Resolution Number: AC/I(21-22).2(II).RPS5

S. P. Mandali's Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

SYLLABUS

Program: M.Sc.

Program Code: (RPSCHE)

(Credit based semester and grading system with effect from the academic year 2022-2023).

PROGRAM OUTCOME

Description
ent after completing Master's in Science program will be able to
Demonstrate in depth understanding in the relevant science discipline. Recall, explain,
extrapolate and organize conceptual scientific knowledge for execution and application
and also to evaluate its relevance.
Critically evaluate, analyse and comprehend a scientific problem. Think creatively,
experiment and generate a solution independently, check and validate it and modify if
necessary.
Access, evaluate, understand and compare digital information from various sources and
apply it for scientific knowledge acquisition as well as scientific data analysis and
presentation.
Articulate scientific ideas, put forth a hypothesis, design and execute testing tools and
draw relevant inferences. Communicate the research work in appropriate scientific
language.
Demonstrate initiative, competence and tenacity at the workplace. Successfully plan
and execute tasks independently as well as with team members. Effectively
communicate and present complex information accurately and appropriately to
different groups.
Use an objective, unbiased and non-manipulative approach in collection and
interpretation of scientific data and avoid plagiarism and violation of Intellectual
Property Rights. Appreciate and be sensitive to environmental and sustainability issues
and understand its scientific significance and global relevance.
Translate academic research into innovation and creatively design scientific solutions
to problems. Exemplify project plans, use management skills and lead a team for
planning and execution of a task.
Understand cross disciplinary relevance of scientific developments and relearn and
reskill so as to adapt to technological advancements.

PROGRAM OUTCOMES

PO	Description
A student	completing Master's degree in Science Program in the subject of chemistry will be
able to:	
PO 1	Acquire in-depth knowledge of the advance concepts in the branch of specialization
	viz, Physical , Inorganic , Organic & Analytical.
PO 2	Design and carry out analysis as well as accurately record and analyse the results.
PO 3	Explain the findings and share the results with scientists and non scientist with the help
	of the written and oral communication skills acquire during the course.
PO 4	Apply the skills to do specialized research in the core and applied areas of chemical
	sciences.
PO 5	Explore new areas of research in chemistry and allied fields of science and technology.
PO 6	Demonstrating the developed skills such as problem solving approach, critical thinking
	, analytical reasoning ,team work and effective communication for solving the applied
	research problems related to their field.
PO 7	Explain why chemistry plays an integral role in addressing social, economic and
	environmental problems.
PO 8	Become professionally skilled for higher studies in research institutions and to work in
	industries.

PROGRAM OUTLINE

Year	Semester	Course Code	Course Title	Credits
M.Sc-I		RPSCHE101	Physical Chemistry	4
		RPSCHE102	Inorganic Chemistry	4
		RPSCHE103	Organic Chemistry	4
		RPSCHE104	Analytical Chemistry	4
	I	RPSCHE1P1	Physical Chemistry	2
		RPSCHE1P2	Inorganic Chemistry	2
		RPSCHE1P3	Organic Chemistry	2
		RPSCHE1P4	Analytical Chemistry	2
		RPSCHE201	Physical Chemistry	4
		RPSCHE202	Inorganic Chemistry	4
		RPSCHE203	Organic Chemistry	4
		RPSCHE204	Analytical Chemistry	4
	II	RPSCHE2P1	Physical Chemistry	2
		RPSCHE2P2	Inorganic Chemistry	2
		RPSCHE2P3	Organic Chemistry	2
		RPSCHE2P4	Analytical Chemistry	2
Ranna				

Resolution Number:

S. P. Mandali's Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for SEMESTER I and II

Program: M.Sc.

Program Code: (RPSCHE)

(Credit based semester and grading system with effect from the academic year 2022-2023)

		SEMESTER-I		
Course Code	Unit	Course Title / Unit Title	Credits	
		PHYSICAL CHEMISTRY		
	I	Thermodynamics-I		
RPSCHE101	II	Quantum Chemistry– I	4	
	III	Chemical Dynamics-I		
	IV	Electrochemistry	0	
		INORGANIC CHEMISTRY	0	
	I	Chemical Bonding		
RPSCHE102	II	Molecular Symmetry and Group Theory	4	
	III	Materials Chemistry and Nanomaterials		
	IV	Characterisation of Coordination compounds		
		ORGANIC CHEMISTRY		
	I	Physical Organic Chemistry		
RPSCHE103	II	Nucleophilic substitution reactions and Aromaticity	4	
	III	Stereochemistry		
	IV	Oxidation and Reduction		
		ANALYTICAL CHEMISTRY		
	I	Language of Analytical Chemistry & Quality in Analytical		
RPSCHE104	1	Chemistry.	4	
KrSCHE104	IL	Calculations based on Chemical Principles	4	
	W	Optical Methods		
	IV	Thermal Methods& Automation in chemical analysis		
RPSCHE1P1				
RPSCHE1P2				
RPSCHE1P3	Practical 8			
RPSCHE1P4	1			

		SEMESTER II	
Course Code	Unit	Course Title / Unit Title	Credits
		PHYSICAL CHEMISTRY	
	I	Chemical Thermodynamics –II	
RPSCHE201	II	Quantum Chemistry–II	4
	III	Chemical Dynamics–II	
	IV	Solid State Chemistry and Phase Equilibria	
		INORGANIC CHEMISTRY	0 4
	I	Inorganic Reaction Mechanism	
RPSCHE202	II	Organometallic Chemistry of Transition metals	
	III	Environmental Chemistry	
	IV	Bioinorganic Chemistry	
		ORGANIC CHEMISTRY	
	I	Alkylation of Nucleophilic Carbon Intermediates	
RPSCHE203	II	Reactions and Rearrangements	4
M Sellevo	Ш	Introduction to Molecular Orbital Theory for Organic Chemistry	•
	IV	NMR spectroscopy and Mass spectrometry	
		ANALYTICAL CHEMISTRY	
	I	Chromatography	
RPSCHE204	II	X-ray spectroscopy & Mass spectrometry	4
)II)	Surface Analytical Techniques & Atomic Spectroscopy	
~	IV	Electroanalytical Methods	
RPSCHE2P1		<u> </u>	
RPSCHE2P2	1	Practical	8
RPSCHE2P3		Fracucal	o
RPSCHE2P4			

Course Code: RPSCHE101 <u>Course Title: PHYSICAL CHEMISTRY</u> Academic year 2019-20.

Course Outcomes:

After co	mpletion of this Course, the learner will be able to:
CO 1	Derive Maxwell equations and understand their significance.
CO 2	Connect quantum mechanical operators to observables.
CO 3	Calculate probabilities, amplitudes, averages values of the observables.
CO 4	Derive rate laws of different types of the reactions.

Course Code	Unit	Course title / Unit Title	Credits/ Lectures
RPSCHE101		PHYSICAL CHEMISTRY	04
	I	Thermodynamics-I	(15)
Rahha		 1.1 State function and exact differentials. Maxwell equations, Maxwell thermodynamic Relations; it's significance and applications to ideal gases, Joule Thomson experiment, Joule Thomson coefficient, inversion temperature, Joule Thomson coefficient in terms of van der Waals constants. 1.2 Third law of Thermodynamics, Entropy change for a phase transition, absolute entropies, determination of absolute entropies in terms of heat capacity, standard molar entropies and their dependence on molecular mass and molecular 	
		Structure, residual entropy. Quantum Chemistry –I	(15)

					BUILA	COLLEG
2.1 Classical	Mechanics,	failure	of	classical	Explore • E:	Experience o
mechanics	s: Need for Qu	antum M	echai	nics.		
2.2 Particle w	aves and Schr	ödinger v	vave	equation,		
wave fund	ctions, proper	ties of w	ave	functions,		

Ramarain Ruia Autonomous College

		Normalization of wave functions, orthogonality	
		of wave functions.	
	2.	3 Operators and their algebra, linear and Hermitian	
		operators, operators for the dynamic variables of	
		a system such as, position, linear momentum,	
		angular momentum, total energy, eigen	
		functions, eigen values and eigen value equation,	50
		Schrödinger wave equation as the eigen value	60
		equation of the Hamiltonian operator, average	
		value and the expectation value of a dynamic) *
		variable of the system, Postulates of Quantum	
		Mechanics, Schrödinger's Time independent	
		wave equation from Schrödinger's time	
		dependent wave equation.	
	2.	4 Application of quantum mechanics to the	
		following systems:	
	2.	4.1 Free particle, wave function and energy of a	
		free particle.	
	2.	4.2 Particle in a one, two- and three-dimensional	
		box, separation of variables, Expression for	
		the wave function of the system, expression	
•		for the energy of the system, concept of	
40	5 -7	quantization, introduction of quantum	
1000		number, degeneracy of the energy levels.	
	2.	4.3 Harmonic oscillator, approximate solution of	
		the equation, Hermite polynomials,	
		expression for wave function, expression for	
<i>y</i>		energy, use of the recursion formula.	
I	II	Chemical Dynamics–I	(15)
	3.	1 Rate laws for complex reactions, parallel reaction	
		with example of nuclear reactions and	
		fluorescence decay, opposing reactions, rate	
		constants by temperature jump method,	

	consecutive reactions, rate determining step and	
	steady state approximation.	
	3.2 Collision theory of reaction rates, collision cross-	
	sections, rate coefficient, steric factor, Straight	
	chain reactions. Theory of absolute reaction rates	
	activated complex theory, potential energy	
	surface, and thermodynamic interpretation,	50
	comparison of results with Eyring and Arrhenius	00
	equations.	
	3.3 Some inorganic mechanisms: formation and	,
	decomposition of phosgene, decomposition of	
	ozone, Reaction between Hydrogen and Bromine	
	and some general examples Organic	
	Decompositions: Decomposition of ethane,	
	decomposition of acetaldehyde Gas phase	
	combustion: Reaction between hydrogen and	
	oxygen, Semenov – Hinshelwood and Thompson	
	mechanism, Explosion limits and factors	
	affecting explosion limits.	
	3.4 Polymerization reactions: Kinetics of stepwise	
	polymerization, Calculation of degree of	
	polymerization for stepwise reaction. Kinetics of	
2,5	free radical chain polymerization, Kinetic chain	
202	length and estimation of average no. of monomer	
	units in the polymer produced by chain	
	polymerization.	
I	Electrochemistry	(15)
	4.1 Debye-Huckel theory of activity coefficient,	
	Debye-Huckel limiting law and its extension to	
	higher concentration (derivations are expected).	
	4.2 Electrolytic conductance and ionic interaction,	
	relaxation effect, Debye-Hückel- Onsager	
	equation (derivation expected). Validity of this	

equation for aqueous and non- aqueous solution, deviations from Onsager equation, Debye -Falkenhagen effect (dispersion of conductance at high frequencies), Wien effect.

- **4.3 Batteries:** Alkaline fuel cells, Phosphoric acid fuel cells, High temperature fuel cells [Solid Oxide Fuel Cells (SOFC) and Molten Carbonate Fuel Cells]
- 4.4 Bio-electrochemistry: Introduction, cells and membranes, membrane potentials, theory of membrane potentials, interfacial electron transfer in biological systems, adsorption of proteins onto metals from solution, electron transfer from modified metals to dissolved protein in solution, enzymes as electrodes, electrochemical enzymecatalysed oxidation of styrene. Goldmann equation. (Derivations are expected)

References:

- 1. Peter Atkins and Julio de Paula, Atkins Physical Chemistry, 7th Edition, Oxford University Press, 2002.
- 2. K.J. Laidler and J.H. Meiser, Physical Chemistry, 2nd Edition, CBS Publishers and Distributors, New Delhi, 1999.
- 3. S. Glasstone, Text Book of Physical Chemistry, 2ndEdition, McMillan and Co. Ltd., London, 1962.
- 4. R.K. Prasad, Quantum Chemistry, 2nd Edition, New Age International Publishers, 2000.
- 5. Thomas Engel and Philip Reid, Physical Chemistry, 3rd Edition, Pearson Education Limited, 2013.
- 6. D.N. Bajpai, Advanced Physical Chemistry, S. Chand 1st Edition, 1992.
- Bockris, John O'M., Reddy, Amulya K.N., Gamboa-Aldeco, Maria E., Modern Electrochemistry, 2A, Plenum Publishers, 1998.

Semester-I Practical

RPSCHE1P1		Physical Chemistry	Credits - 02				
		Non – Instrumental					
	1.	To determine the heat of solution (ΔH) of a sparingly	0				
		soluble acid (benzoic /salicylic acid) from solubility					
		measurement at three different temperature.	100				
	2.	To study the variation of calcium sulphate with ionic					
		strength and hence determine the thermodynamic					
		solubility product of CaSO ₄ at room temperature.					
	3.	To investigate the reaction between acetone and iodine.					
	4.	To study the variation in the solubility of Ca(OH) ₂ in					
		presence of NaOH and hence to determine the solubility					
		product of Ca(OH) ₂ at room temperature.					
		Instrumental					
	1.	1. To determine the mean ionic activity coefficient of an					
		electrolyte by e.m.f. measurement.					
	2	To study the effect of substituent on the dissociation					
		constant of acetic acid conductometrically.					
	3.	To determine pKa values of phosphoric acid by					
		potentiometric titration with sodium hydroxide using					
		glass electrode.					
~	4.	To verify Ostwald's dilution law and to determine the					
		dissociation constant of a weak mono-basic acid					
000		conductometrically.					

Course Code : RPSCHE102 <u>Course Title : INORGANIC CHEMISTRY</u> Academic year 2020-21

Course Outcomes:

After con	mpletion of this Course, the learner will be able to:
CO 1	Comprehend the derivation of different hybridizations such as sp , sp^2 , $sp3$ using sigma
	bonding concept.
CO 2	Recognize the concept of MOT and how MOT is constructed for polyatomic
	molecules.
CO 3	Know how the physical properties like melting and boiling points of molecules get
	affected by chemical forces present in it.
CO 4	Understand Symmetry operations and Symmetry elements.
CO 5	Differentiate Abelian and Non-abelian point groups.
CO 6	Use of Great Orthogonality Theorem for construction of character table.
CO 7	Examine chemical bonding, visualizing molecular orbitals, behaviour of atoms,
	molecules and solids using group theory.
CO 8	Know the importance of Material Chemistry and its potential in developing
	applications, either by compositional control to optimize properties or by fabrication
	into desired forms, shapes or products.
CO 9	Recognize the importance of Stability as we all seek to achieve stability including
	molecules.
CO 10	Aware of the various methods/ techniques used to detect complex formation between
0010	metal and ligand.
	metal and figures.
CO 11	Interpret the electronic spectra of octahedral and square planar complexes.
CO 12	Calculate the various spectral parameters using correlation diagram and spectra.

Course Code	Unit	Course Title / Unit Title	Credits/
Course Coue	Omt	Course Title / Offit Title	Lectures
RPSCHE102		INORGANIC CHEMISTRY	4
	I	Chemical Bonding	(15)
		1.1 Recapitulation of hybridization, Derivation of	~
		wave functions for sp , sp^2 , $sp3$ orbital	
		hybridization types considering only sigma	600
		bonding.	Y
		1.2 Discussion of involvement of <i>d</i> -orbitals in various	
		types of hybridizations. Concept of resonance,	
		resonance energy, Formal charge with examples.	
		1.3 Critical analysis of VBT.	
		1.4 Molecular Orbital Theory for diatomic species of	
		First transition Series.	
		1.5 Molecular Orbital Theory for Polyatomic species	
		considering σ bonding for SF ₆ , CO ₂ , B ₂ H ₆	
		molecular species.	
		1.6 Chemical Forces:	
		1.6.1 Hydrogen bonding – Concept, Types,	
	•	Properties, Methods of Detection and	
		Importance.	
S S		1.6.2 Intermolecular Forces: Dipole-Dipole	
200		Interaction, Induced dipole-Induced dipole	
		Interaction	
Raining		1.6.3 Effects of Chemical Forces: Melting and	
		Boiling Points, Solubility	
	II	Molecular Symmetry and Group Theory	(15)
		2.1 Symmetry criterion of optical activity, symmetry	
		restrictions on dipole moment. A systematic	
		procedure for symmetry classification of	
		molecules.	

	2.2 Co	oncepts of Groups, Sub-groups, Classes of	
	Sy	mmetry operations, Group Multiplication	
	Та	bles. Abelian and non-Abelian point groups.	
	2.3 Re	presentation of Groups: Matrix representation	
	of	symmetry operations, reducible and irreducible	
	rep	presentations. The Great Orthogonality	
	Th	eorem and its application in construction of	30
	ch	aracter tables for point groups C_2v , C_3v and D_{2h} ,	00
	str	ucture of character tables.	
	2.4 Ap	oplications of Group Theory:	
	2.4.1	Symmetry adapted linear combinations	
		(SALC), symmetry aspects of MO theory,	
		sigma bonding in AB_n (Ammonia, CH_4)	
		molecule.	
	2.4.2	Determination of symmetry species for	
		translations and rotations.	
	2.4.3	Mulliken's notations for irreducible	
		representations.	
	2.4.4	Reduction of reducible representations using	
	201	reduction formula.	
	2.4.5	Group-subgroup relationships.	
	2.4.6	Descent and ascent in symmetry correlation	
10,		diagrams showing relationship between	
		different groups.	
III	N	Materials Chemistry and Nanomaterials	(15)
	3.1 So	lid State Chemistry:	
	3.1.1	Electronic structure of solids and band theory,	
,		Fermi level, K Space and Brillouin Zones.	
	3.1.2	Structures of Compounds of the type: AB	
		(nickel arsenide (NiAs)), AB ₂ (fluorite (CaF ₂)	
		and anti-fluorite structures, rutile (TiO ₂)	
		structure and layer structure (cadmium	
		chloride and iodide (CdCl ₂ , CdI ₂)).	

	3.1.3 Methods of preparation for inorganic solids:	
	Ceramic method, precursor method, sol-gel	
	method (applications in Biosensors),	
	microwave synthesis (discussion on	
	principles, examples, merits and demerits are	
	expected).	
	3.2 Nanomaterials:	20
	3.2.1 Preparative methods: Chemical methods	00
	Solvothermal, Combustion synthesis,	
	Microwave, Co-precipitation, Langmuir	
	Blodgett (L-B) method, Biological methods:	
	Synthesis using microorganisms.	
	3.2.2 Applications in the field of semiconductors	
	and solar cells.	
IV	Characterisation of Coordination compounds	(15)
	4.1 Thermodynamic and Kinetic Stability, Stepwise	
	and Overall Stability Constant, Relationship	
	between Stepwise and Overall Formation	
	constant.(Numerical Problem expected).	
	4.2 Detection of Complex Formation: Formation of	
	precipitate, Conductivity measurements, Spectral	
	method (Colour Change in Solution), pH method,	
	magnetic measurements.	
	4.3 Determination of formation constants of metal	
	complexes: Spectroscopic methods viz., Job's	
	method, mole-ratio and slope-ratio methods for	
	determination of stepwise formation constants of	
y	metal complexes.	
	4.4 Interpretation of electronic spectra for octahedral	
	and square planar complexes.	
	4.5 Spectral calculations using Orgel and Tanabe-	
	Sugano diagram, calculation of electronic	

(Numerical Problem expected).	

References:

- 1. Wai-Kee Li, Gong-Du Zhou and Thomas Chungwai Mak, Advanced Structural Inorganic Chemistry, Oxford University Press, 2008.
- 2. B. R. Puri, L. R. Sharma and K. C. Kalia, Principles of Inorganic Chemistry, 33rd Edition, Vishal Publishing CO., 2017-2018.
- 3. P.W. Atkins, T. Overton, J. Rourke, M. Weller and F. Armstrong, Shriver & Atkins: Inorganic Chemistry, 6th ed. Oxford University Press, 2014.
- 4. K. V. Reddy. Symmetry and Spectroscopy of Molecules, 2nd Edition, New Age International Publishers, New Delhi, 2009.
- 5. S. Swarnalakshmi, T. Saroja and R. M. Ezhilarasi, A Simple Approach to Group Theory in Chemistry, Universities Press, 2008.
- 6. G. Miessler and D. Tarr, Inorganic Chemistry, 3rd Ed., Pearson Education, 2004.
- 7. Lesley E. Smart, Elaine A. Moore, Solid State Chemistry Introduction, 3rd Edition, Taylor & Francis Group, LLC, 2005.
- 8. C. E. Housecroft and A. G. Sharpe, Inorganic Chemistry, Pearson Education Limited,2nd Edition, 2005.
- 9. F. A. Cotton, Chemical Applications of Group Theory, 2nd Edition, Wiley Eastern Ltd., 1989.
- 10. R Gopalan, V Ramalingam, Concise Coordination Chemistry, Vikas Publishing House Pvt. Ltd. 2001.
 - J. E. Huheey, E. A. Keiter and R. L. Keiter; Inorganic Chemistry: Principles of Structure and Reactivity, Pearson Education, 2006.

Semester I Practical

RPSCHE1P2		Inorganic Chemistry	Credits – 02
		Non Instrumental	
		Inorganic Preparations (Synthesis and	
		Characterization):	900
	1.	Hexammine nickel (II) sulphate	100
	2.	Bis (ethylenediammine) Copper (II) Sulphate	
	3.	Tris-thiourea copper(I) sulphate	
		Instrumental	
	1.	Determination of equilibrium constant by Slope	
		intercept method for Fe ⁺³ / SCN ⁻ system	
	2.	Determination of Electrolytic nature of inorganic	
		compounds by Conductance measurement.	
	3.	Determination of Copper (II) using EDTA	
		spectrophotometrically	
	4.	Determination of titanium (IV) colorimetrically.	

References:

- 1. G H Jeffery, J Bassett, J Mendhem, R C Denney, Vogel's Textbook Of Quantitative Chemical Analysis, 3rd Edition, Longman Scientific & Technical,1989.
- 2. R Gopalan, V Ramalingam, Concise Coordination Chemistry, Vikas Publishing House Pvt. Ltd. 2001.
- 3. H N Patel, S P Turakhia, S S Kelkar, S R Puniyani, Post Graduate Practical Chemistry Part I, Himalaya Publishing House, 5th Edition, 2008.

Course Code: RPSCHE103 <u>Course Title: ORGANIC CHEMISTRY</u> Academic year 2020-21

Course Outcomes:

CO 1	Know the kinetic and thermodynamic requirements of organic reactions and a few
	methods to determine the reaction mechanisms.
CO 2	Recognize the factors affecting acidity and basicity.
CO 3	Understand advanced nucleophilic substitutions with special emphasis on
	Neighbouring Group Participations (NGP) and factors affecting the NGP.
CO 4	Identify structural, thermochemical, and magnetic criteria for aromaticity,
	including NMR characteristics of aromatic systems.
CO 5	Comprehend the concept of chirality, Molecules with tri- and tetra-coordinate
	centres, Axial and planar chirality and prochirality.
CO 6	Explore the applications of different oxidizing and reducing agents in organic
	reactions.

I	Course Title/ Unit Title ORGANIC CHEMISTRY Physical Organic Chemistry 1.1 Thermodynamic and Kinetic requirements of a reaction: rate and equilibrium constants, reaction coordinate diagram, transition state (activated complex), nature of activated complex, Hammond postulate, Reactivity vs selectivity, Curtin-Hammett Principle, Microscopic reversibility, Kinetic vs thermodynamic control of organic reactions.	Lectures 04 (15)
I	Physical Organic Chemistry 1.1 Thermodynamic and Kinetic requirements of a reaction: rate and equilibrium constants, reaction coordinate diagram, transition state (activated complex), nature of activated complex, Hammond postulate, Reactivity vs selectivity, Curtin-Hammett Principle, Microscopic reversibility, Kinetic vs thermodynamic control of organic	
I	1.1 Thermodynamic and Kinetic requirements of a reaction: rate and equilibrium constants, reaction coordinate diagram, transition state (activated complex), nature of activated complex, Hammond postulate, Reactivity <i>vs</i> selectivity, Curtin-Hammett Principle, Microscopic reversibility, Kinetic <i>vs</i> thermodynamic control of organic	(15)
	reaction: rate and equilibrium constants, reaction coordinate diagram, transition state (activated complex), nature of activated complex, Hammond postulate, Reactivity <i>vs</i> selectivity, Curtin-Hammett Principle, Microscopic reversibility, Kinetic <i>vs</i> thermodynamic control of organic	lede
	coordinate diagram, transition state (activated complex), nature of activated complex, Hammond postulate, Reactivity <i>vs</i> selectivity, Curtin-Hammett Principle, Microscopic reversibility, Kinetic <i>vs</i> thermodynamic control of organic	le de
	complex), nature of activated complex, Hammond postulate, Reactivity <i>vs</i> selectivity, Curtin-Hammett Principle, Microscopic reversibility, Kinetic <i>vs</i> thermodynamic control of organic	lege
	postulate, Reactivity vs selectivity, Curtin- Hammett Principle, Microscopic reversibility, Kinetic vs thermodynamic control of organic	100
	Hammett Principle, Microscopic reversibility, Kinetic vs thermodynamic control of organic	
	Kinetic vs thermodynamic control of organic	> '
	reactions.	
	1.2 Determining Mechanism of a Reaction: Product	
	analysis, kinetic studies, use of isotopes (Kinetic	
	isotope effect - primary and secondary kinetic	
	isotope effect). Detection and trapping of	
		isotope effect). Detection and trapping of

	intermediates, crossover experiments and	
	stereochemical evidence.	
	1.3 Acids and Bases: Factors affecting acidity and	
	basicity: Electronegativity and inductive effect,	
	resonance, bond strength, electrostatic effects,	
	hybridization, aromaticity and solvation.	
	Comparative study of acidity and basicity of	20
	organic compounds on the basis of pKa values,	0,0
	Leveling effect and non-aqueous solvents. Acid	
	and base catalysis – general and specific catalysis	,
	with examples.	
	Nucleophilic Substitution Reactions and	(15)
II	Aromaticity	(15)
	2.1 Nucleophilic Substitution Reactions	
	2.1.1 Aliphatic nucleophilic substitution: $S_N 1$,	
	S_N2 , $S_N^{\ i}$ reactions, mixed S_N1 and S_N2 and	
	SET mechanisms. S _N reactions involving NGP	
	- participation by aryl rings, α -and pi-bonds.	
	Factors affecting these reactions: substrate,	
	nucleophilicity, solvent, steric effect, hard-soft	
	interaction, leaving group. Ambident	
	nucleophiles. S _N cA, S _N 1' and S _N 2 reactions.	
	S_N at sp ² (vinylic) carbon.	
	2.1.2 Aromatic nucleophilic substitution: S _N Ar,	
	$S_{\rm N}$ 1, benzyne mechanisms. Ipso, cine, tele and	
	vicarious substitution.	
	2.1.3 Ester hydrolysis: Classification,	
y	nomenclature and study of all eight	
	mechanisms of acid and base catalyzed	
	hydrolysis with suitable examples.	
	2.2 Aromaticity:	
	2.2.1 Structural, thermochemical, and magnetic	
	criteria for aromaticity, including NMR	

	characteristics of aromatic systems.	
	Delocalization and aromaticity.	
	2.2.2 Application of HMO theory to monocyclic	
	conjugated systems. Frost-Musulin diagrams.	
	Huckel's (4n+2) and 4n rules.	
	2.2.3 Aromatic and antiaromatic compounds up-to	
	18 carbon atoms. Homoaromatic compounds.	20
	Aromaticity of all benzenoid systems,	20
	heterocycles, metallocenes, azulenes,	
	annulenes, aromatic ions and Fullerene (C ₆₀).	
III	I Stereochemistry	(15)
	3.1. Concept of Chirality: Recognition of symmetry	
	elements.	
	3.2. Molecules with tri- and tetra-coordinate	
	centers: Compounds with carbon, silicon,	
	nitrogen, phosphorous and sulphur chiral centers,	
	relative configurational stabilities.	
	3.3. Molecules with two or more chiral centers:	
	Constitutionally unsymmetrical molecules:	
	erythro-threo and syn-anti systems of	
•	nomenclature. Interconversion of Fischer,	
S	Sawhorse, Newman and Flying wedge	
	projections. Constitutionally symmetrical	
0.00	molecules with odd and even number of chiral	
	centers: enantiomeric and meso forms, concept of	
0 0	stereogenic, chirotopic, and pseudoasymmetric	
	centres. R-S nomenclature for chiral centres in	
	acyclic and cyclic compounds.	
	3.4. Axial and Planar chirality: Principles of axial	
	and planar chirality. Stereochemical features and	
	configurational descriptors (R,S) for the following	
	classes of compounds: allenes, alkylidene	
	cycloalkanes, spirans, biaryls (buttressing effect)	

	(including BINOLs and BINAPs), ansa	
	compounds, cyclophanes, trans-cyclooctenes.	
	3.5.Prochirality: Chiral and prochiral centres;	
	prochiral axis and prochiral plane. Homotopic,	
	heterotopic (enantiotopic and diastereotopic)	
	ligands and faces. Identification using substitution	
	and symmetry criteria. Nomenclature of	30
	stereoheterotopic ligands and faces. Symbols for	00
	stereoheterotopic ligands in molecules with i) one	
	or more prochiral centres ii) a chiral as well as a	
	prochiral centre, iii) a prochiral axis iv) a prochiral	
	plane v) pro-pseudoasymmetric centre. Symbols	
	for enantiotopic and diastereotopic faces.	
IV	Oxidation and Reduction	(15)
	4.1.Oxidation: General mechanism, selectivity, and	
	important applications of the following:	
	4.1.1. Dehydrogenation: Dehydrogenation of C-C	
	bonds including aromatization of six	
	membered rings using chloranil and DDQ.	
	4.1.2. Oxidation of alcohols to aldehydes and	
	ketones: Chromium reagents such as	
	K ₂ Cr ₂ O ₇ /H ₂ SO ₄ (Jones reagent), CrO ₃ -	
	pyridine (Collin's reagent), PCC (Corey's	
	reagent) and PDC (Cornforth reagent),	
	hypervalent iodine reagents (IBX, Dess-	
2 allinatar	Martin periodinane). DMSO based reagents	
	(Swern oxidation), Corey-Kim oxidation -	
y	advantages over Swern and limitations; and	
	Pfitzner-Moffatt oxidation-DCC and DMSO	
	and Oppenauer oxidation.	
	4.1.3. Oxidation involving C-C bonds cleavage:	
	Glycols using HIO ₄ ; cycloalkanones using	
	CrO ₃ ; carbon-carbon double bond using CrO ₃ ,	

- NaIO₄ and OsO₄; aromatic rings using RuO₄ and NaIO₄.
- **4.1.4.** Oxidation involving replacement of hydrogen by oxygen: oxidation of CH₂ to CO by SeO₂, oxidation of aryl methanes by CrO₂Cl₂ (Etard oxidation).
- **4.1.5. Oxidation of aldehydes and ketones:** with H₂O₂ (Dakin reaction), with peroxy acid (Baeyer-Villiger oxidation)
- **4.2. Reduction:** General mechanism, selectivity, and important applications of the following reducing reagents:
- **4.2.1.** Reduction of CO to CH₂ in aldehydes and ketones-Clemmensen reduction, Wolff-Kishner reduction and Huang-Minlon modification.
- 4.2.2. Metal hydride reduction: Boron reagents (NaBH₄, NaCNBH₃, diborane, 9-BBN, Na(OAc)₃BH, aluminium reagents (LiAlH₄, DIBAL-H, Red Al, L and K- selectrides).
- **1.2.3.** NH₂NH₂ (diimide reduction) and other non-metal based agents including organic reducing agents (Hantzsch dihydropyridine).
- **4.2.4. Dissolving metal reductions:** using Zn, Li, Na, and Mg under neutral and acidic conditions, Li/Na-liquid NH₃ mediated reduction (Birch reduction) of aromatic compounds and acetylenes.

References:

- 1. Advanced Organic Chemistry: Reactions, Mechanisms and Structure, Michael B. Smith, Jerry March, Wiley.
- 2. Molecular Orbital and Organic chemical reactions, Ian Fleming Reference Edition, Wiley
- 3. Stereochemistry of Organic Compounds- Principles and Applications, D. Nasipuri. New International Publishers Ltd.
- 4. Stereochemistry: Conformation and mechanism, P.S. Kalsi, New Age International, New Delhi.
- 5. Organic Reaction Mechanisms, V.K. Ahluwalia, R.K. Parasher, Alpha Science International, 2011.

Semester I

RPSCHE1P3	Org	anic Chemistry	(Credits – 02)
	One	step preparations (1.0 g scale):	
	1.	Bromobenzene to p-nitrobromobenzene	
	2.	Anthracene to anthraquinone	
	3.	Benzoin to benzil	
	4.	Anthracene to Anthracene maleic anhydride adduct	
	5.	2-Naphthol to BINOL	
	6.	p-Benzoquinone to 1,2,4-triacetoxybenzene	
	7.	o-Phenylenediamine to 2-methylbenzimidazole	
~	8.	o-Phenylenediamine to 2,3-diphenylquinoxaline	

Course Code : RPSCHE104 Course Title : ANALYTICAL CHEMISTRY

Academic year 2020-21

Course Outcomes:

CO 1 Identify the relationships among the different instrument components and the flow of information from the characteristics of the analyte through the components to the numerical or graphical output produced by the instrument. CO 2 Determine the different types of errors in chemical analysis. CO 3 Make use of calibration curve and standard addition method to carry out quantitative analysis of sample. CO 4 Outline the role and importance of total quality management, safety, accreditations and GLP in industries. CO 5 Apply the knowledge learned to all scientific data analyses during their studies and future career-related activities. CO 6 Explain the working principle and Enlist the applications of UV visible and IR spectroscopy. CO 7 Elaborate on the basic principle underlying the different types of thermal methods and will understand how these methods are employed in industries and research for characterization of sample. CO 8 Compare the technique of DTA with DSC.	After co	mpletion of this Course, the learner will be able to:
the numerical or graphical output produced by the instrument. CO 2 Determine the different types of errors in chemical analysis. CO 3 Make use of calibration curve and standard addition method to carry out quantitative analysis of sample. CO 4 Outline the role and importance of total quality management, safety, accreditations and GLP in industries. CO 5 Apply the knowledge learned to all scientific data analyses during their studies and future career-related activities. CO 6 Explain the working principle and Enlist the applications of UV visible and IR spectroscopy. CO 7 Elaborate on the basic principle underlying the different types of thermal methods and will understand how these methods are employed in industries and research for characterization of sample.	CO 1	Identify the relationships among the different instrument components and the flow
CO 2 Determine the different types of errors in chemical analysis. CO 3 Make use of calibration curve and standard addition method to carry out quantitative analysis of sample. CO 4 Outline the role and importance of total quality management, safety, accreditations and GLP in industries. CO 5 Apply the knowledge learned to all scientific data analyses during their studies and future career-related activities. CO 6 Explain the working principle and Enlist the applications of UV visible and IR spectroscopy. CO 7 Elaborate on the basic principle underlying the different types of thermal methods and will understand how these methods are employed in industries and research for characterization of sample.		of information from the characteristics of the analyte through the components to
CO 3 Make use of calibration curve and standard addition method to carry out quantitative analysis of sample. CO 4 Outline the role and importance of total quality management, safety, accreditations and GLP in industries. CO 5 Apply the knowledge learned to all scientific data analyses during their studies and future career-related activities. CO 6 Explain the working principle and Enlist the applications of UV visible and IR spectroscopy. CO 7 Elaborate on the basic principle underlying the different types of thermal methods and will understand how these methods are employed in industries and research for characterization of sample.		the numerical or graphical output produced by the instrument.
quantitative analysis of sample. CO 4 Outline the role and importance of total quality management, safety, accreditations and GLP in industries. CO 5 Apply the knowledge learned to all scientific data analyses during their studies and future career-related activities. CO 6 Explain the working principle and Enlist the applications of UV visible and IR spectroscopy. CO 7 Elaborate on the basic principle underlying the different types of thermal methods and will understand how these methods are employed in industries and research for characterization of sample.	CO 2	Determine the different types of errors in chemical analysis.
CO 4 Outline the role and importance of total quality management, safety, accreditations and GLP in industries. CO 5 Apply the knowledge learned to all scientific data analyses during their studies and future career-related activities. CO 6 Explain the working principle and Enlist the applications of UV visible and IR spectroscopy. CO 7 Elaborate on the basic principle underlying the different types of thermal methods and will understand how these methods are employed in industries and research for characterization of sample.	CO 3	Make use of calibration curve and standard addition method to carry out
accreditations and GLP in industries. CO 5 Apply the knowledge learned to all scientific data analyses during their studies and future career-related activities. CO 6 Explain the working principle and Enlist the applications of UV visible and IR spectroscopy. CO 7 Elaborate on the basic principle underlying the different types of thermal methods and will understand how these methods are employed in industries and research for characterization of sample.		quantitative analysis of sample.
CO 5 Apply the knowledge learned to all scientific data analyses during their studies and future career-related activities. CO 6 Explain the working principle and Enlist the applications of UV visible and IR spectroscopy. CO 7 Elaborate on the basic principle underlying the different types of thermal methods and will understand how these methods are employed in industries and research for characterization of sample.	CO 4	Outline the role and importance of total quality management, safety,
and future career-related activities. CO 6 Explain the working principle and Enlist the applications of UV visible and IR spectroscopy. CO 7 Elaborate on the basic principle underlying the different types of thermal methods and will understand how these methods are employed in industries and research for characterization of sample.		accreditations and GLP in industries.
CO 6 Explain the working principle and Enlist the applications of UV visible and IR spectroscopy. CO 7 Elaborate on the basic principle underlying the different types of thermal methods and will understand how these methods are employed in industries and research for characterization of sample.	CO 5	Apply the knowledge learned to all scientific data analyses during their studies
spectroscopy. CO 7 Elaborate on the basic principle underlying the different types of thermal methods and will understand how these methods are employed in industries and research for characterization of sample.		and future career-related activities.
CO 7 Elaborate on the basic principle underlying the different types of thermal methods and will understand how these methods are employed in industries and research for characterization of sample.	CO 6	Explain the working principle and Enlist the applications of UV visible and IR
and will understand how these methods are employed in industries and research for characterization of sample.		spectroscopy.
for characterization of sample.	CO 7	Elaborate on the basic principle underlying the different types of thermal methods
<u> </u>		and will understand how these methods are employed in industries and research
CO 8 Compare the technique of DTA with DSC.		for characterization of sample.
	CO 8	Compare the technique of DTA with DSC.
CO 9 Comprehend the utility of automation in chemical analysis.	CO 9	Comprehend the utility of automation in chemical analysis.
CO 10 Outline the Objectives of automation in chemical analysis.	CO 10	Outline the Objectives of automation in chemical analysis.
CO 11 Enlist the advantages and disadvantages of Automatic Analysis.	CO 11	Enlist the advantages and disadvantages of Automatic Analysis.

Course Code	Unit		Course Title / Unit Title	Credits/ Lectures	
RPSCHE104		A	04		
	I	Lang	Language of Analytical Chemistry & Quality in		
	1		Analytical Chemistry	(15)	
		1.1 La	nguage of Analytical Chemistry:	40	
		1.1.1	Analytical perspective, Common analytical		
			problems, terms involved in analytical		
			chemistry (analysis, determination,		
			measurement, techniques, methods,		
			procedures and protocol).		
		1.1.2	An overview of analytical methods, types of		
			instrumental methods, instruments for		
			analysis, data domains, electrical and non-		
			electrical domains, detectors, transducers and		
			sensors, selection of an analytical method,		
			accuracy, precision, selectivity, sensitivity,		
			detection limit and dynamic range.		
		1.1.3	Errors, determinate and indeterminate errors.		
		1	Types of determinate errors, tackling of errors.		
	• 🔨	1.1.4	Quantitative methods of analysis: calibration		
			curve, standard addition and internal standard		
-7			method.		
		1.2 Qu	uality in Analytical Chemistry:		
		1.2.1	Quality Management System (QMS):		
0.00			Evolution and significance of Quality		
>			Management, types of quality standards for		
			laboratories, total quality management		
			(TQM), philosophy implementation of TQM		
			(reference of Kaizen, Six Sigma approach &		
			5S), quality audits and quality reviews,		

			responsibility of laboratory staff for quality	
			and problems.	
		1.2.2	Safety in Laboratories: Basic concepts of	
			Safety in Laboratories, Personal Protection	
			Equipment (PPE), OSHA, Toxic Hazard (TH)	
			classifications, Hazardous Chemical	
			Processes (including process calorimetry /	60
			thermal build up concepts).	00
		1.2.3	Accreditations: Accreditation of	
			Laboratories, Introduction to ISO series,	
			Indian Government Standards (ISI,	
			Hallmark, Agmark).	
		1.2.4	Good Laboratory Practices (GLP):	
			Principle, Objective, OECD guidelines, The	
			US FDA 21CFR58, Klimisch score.	
	II	Ca	alculations based on Chemical Principles	(15)
		2.1 Co	encentration of a solution based on volume and	
		ma	ass units.	
		2.2 Ca	Iculations of ppm, ppb and dilution of the	
		sol	utions, concept of mmol.	
		2.3 Sto	bichiometry of chemical reactions, concept of	
		kg	mol, limiting reactant, theoretical and Practical	
A	(,0,	yie	eld.	
		2.4 So	lubility and solubility equilibria, effect of	
		pre	esence of common ion.	
		2.4.1	Calculations of pH of acids, bases, acidic and	
7			basic buffers.	
,		2.4.2	Concept of formation constants, stability and	
			instability constants, stepwise formation	
			instability constants, stepwise formation constants.	
		2.5 Ox	•	
			constants.	

stoichiometry of redox titration (Normality of a solution of a oxidizing / reducing agent and its relationship with molarity). III Optical Methods (15) 3.1 Recapitulation and FT Technique: 3.1.1 Recapitulation of basic concepts, Electromagnetic spectrum, Sources,
relationship with molarity). III Optical Methods (15) 3.1 Recapitulation and FT Technique: 3.1.1 Recapitulation of basic concepts,
III Optical Methods (15) 3.1 Recapitulation and FT Technique: 3.1.1 Recapitulation of basic concepts,
3.1 Recapitulation and FT Technique: 3.1.1 Recapitulation of basic concepts,
3.1.1 Recapitulation of basic concepts,
Electromagnetic spectrum, Sources,
Detectors, sample containers.
3.1.2 Laser as a source of radiation, Fibre optics
3.1.3 Introduction of Fourier Transform
3.2 Molecular Ultraviolet and Visible
Spectroscopy
3.2.1 Derivation of Beer- Lambert's Law and its
limitations, factors affecting molecular
absorption, types of transitions (emphasis on
charge transfer absorption), pH, temperature,
solvent and effect of substituents.
3.2.2 Applications of Ultraviolet and Visible
spectroscopy:
1. On charge transfer absorption
2. Simultaneous spectroscopy
3. Derivative Spectroscopy
3.2.3 Dual spectrometry – Introduction, Principle,
Instrumentation and Applications.
3. Derivative Spectroscopy 3.2.3 Dual spectrometry – Introduction, Principle, Instrumentation and Applications. (NUMERICALS ARE EXPECTED) 3.3 Infrared Absorption Spectroscopy:
3.3 Infrared Absorption Spectroscopy:
3.3.1 Instrumentation: Sources, Sample handling,
Transducers, Dispersive, non-dispersive
instrument
3.3.2 FTIR and its advantages
3.3.3 Applications of IR (Mid IR, Near IR, Far IR):
Qualitative with emphasis on "Finger print"

	region, Quantitative analysis, Advantages and	
	Limitations of IR	
	3.3.4 Introduction and basic principles of diffuse	
	reflectance spectroscopy.	
	Thermal Methods and Automation in Chemical	
IV	Analysis	(15)
	4.1 Thermal Methods:	30
	4.1.1. Introduction:	00
	Recapitulation of types of thermal methods,	
	comparison between TGA and DTA.	
	4.1.2. Differential Scanning Calorimetry-	
	Principle, comparison of DTA and DSC,	
	Instrumentation, Block diagram, Nature of DSC	
	Curve, Factors affecting curves (sample size, sample	
	shape, pressure).	
	4.1.3. Applications	
	Heat of reaction, Specific heat, Safety screening,	
	Polymers, liquid crystals, Percentage cystallinity,	
	oxidative stability, Drug analysis, Magnetic	
	transition. E.g. Analysis of Polyethylene for its	
	crystallinity.	
	4.2. Automation in Chemical Analysis:	
	Need for automation, Objectives of automation, An	
	overview of automated instruments and	
	instrumentation, process control analysis, flow	
o sinnation	injection analysis, discrete automated systems,	
7	automatic analysis based on multilayered films, gas	
	monitoring equipments, Automatic titrators.	

References:

- 1. Modern Analytical Chemistry, David Harvey, McGraw-Hill Higher Education, 2000.
- 2. Principles of Instrumental Analysis Skoog, Holler and Nieman, 6th Edition, 2017
- 3. Fundamentals of Analytical Chemistry, By Douglas A. Skoog, Donald M. West, F. James Holler, Stanley R. Crouch, 9th Edition, 2004.
- 4. ISO 9000 Quality Systems Handbook, Fourth Edition, David Hoyle. (Free download).
- 5. Quality in the Analytical Laboratory, Elizabeth Pichard, Wiley India, 2007.
- 6. Safety and Hazards Management in Chemical Industries, M N Vyas, Atlantic Publisher.
- 7. Analytical chemistry: Problems & Solutions by S.M. Khopkar New Delhi, New Age International (P) Ltd., 2002.
- 8. H. H. Willard, L. L. Merritt, J. A. Dean, F. A. Settle, Instrumental Methods of Analysis,6thEdition, CBS Publisher, 1988.
- 9. R. D. Braun, Introduction to Instrumental Analysis, McGraw Hill Publisher, 1985
- 10. G. W. Ewing, Instrumental Methods of Chemical Analysis, 5thEdition, McGraw Hill Publisher, 1960.
- 11. Vogel Quantitative Chemical Analysis, Pearson, 6thEdition, 2009.
- 12. Analytical Chemistry by Open Coursé: Thermal Methods by James W. Dodd & Dodd & Tonge.

Semester I

Practical

RPSCHE1P4	A	NALYTICAL CHEMISTRY (CREDITS – 02)
	1.	To carry out assay of the sodium chloride injection by Volhard's
		method. (Statistical method)
	2.	To determine (a) the ion exchange capacity (b) exchange efficiency
		of the given cation exchange resin.
	3.	To determine amount of Cr(III) and Fe(II) individually in a mixture
		of the two by titration with EDTA.
	4.	To determine the breakthrough capacity of a cation exchange resin.
	5.	To determine the lead and tin content of a solder alloy by titration
		with EDTA.
	6.	To determine amount of Cu(II) present in the given solution
		containing a mixture of Cu(II) and Fe(II).
	7.	To determine number of nitro groups in the given compound using
		TiCl ₃ .

Reference:

G H Jeffery, J Bassett, J Mendhem, R C Denney, Vogel's Textbook Of Quantitative Chemical Analysis, 3rd Edition, Longman Scientific & Technical,1989.

MODALITY OF ASSESSMENT

Theory Examination Pattern:

A) Internal Assessment - 40% - 40 Marks

Presentation: 20 Marks

Continuous Internal Assessment (CIA): 20 Marks

For each paper, learners are evaluated from their presentation based on the topic selected from syllabus. The assessment of presentation is as follows:

Sr. No	Evaluation type	Marks
1	Presentation content	10
2	Presentation skills	05
3	Viva	05
4	Continuous Internal Assessment (CIA) e.g. Test, Group discussion, assignment, open-book tests etc.	20
	Total	40

B) External examination - 60 % - 60 Marks

Semester End Theory Examination - 60 marks

Duration - These examinations shall be of **2.5 hours** duration.

Paper Pattern:

- 1. There shall be 04 questions each of 15 marks. On each unit, there will be one question.
- 2. questions shall be compulsory with internal choice within the questions.

Questions	Options	Marks	Questions based on
Q.1) A)	Any 3 out of 5	12	Unit I
Q.1) B)	Any 1 out of 2	3	
Q.2) A)	Any 3 out of 5	12	Unit II
Q.2) B)	Any 1 out of 2	3	
Q.3) A)	Any 3 out of 5	12	Unit III
Q.3) B)	Any 1 out of 2	3	
Q.4) A)	Any 3 out of 5	12	Unit IV
Q.4) B)	Any 1 out of 2	3	
	Total	60	

Practical Examination Pattern:

Semester End Practical Examination: 50 marks

Experimental work	40
Viva	05
Journal	05
Total	50

PRACTICAL BOOK/JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.

In case of loss of Journal, a Lost Certificate should be obtained from Head/Coordinator / In-charge of the department; failing which the student will not be allowed to appear for the practical examination.

Overall Examination and Marks Distribution Pattern

101		102				Grand
			3			Total
Internal	External	Total	Internal	External	Total	
40	60	100	40	60	100	200
	27	50			50	100
1	103		1	04		Grand
^						Total
Internal	External	Total	Internal	External	Total	
40	60	100	40	60	100	200
	_	50			50	100
	Internal 40 Internal	Internal External 40 60 103 Internal External	Internal External Total	Internal External Total Internal 40 60 100 40 50 103 1 Internal External Total Internal 40 60 100 40	Internal External Total Internal External 40 60 100 40 60 50 50 104 Internal External Total Internal External 40 60 100 40 60	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Total: 600 marks

Course Code : RPSCHE201 <u>Course Title : PHYSICAL CHEMISTRY</u> Academic year 2020-21

Course Outcomes:

After c	ompletion of this Course, the learner will be able to:
CO 1	Distinguish between physical and chemical adsorption.
CO 2	Predict spontaneous nature of thermodynamic mixing.
CO 3	Calculate energy of hydrogen atom.
CO 4	Draw the atomic orbital and locate radial and angular nodes.
CO 5	Derive rate laws for the solid-state reaction.
CO 6	Analyse the effect of inhibitor on enzyme catalysed reaction.
CO 7	Draw phase diagram for two and three component system.

Course Code	Unit	Course Title / Unit Title	Credits/ Lectures
RPSCHE201		PHYSICAL CHEMISTRY	04
	I	Chemical Thermodynamics –II	(15)
		1.1 Fugacity of real gases, Determination of fugacity of real gases using graphical method and from	
^		equation of state. Equilibrium constant for real gases in terms of fugacity. Gibbs energy of	
		mixing, entropy and enthalpy of mixing.	
		1.2 Real solutions: Chemical potential in non-ideal	
		solutions excess functions of non-ideal solutions	
		calculation of partial molar volume and partial	
y		molar enthalpy, Gibbs Duhem Margules equation.	
		1.3 Thermodynamics of surfaces, Pressure difference	
		across curved surface (Laplace equation),	
		vapour pressure of droplets (Kelvin equation),	
		Gibbs adsorption isotherm, BET isotherm	
		(derivations expected).	

		1.4 Bioenergetics: standard free energy change in	
		biochemical reactions, exergonic, endergonic.	
		Hydrolysis of ATP, synthesis of ATP from ADP.	
	II	Quantum Chemistry –II	(15)
		2.1 Rigid rotor, spherical coordinates Schrödinger	
		wave equation in spherical coordinates, separation	
		of the variables, the phi equation, wave-function,	20
		quantum number, the theta equation, wave	00
		function, quantization of rotational energy,	
		spherical harmonics.	
		2.2 Hydrogen atom, the two particle problem,	
		separation of the energy as translational and	
		potential, separation of variables, the ${f R}$ the ${f \Theta}$ and	
		the Φ equations, solution of the equation,	
		introduction of the four quantum numbers and	
		their interdependence on the basis of the solutions	
		of the three equations, total wave function,	
		expression for the energy, probability density	
		function, distances and energies in atomic units,	
		radial and angular plots., points of maximum	
		probability, expressions for the total wave	
		function for 1s,2s, 2p and 3d orbitals of hydrogen.	
^		2.3 Application of the Schrödinger equation to two	
~°C	N	electron system, limitations of the equation, need	
		for the approximate solutions, methods of	
		obtaining the approximate solution of the	
R. Allina		Schrödinger wave equation.	
	III	Chemical Dynamics-II	(15)
		3.1 Elementary Reactions in Solution: Solvent Effects	
		on reaction rates, Reactions between ions-	
		influence of solvent Dielectric constant, influence	
		of ionic strength, Linear free energy relationships	

	3.2 Steady state and pre-equilibrium approximations,	
	Lindemann mechanism for the unimolecular	
	reaction. Enzyme catalysis - Michaelis-Menten	
	Mechanism, Lineweaver and Eadie-Hofstee plots,	
	3.3 Inhibition of Enzyme action: Competitive, Non-	
	competitive and Uncompetitive Inhibition. Effect	
	of pH, Enzyme activation by metal ions,	30
	Regulatory enzymes.	00
	3.4 Kinetics of reactions in the Solid State: - Factors	
	affecting reactions in solids Rate laws for	,
	reactions in solid: The parabolic rate law, the first	
	order rate Law, the contracting sphere rate law,	
	Contracting area rate law, some examples of	
	kinetic studies.	
IV	Solid State Chemistry and Phase Equilibria	(15)
	4.1 Solid State Chemistry: Recapitulation:	
	Structures and Defects in solids. Types of Defects	
	and Stoichiometry	
	4.1.1 Zero dimensional (point) Defects	
	4.1.2 One dimensional (line) Defects	
	4.1.3 Two dimensional (Planar) Defects	
	4.1.4 Thermodynamics of formation of defects	
	(Mathematical derivation to find	
	concentration of defects and numerical	
	problems based on it)	
	4.2 Phase equilibria:	
Raining, o.	Recapitulation: Introduction and definition of	
y	terms involved in phase rule. Thermodynamic	
	derivation of Gibbs Phase rule.	
	Two component system:	
	4.2.1 Solid –Gas System: Hydrate formation,	
	Amino compound formation	

4.2.2 Solid – Liquid System: Formation of a
compound with congruent melting point,
Formation of a compound with incongruent
melting point. (with suitable examples)
4.2.3 Three component system
Type-I: Formation of one pair of partially
miscible liquids
Type-II: Formation of two pairs of partially
miscible liquids
Type-III: Formation of three pairs of partially
miscible liquids

- 1. K.J. Laidler and J.H. Meiser, Physical Chemistry, 2nd Edition, CBS Publishers and Distributors, New Delhi, 1999.
- 2. Ira R. Levine, Physical Chemistry, 5th Edition, Tata McGraw-Hill New Delhi, 2002.
- 3. Principles of the Solid State, H.V. Keer, New Age International Publishers, 2011.
- 4. Solid State Chemistry, D.K. Chakrabarty, New Age International Publishers, 1996.
- 5. S. Glasstone, Thermodynamics for Chemists, Affiliated East-West Press, New Delhi, 1964.
- 6. Robert J. Silby and Robert A. Alberty, Physical Chemistry, 3rdEdition, John Wiley and Sons (Asia) Pvt. Ltd., 2002.
- 7. Principles of Chemical Kinetics, 2ndEdition, James E. House, Elsevier, 2007.

Semester II Practical

RPSCHE2P1	Physical Chemistry			
	Non -	- Instrumental		
	1.	Polar plots of atomic orbitals such as $1s$, $2p_z$ and $3dz_2$ orbitals	90	
		by using angular part of hydrogen atom wave functions.	50	
	2.	To study the influence of ionic strength on the base catalysed		
		hydrolysis of ethyl acetate.		
	3.	To study phase diagram of three component system water –		
		chloroform /toluene - acetic acid.		
	4.	To determine the rate constant of decomposition reaction of		
		diacetone alcohol by dialtometric method.	2	
	Instru	imental:	2	
	1.	To determine the formula of silver ammonia complex by		
		potentiometric method.		
	2.	To determine CMC of sodium Lauryl Sulphate from		
		measurement of conductivities at different concentrations.		
	3.	To determine Hammett constant of <i>m</i> - and <i>p</i> - amino benzoic		
	•	acid/nitro benzoic acid by pH measurement.		
	4.	To determine the Michaelis – Menten's constant value (K _m)		
		of the enzyme Beta Amylase spectrophotometrically.		

Course Code: RPSCHE202

Course Title: INORGANIC CHEMISTRY

Academic year 2020-21

Course Outcomes:

CO 1	Analyse the reaction pathways of metal complexes and to develop a deep
	understanding of their mechanisms.
CO 2	Know the rate behaviour of the reaction using reaction mechanism.
CO 3	Recognize the general shape of the transition state using trans effect, steric effect an
	stereochemistry of the coordination complexes.
CO 4	Illustrate the importance of 18 and 16 electron rules.
CO 5	Understand the structure and bonding involved in d block Organometallic compound
	on the basis of VBT and MOT.
CO 6	Critically review environmental issues as a matter of widespread public concern.
CO 7	Know the toxicology of certain elements through case studies.
CO 8	Identify the importance of essential elements for the organisms.
CO 9	Evaluate the role of metal ions in biological systems.

DETAILED SYLLABUS

RPSCHE202	Inorganic Reaction Mechanism 1.1 Rate of reactions, factors affecting the rate of reactions, techniques for determination of rate of reaction (Direct chemical analysis, spectrophotometric method, electrochemical and flow methods). 1.2 Ligand substitution reactions of: 1.2.1 Octahedral complexes without breaking of metal-ligand bond (Use of isotopic labelling method)	
	 1.1 Rate of reactions, factors affecting the rate of reactions, techniques for determination of rate of reaction (Direct chemical analysis, spectrophotometric method, electrochemical and flow methods). 1.2 Ligand substitution reactions of: 1.2.1 Octahedral complexes without breaking of metal-ligand bond (Use of isotopic labelling 	
	reactions, techniques for determination of rate of reaction (Direct chemical analysis, spectrophotometric method, electrochemical and flow methods). 1.2 Ligand substitution reactions of: 1.2.1 Octahedral complexes without breaking of metal-ligand bond (Use of isotopic labelling	
	reaction (Direct chemical analysis, spectrophotometric method, electrochemical and flow methods). 1.2 Ligand substitution reactions of: 1.2.1 Octahedral complexes without breaking of metal-ligand bond (Use of isotopic labelling	200
	spectrophotometric method, electrochemical and flow methods). 1.2 Ligand substitution reactions of: 1.2.1 Octahedral complexes without breaking of metal-ligand bond (Use of isotopic labelling	
	flow methods). 1.2 Ligand substitution reactions of: 1.2.1 Octahedral complexes without breaking of metal-ligand bond (Use of isotopic labelling	
	1.2 Ligand substitution reactions of:1.2.1 Octahedral complexes without breaking of metal-ligand bond (Use of isotopic labelling	
	1.2.1 Octahedral complexes without breaking of metal-ligand bond (Use of isotopic labelling	
	metal-ligand bond (Use of isotopic labelling	
	method)	
	Likono	
2. alninai		

		1.2.2 Square planar complexes, trans-effect, its	
		theories and applications. Mechanism and	
		factors affecting these substitution reactions.	
		1.3 Stereochemistry of substitution reactions of	
		octahedral complexes. (Isomerisation and	
		racemisation reactions and applications.)	
		1.4 Electron-transfer processes:	
		1.4.1 Inner-sphere mechanism	20
		1.4.2 Outer-sphere mechanism	0,0
		1.4.3 Complimentary and non-complimentary	
		reactions.	
	II	Organometallic Chemistry of Transition metals	(15)
		2.1 Eighteen and sixteen electron rule and electron	
		counting with examples.	
		2.2 Types of organometallic reactions;	
		2.2.1 Reactions That Occur at the Metal	
		2.2.1.1 Ligand substitution	
		2.2.1.2 Oxidative addition	
		2.2.1.3 Reductive elimination	
		2.2.2 ReactionsInvolving Modification of Ligands	
		2.2.2.1 Insertion and Deinsertion (Elimination)	
		2.2.2 Nucleophilic Addition to the Ligand	
	. ~	2.2.2.3 Nucleophilic Abstraction	
A		2.2.2.4 Electrophilic Reactions	
~?		2.2.3 Metathesis and Polymerization Reactions	
		2.2.3.1 π Bond Metathesis	
		2.2.3.2 σ Bond Metathesis	
2.0		2.2.3.3 Alkyne Metathesis	
>		2.3 Transition Metal–Carbene and –Carbyne	
		Complexes: Structure, Preparation, and Chemistry:	
		2.3.1 Structure of Metal Carbene	
		2.3.2 Synthesis of Metal Carbene Complexes	
		2.3.3 Reactions of Metal–Carbene Complexes	

		2.3.4 Metal–Carbyne Complexes	
		2.4 Preparation and properties of the following	
		compounds: Sandwich compounds of Fe, Cr and	
		Half Sandwich compounds of Cr, Mo.	
		2.5 Structure and bonding on the basis of VBT and	
		MOT in the following Organometallic compounds:	
		Zeise's salt, ferrocene and bis(arene)chromium(0).	20
	Ш	Environmental Chemistry	(15)
		3.1 Conception of Heavy Metals: Critical discussion	
		on heavy metals.	
		3.2 Toxicity of metallic species: Mercury, lead,	
		cadmium, arsenic, copper and chromium, with	
		respect to their sources, distribution, speciation,	
		biochemical effects and toxicology, control and	
		treatment.	
		3.3 Case Studies:	
		(a) Itai-itai disease for Cadmium toxicity,	
		(b) Arsenic Poisoning in the Indo-Bangladesh	
		region.	
		3.4 Interaction of radiation in context with the	
		environment: Sources and biological implication	
	- 1	of radioactive materials. Effect of low level	
A	(D)	radiation on cells- Its applications in diagnosis and	
~2		treatment, Effect of radiation on cell proliferation	
		and cancer.	
2311113	IV	Bioinorganic Chemistry	(15)
		4.1. Biological oxygen carriers; hemoglobin,	
<i>y</i>		hemerythrene and hemocyanine- structure of	
		metal active center and differences in	
		mechanism of oxygen binding, Differences	
		between hemoglobin and myoglobin:	
		Cooperativity of oxygen binding in hemoglobin	
		and Hill equation, pH dependence of oxygen	

affinity in hemoglobin	and	myoglobin	and	its
implications.				

- **4.2.** Activation of oxygen in biological system with examples of mono-oxygenases, and oxidasesstructure of the metal center and mechanism of oxygen activation by these enzymes.
- **4.3.** Copper containing enzymes- superoxide dismutase, tyrosinase and laccase: catalytic reactions and the structures of the metal binding site
- **4.4.** Nitrogen fixation-nitrogenase, hydrogenases.
- **4.5.** Metal ion transport and storage:Ionophores, transferrin, ferritin and metallothionins
- **4.6.** Medicinal applications of cis-platin and related compounds .

- 1. P. Atkins, T. Overton, J. Rourke, M. Weller and F. Armstrong, Inorganic Chemistry, 5thEdition, Oxford University Press, 2010.
- 2. Gurdeep Raj, Advanced Inorganic Chemistry-Vol.II, 12th Edition, Goel publishing house, 2012.
- 3. B. R. Puri, L. R. Sharma and K. C. Kalia, Principles of Inorganic Chemistry, Milestone Publishers, 2013-2014.
- 4. R. Gopalan and V. Ramlingam, Concise Coordination chemistry, Vikas Publishing house Pvt. Ltd., 2001.
- 5. Robert B. Jordan, Reaction Mechanisms of Inorganic and Organometallic Systems, 3rdEdition, Oxford University Press 2008.
- 6. Catherine É. Housecroft and Alan G. Sharpe, Inorganic Chemistry, 2nd Edition, Pearson Education Limited, 2005.
- 7. Gary O. Spessard, Gary L. Miessler, Organometallic Chemistry, 2nd Edition, Oxford University Press 2010.
- 8. R.H Crabtree, The Organometallic Chemistry of the Transition Metals, 5th Edition, Wiley International Pvt., Ltd 2000.
- 9. Stanley E. Manahan, Environmental Chemistry, 9th Edition, CRC Press Publishers, 2010
- 10. Stanley E. Manahan, Fundamentals of Environmental and Toxicological Chemistry, 4th edition, CRC Press Taylor & Francis Group, 2013.
- 11. Jerrold B. Leikin, Frank P. Paloucek, Poisoning and Toxicology Handbook, 4th Edition, Informa Healthcare USA, Inc. 2008

- 12. I. Bertini, H.B.Gray, S. J. Lippard and J.S. Valentine, Bioinorganic Chemistry, First South Indian Edition, Viva Books, New Delhi, 1998.
- 13. Robert R.Crichton, Biological Inorganic Chemistry An Introduction, 1st Edition, Elsevier, 2008.
- 14. Wolfgang Kaim, Brigitte Schwederski, Axel Klein, Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life, Second Edition, John Wiley & Sons, Ltd, 2013.

Semester II Practical

			_
RPSCHE2P2		Inorganic Chemistry	Credits
	1.	Ores and Alloys (Non-instrumental)	
	2.	Analysis of Devarda's alloy]
	3.	Analysis of Cu – Ni alloy]
	4.	Analysis of Tin Solder alloy]
	5.	Analysis of Limestone.	2
		Instrumental	_]
	1.	Estimation of Copper using Iodometric method	
		Potentiometrically.	
	2.	Estimation of Fe ⁺³ solution using Ce(IV) ions	
		Potentiometrically	

- 1. G H Jeffery, J Bassett, J Mendhem, R C Denney, Vogel's Textbook Of Quantitative Chemical Analysis, 3rd Edition, Longman Scientific & Technical,1989.
- 2. G. N. Mukherjee, Advanced experiments in Inorganic Chemistry, 1st Edition, U.N.Dhur & Sons Pyt. Ltd.2010.
- 3. H N Patel, S P Turakhia, S S Kelkar, S R Puniyani, Post Graduate Practical Chemistry Part I, Himalaya Publishing House, 5th Edition, 2008.

Course Code : RPSCHE203 <u>Course Title : ORGANIC CHEMISTRY</u> Academic year 2020-21

Course Outcomes:

After c	ompletion of this Course, the learner will be able to:
CO 1	Correlate between kinetically and thermodynamically formed enolates and the factors
	affecting their formation.
CO 2	Understand the interaction of carbon nucleophiles with carbonyl groups and its reaction
	mechanism.
CO 3	Draw the mechanism and stereochemistry (if applicable) of various rearrangement
	reactions.
CO 4	Apply Molecular orbital theory to organic molecules with special emphasis on the FMO
	theory
CO 5	Make use of advanced application of UV, IR and NMR spectroscopy techniques in
	structural elucidation of molecules.
CO 6	Know the concept of McLafferty Rearrangement and its implications on Fragmentation
	pattern of molecules.

DETAILED SYLLABUS

Course Code	Unit	Course Title / Unit Title	Credits/ Lecture		
RPSCHE203	(0)	ORGANIC CHEMISTRY			
~0	I A	lkylation of Nucleophilic Carbon Intermediates	(15)		
	1.1	Alkylation of Nucleophilic Carbon			
000		Intermediates:			
	1.1	1 Generation of carbanion, kinetic and			
		thermodynamic enolate formation,			
		Regioselectivity in enolate formation,			
		alkylation of enolates.			
	1.1	2 Generation and alkylation of dianion, medium			
		effects in the alkylation of enolates, oxygen			
		versus carbon as the site of alkylation.			

	1.1.3	Alkylation of aldehydes, ketones, esters,	
		amides and nitriles.	
	1.1.4	Nitrogen analogs of enols and enolates-	
		Enamines and Imines anions, alkylation of	
		enamines and imines.	
	1.1.5	Alkylation of carbon nucleophiles by conjugate	
		addition (Michael reaction).	20
	1.2	Reaction of carbon nucleophiles with	0,0
	cai	rbonyl groups:	
	1.2.1	Mechanism of Acid and base catalysed Aldol	
		condensation, Mixed Aldol condensation with	
		aromatic aldehydes, regiochemistry in mixed	
		reactions of aliphatic aldehydes and ketones,	
		intramolecular Aldol reaction and Robinson	
		annulation.	
	1.2.2	Addition reactions with amines and iminium	
		ions; Mannich reaction.	
	1.2.3	Amine catalyzed condensation reaction:	
		Knoevenagel reaction.	
	1.2.4	Acylation of carbanions.	
II	7	Reactions and Rearrangements	(15)
	Mecha	nisms, stereochemistry (if applicable) and	
	applica	ations of the following:	
2. allination	2.1 Re	actions: Baylis-Hilman reaction, McMurry	
	Co	oupling, Corey-Fuchs reaction, Nef reaction,	
	Pas	sserini reaction.	
	2.2 Co	oncerted rearrangements: Hofmann, Curtius,	
y	Lo	ssen, Schmidt, Wolff, Boulton-Katritzky.	
	2.3 Ca	tionic rearrangements: Tiffeneau-Demjanov,	
	Pu	mmerer, Dienone-phenol, Rupe, Wagner-	
	Me	eerwein.	
	2.4 An	nionic rearrangements: Brook, Neber, Von	
	Ric	chter, Wittig, Gabriel-Colman, Payne.	

	***	Introduction to Molecular Orbital Theory for Organic Chemistry		(d =)
	III			(15)
		3.1 Int	roduction to Molecular Orbital Theory for	
		Org	ganic Chemistry:	
		3.1.1	Molecular orbitals: Formation of σ - and π -	
			MOs by using LCAO method. Formation of π	7 ,
			MOs of ethylene, butadiene, 1, 3, 5-	000
			hexatriene, allyl cation, anion and radical.	60
			Concept of nodal planes and energies of π -	,
			MOs	
		3.1.2	Introduction to FMOs: HOMO and LUMO	
			and significance of HOMO-LUMO gap in	
			absorption spectra as well as chemical	
			reactions. MOs of formaldehyde: The effect of	
			electronegativity perturbation and orbital	
			polarization in formaldehyde. HOMO and	
			LUMO (π and π * orbitals) of formaldehyde. A	
			brief description of MOs of nucleophiles and	
		^	electrophiles. Concept of 'donor-acceptor'	
		2	interactions in nucleophilic addition reactions	
	• 🗸	Y	on formaldehyde. Connection of this HOMO-	
			LUMO interaction with 'curved arrows' used	
á			in reaction mechanisms. The concept of	
~ C	D '		hardness and softness and its application to	
			electrophiles and nucleophiles. Examples of	
			hard and soft nucleophiles/ electrophiles.	
7			Identification of hard and soft reactive sites on	
			the basis of MOs.	
		3.1.3	Application of FMO concepts in (a) S_N^2	
			reaction, (b) Lewis acid base adducts (BF ₃ -	
			NH ₃ complex), (c) ethylene dimerization to	
			butadiene, (d) Diels-Alder cycloaddition, (e)	
			regioselective reaction of allyl cation with	

formaldehyde. 3.2 Applications of UV and IR spectroscopy:	
3.2.1 Ultraviolet spectroscopy: Recapitulation,	
UV spectra of dienes, conjugated polyenes	
(cyclic and acyclic), carbonyl and unsaturated	
carbonyl compounds, substituted aromatic	20
compounds. Factors affecting the position and	0
intensity of UV bands – effect of conjugation,	
steric factor, pH, and solvent polarity.	
Calculation of absorption maxima for above	
classes of compounds by Woodward-Fieser	
rules (using Woodward-Fieser tables for	
values for substituents).	
3.2.2 Infrared spectroscopy: Fundamental,	
overtone and combination bands, vibrational	
coupling, factors affecting vibrational	
frequency (atomic weight, conjugation, ring	
size, solvent and hydrogen bonding).	
Characteristic vibrational frequencies for	
alkanes, alkenes, alkynes, aromatics, alcohols,	
ethers, phenols, amines, nitriles and nitro	
compounds. Detailed study of vibrational	
frequencies of carbonyl compounds,	
aldehydes, ketones, esters, amides, acids, acid	
halides, anhydrides, lactones, lactams and	
compounds. Detailed study of vibrational frequencies of carbonyl compounds, aldehydes, ketones, esters, amides, acids, acid halides, anhydrides, lactones, lactams and conjugated carbonyl compounds. NMP Spectroscopy and Mass Spectrometry.	
IV NMR Spectroscopy and Mass Spectrometry	(15)
4.1.Proton Magnetic Resonance Spectroscopy:	
Principle, Chemical shift, Factors affecting	
chemical shift (Electronegativity, H-bonding,	
Anisotropy effects). Chemical and magnetic	
equivalence, Chemical shift values and correlation	

for protons bonded to carbon and other nuclei as in alcohols, phenols, enols, carboxylic acids, amines, amides. Spin-spin coupling, Coupling constant (J), Factors affecting J, geminal, vicinal and long range coupling (allylic and aromatic). First order spectra, Karplus equation.

- **4.2.** ¹³C NMR Spectroscopy: Theory and comparison with proton NMR, proton coupled and decoupled spectra, off-resonance decoupling. Factors influencing carbon shifts, correlation of chemical shifts of aliphatic, olefin, alkyne, aromatic and carbonyl carbons.
- 4.3.Mass Spectrometry: Molecular ion peak, base peak, isotopic abundance, metastable ions. Nitrogen rule, Determination of molecular formula of organic compounds based on isotopic abundance and HRMS. Fragmentation pattern in various classes of organic compounds (including compounds containing hetero atoms), McLafferty rearrangement, Retro-Diels-Alder reaction, ortho effect.
- **4.4.**Structure determination involving individual or combined use of the above spectral techniques.

- 1. Advanced Organic Chemistry Part B: Reactions and Synthesis, F. A Carey and R.J Sundberg, 4th Edition.
- 2. Organic Chemistry, J. Claydens, N. Greeves, S. Warren and P. Wothers, Oxford University Press.
- 3. Advanced Organic Chemistry: Reactions, Mechanisms and Structure, Michael B. Smith, Jerry March, Wiley.
- 4. Organic Synthesis, Jagdamba Singh, L.D.S. Yadav, Pragati Prakashan.
- 5. Organic Spectroscopy-Principles and Applications, Jagmohan, Narosa Publication.

Semester II Practical

RPSCHE2P3	Organic Chemistry		
	Separation of Binary mixture using Micro-Scale technique	2	
	1.Separation of binary mixture using physical and chemical		
	methods.		
	2. Characterization of one of the components with the help of		
	chemical analysis and confirmation of the structure with the		
	help of derivative preparation and its physical constant.		
	3. Purification and determination of mass and physical constant		
	of the second component.		
	The following types are expected:		
	(i) Water soluble/water insoluble solid and water		
	insoluble solid,		
	(ii) Non-volatile liquid-Non-volatile liquid (chemical		
	separation)		
	(iii) Water-insoluble solid-Non-volatile liquid.		
	Minimum three mixtures from each type and a total of ten		
	mixtures are expected.		

- 1. Systematic Qualitative organic analysis, H. Middleton (Orient Longman)
- 2. A Handbook of Organic Analysis, H.T. Clark (Orient Longman)
- 3. Systematic Identification of organic compounds, R.L. Shriner (John Wiley, New York)
- 4. Practical Organic Chemistry by Mann and Saunders.
- 5. Advance Practical Organic Chemistry, N.K. Vishnoi, Vikas Publication.

Course Code : RPSCHE204 <u>Course Title : ANALYTICAL CHEMISTRY</u> Academic year 2020-21

Course Outcomes:

After co	mpletion of this Course, the learner will be able to:
CO 1	Utilize GC & HPLC techniques for separation of the different components present
	in a sample.
CO 2	Make use of X-ray spectroscopy for qualitative and quantitative analysis of
	elements.
CO 3	Describe the function of different components of a mass spectrometer.
CO 4	Elaborate on the methods of electrogravimetry and coulometry.
CO 5	Compare the advantages/disadvantages of electrogravimetry and coulometry.
CO 6	Describe the functioning of different types of ion selective electrodes.
CO 7	Select the best method from among those covered in these units while carrying out
	analysis of a sample and will be able to justify their choice.

DETAILED SYLLABUS

Course Code	Unit Course Title / Unit Title	Credits/ Lectures
RPSCHE204	ANALYTICAL CHEMISTRY	4
	Chromatography	(15)
A	1.1 Recapitulation of basic concepts in	
~~	chromatography: Classification of	
	chromatographic methods, requirements of an	
	ideal detector, types of detectors in LC and GC,	
50	comparative account of detectors with reference to	
7	their applications (LC and GC respectively),	
	qualitative and quantitative analysis.	
	1.2 Concept of plate and rate theories in	
	chromatography: efficiency, resolution,	
	selectivity and separation capability. Van Deemter	
	equation and broadening of chromatographic	

	peaks. Optimization of chromatographic	
	conditions.	
	1.3 Gas Chromatography: Instrumentation of GC with	
	special reference to sample injection systems -	
	split/splitless, column types, solid/ liquid	
	stationary phases, column switching techniques,	
	temperature programming, Thermionic and mass	30
	spectrometric detector, Applications.	0,0
	1.4 High Performance Liquid Chromatography	
	(HPLC): Normal phase and reversed phase with	<i>y</i>
	special reference to types of commercially	
	available columns (Use of C8 and C18 columns).	
	Diode array type and fluorescence detector,	
	Applications of HPLC Chiral and ion	
	chromatography.	
II	X-ray Spectroscopy & Mass Spectrometry	(15)
	2.1 X-ray spectroscopy: principle, instrumentation	
	and applications of X-ray fluorescence, absorption	
	and diffraction spectroscopy. (6L)	
	2.2 Mass spectrometry: recapitulation,	
	instrumentation, ion sources for molecular studies,	
	electron impact, field ionization, field desorption,	
10°	chemical ionization and fast atom bombardment,	
	Electro spray ionization (ESI) and Matrix-assisted	
	desorption-ionization (MALDI) sources. Mass	
	analyzers: Quadrupole, time of flight, ion trap,	
2. Sinnario.	Magnetic Sector and Hybrid. Applications. (9L)	
III		
111	Surface Analytical Techniques & Atomic	(15)
	Surface Analytical Techniques & Atomic Spectroscopy	(15)
		(15)
	Spectroscopy	(15)
	Spectroscopy 3.1. Surface Analytical Techniques: Introduction,	(15)

	3.1.3. Transmission Electron Microscopy (TEM)
	3.1.4.Electron Spectroscopy: principles,
	instrumentation and applications of the following
	ESCA (XPS), AUGER and UPS.
	3.2. Atomic Spectroscopy:
	3.2.1. Advantages and Limitations of AAS
	3.2.2. Atomic Spectroscopy based on plasma sources
	- Introduction, Principle, Instrumentation and
	Applications.
IV	Electroanalytical Methods (15)
	4.1. Ion selective potentiometry and Polarography:
	Ion selective electrodes and their applications
	(solid state, precipitate, liquid - liquid, enzyme and
	gas sensing electrodes), ion selective field effect
	transistors, biocatalytic membrane electrodes and
	enzyme based biosensors.
	4.2. Polarography: Ilkovic equation, derivation
	starting with Cottrell equation, effect of complex
	formation on the polarographic waves.
	4.3. Electrogravimetry: Introduction, principle,
	instrumentation, factors affecting the nature of the
	deposit, applications.
(O)	4.4. Coulometry: Introduction, principle,
	instrumentation, coulometry at controlled
	potential and controlled current.
	(Numericals are Expected)

- 1. Principles of Instrumental Analysis Skoog, Holler and Nieman, 5th Edition.
- 2. Analytical Chemistry Principles John H Kennedy, 2nd edition, Saunders College Publishing 1990.
- 3. Modern Analytical Chemistry David Harvey; McGraw Hill Higher education publishers, 2000.
- 4. Vogel's Text book of quantitative chemical analysis, 6th edition, Pearson Education Limited, 2007.
- 5. Electrochemical Methods Fundamentals and Applications, Allen J Bard and Larry R Faulkner, John Wiley and Sons, 1980.
- 6. Instrumental Methods of Analysis Willard, Merrit, Dean and Settle, 7thedition, CBS publishers.
- 7. Analytical chemistry by Garry D Christian,6th edition, John Wiley & Sons.
- 8. R. D. Braun, Introduction to Instrumental Analysis, McGraw Hill Publisher.
- 9. Fundamentals of Analytical Chemistry, By Douglas A. Skoog, Donald M. West, F. James Holler, Stanley R. Crouch, 9th Edition, 2004.

Semester II

Practical

RPSCHE2P4		Analytical Chemistry	Credits
	1.	To determine percentage purity of sodium carbonate in	2
		washing soda pH metrically.	
	2.	To determine amount of Ti(III) and Fe(II) in a mixture	
		by titration with Ce(IV) potentiometrically.	00
	3.	To determine the percentage purity of a sample	
		(glycine/sodium benzoate/primary amine) by titration	
		with perchloric acid in a non aqueous medium using	
		glass calomel system potentiometrically.	
	4.	To determine the amount of nitrite present in the given	
		water sample colorimetrically.	
	5.	To determine the amount of Fe(II) and Fe(III) in a	
		mixture using 1,10-phenanthroline	
		spectrophotometrically.	
	6.	Simultaneous determination of Cr(VI) and Mn(VII) in	
		a mixture spectrophotometrically.	
	7.	To determine the percentage composition of HCl and	
	• •	H ₂ SO ₄ on weight basis in a mixture of two by	
		conductometric titration with NaOH and BaCl ₂ .	
	8.	To determine amount of potassium in the given sample	
	D '	of fertilizers using flame photometer by standard	
		addition method.	

Reference:

G H Jeffery, J Bassett, J Mendhem, R C Denney, Vogel's Textbook Of Quantitative Chemical Analysis, 3rd Edition, Longman Scientific & Technical,1989.

MODALITY OF ASSESSMENT

Theory Examination Pattern:

C) Internal Assessment - 40% - 40 Marks

Presentation: 20 Marks

Continuous Internal Assessment (CIA): 20 Marks

For each paper, learners are evaluated from their presentation based on the topic selected from syllabus. The assessment of presentation is as follows:

Sr. No	Evaluation type	Marks
1	Presentation content	10
2	Presentation skills	05
3	Viva	05
4	Continuous Internal Assessment (CIA) e.g. Test, Group discussion, assignment, open-book tests etc.	20
	Total	40

D) External examination - 60 % - 60 Marks

Semester End Theory Examination - 60 marks

Duration - These examinations shall be of **2.5 hours** duration.

Paper Pattern:

- 1. There shall be 04 questions each of 15 marks. On each unit, there will be one question.
- 2. Questions shall be compulsory with internal choice within the questions.

Questions	Options	Marks	Questions based on
Q.1(A)	Any 3 out of 5	12	Unit I
Q.1)B)	Any 1 out of 2	3	
Q.2) A)	Any 3 out of 5	12	Unit II
Q.2) B)	Any 1 out of 2	3	
Q.3) A)	Any 3 out of 5	12	Unit III
Q.3) B)	Any 1 out of 2	3	
Q.4) A)	Any 3 out of 5	12	Unit IV
Q.4) B)	Any 1 out of 2	3	
	Total	60	

Practical Examination Pattern:

Semester End Practical Examination: 50 marks

Experimental work	40
Viva	05
Journal	05
Total	50

PRACTICAL BOOK/JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.

In case of loss of Journal, a Lost Certificate should be obtained from Head/ Coordinator / In-charge of the department; failing which the student will not be allowed to appear for the practical examination.

Overall Examination and Marks Distribution Pattern

Course	2	201		2	02		Grand
				3			Total
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practical		27	50			50	100
Course	2	203		2	04		Grand
	^						Total
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practical			50			50	100

Total: 600 marks

st Certificate should be obtained from Head/ Coordinator / In-charge of the department; failing which the student will not be allowed to appear for the practical examination.

Overall Examination and Marks Distribution Pattern

Internal External Total Internal External Total Theory 40 60 100 40 60 100 200 Practical
Theory 40 60 100 40 60 100 200 Practical 50 50 100 Course 403 404 Grand Total Internal External Total Internal External Total Theory 40 60 100 40 60 100 200
Practical 50 100
Course 403 404 Grand Total Internal External Total Internal External Total Theory 40 60 100 40 60 100 200
Total Internal External Total Internal External Total Theory 40 60 100 40 60 100 200
InternalExternalTotalInternalExternalTotalTheory40601004060100200
Theory 40 60 100 40 60 100 200
Practical 50 100
Rillon