquid-Vapour equilibrium.	(\mathbf{v})
	1.4	Concept of fugacity and activity	
	1.5	van't Hoff reaction isotherm and van't	b
		Hoff reaction isochore.	
	1.6	Maxwell's relations.	
II		trochemistry-I:	(15L)
	Elec Num	trolytic Conductance And Transport	
		Electronic and electrolytic Conductors:	
	(Conductance, cell constant, specific	
	с	conductance, equivalent conductance and	
	n	nolar conductance and their relationships.	
	V	Variation of Molar conductance with	
	с	concentration, for weak and strong	
	e	electrolytes. Concept of limiting molar	
	c	conductance. (Numericals are expected).	
	2.2 I	Debye-Huckel theory for strong electrolytes:	
	1) Relaxation effect 2) Electrophoretic effect.	
	2.2 K	Kohlrausch's law of independent migration	
	0	f ions. Limiting molar conductances for	
	i	ons, determination of limiting molar	
	c	onductance for weak electrolytes.	
	2.3 N	Measurement of conductance and	
	d	etermination of cell constant.	
			1
	2.4 A	Applications of conductance measurements:	

	and dissociation constant of weak electrolyte.	
	2) Determination of solubility and solubility	
	product of sparingly soluble salts.	
	2.5 Transport number, relation between transport	
	number and velocity of ions. Factors	\sim
	affecting transport number.	
	2.6 Hittorf's Rule and experimental	
	determination of transport number using	
	Hittorf's method	
	2.7 Experimental determination of transport	
	number by moving boundary method.	
	(Numericals are expected).	
	2.8 Absolute ionic mobility, relation between	
	transport number, absolute ionic mobility and	
	limiting molar conductance of ion.	
III	Chemical Bonding	(15L)
	3.1. Valence Bond Theory	(07L)
	1.1.1 Valence bond theory: postulates of	
	1.1.1 Valence bond theory: postulates of	
	1.1.1 Valence bond theory: postulates of VBT, need for hybridisation, Orbitals involved in hybridisation sp , sp^2 , sp^3 ,	
	1.1.1 Valence bond theory: postulates of VBT, need for hybridisation, Orbitals	
	1.1.1 Valence bond theory: postulates of VBT, need for hybridisation, Orbitals involved in hybridisation sp , sp^2 , sp^3 , dsp , $^2sp^3d$, and sp^3d^2 , sd), energetics of	
	1.1.1 Valence bond theory: postulates of VBT, need for hybridisation, Orbitals involved in hybridisation sp , sp^2 , sp^3 , dsp , $^2sp^3d$, and sp^3d^2 , sd), energetics of hybridisation, interaction between two	
	1.1.1 Valence bond theory: postulates of VBT, need for hybridisation, Orbitals involved in hybridisation sp , sp^2 , sp^3 , dsp , $^2sp^3d$, and sp^3d^2 , sd), energetics of hybridisation, interaction between two hydrogen atoms and their Potential	
narain	1.1.1 Valence bond theory: postulates of VBT, need for hybridisation, Orbitals involved in hybridisation sp , sp^2 , sp^3 , dsp , $^2sp^3d$, and sp^3d^2 , sd), energetics of hybridisation, interaction between two hydrogen atoms and their Potential energy diagram, Bond energy of	
marain	1.1.1 Valence bond theory: postulates of VBT, need for hybridisation, Orbitals involved in hybridisation sp , sp^2 , sp^3 , dsp , $^2sp^3d$, and sp^3d^2 , sd), energetics of hybridisation, interaction between two hydrogen atoms and their Potential energy diagram, Bond energy of hydrogen molecule (experimental	

	1.1.2Concept of resonance and Formal Charge; rules for resonance or canonical structures with examples.3.2Molecular Orbital Theory	(08L)
	3.2.1. Concept of orbital overlaps, types of orbital overlaps (s-s,s-p,p-p) 3.2.2. Linear combination of atomic orbitals to form molecular orbitals (LCAO-MO approach). 3.2.3. Application of MOT to Homonuclear diatomic molecules from He ₂ molecule and for all the elements of second period, heteronuclear diatomic molecules (HCl, NO) 3.2.4 Molecular orbital Theory and determination of Bond Order and magnetic behaviour for $O_2, O_2^+ O_2^-, O_2^{-2}$ (Problems are expected wherever applicable)	
Rannar		Page 27

Course Code: RUSCHE302 <u>Course Title : CHEMISTRY-II</u> Academic year 2022-2023.

Course Outcomes:

After s	tudying the course, the learner will be able to:
CO 1	Know the reactions of halogenated hydrocarbons.
CO 2	Assign Nomenclature to organometallic compounds, alcohols, phenols and epoxides.
CO 3	Compare the acidic strengths of alcohols and phenols.
CO 4	Write mechanisms of condensation reactions.
CO 5	Know the use of active methylene compounds in organic synthesis.
CO 6	Understand the concept of electron deficient compounds and its correlation with Lewis acidity.
CO 7	Draw the structure and bonding involved in diborane and tetraborane.
CO 8	Comprehend the chemistry of Silicon and its compounds.

RUSCHE302		CHEMISTRY-II	Credits-02
	Unit	Unit Title	Lectures
	Ι	Organic Chemistry – I	(15L)
	5	1.1. Reactivity and reactions of halogenated	(04L)
	\sim	hydrocarbons:	
		1.1.1. Alkyl halides: Nucleophilic substitution	
		reactions: S_N^{-1} , S_N^{-2} and S_N^{-1} mechanisms with	
		stereochemical aspects, factors affecting	
		nucleophilic substitution reactions: nature of	
\mathcal{O}		substrate, solvent, nucleophile and leaving group.	
		1.1.2. Aryl halides: Reactivity of aryl halides	
		towards nucleophilic substitution reactions.	

RAMNARAIN RUIA AUTONOMOUS COLLEGE, SYLLABUS FOR SY.B.Sc Sem-III & Sem-IV CHEMISTRY 2022-	2023
--	------

	Nucleophilic aromatic substitution (S _N Ar), addition-elimination and benzyne mechanism.1.2 Organomagnesium and Organolithium compounds:	(03L)
	Type, Nomenclature. Nature, and reactivity of	U
	carbon-metal bond. Method of preparation using	
	alkyl/aryl halide. Structure, stability and reactions	
	of these compounds with compounds containing,	
	acidic hydrogen, carbonyl, cyanides group,	
	epoxides and CO ₂ .	
	1.3.Alcohols, phenols and epoxides:	(08L)
	1.3.1. Alcohols: Nomenclature, Methods of	
	Preparation:	
	1. Hydration of alkenes 2.Hydrolysis of alkyl	
	halides 3. Reduction of aldehydes and ketones 4. Using Grignard reagent.	
	Properties: Hydrogen bonding, effect of hydrogen	
	bonding on properties. Acidity of alcohols,	
	Reactions of alcohols	
	1.3.2. Phenols: methods of preparation, physical	
	properties and acidic character, comparative acidic	
	strengths of alcohols and phenols, resonance	
	stabilization of phenoxide ion, reactions of	
	phenols.	
	1.3.3. Epoxides: Nomenclature, methods of	
	preparation and reactivity of epoxides, reactions of	
	epoxides, ring opening reactions by nucleophiles,	
	acid hydrolysis, reaction with halogen halide,	
0	alcohol, hydrogen cyanide. Reactions with	
	ammonia, amines, Grignard reagents, alkoxides.	

RUIA COLLEGE Explore • Excel

II	Organic Chemistry II:	(15L)
	Chemistry of Carbonyl Compounds	
	2.1 Carbonyl Compounds:	
	Nomenclature of aliphatic, alicyclic and aromatic	
	carbonyl compounds, structure, reactivity of	\mathbf{C}
	aldehydes and ketones .	
	methods of preparation: oxidation of primary and	
	secondary alcohols using PCC, hydration of	
	alkynes, action of Grignard reagent on esters,	
	Rosenmund reduction, Gattermann - Koch	
	formylation and Friedel Craft acylation of arenes.	
	2.2 Mechanism of nucleophilic addition, and acid	
	catalyzed nucleophilic addition reactions.	
	2.3 Reactions of aldehydes and ketones with	
	NaHSO ₃ , HCN, RMgX, alcohol, amine, phenyl	
	hydrazine, 2,4-Dinitrophenyl hydrazine, LiAlH ₄	
	and NaBH,	
	4.	
	2.4 Mechanism of the following reactions:	
	Benzoin condensation, Knoevenagel	
	condensation, Claisen-Schmidt and Cannizzaro	
	reaction.	
	2.5 Keto-enol tautomerism: mechanism of acid	
	and base catalysed enolization	
	2.6 Compounds with active methylene:	
	Acetylacetone, ethyl acetoacetate diethyl	
	malonate, stabilised enols.	
	Reactions of Acetylacetone and ethyl	
5	acetoacetate: alkylation, conversion to ketone,	
P.	mono- and dicarboxylic acid.	

	III	Chemistry of p block elements (Group 13	(15L)
		& 14)	
		3.1 Chemistry of Group 13 elements	
		3.1.1 Electronic configuration, Trends in metallic	
		characters: Oxidation states and Inert pair effect.	
		3.1.2 Electron deficient compounds $-BH_3$, BF_3 ,	G
		BCl ₃ with respect to Lewis acidity and	
		applications.	
		3.1.3 Preparation of simple boranes like diborane	
		and tetraborane.	
		3.1.4 Structure and bonding in diborane and	
		tetraborane (2e-3c bonds)	
		3.1.5 Borazine – Preparation, properties, Structure	
		and bonding.	
		3.2 Chemistry of Group 14 elements	
		3.2.1 Electronic configuration, Trends in metallic	
		characters: Oxidation states and Inert pair effect.	
		3.2.1 Silica: Occurrence, Structure and inertness.	
		3.2.2 Methods of preparation of $SiCl_4$ and its	
		structure.	
		3.2.3 Preparation of extra pure Silicon - Zone	
	2	refining and Single Crystal method	
0	\mathcal{N}	3.2.4 Silicones – Preparation, classification,	
)-	properties and uses.	
. (⁰ .			
0.0.			
Ŧ			Page 31

Course Code: RUSCHE303 <u>Course Title : CHEMISTRY-III</u> Academic year 2022-2023

Course Outcomes:

After stu	dying this course, the learner will be able to:
CO 1	Elaborate on the scope and importance of Analytical Chemistry.
CO 2	Describe and compare a range of classical and instrumental methods and will be
	able to explain their underlying theoretical principles.
CO 3	Enlist the advantages/disadvantages of classical & instrumental methods of analysis.
CO 4	Outline the steps involved in the analysis of a sample.
CO 5	Choose an appropriate analytical method to prepare , separate and quantify samples
	from various matrices.
CO 6	Classify different errors according to their sources
CO 7	Determine the different kinds of errors involved in chemical analysis.
CO 8	Suggest methods that can be adopted to minimize the different types of errors.
CO 9	Apply the scientific process, including statistical treatment of data, in the conduct
	and reporting of chemical analysis.
CO 10	Discuss the factors affecting the solubility of a precipitate.
CO 11	Enumerate the different steps involved in a precipitation gravimetry.
CO 12	Explain the effect of various experimental factors on the particle size of the
	precipitate.
CO 13	Define the various terms involved in titrimetric analysis.
CO 14	Explain the theory of acid-base indicators and choose a suitable indicator for a
	particular acid-base titration.
CO 15	Relate some of the properties of the water to its chemical makeup.
CO 16	Describe the composition of ground water.

	Unit	Unit Title	Lectures
	Ι	Introduction to analytical chemistry	(15L)
		1.1 Scope and importance of analytical	(\mathbf{v})
		chemistry, difference between analytical	
		chemistry and chemical analysis, qualitative and	
		quantitative analysis, steps involved in analytical	
		chemistry, types of analysis on the basis of	
		sample size and the components estimated.	
		Factors for choosing a method.	
		1.2 Classification of analytical methods, classical	
		and instrumental, subdivision of classical and	
		instrumental methods with the emphasis on the	
		property measured, devices used and the nature	
		of analysis.	
		1.3 Steps involved in chemical analysis from	
		sampling to presentation of results and the conclusions.	
	6	1.4 Performance characteristics of an analytical	
		method- qualitative and quantitative: LOD,	
•	2	LOQ, dynamic range, working range, sensitivity,	
	\sim	selectivity.	
5.		1.5 Quantitative analysis using calibration curve	
		method, standard addition method and internal	
		standard method	
		1.6 LR and AR grade chemicals, MSDS of	
		chemicals, glassware and its categories,	

1			
	calibration of volumetric glassware, burettes,		V
	pipettes and volumetric flasks.		5
	1.7 Measurement, errors involved in the		
	measurement, propagation of errors, random,		
	gross and determinate errors, classification of	CO^{-}	
	determinate errors, instrumental, methodic,		
	operational personal errors, minimization of		
	errors.	2	
	1.8 Accuracy and precision, measures of	•	
	accuracy: absolute error and relative error,		
	constant error and proportionate error, measures		
	of central tendency and dispersion: mean, mode,		
	median, deviation, absolute, relative, average,		
	standard deviation, range, review of data with		
	respect to accuracy and precision. (Numericals		
	are expected).		
II	Classical methods of analysis	(15L)	
П	Classical methods of analysis 2.1 Gravimetric analysis:	(15L) (07L)	
Π			
Π	2.1 Gravimetric analysis:		
Π	2.1 Gravimetric analysis:2.1.1 Introduction to gravimetric analysis, types		
Π	2.1 Gravimetric analysis:2.1.1 Introduction to gravimetric analysis, types of gravimetric analysis, conditions for a reaction		
Π	 2.1 Gravimetric analysis: 2.1.1 Introduction to gravimetric analysis, types of gravimetric analysis, conditions for a reaction to be used in gravimetric analysis, solubility and 		
Π	 2.1 Gravimetric analysis: 2.1.1 Introduction to gravimetric analysis, types of gravimetric analysis, conditions for a reaction to be used in gravimetric analysis, solubility and solubility product, factors affecting solubility: temperature, common and diverse ion effect, pH, 		
Π	 2.1 Gravimetric analysis: 2.1.1 Introduction to gravimetric analysis, types of gravimetric analysis, conditions for a reaction to be used in gravimetric analysis, solubility and solubility product, factors affecting solubility: temperature, common and diverse ion effect, pH, nature of the solvent, complexation. 		
П	 2.1 Gravimetric analysis: 2.1.1 Introduction to gravimetric analysis, types of gravimetric analysis, conditions for a reaction to be used in gravimetric analysis, solubility and solubility product, factors affecting solubility: temperature, common and diverse ion effect, pH, 		
П	 2.1 Gravimetric analysis: 2.1.1 Introduction to gravimetric analysis, types of gravimetric analysis, conditions for a reaction to be used in gravimetric analysis, solubility and solubility product, factors affecting solubility: temperature, common and diverse ion effect, pH, nature of the solvent, complexation. 2.1.2 Unit operations in gravimetric analysis, precipitation, homogenous and heterogeneous 		
	 2.1 Gravimetric analysis: 2.1.1 Introduction to gravimetric analysis, types of gravimetric analysis, conditions for a reaction to be used in gravimetric analysis, solubility and solubility product, factors affecting solubility: temperature, common and diverse ion effect, pH, nature of the solvent, complexation. 2.1.2 Unit operations in gravimetric analysis, precipitation, homogenous and heterogeneous precipitation, relative super saturation, 		
	 2.1 Gravimetric analysis: 2.1.1 Introduction to gravimetric analysis, types of gravimetric analysis, conditions for a reaction to be used in gravimetric analysis, solubility and solubility product, factors affecting solubility: temperature, common and diverse ion effect, pH, nature of the solvent, complexation. 2.1.2 Unit operations in gravimetric analysis, precipitation, homogenous and heterogeneous precipitation, relative super saturation, nucleation and crystal growth, their effect on 		
	 2.1 Gravimetric analysis: 2.1.1 Introduction to gravimetric analysis, types of gravimetric analysis, conditions for a reaction to be used in gravimetric analysis, solubility and solubility product, factors affecting solubility: temperature, common and diverse ion effect, pH, nature of the solvent, complexation. 2.1.2 Unit operations in gravimetric analysis, precipitation, homogenous and heterogeneous precipitation, relative super saturation, 		

	washing of the precipitate, drying and	
	incineration, use of thermal methods.	
	2.2 Titrimetric analysis	(08L)
	2.2.1 Introduction to titrimetric analysis,	
	conditions for a reaction to be used in titrimetric	
	analysis, terms involved: titrant, titrand,	
	indicator, equivalence point, endpoint, titration	
	error, types of titrations.	0
	2.2.2 Acid –base titrations	
	2.2.2.1 Acid base indicators, theory of acid base	
	indicators, conditions for choosing an indicator.	
	2.2.2.2 Types of acid base titrations, titration	
	curves.	
	2.2.2.3 Construction of the titration curves and	
	the choosing of the indicator for	
	A) strong acid –strong base	
	B) strong acid –weak base	
	C) weak acid – strong base	
	D) weak acid –weak base	
	2.2.4 Titration of dibasic acid with a strong base,	
	condition for obtaining two separate equivalence	
	points, qualitative description of the titration	
	curve, determination of the dissociation constant.	
	2.2.4 Titration of phosphoric acid with a strong	
	base.	
III	Environmental Chemistry	(15L)
3		
		Page 3

3.1 Chemistry of water **3.1.1** Water as a natural resource : Physical and Chemical properties of water, significance of water as an universal solvent and its properties viz. pH , Dielectric constant ,boiling point. Anomalous behaviour of water. **3.1.2** Hydrological cycle. chemical composition of ground water. 3.1.3 Factors affecting solubility of gases in water . Solubility of CO₂ and O₂ in water 3.1.4 Water quality : Parameters for determining water quality i) Physical parameters: - pH, pE, conductivity, TS, TSS, TDS ii) Chemical Parameters- acidity, alkalinity, hardness, salinity , chlorine demand , DO, COD, iii) Biological parameter - BOD, MPN 3.1.5 Standards for Potable and industrial water.

Runalin

Semester-III Practical Credits: 3

	Creaits: 5
RUSCHEP301	CHEMISTRY-I
	1. To study the kinetics of the reaction between $K_2S_2O_8$ and KI for equal concentration.
	2. To determine conductance, specific conductance and molar conductance for given
	electrolyte solution.
	3. To determine degree of dissociation and dissociation constant of weak electrolyte and
	hence to verity Ostwald's dilution law.
	4. To determine solubility of a sparingly soluble salt conductometrically.
	5. To determine the amount of strong acid in the given solution by conductometric titration.
	6. To determine the amount of strong acid in the given solution by pH-metric titration.
RUSCHEP302	CHEMISTRY-II
	Qualitative determination of anion and molecular composition of the salts such as copper
	sulphate pentahydrate, nickel chloride hexahydrate, anhydrous cupric chloride using
	volumetric methods. (Learners will prepare EDTA solution).
	Minimum four salt samples will be given to every student.
	Organic preparation and their purification: Use 0.5-1.0g of the organic compound.
	Purify the product by recrystallization. Report theoretical yield, percentage yield and
	melting point of the purified product.
	Preparation of:
	1. Cyclohexanoneoxime from cyclohexanone.
	2. Tribromoaniline from aniline.
0	3. m-Dinitrobenzene from nitrobenzene
<u> </u>	4. Phthalic anhydride from phthalic acid by sublimation
	5. Preparation of 5-nitrosalicylic acid from salicylic acid.
	6.Benzoic acid from benzamide.
	7. Magneson – II from p-nitroaniline
RUSCHEP303	CHEMISTRY-III

1. Gravimetric estimation of Nickel (II) as Ni-DMG.	
2. Gravimetric estimation of barium ions as BaSO ₄ .	
3. To carry out the calibration ofpipette and burette.	
4. To determine hardness of given water sample.	
5. To determine Dissolved Oxygen of the given water sample.	
6. To determine the COD of water sample.	

01

Modality of Assessment

Theory Examination Pattern:

A) Internal Assessment - 40% (40 Marks)

Sr No	Evaluation Type	Marks
1	Assignment	15
2	Class Test (MCQ / Objectives)	20
3	Active Participation in Class (Case studies/Seminars/Presentations)	05
	Total	40

B) External Examination : 60 % (60 marks) Semester End Theory Examination :

- (B) Duration These examinations shall be of **two hours** duration.
- (C) Theory question paper pattern :-

There shall be **three** questions each of **20** marks. On each unit there will be one question.

All questions shall be compulsory with internal choice within the questions.

Questions	Options	Marks	Questions based on
Q.1)	Any 5 out of 7	20	Unit I
Q.2)	Any 5 out of 7	20	Unit II
Q.3)	Any 5 out of 7	20	Unit III
~	Total	60	

Practical Examination Pattern: (A) Internal Examination:- 40 % (20 Marks)

Particulars	Paper I	Paper II	Paper-III
Journal	05	05	05
Experimental Work	10	10	10
Participation	05	05	05
Total	20	20	20

(A) External Examination : 60 % (30 Marks)

Semester End Practical Examination:

Particulars	Paper I	Paper II	Paper II
Laboratory Work	25	25	25
Viva	05	05	05
Total	30	30	30

PRACTICAL BOOK/JOURNAL

- The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.
- In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Co-ordinator / In-charge of the department ; failing which the student will not be allowed to appear for the practical examination.

Course		301		302		.30.3		Grand Total		
	Internal	External	Total	Internal	External	Tota	Interna	lExternal	Tota	
Theory	40	60	100	40	60	100	40	60	100	300
Practicals	20	30	50	20	30	50	20	30	50	150

Overall Examination and Marks Distribution Pattern:

(Total: 450 marks)

Semester IV Course Code: RUSCHE401 <u>Course Title : CHEMISTRY-I</u> Academic year 2022-2023

Course Outcomes :

After stu	lying the course, the learner will be able to:
CO 1	Apply the concepts of Gibbs' and Helmholtz Free Energy to EMF measurements.
CO 2	Understand the significance of Gibbs' and Helmholtz Free Energy and its
	applications to EMF measurements.
CO 3	Describe the types of Electrodes and Electrochemical Cells
CO 4	Derive Nernst Equation and can give its applications.
CO 5	Calculate the pH for strong and weak electrolytes and Buffer Action.
CO 6	Classify solutions on the basis of intermolecular forces.
CO 7	Determine molecular weight of a component in a given mixture by steam
	distillation.
CO 8	Apply phase rule to One-Component and Two-Component systems.
CO 9	Comprehend various Properties of Transition Metals.
CO 10	Define basic Terms involved in Co-ordination chemistry.
CO 11	Apply Werner's Theory to understand the model of co-ordination compounds.
CO 12	Know the significance of co-ordination compounds.
CO 13	Describe the nature of the Metal-Ligand Bond.

DETAILED SYLLABUS						
RUSCHE401		CHEMISTRY-I				
	Unit	Unit Title	Lectures			
	Ι	Electrochemistry II and Concept of pH and	(15L)			
		Buffers	U			
		1.1.Electromotive Force of Galvanic Cells	(10L)			
		1.1.1 Electrochemical cells, galvanic cells,				
		reversible cells and reversible electrodes, conventions to represent Galvanic cells.				
		1.1.2 Types of electrodes, standard electrode potential, electrochemical series.				
		1.1.3 Cell potential and standard cell potential.				
		1.1.4 Nernst equation and its importance.				
		1.1.5 Calculation of thermodynamic parameters:				
		Δ G, Δ H, Δ S and equilibrium constant from EMF data.				
		1.1.6 Classification of galvanic cells: chemical				
		cells and concentration cells				
		1.1.7 Determination of pH using glass electrode and quinhydrone electrode.				
		1.2 pH and Buffers	(05 L)			
	$\langle \rangle$	1.2.1 pH concept, calculation of pH for strong and				
.9		weak electrolytes				
		1.2.2 Buffer, Henderson's equation for acidic and				
		basic buffer				
		1.2.3 Buffer Capacity.				
$\langle \rangle$		(Numericals are expected).				
	II	Solutions of Liquid in Liquid and Phase	(15L)			

	2.1 Solutions of Liquid In Liquid	(08 L)
	2.1.1 Thermodynamics of ideal solutions: ideal	
	solutions and Raoult's law, deviations from	
	Raoult's law.	
	2.1.2Vapour pressure-composition and	
	temperature –composition curves of ideal and non-	
	ideal solutions. Distillation of liquids forming	
	ideal and non-ideal solution, Azeotropes, steam	
	distillation.	
	2.1.3 Partially miscible liquids: critical solution	
	temperature; systems with upper critical solution	
	temperature, lower critical solution temperature	
	and having both.	
	2.1.4 Nernst distribution law and its applications	
	to solvent extraction	
	2.2 Phase Equilibria	(07L)
	2.2.1 Terms involved: Phases, components and	
	degrees of freedom. Gibbs Phase Rule.	
	2.2.2 Phase diagrams of one-component systems	
	(water, CO_2 and sulphur).	
	2.2.3 Two component systems involving	
	eutectic (lead-silver system)	
	III Comparative Chemistry of transition metals and	(15L)
	Co-Ordination Chemistry	
	3.1: Chemistry of Transition Metals	(06 L)
	3.1.1 Position in the periodic table, electronic	
	configuration.	
$\mathcal{O}_{\mathcal{F}}$	3.1.2 Significance of special stability of d^0 , d^5 and	
	d ¹⁰ configurations, Variable oxidation states and	

nnoi

	complexes, colour, magnetic property, catalytic	
	property.	
	3.2 Coordination Chemistry:	(05 L)
	3.2.1 Historical perspectives;	
	3.2.2 Molecular compounds - Double salts and	
	Complex salts	
	3.2.3 Werner's theory	
	3.2.4 Basic terms viz complex ion, charge on the	5
	complex, ligands, coordination number, oxidation	
	state, & Nomenclature	
	3.2.5 Sidgwick – Powel Theory of coordination	
	compounds; Effective atomic number rule.	
	3.2.6 Stereoisomerism and optical isomerism of	
	coordination compounds (C.N.= 4 and 6).	
	3.2.7 Evidence for the formation of coordination	
	compounds.	
	3.2.8 Application of coordination compounds.	
	3.3. Nature of the Metal-Ligand Bond:	(04L)
	3.3.1 Application of VBT to complexes with	
	coordination number 4, 5 & 6, Inner and outer	
	orbital complexes.	
annalai		

Course Code: RUSCHE402 <u>Course Title : CHEMISTRY-II</u> Academic year 2022-2023.

Course Outcomes:

After s	tudying this course, the learner will be able to:
CO 1	Write reactions of Carboxylic and sulphonic acids and their derivatives
CO 2	Assign Nomenclature and explain the nature, type and reactivity of Amines and Diazonium Compounds
CO 3	Write reactions for the preparation of given heterocyclic Compounds.
CO 4	Classify Organometallic compounds and illustrate their catalytic applications.
CO 5	Comprehend the chemistry of metal carbonyls.

RUSCHE402		CHEMISTRY-II	Credits-02
	Unit	Unit Title	Lectures
	Ι	Chemistry of Carboxylic and Sulphonic Acids	(15L)
		1.1Carboxylic Acids and their derivatives`	(11L)
		1.1.1. Nomenclature, structure and physical	
		properties, acidity of carboxylic acids, effects of	
		substituents on acid strength of aliphatic and	
•	\sim	aromatic carboxylic acids.	
.0		1.1.2. Preparation of carboxylic acids: oxidation of	
	5	alcohols and alkyl benzene, carbonation of	
		Grignard reagent and hydrolysis of nitriles.	
		1.1.3. Reactions: Acidity, salt formation,	
\mathcal{A}		decarboxylation, reduction of carboxylic acids	
		with LiAlH ₄ , diborane, Hell-Volhard-Zelinsky	
7		reaction, conversion to acid chlorides, esters,	

	1202, 312, 4003 FOR 51.B.St Seni-III & Seni-IV CHEWISTRE 2022-2025	
	amides and acid anhydrides and their relative	
	reactivity.	
	1.1.4. Mechanism of nucleophilic acyl and acid-	
	catalysed nucleophilic acyl substitution.	
	Interconversion of acid derivatives by	
	nucleophilic acyl substitution.	
	1.1.5. Mechanism of Claisen condensation and	
	Dieckmann condensation.	
	1.2 Sulphonic acids:	(4L)
	1.2.1 Nomenclature, preparation of aromatic	
	sulphonic acids by sulphonation of benzene (with	
	mechanism), toluene and naphthalene.	
	1.2.2 Reactions: Acidity of arene sulfonic acid,	
	comparative acidity of carboxylic acid and	
	sulfonic acids reactions of arenesulphonic acid	
	such as salt formation, desulphonation ,	
	phosphorous pentachloride, <i>ipso</i> substitution.	
II	Chemistry of Amines and Heterocyclic	(15L)
	Chemistry	
	2.1Amines:	(4L)
	2.1.1.Nomenclature, effect of substituent on	
•.•	basicity of aliphatic and aromatic amines.	
	2.1.2. Preparation: Reduction of aromatic nitro	
\$°0-`	compounds using catalytic hydrogenation,	
	chemical reduction using Fe-HCI, Sn-HCl, Zn-	
20	acetic acid. Reduction of nitriles, ammonolysis of	
	halides, reductive amination, Hofmann	
	bromamide reaction.	
	2.1.3. Reactions: salt Formation, N-acylation, N-	
	alkylation, Hofmann' exhaustive methylation	

	(HEM), Hofmann-elimination, carbylamine reaction, reaction with nitrous acid, Electrophilic substitution in aromatic amines: bromination, nitration and sulphonation.	.10
	2.2 Diazonium Salts:	(3L)
	2.2.1 Preparation: - Sandmeyer reaction,	
	Gattermann reaction, Gomberg reaction.	
	Reactions: Replacement of diazo group by -H,-	D
	OH. Azo coupling with phenols, naphthols and	
	aromatic amines, reduction of diazonium salt to	
	aryl hydrazine and hydroazobenzene. Synthetic	
	application.	
	2.3 Heterocyclic Compounds:	(8L)
	2.3.1.Classification, nomenclature, electronic	
	structure, aromaticity in 5-numbered and 6-	
	membered rings containing one heteroatom.	
	2.3.2 Synthesis of Furan, Pyrrole (Paal-Knorr	
	synthesis, Knorr pyrrole synthesis, and Hantzsch	
	synthesis), Thiophene, Pyridine (Hantzsch	
	synthesis).	
	2.3.3. Reactivity of furan, pyrrole and thiophene	
	towards electrophilic substitution reactions on the	
	basis of stability of intermediate and of pyridine	
C O ·	on the basis of electron distribution. Reactivity of	
	pyridine towards nucleophilic substitution on the	
0	basis of electron distribution.	
	2.3.4. Reactions of furan, pyrrole and thiophene:	
	halogenation, nitration, sulphonation, Vilsmeier-	
	Haack reaction, Friedel-Crafts reaction. Furan:	
	Diels-Alder reaction, ring opening. Pyrrole:	

	Acidity and basicity of pyrrole. Comparison of	
	basicity of pyrrole and pyrrolidine.	
	2.3.5. Pyridine: Basicity. Comparison of basicity	
	of pyridine, pyrrole and piperidine. Reaction:	
	sulphonation (with and without catalyst),	
	Chichibabin reaction.	5
III	Chemistry of Group 15 and Group 16 Elements	(15L)
	and Basics of Organometallic Chemistry	
	3.1 Chemistry of Group 15 and 16 Elements	(08L)
	3.1.1 Trends in physical and chemical properties	
	of Group – 15 and Group – 16 Elements	
	3.1.2 Study of Compounds such as oxyacids of N	
	and S with respect to preparation, properties and	
	structure.	
	3.1.3 Physical properties of Hydrides of Group 15	
	and 16 Elements with respect to H- bonding.	
	3.2Organometallic Chemistry	(07L)
	3.1.1 Introduction, definition, classification based	
	on hapticity and nature of metal-carbon bond.	
	Eighteen electron rule and its applications,	
	exceptions	
	3.1.2 Importance and few applications of	
	organometallic compounds as catalysts (e.g.	
< 0 ·	Ziegler-Natta catalyst, Wilkinson), reagents	
	in organic synthesis etc.	
20	3.1.3 Metal carbonyls: Bonding, general method	
	of preparation and properties of Ni(CO) ₄ ,	
	Fe(CO) ₅ .	

Course Code: RUSCHE403 <u>Course Title : CHEMISTRY-III</u> Academic year 2022-2023

Course Outcomes:

After com	pleting this course, the learner will be able to:
CO 1	Categorize the different types of separation methods under physical , chemical ,
	mechanical methods.
CO 2	Explain the basic principle of the solvent extraction and chromatography techniques.
CO 3	Define the terms partition coefficient & distribution ratio.
CO 4	Know the factors that affect extraction efficiency.
CO 5	Describe the different types of solvent extraction and will be able to enlist the
	advantages and limitation of each type.
CO 6	Illustrate the role of chelating agents in solvent extraction.
CO 7	Develop simple separation schemes and determine the optimal conditions for
	isolating and separating analyte, based on distribution ratios.
CO 8	Choose an appropriate mobile phase for the effective separation of different
	components present in a sample.
CO 9	Develop the chromatogram skilfully and will be able the apply the most suitable
	method for the detection of the resolved components.
CO 10	Apply the theoretical principles of chromatography learned to separate and quantify
	different components present in a sample.
CO 11	Explain the basic principle involved in quantitative analysis using UV-Vis
	spectroscopy.
CO 12	Derive the mathematical expression of Beer-Lambert's law.
CO 13	Describe the function of the different components of a colorimeter and
	spectrophotometer.
CO 14	Distinguish between colorimeters & spectrophotometers.
CO 15	Recognize the limitations of UV-Vis spectroscopy.
CO 16	Explain the basic principle involved in different types of conductometric titrations.
CO 17	Enlist the advantages and limitations of conductometric titrations.

RUSCHE403	CHE403 CHEMISTRY-III	CHEMISTRY-III	Credits-02
	Unit	Unit Title	Lectures
	Ι	Methods of Separation	(15L)
		1.1Separation Techniques in analytical	(04L)
		Chemistry	5
		1.1.1 Introduction to separation Techniques	
		1.1.2 Separation and its importance in analytical	
		chemistry, estimation without separation.	
		1.1.3 Classification of separation methods	
		physical and chemical	
		1.1.4 Chemical methods, precipitation, complex	
		formation.	
		1.1.5 Physical methods of separation,	
		precipitation, fractional precipitation,	
		volatilization, distillation, fractional distillation,	
		vacuum distillation.	
		1.2 Solvent Extraction	(04L)
		1.2.1 Nernst's distribution law, partition	
		coefficient, distribution ratio,	
	\sim	1.2.2 Percentage extraction, extraction	
0		efficiency, percentage extraction for single step	
	0-	and multistep process with the same total volume	
		of the extracting solvent	
		1.2.3 . Modes of extraction: Chelation, ion-pair	
		formation and solvation.	
		1.2.4 Batch and continuous extraction, Counter	
7		current extraction	