Resolution Number: AC/I(21-22).2(II).RPS5

S.P.Mandali's Ramnarain Ruia Autonomous College

Syllabus for Semester III & IV

Program: M.Sc. (Physical Chemistry)

Program code: RPSCHEP

(Credit Based Semester and Grading System from the academic year 2021–2022)

		SEMESTER III	
Course Code	Unit	Course Title / Unit Title	Credits

RPSCHEP301		Polymer, Surface & Photochemistry	4
	I	Polymer Chemistry-I	
	II	Modern Applications of Surface Chemistry	
	III	Photo Chemistry-I	
	IV	Applications of Fluorescence Phenomena	
		Advanced Instrumental Techniques	
DDGGHED202	I	Spectral Methods-I	<i>(</i> 2)
RPSCHEP302	II	Hyphenated Techniques	04
	III	Thermal and Radioanalytical Methods	
	IV	Electroanalytical methods	
	Atomic	and Molecular: Structure and Spectroscopy	
	I	Atomic structure	
RPSCHEP303	II	Atomic spectroscopy	4
	III	Molecular Structure	
	IV	Molecular spectroscopy	
	Nano-ch	emistry, Applied Electrochemistry, Statistical	
		Mechanics & Nuclear Chemistry	
RPSCHEPEC-I304	I	Advances in Nanomaterials	4
KI SCHEI EC 1804	II	Advanced electrochemistry	•
	III •	Statistical Mechanics	
	IV	Nuclear Chemistry	
	Mo	dern Methods in Instrumental Analysis	
) I	Miscellaneous spectral methods	
RPSCHEPEC-11304	II	Advanced electro-analytical chemistry -I	4
RPSCHEPEC-II304	III	Advanced electro-analytical chemistry -II	-
	IV		
	_ ,	Mass Spectrometry and Raman Spectroscopy	
RPSCHEP3P1		Practical	
ŘPSCHEP3P2		i iacucai	8
RPSCHEP3P3			
RPSCHEP3P4			

SEMESTER IV

Course Code	Unit	Course Title / Unit Title	Credits
		Chemistry: Polymer, Green, Biophysical	
	I	and Applied.	
RPSCHEP401		Polymer Chemistry-II	4
	II	Computational Chemistry	
	III	Bio-physical Chemistry and Green Chemistry	
	IV	Photochemistry-II: Kinetics and Applications	.0)
		Material Sciences and Non-equilibrium Thermodynamics	20
	I	Solid State Chemistry	
RPSCHEP402	II	Instrumental Methods	4
	III	Lasers and super conductors	
	IV	Non-equilibrium thermodynamics	
		Symmetry, Spectroscopy and Catalysis	
	I	Symmetry in Chemistry	
RPSCHEP403	II	N.M.R. Spectroscopy	4
	III	ESR and Mossbauer Spectroscopy	
	IV	Catalysis	
	Ir	ntellectual Property Rights & Cheminformatics	
	I	Intellectual Property Right -I	
RPSCHEPOC-I404	II	Intellectual Property Right -II	4
	Ш	Cheminformatics-I	
	IV	Cheminformatics-II	
	7	Research Methodology	
20.00	I	Review of Literature	
RPSCHEPOC-II404	II	Data Analysis	4
22	III	Methods of Scientific Research and Writing Scientific Papers	
y	IV	Chemical Safety & Ethical Handling of Chemicals	
RPSCHEP3P1		<u> </u>	
RPSCHEP3P2		D42 1	o
RPSCHEP3P3		Practical	8
RPSCHEP3P4			

M.Sc. Physical Chemistry

SEMESTER III

Course Code: RPSCHEP301

Course Title: POLYMER, SURFACE & PHOTOCHEMISTRY

Credits: 4

Academic year 2021-22

111001	completing	g this co	urse, the	e learner	wiii be a	ble to:				20
CO 1	Determin	ne mola	mass of	polymers	s using di	fferent n	nethods	•		00
CO 2	Distingu	ish the v	arious ty	pes of po	olymers.			<u> </u>	0	
CO 3	Classify	the surf	actants by	y their pro	ocess of f	ormation	1.	<u></u>)	
CO 4	List the v	various a	application	ons of sur	factant in	differen	t fields			
CO 5	Illustrate	the var	ious deac	ctivation p	processes	of mole	cular ex	cited s	tates.	
CO 6	Describe	the pho	tochemic	cal reactiv	vity of eth	ienes and	l carbo	nyl con	npoun	ds.
CO 7	_			f Fluoresc		nomena.				
			•	A						
23			Ri							

Course Code	Unit	Course Title / Unit Title	Credits/ Lectures
RPSCHEP301	PO	DLYMER, SURFACE & PHOTOCHEMISTRY	4
	I	Polymer Chemistry-I	(15L)

	1.1 Introduction:	
	Polymer Science, fundamental terms, historical	
	outline, classification based on: the origin (natural,	
	semi-synthetic, synthetic etc.),the structure(linear,	
	branched, network, hyper branched, dendrimer,	
	ladder, cross linked, IPN), the type of atom in the main	
	chain (homochain, heterochain),the	
	formation(condensation, addition), homo polymers, co	
	polymers(random, alternate, block, graft),the	0
	behaviour on application of heat (thermoplastic and	00
	(thermosetting), the form and application (plastics)	00
	fibre, elastomers and resins).	
	1.2 Molar Mass:	
	Molecular weight averages, fractionation, molecular	
	weight determination by GPC/SEC, end group	
	analysis, viscometry, vapour phase osmometry	
	gradient elution, and molecular weight distribution	
	curve.	
	1.3 Types of polymerization:	
	Condensation, addition (cationic and anionic) and	
	copolymerization (with kinetics), chain transfer	
	reactions.	
II	Modern Applications of Surface Chemistry.	(15 L)
	2.1 Surface active agents and micelle:	
	Surface active agents and their classification,	
	hydrophile-lipophile balance.	
	Micellization: shape and structure of micelles,	
	hydrophobic interaction, critical Micelles	
	concentration (cmc), factors affecting CMC of	
	surfactants, counter ion binding to micelles, micelle	
	catalysis, and reverse micelles.	
Raininata,	Emulsions : Solubilisation, micro emulsions,	
	characterization of microemulsions,	
20	2.2 Hydrogen storage by Adsorption:	
Y	Hydrogen storage : fundamentals physisorption,	
	temperature and pressure influence, chemisorption,	
	adsorption energy, 'Electrochemical' adsorption.	
	Practical adsorption: storage of hydrogen with	
	carbon materials, activated carbon, graphite graphene, carbon Nano structures, fullerene. Carbon Nano fibres	
	(CNF) and graphite Nano fibres electrochemical	
	storage of hydrogen in carbon materials.	
III	Photo Chemistry-I	(15L)

	3.1 Photo chemical principles : Environmental effect	
	on absorption and emission spectra, properties of	
	excited states, excited state acidity constants,	
	dipole moments and redox properties, Importance	
	of photochemistry, origin of life.	
	3.2 Photo physical processes in electronically	
	excited molecules:	
	Types of photo physical pathways, types of	
	radiation less transitions, fluorescence emission,	7
	fluorescence and structure. Triplet state and	00
	phosphorescence emission, delayed fluorescence	00
	e type and p-type delayed fluorescence.	
	3.3 Photo chemical reactions: ketones, olefins	
	conjugated olefins and aromatic compounds.	
	photosynthesis.	
IV	Applications of Fluorescence Phenomena	(15L)
	4.1 Fluorescence sensing: Mechanism of sensing;	
	sensing techniques based on coalitional	
	quenching, energy transfer, electron transfer;	
	examples of pH sensors glucose sensors and	
	protein sensors.	
	4.2 Novel fluorophores : Quantum dots, lanthanides	
	and long-lifetime Metal- ligand complexes.	
	4.3 Radiative decay engineering: metal enhanced	
	fluorescence	
	4.4 DNA technology sequencing.	
	The state of the s	

- 1. P. Bahadur and N.W. Sastry, Principles of Polymer Science, 2nd Edition, Narosa Publishing House, 2005.
- 2. C.E. Carraher, Jr., Carraher's Polymer Chemistry, 8th Edition, CRC Press, New York, 2010.
- 3. Joel R. Fried, Polymer Science and Technology, Prentice –Hall of India Pvt. Ltd., 2000
- 4. V.R. Gowarikar, H.V. Vishwanathan and J. Shre edhar, Polymer Science, New Age International Pvt. Ltd., New Delhi, 1990.
- 5. M.J. Rosen, Surfactants and Interfacial Phenomena, 3rd Edition, John Wiley, 2004.
- 6. Y. Moroi, Micelles: Theoretical and Applied Aspects, Plenum Press, New York, 1992.
- 7. Tushar K. Ghosh, Energy Resources and Systems: Volume 2, Springer Link: Bucher, Springer, 2011.

- 8. R. Strobel, J. Garche, P.T. Mosely, L.J'orrisen, G. Wolfd, "Review Hydrogen Storage by Carbon Materials", Journal of Power Sources, June 2006
- 9. C.H. De Puy, O.L.Chapman, Molecular reactions and photochemistry, Prentice Hall of India Pvt. Ltd., 1988.
- 10. K.K. Rohatgi- Mukherjee, Fundamentals of Photochemistry, Reprint 2002, New Age International Publisher, 1978.
- 11. B. Valeur, Molecular Fluorescence: Principles and Applications, Wiley –VCH, 2001.
- 12. J.R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer Publications, 2006.

Pannarain Phia Autonomore

M.Sc. Physical Chemistry **SEMESTER-III Course Code: RPSCHEP302**

Course Title: ADVANCED INSTRUMENTAL TECHNIQUES

Credits: 4 Academic year 2021-22

After st	udying this course, the learner will be able to-
CO 1	Make use of the basic working principles of surface analytical techniques (such as
	SIMS, PIXE) electron spectroscopy and Nuclear Quadrupole Resonance for
	different applications.
CO 2	Assess hyphenated techniques and the different types of interfaces that are used to
	achieve this hyphenation.
CO 3	Apply principles of the thermal methods and radiochemical methods for different
	applications.
CO 4	Develop a working knowledge of various methods used in Voltammetry.
CO 5	Explain anodic, cathodic and adsorptive stripping methods in voltammetry.
CO 6	Select a suitable method of voltammetry for the analysis of a particular sample.
20	

Course Code	Unit	Course Title / Unit Title	Credits/ Lectures
RPSCHEP302	A	ADVANCED INSTRUMENTAL TECHNIQUES	4

	I	Spectral Methods-I	(15L)
		1.1 Surface Analytical Techniques: Preparation of the	
		surface, difficulties involved in the surface analysis.	
		(1L)	
		1.2 Principle, instrumentation and applications of the	
		following:	
		a. ATR-FTIR spectroscopy (2L)	
		b. Secondary Ion mass spectroscopy. (SIMS) (2L)	
		c. X-Ray Photoelectron Spectroscopy (XPS) (2L)	0)
		d. Low-Energy Ion Scattering Spectroscopy (LEIS) and	00
		Rutherford Backscattering (2L)	00
		e. Scanning Probe Microscopy including AFM, CFM	
		(3L)	
		1.3 Nuclear Quadrupole Resonance (NQR), ENDOR,	
		ELDOR. (3L)	
	II	Hyphenated techniques	(15 L)
		2.1 Concept of hyphenation, need for hyphenation,	
		possible hyphenations. (1L)	
		2.2 . Interfacing devices, instrumentation and	
		applications of GC – MS, (Head space GC, Pyrolysis	
		GC), GC -FTIR, (3L)	
		2.3 LC-MS: Interface and Ionization techniques for LC-	
		MS, Thermospray, Particle beam, FAB, and	
		Atmospheric Pressure Ionization (API) Techniques.	
		(3L)	
		2.4 Different Mass Analysers, Magnetic Sector,	
		Quadrupole, Ion Trap, Time of Flight, FTICR (3L)	
		2.5 LC-MS/MS: Tandem MS, Triple Quad MS,	
	^	Collision Induced Dissociation Cell, Different scan	
	7,0	events, MRM transitions. Hybrid MS/MS. Applications	
		of Tandem MS. (3L)	
		2.6 Radio chromatography (2L)	
Raining	III	Thermal and Radioanalytical methods	(15L)
		3.1 Enthalpimetric methods and thermometric titrations.	
		3.2 Thermal analysis- Principle, Interfacing,	
y		instrumentation and Applications of (a) Simultaneous	
		Thermal Analysis- TG-DTA and TG-DSC	
		3.3 Evolved gas analysis- TG-MS and TG-FTIR (8L)	
		3.4 Activation analysis- NAA, radiometric titrations	
		and radio-release methods, isotope dilution method,	
		introduction, principle, single dilution method, double	
		dilution method and applications.	
		3.5 Auto, X-ray and Gamma Radiography (7L)	

IV	Electroanalytical Methods	(15L)
	4.1 Current Sampled (TAST) Polarography, Normal	
	and Differential Pulse Polarography, Differential	
	double Pulse Polarography (2L)	
	4.2 Potential Sweep methods- Linear Sweep	
	Voltammetry and Cyclic voltammetry.	
	Potential Step method- Chronoamperomertry (2L)	
	4.3 Controlled potential technique-	
	Chronopotentiometry (2L)	0)
	4.4 Stripping Voltammetry- anodic, cathodic, and	200
	adsorption (2L)	00
	4.5 .Chemically and electrolytically modified electrodes	
	and ultra- microelectrodes in voltammetry, Biosensor	
	(2L)	
	4.6 Corrosion and electrochemistry, Use of Galvano stat	
	and potentiostat (3L)	
	4.7 Spectro-electrochemistry (2L)	

- 1. Principles of Instrumental Analysis, D. A. Skoog, F. J. Holler and J.A. Niemann, 5th Edition (1998).
- 2. Instrumental Methods of Analysis, H. H. Willard, L. L. Merritt Jr, J. A. Dean and F. A. Settle Jr 7th Ed CBS (1986).
- 3. Introduction to Instrumental Analysis, R. D. Braun, Mc Graw Hill (1987).
- 4. Analytical Chemistry, G. D. Christian, 4th Ed. John Wiley, New York (1986).
- 5. Fundamentals of Analytical Chemistry, D.A. Skoog, D. M. West, and F. J. Holler Holt-Saunders 6th Edition (1992).
- 6. Electroanalytical Chemistry, Ed A. J. Bard and Marcel Dekker, New York, (A series of volumes).
- 7. Electroanalytical Chemistry, J.J. Lingane, 2nd Ed Interscience, New York (1958).
- 8. Modern Polarographic Methods in Analytical Chemistry, A. M. Bond, Marcel Dekker, New York, (1980).
- 9. Introduction to polarography and allied techniques by Kamla Zutski (2006).
- 10. Surface Analysis –The Principal Techniques, 2nd Edition Edited by John C. Vickerman and Ian S. Gilmore 2009 John Wiley & Sons, Ltd. ISBN: 978-0-470-01763-0.
- 11. NMR, NQR, EPR, and Mössbauer Spectroscopy in Inorganic Chemistry *R. V. Parish*. Ellis Horwood, Chichester.

M.Sc. Physical Chemistry SEMESTER-III

Course Code: RPSCHEP303

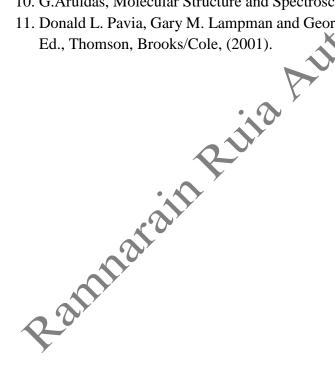
Course Title: ATOMIC AND MOLECULAR: STRUCTURE AND SPECTROSCOPY

Credits: 4

Academic year 2021-22

After co	ompleting this course, the learner will be able to:
CO 1	Solve the Schrodinger equation for complex system.
CO 2	Compare different theories of Molecule formation
CO 3	Discuss the general principles and theory of spectroscopy
CO 4	Summarize applications of various types of spectroscopic methods.
20	Summarize applications of various types of spectroscore methods.

Course Code	se Code Unit			
		Course Title / Unit Title	Lectures	
RPSCHEP303	AT	OMIC AND MOLECULAR: STRUCTURE AND	4	
		SPECTROSCOPY	7	
	I	Atomic structure	(15L)	
		Introduction to approximate methods in Quantum		
		Mechanics-		
		1.1 Variation Method:		
		Variation Theorem, extension of the variation method,	10	
		determinants, simultaneous linear equations, linear	200	
		variation functions.	00	
		1.2 Perturbation Theory:	•	
		Nondegenerate Perturbation Theory, first order wave		
		function correction, first order and second order energy		
		correction. Perturbation treatment of the Helium atom		
		ground state, Variation treatment of the Helium atom		
		ground state, Perturbation Theory for a degenerate		
		energy level		
		1.3 Multielectron atoms:		
		Independent electron approximation, electron spin,		
		spin statistic theorem, symmetric and antisymmetric		
		wave function, the Pauli exclusion principle, slater determinants.		
		1.4 Hartree's method:		
		Hartree Folk method, Slater type orbitals, orbital		
		energies.		
	II	Atomic spectroscopy	(15 L)	
		Y		
		2.1 Angular momentum, orbital and spin, total angular		
	x 600	momentum, total angular momentum (J) of many		
Rainin's		electron atoms, Russell Saunders (L-S) coupling and J-		
		J coupling		
		2.2 Term symbols, term symbols for multi electron		
		atoms like He, Li, Be, B etc.		
		2.3 Exchange of interactions and multiplicity of states.		
y		2.4 Anomalous Zeeman Effect and Paschen Back		
		effect.		
		2.5 Atomic spectra and selection rules, energy level		
		diagram of atomic sodium.		
	III	Molecular Structure	(15L)	
		3.1 Chemical Bonding:	(-3)	
			<u> </u>	



		The Born-Oppenheimer approximation, LCAO	
		method-molecular orbital formation	
		3.2 Molecular Orbital theory:	
		MO theory of bonding in hydrogen molecule ion and	
		hydrogen molecule, physical interpretation of bonding	
		and antibonding molecular orbital, calculation of	
		ground state energy, excited state of H ₂ singlet and	
		triplet state.	
		3.3Valence bond theory:	7
		Heitler-London treatment to hydrogen molecule,	60
		resonance, antisymmetric wave function and nature of	0,0
		bonding. Heitler-London Slater Pauling theory.	
		3.4 Principle of hybridisation:	
		Directed valence & hybridization in simple polyatomic	
		molecules. (sp, sp 2 and sp 3 hybridisation).	
		3.5 Huckel theory:	
		Huckel molecular orbital's Theory for ethylene, Allyl	
		system, cyclopropenyl, linear butadiene,	
		cyclobutadiene and benzene system.	
	IV	Molecular Spectroscopy	(15L)
		4.1 Rotational Spectroscopy:	
		Classification of poly atomic Molecules spherical top,	
		symmetric top and asymmetric top molecules, intensity	
		of spectral lines, non-rigid rotor, spectrum of non-rigid	
		rotor, rotational Spectra of polyatomic molecules,	
		Stark effect, Information derived from the rotational	
		spectra.	
		4.2 Raman Spectroscopy:	
	200	Theory of Raman scattering, quantum theory classical	
6		theory of molecular polarizability, pure Rotational	
		D 4 1711 41 1 D 4	
	ĺ	Raman spectra, Vibrational Raman spectra,	
		polarization and depolarization of Raman lines,	
aldi		-	
2 ani		polarization and depolarization of Raman lines,	
Paining.		polarization and depolarization of Raman lines, structure determination using IR and Raman	
Raini		polarization and depolarization of Raman lines, structure determination using IR and Raman spectroscopy (example: XY ₂ , XY ₃ and XY ₄),	
Paluli.		polarization and depolarization of Raman lines, structure determination using IR and Raman spectroscopy (example: XY ₂ , XY ₃ and XY ₄), instrumentation. 4.3 Electronic Spectra of molecules: Introduction, vibrational course structure, progressions	
Rainir		polarization and depolarization of Raman lines, structure determination using IR and Raman spectroscopy (example: XY ₂ , XY ₃ and XY ₄), instrumentation. 4.3 Electronic Spectra of molecules: Introduction, vibrational course structure, progressions and sequences, Frank Condon principle, intensity of	
Raini		polarization and depolarization of Raman lines, structure determination using IR and Raman spectroscopy (example: XY ₂ , XY ₃ and XY ₄), instrumentation. 4.3 Electronic Spectra of molecules: Introduction, vibrational course structure, progressions and sequences, Frank Condon principle, intensity of vibrational electronic spectra, term symbols for linear	
Raini		polarization and depolarization of Raman lines, structure determination using IR and Raman spectroscopy (example: XY ₂ , XY ₃ and XY ₄), instrumentation. 4.3 Electronic Spectra of molecules: Introduction, vibrational course structure, progressions and sequences, Frank Condon principle, intensity of	

vibronic, charge transfer, π - π *, n- π *transitions, fate of	
electronically excited states.	

- 1. Atkins P.W, Physical Chemistry, Oxford University Press,6th edition,(1998).
- 2. R. K. Prasad, Quantum Chemistry, 3rd Ed., New Age International Publishers, (2006).
- 3. A. McQuarrie, Quantum Chemistry, Viva Books Private Limited, New Delhi, first Indian ed., (2003).
- 4. M. L. Gupta, Atomic and Molecular Spectroscopy, New Age International Publishers, (2001).
- 5. A.K.Chandra, Introductory QuantumChemistry,4McGrawH edition(1994),Tata McGraw-Hill, New Delhi.
- 6. I.N. Levine, Quantum Chemistry, 5th Edition (2000), Pearson Educ. Inc., New Delhi.
- 7. James E. House, Fundamentals of Quantum Chemistry, Second Ed., Academic Press,(2005)
- 8. C.N. Banwell and E.M. Mc Cash, Fundamentals of Molecular Spectroscopy, 4thEd., Tata-McGraw-Hill,(1994).
- 9. H.S. Randhawa, Modern Molecular Spectroscopy, McMillan India Ltd., (2003).
- 10. G.Aruldas, Molecular Structure and Spectroscopy, Prentice-HallofIndia, (2001).
- 11. Donald L. Pavia, Gary M. Lampman and George S. Kriz, Introduction to Spectroscopy, 3rd

M.Sc. Physical Chemistry Semester III

Course Code: RPSCHEPEC-I304

$\underline{\textbf{Course Title: Nano-chemistry, Applied Electrochemistry, Statistical Mechanics \&}$

Nuclear Chemistry Credits: 4

Academic year 2021-22

A C4	
After co	ompleting this course, the learner will be able to:
CO 1	Perceive the concept of nanomaterials and preparation of various nanomaterials
	for the research in material science
CO 2	Develop the concept of electrochemistry in energy creation which is need of
	new age by fuel cells, batteries
CO 3	Apply the concept of probability to the thermodynamic properties at micro level
CO 4	Prove derivation of Maxwell-Boltzmann, Fermi-Dirac statistics.
CO 5	Build knowledge of particle accelerators work viz. Linear, cyclotron.
CO 6	Comprehend the concept of nuclear model's Liquid drop, Fermi gas, Shell, Optical etc.
CO 7	Apply knowledge of nuclear radiations in pharma, geology, industry for various applications

Course Code	Unit	nit Course Title / Unit Title			
			Lectures		
RPSCHEPEC-I 304	N	4			
	S 1	tatistical Mechanics & Nuclear Chemistry	4		
	I	Advantages in nanomaterials	(15L)		
		1.1 Types of nanomaterials			
		e.g. nanotubes, nanorods, solid spheres, core-			
		shell nanoparticles, mesoporous materials,	20		
		General preparative methods for various	0,0		
		nanomaterials			
		1.2 Important properties on nanomaterials:	<i>*</i>		
		Optical properties of metal and semiconductor			
		nanomaterials, magnetic properties			
		1.3Some special nanomaterials:			
		Carbon nanotubes- Types, synthesis using			
		various methods, growth mechanism, electronic			
		structure.			
		Porous Silicon- Preparation and mechanism of			
		porous silicon formation, factors affecting			
		porous structure, properties of porous silicon.			
		Aerogels- types of aerogels, properties and			
		applications of aerogels			
		1.5 Application of nanomaterials			
		in electronics, energy, automobiles, sports and			
	Q	toys, textile, cosmetics, medicine, space and			
	, ,	defence.			
*A		1.5 Environmental effects of nanotechnology			
***	, y				
	II	Advanced Electrochemistry 2.1 Kinetics of Electrode reactions	(15L)		
Raininai a					
		(Electrodics): Essentials of electrode reactions, Butler-			
		· ·			
	Volmmer Model for electrode kinetics, One step, one electron process through potential				
y		energy diagram, standard rate constants and			
		transfer coefficients, equilibrium condition and			
		exchange current, current over potential			
		equation, Tafel behaviour. Mass transfer by			
		migration and diffusion, Fick's Law			
		2.2 Electrochemical devices:			
		2.2 2.2001 Ochonical action.			

	Batteries, Fuel cells, photo electrochemical and	
	dye sensitized solar cells, electrochemical super	
	capacitors, and ion-selective electrodes.	
	2.3 Corrosion:	
	Mechanism, Potential – pH diagram,	
	Measurement of corrosion rates, corrosion	
	inhibition-anodic and cathodic protection,	
	passivation.	
	1	7
II	Statistical Mechanics	(15L)
	3.1 Thermodynamic probability:	00
	Combinatorial problems, Stirling	
	approximation, Lagrange's method, macro and	
	microstates, ensembles, Boltzmann distribution	
	law.	
	3.2 Partition functions:	
	Translational, rotational, vibrational, electronic	
	and nuclear partition functions, Expressions for	
	the thermodynamic functions in terms of	
	partition function -Internal energy, heat	
	capacity, the Helmholtz and Gibbs functions,	
	Enthalpy, entropy and equilibrium constants.	
	Sackur – Tetrode equation for the entropy of a	
	mono atomic gas. Molecular partition function.	
	3.3 Maxwell-Boltzmann, Bose-Einstein and	
	Fermi-Dirac statistics.	
	3.4 Debye and Einstein theory of specific heats	
	of solids.	
Raininal de la	Nyalaan Chamistur	(151.)
	v	(15L)
	4.1 Charged particle accelerator-	
	linear accelerator, cyclotron, Betatron, Synchro-	
	cyclotron, synchrotron	
0'0'	4.2 Nuclear forces- characteristics and Meson	
~	field theory of nuclear forces	
	4.3 Nuclear Models-	
	Liquid drop model, Fermi Gas Model, Shell	
	Model, Collective Model, Optical Model.	
	4.4 Applications of Nuclear radiations-	
	Geological applications of radioactivity, age of	
	minerals and rocks, age of earth and solar	
	system, medical, industrial and Agricultural	

	applications	of	radiochemistry,	positron	
	emission tomo	ograpl	ny, Radio immune	assay.	

- 1. Sulabha K. Kulkarni, Nanotechnology: Principles and Practices, Capital publishing company (2007)
- 2. Lesley E. Smart and Elaine A. Moore, Solid State Chemistry- An introduction, 3rd Ed., Taylor and Francis, (2005), Chapter 11
- 3. Atkins P. W, Physical Chemistry, Oxford University Press,6th edition,(1998).
- 4. Laidler K.J. and Meiser J.H., Physical Chemistry, 2ndedition, CBS publishers & distributors,(1999).
- John M. Seddon & Julian D. Gale, Thermodynamics and Statistical mechanics, Tutorial Chemistry Texts series, Vol.10, Royal Society of Chemistry, (2001).
- 6. D. A. McQuarrie, Statistical Mechanics, (1976) Harper and Row Publishers, New York.
- 7. Silbey RJ & Alberty RA, Physical Chemistry, 3rd edition, John Wiley and sons, Inc. (2002).
- 8. B. K. Agarwal and M. Eisner, Statistical Mechanics, (1988) Wiley Eastern, New Delhi.
- 9. G. Friedlander, J. W. Kennedy, Nuclear and Radio Chemistry. Third. John Wiley and sons, (1981).
- 10. H. J. Arnikar, Essentials of Nuclear Chemistry. Wiley Eastern Ltd.,(1989).

M.Sc. Physical Chemistry Semester III

Course Code: RPSCHEPEC-II304

Course Title: MODERN METHODS IN INSTRUMENTAL ANALYSIS

Credits: 4

Academic year 2021-22

After st	cudying this course, the learner will be able to-
CO 1	Make use of principles of reflectance methods, photoacoustic spectroscopy,
	Chemiluminescence methods, and polarimetry for various applications.
CO 2	Discuss advantages of modified electrodes over the classical polarographic
	methods.
CO 3	Develop a working knowledge of various methods used in modern voltammetry.
CO 4	Outline enhanced Raman spectroscopy techniques, namely Surface Enhanced
	Raman and Resonance Raman Spectroscopy.
CO 5	Interpret mass spectra of molecules, recognize metastable ion peaks, and
	correlate peak presence with possible fragmentation mechanisms to arrive at the
	structure.

Course Code	Unit	Course Title / Unit Title	Credits/ Lectures
RPSCHEPEC-II304	MODERN METHODS IN INSTRUMENTAL		4
		ANALYSIS	4
	I	Miscellaneous Spectral Methods	(15L)
		Principle, Instrumentation and Applications of:	
		1.1. Reflectance spectroscopy	
		1.2 Photoacoustic spectroscopy	20
		1.3 Polarimetry: ORD, CD	0,0
		1.4 Chemiluminescence methods	
		~ O'	<i>'</i>
	II	Advanced Electroanalytical Chemistry + I	(15 L)
		2.1 Overview of electrode processes	
		electrocapillary curve and electro-	
		capillary maximum potential	
		2.2 Microelectrodes: mercury electrodes,	
		stationary mercury drop electrodes	
		(SMDE), hanging mercury drop electrodes	
		(HMDE), mercury film electrodes (MFE),	
		carbon paste electrodes and chemically	
		modified electrodes.	
		2.3: Three electrode systems in modern	
		Polarography, necessity for and	
		development of new voltammetric	
		techniques and their comparison with	
	7	classical DC Polarography.	
•	0		
	III	Advanced Electroanalytical Chemistry – II	(15L)
		3.1 Voltammetric methods: Sampled DC	, ,
		Polarography, Linear Sweep	
0,0		voltammetry, cyclic voltammetry, diagnostic	
Raininatai III		criteria of cyclic voltammetry.	
,		3.2 Pulsed techniques in Polarography: Normal	
		pulse Polarography, differential	
		pulse Polarography, double differential pulse	
		Polarography.	
		3.3 Sinusoidal AC polarography, Square wave	
		Polarography	
		3.4 Applications of electrochemical methods in	
		Organic synthesis.	

IV	Mass Spectrometry and Raman	(15L)
	Spectroscopy	(13L)
	4.1 Mass spectroscopy:	
	Recapitulation, correlation of mass spectra with	
	molecular structure- interpretation of mass	
	spectra, analytical information derived from	
	mass spectra- molecular identification, meta	
	stable peaks, Fragmentation Reactions	0)
	4.2 Raman spectroscopy:	00
	Principle Theory Instrumentation techniques	00
	(SERS and Resonance Raman) and	
	Applications of Raman spectroscopy.	

- 1. Principles of Instrumental Analysis, D. A. Skoog, F. J. Holler and J.A. Niemann, 5th Edition (1998).
- 2. Instrumental Methods of Analysis, H. H. Willard, L. L. Merritt Jr, J. A. Dean and F. A. Settle Jr 7th Ed CBS (1986).
- 3. Introduction to Instrumental Analysis, R. D. Braun, Mc Graw Hill (1987).
- 4. Analytical Chemistry, G. D. Christian, 4th Ed. John Wiley, New York (1986).
- 5. Fundamentals of Analytical Chemistry, D.A. Skoog, D. M. West, and F. J. Holler Holt-Saunders 6th Edition (1992).
- 6. Electroanalytical Chemistry, Ed A. J. Bard and Marcel Dekker, New York, (A series of volumes).
- 7. Electroanalytical Chemistry, J.J. Lingane, 2nd Ed Interscience, New York (1958).
- 8. Modern Polarographic Methods in Analytical Chemistry, A. M. Bond, Marcel Dekker, New York, (1980).
- 9. Introduction to polarography and allied techniques by Kamla Zutski (2006).

M.Sc. Physical Chemistry Practical SEMESTER-III Credits: 8

RPSCHEP3P1

- 1. To estimate the amount of hydrochloric acid and acetic acid in a mixture by titration with an alkali using a pH meter.
- 2. To determine ΔG , ΔH and ΔS of dissolution of a sparingly soluble salt by conductometry.
- 3. To titrate potassium ferrocyanide with zinc sulphate and hence to determine the formula of the complex. (Potentiometrically)
- 4. Dissociation constant of an acid- base indicator by spectrophotometry.
- 5. Thermodynamic data of electrochemical cell by e.m.f. measurements
- 6. Simulations determination of KMnO₄ and K₂Cr₂O₇ by spectrophotometry.

RPSCHEP3P2

- 1. To determine the formula of the copper (II) ammonia complex by partition method.
- 2. Molecular weight of a polymer by end group estimation.
- 3. Determination of the energy of activation and other thermodynamic parameters of activation for the acid catalysed hydrolysis of methyl acetate.
- 4. To study the order of the reaction between bromate and bromide.
- 5. To estimate the amount of a salt of an organic acid/ sparingly soluble salt like magnesium carbonate by ion exchange chromatography.
- 6. To measure the radius of glycerol molecule.

RPSCHEP3P3

- 1. To determine K_1 and K_2 of a dibasic acid by titration with a base.
- 2. To determine the composition of a mixture of hydrochloric acid, potassium chloride and ammonium chloride by titration with sodium hydroxide and silver nitrate.
- 3. To determine the \mathbf{E}^{0} of the quinhydrone electrode.
- 4. To determine the ionization constant of bromophenol blue.
- 5. To determine dissociation constant of p-nitro phenol.
- 6. To determine the proton ligand stability constant of an organic acid and metal ligand stability constant of its complex by pH measurement.

RPSCHEP3P4

- 1. To determine the isoelectric point of gelatine by viscosity measurement.
- 2. Hydrolysis constant of aniline hydrochloride by distribution coefficient method.
- 3. Effect of salt on the distribution of acetic acid between water ethyl acetate.
- 4. To determine the effect of ionic strength of a solution on the reaction between potassium persulphate and potassium iodide.
- 5. To investigate reaction between H₂O₂ and KI.

5

6. To study the effect of the extended conjugation on the λ max of p-nitro phenol by recording spectrum in acidic and alkaline medium

- 1. Practical Physical Chemistry, A. Findary, T.A. Kitchner (Longmans, Green and Co)
- 2. Experiments in Physical Chemistry, J.M. Wilson, K.J. Newcombe, A.R. Denko, R.M.W. Richett (Pergamon Press)
- and and Co., College C

MODALITY OF ASSESSMENT

Theory Examination Pattern:

A) Internal Assessment - 40% (40 Marks)

Presentation: 20 Marks

Continuous Internal Assessment (CIA): 20 Marks

For each paper, learners are evaluated from their presentation based on the topic selected from syllabus. The assessment of presentation is as follows:

Sr. No	Evaluation type	Marks
1	Presentation content	10
2	Presentation skills	05
3	Viva	05
4	Continuous Internal Assessment (CIA) e.g. Test, Group discussion, assignment, open-book tests etc.	20
	Total	40

B) External examination - 60 %

Semester End Theory Assessment 60 marks

- 1. Duration These examinations shall be of **2.5 hours** duration.
- **2.** Paper Pattern:
 - **2.1** There shall be **04** questions each of **15** marks. On each unit, there will be one question.
 - **2.2** All questions shall be compulsory with internal choice within the questions.

Questions	Options	Marks	Questions on
Q.1) A)	Any 3 out of 5	12	Unit I
Q.1) B)	Any 1 out of 2	3	
Q.2) A)	Any 3 out of 5	12	Unit II
Q.2) B)	Any 1 out of 2	3	
Q.3) A)	Any 3 out of 5	12	Unit III
Q.3) B)	Any 1 out of 2	3	
Q.4) A)	Any 3 out of 5	12	Unit IV
Q.4) B)	Any 1 out of 2	3	

Practical Examination Pattern:

Semester End Practical Examination: 50 marks

Experimental work	40
Viva	05
Journal	05

PRACTICAL BOOK/JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.

In case of loss of Journal, a Lost Certificate should be obtained from Head/ Coordinator / Incharge of the department; failing which the student will not be allowed to appear for the practical examination.

Overall Examination and Marks Distribution Pattern

Semester: III

Course	301			3	02		Grand
				XOIX			Total
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practical			50			50	100
Course	303			3	04		Grand
							Total
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practical			50			50	100

Total: 600 marks

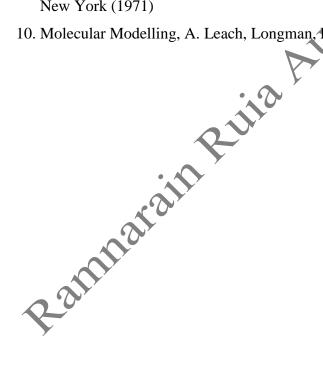
M.Sc. Physical Chemistry SEMESTER –IV

Course Code: RPSCHEP401

Course Title: CHEMISTRY: POLYMER, GREEN, BIOPHYSICAL AND APPLIED.

Credits: 4 Academic year 2021-22

After co	ompleting this course, the learner will be able to:
CO 1	Elaborate Macromolecule, their properties and its characterization.
CO 2	Account for the fundamental background of Density Functional Theory
CO 3	Prove Hohenberg-Kohn theorems and their application.
CO 4	Apply photo physical kinetics of unimolecular and bimolecular processes using Stern-Volmer kinetics.
CO 5	Appraise physical chemistry involved in biological process.
CO 6	Measure thermodynamic parameters for different interactions that are important for the formation of structures in biological systems.
CO 7	Compare the different techniques of electrophoresis
CO 8	Discuss important uses of the solar cell.


Course Code	Unit	Course Title / Unit Title	Credits/
DDCCHED401	CHE	MICERY DOLLAMED ORDERY DIODUNGICAL AN	Lectures
RPSCHEP401	CHE	MISTRY: POLYMER, GREEN, BIOPHYSICAL AN	4
	T	APPLIED.	(1 5 T.)
	I	Polymer Chemistry-II	(15L)
		1.1 Polymers in solid state –	
		Transitions (glass transition and crystalline melting	
		temperature), crystalline behaviour, factors affecting	000
		crystallinity, polymer blends and alloys.	00
		1.2 Identification and characterization of polymers:	
		Chemical analysis- End group analysis; Physical	
		analysis by Spectral methods: IR, UV, Raman, NMR,	
		X-ray Diffraction analysis, Microscopic methods:	
		SEM, TEM, Thermal analysis-TGA, DTA, DSC.	
		1.3 Properties of polymers:	
		Thermal (glass transition temperature, and its	
		determination), mechanical (deformation and fracture)	
		effects in polymers, viscoelasticity surface (surface	
		tension, hardness, friction, abrasion), physical (Impact	
		strength, Tensile strength, solubility) of polymers,	
		weather ability, rheology and mechanical models,	
		mechanical behaviour, Rubber elasticity,	
		1.4 Polymer degradation and stabilization:	
		Oxidative, thermal, radiation, Biodegradation	
	II	Computational Chemistry	(15 L)
	• ^	2.1 Semi-empirical Theories:	
		Recapitulation of Hückel method, extended Hückel	
		method, ZDO approximation, CNDO/INDO methods,	
	O.	Molecular Properties, Computational aspects,	
2.amin		2.2 Density Functional Theory:	
		Introduction, Hohenberg-Kohn Theorem, N and V	
2.00		representability, Levy Functional, Kohn Sham	
7		equations, Functional derivatives and local potentials,	
		Thomas Fermi theory, The Kohn-Sham construction,	
		Fractional occupation numbers, Janak's theorem.	
	III	Biophysical Chemistry and Green Chemistry	(15L)
		3.1 Biophysical Chemistry	
		Introduction to Complex Biomolecules: Proteins,	
		enzymes, DNA, RNA, polysaccharides and lipids.	
		chirality and pH dependence of biomolecules.	

		Biosensors: Enzyme based, Electrochemical,	
		immunosensor, fluorescence, optical, Piezoelectric	
		Biosensors.	
		Electrophoresis (Technique for bio-molecular	
		study): Principle and factors affecting electro-phoretic	
		mobility, zone electrophoresis-Paper electrophoresis,	
		cellules acetate electrophoresis, Gel electrophoresis.	
		Capillary Electrophoresis, Application of	
		electrophoresis.	(7)
		3.2 Green Chemistry:	
		Recapitulation of principles of green chemistry, Waste	00
		minimization techniques. Catalysis and Green	,
		Chemistry: Phase transfer catalysts, biocatalyst, photo	
		catalysis.	
		Organic solvents, solvent free system, supercritical	
		fluid, ionic liquid, their characteristics, use as catalyst	
		and solvents.	
		Alternative energy sources for initiation and execution	
		of chemical reaction: Microwave and sonochemistry.	
	IV	Photochemistry-II: Kinetics and Applications	(15L)
		4.1 Photophysical Kinetics of bimolecular	
		processes.	
		Mechanism of fluorescence quenching, Collisions in	
		solutions, Kinetics of collisional quenching and Stern-	
		Volmer equation and deviations from Stern Volmer	
		equation, Concentration dependence of quenching and	
	• A	excimer formation, quenching by added substances—	
		charge transfer mechanism and energy transfer	
	X.00	mechanism.	
~9	7 ,	4.2 Solar Cells:	
	•	Photovoltaic and photo galvanic cells; photoelectron	
		chemistry; prospects of solar energy conversion and	
2 ainin		storage, organic solar cells.	
V			

- 1. P. Bahadur and N. V. Sastry, Principles of Polymer Science, second edition, Narosa Publishing House, (2005).
- 2. C. E. Carraher, Jr., Carraher's Polymer Chemistry, 8th edition, CRC Press, New York,(2010).
- 3. Joel R. Fried, Polymer Science and Technology, Prentice-Hall of India Pvt. Ltd., (2000).
- 4. V.R. Gowarikar, H.V. Viswanathan and J. Sreedhar, Polymer Science. New International Pvt. Ltd., New Delhi, (1990).
- 5. U.N Dash,. A Text Book of Biophysical Chemistry, Macmillan India Ltd.
- 6. Gurtu and Gurtu, Biophysical Chemistry, Pragati Prakashan.
- 7. Mike Lancaster, Green Chemistry an Introductory Text, Royal Society of Chemistry.
- 8. K.K.Rohatgi- Mukherjee. Fundamentals of Photochemistry. Reprint 2002. New Age International Publisher, (1978).
- 9. Approximate Molecular Orbital Theory, J. A. Pople and D. L. Beveridge, McGraw Hill, New York (1971)
- 10. Molecular Modelling, A. Leach, Longman, Landon (1996).

M.Sc. Physical Chemistry Semester IV Course Code: RPSCHEP402

Course Title: Material Sciences and Non-equilibrium Thermodynamics

Credits: 4

Academic year 2021-22

1.0	
After o	completing this course, the learner will be able to:
CO 1	Relate concept of bonding for structure of crystalline solids.
	Ġ
CO 2	Explain different types of lattices, unit cells and defects in crystal in detail.
CO 3	Assess structure determination by powder diffraction and single crystal X-ray
	diffraction.
~~.	
CO 4	Develop concept of lasers in chemistry, its generation, characteristics and types of
	lasers.
00.5	
CO 5	Describe applications of lasers in chemistry such as spectroscopy, isotope
	separation, and kinetics of fast reactions.
	separation, and kinetics of fast feactions.
CO 6	Make use of Band theory for working of superconductors and magnetic properties.
COU	wake use of Band theory for working of superconductors and magnetic properties.
CO 7	Explain second law of thermodynamics at non-equilibrium i.e. entropy production
	Explain second law of thermodynamics at non equilibrium i.e. entropy production
	and rate. Also, comprehend principle of microscopic reversibility and transport
	and dumspore
	phenomena across membranes.
- 9	

G G. 1.	TT .*4	C	Credits/
Course Code	Unit	Course Title / Unit Title	Lectures
RPSCHEP402	Mater	rial Sciences and Non-equilibrium Thermodynamics	4
	I	Solid State Chemistry	(15L)
		1.1. Bonding and Structure: Classification of solids	
		based on nature of force.(ionic, metallic, van der	
		Waal's, hydrogen bonded), crystal structures.	
		1.2. Symmetry and choice of unit cell, Bravais lattice,	20
		Miller indices, Point groups and space groups, Close	0,0
		packing, Lattices and unit cells.	
		1.3. Crystalline solids, ionic radii, radius ratio rule,	/
		lattice energy, lattice energy, crystal structure	
		determination by powder diffraction, and single crystal	
		X-ray diffraction.	
		1.4. Defects and non-stoichiometry: point defects,	
		plane defects, line defects. Solid solutions Diffusion in	
		solids: Mechanisms, Steady state and non-steady state	
		diffusion, factors affecting diffusion.	
	II	Instrumental Methods	(15 L)
		2.1 X-Ray Diffraction	
		Introduction to XRD, Diffraction of waves by crystal,	
		particle and solid. Generation of X Rays (K shell	
		knockout). Bragg condition, Bragg method, Miller	
		indices, Methods of diffraction, Laue method, Debye-	
		Scherrer method of X ray structural analysis of	
		crystals, Advantages of these methods, Index	
	*^^	reflections, Identification of unit cells from systematic	
		absences in diffraction pattern, Uses of powder XRD.	
		2.2 Electron and Neutron Diffraction	
		2.2.1 Electron diffraction:	
		Diffraction patterns for single crystal, polycrystalline	
		and amorphous material. Difference between X-ray	
2 ann		and electrons, experimental technique. Applications of	
>		electron diffraction	
		2.2.2 Neutron unitraction:	
		Properties of neutron, Principle of neutron scattering,	
		comparison with X-rays. Advantages of neutron	
		scattering, scattering of neutrons by solids and liquids.	
	III	Lasers and Super conductors	(15L)
		3.1 Lasers in chemistry	

	General principles of LASER action-Population	
	Inversion, cavity and mode characteristics, Q-	
	switching, Mode locking.	
	Practical lasers- Solid state lasers-Ruby, neodymium,	
	gas lasers-He- Ne, Ar, Kr, Carbon dioxide, Chemical	
	and exciplex Lasers, Dye lasers LED and	
	Semiconductor Lasers.	
	Applications of Lasers in chemistry: Spectroscopy at	
	high photon fluxes, collimated beams, Precision	0
	specified transitions, Isotope separation, Study of fast	00
	reactions using pulsed techniques.	00
	3.2 Super conducting solid materials	
	Band theory of electrical conductivity, Bardeen	
	Cooper-Schriffer Theory of super conductivity, the	
	superconducting state, High critical temperature super	
	conductors, magnetic properties of superconductors.	
	IV Non-equilibrium thermodynamics:	(15L)
	4.1 Features of non-equilibrium thermodynamics,	
	second law of thermodynamics, uncompensated	
	heat and its relation to thermodynamics function.	
	4.2 Entropy production and its rate. Entropy	
	production in heat transfer process and during	
	mixing of gases, Entropy production and efficiency	
	of galvanic cell.	
	4.3 Onsager's theory: Reciprocal relation, principle of	
	microscopic reversibility.	
	4.4 Coupled and uncoupled reactions and their	
	condition.	
	4.5Transport phenomena across membranes. Electro	
1	kinetic effect and thermomechanical effects.	

- 1. Keer H.V, Principles of the Solid State, first reprint, Wiley Eastern Limited, (1994).
- 2. R.S. Drago, Physical Methods for Chemists, 2nd edition, Saunders College Publishing (1992)
- 3. A.R. West, Solid State Chemistry and its Applications, John Wiley and Sons (Asia) Pvt. Ltd.,
- 4. L.E.Smart and E.A.Moore, Solid State Chemistry–An Introduction,3rdEd., Taylor and Francis, (2005).
- 5. P.W, Physical Chemistry, Oxford University Press, 6th edition, (1998).
- 6. E.D.Kaufmann, Advanced Concepts in Physical Chemistry, McGraw-Hill, (1966).
- 7. C.Kalidas and M.V.Sangaranarayan, Non-Equilibrium Thermodynamics, Principles and Applications, McMillanIndia Ltd., (2002).

8. S. Glasstone, Theoretical Chemistry, Affiliated East–West Press Pvt. Ltd., New Delhi, (1973).

M.Sc Physical Chemistry SEMESTER-IV

Course Code: RPSCHEP403

Course Title: Symmetry, Spectroscopy and Catalysis

Credits: 4

Academic year 2021-22

After o	ompleting this course, the learner will be able to:
CO 1	Describe the selection rule for infrared-active transitions.
CO 2	Determine whether the molecular vibrations of a triatomic molecule are Raman active.
CO 3	Analyse the hybridization of given compounds.
CO 4	Explain concepts of equivalent and non-equivalent hydrogens.
CO 5	Assess effect of structure on chemical shift and coupling constants.
CO 6	Elucidate the electronic structure of free radicals and paramagnetic transition metal complexes.
CO 7	Comprehend magnetic properties of the materials and its order of orientations.

Course Code	Unit	Course Title / Unit Title	Credits/
			Lectures
RPSCHEP403		Symmetry, Spectroscopy & Catalysis	4
	I	Symmetry in Chemistry	(15L)
		1.1 Recapitulation of Points groups and Character tables.	
		1.2 Applications of Group theory in Infrared and Raman spectroscopy. Molecular Vibrations, determining the Symmetry Types of the Normal	000
		Modes; symmetry-based Selection Rules of IR and Raman, application in Infrared and Raman spectroscopy for molecules belongs to point group C_{2v} , C_{3v} , C_{4v} , D_{2h} , D_{3h} , $D_{\infty h}$ and T_d .	,
		1.3 Group theory and quantum mechanics. Wave function as bases for irreducible representation.1.1 Symmetry Adapted Linear Combinations -	
		(SALC) - projection operators and their use to construct SALC.	
		1.5 Molecular Orbital Theory. Transformation	
		properties of atomic orbitals, MO's for Sigma and pi - molecular orbitals in AB _n molecules, AB ₄	
		(tetrahedral) and AB ₆ (octahedral) molecules, Hybrid orbitals.	
	II	N.M.R. Spectroscopy	(15 L)
		2.1 Nuclear Magnetic Resonance (NMR)	, ,
2 anni		Spectroscopy: Nuclear spin and its interaction with applied field, population of energy state, relaxation time, ¹ H NMR Spectroscopy: Chemical Shift; Multiplet Splitting of NMR peaks arises through Spin–Spin Coupling, Multiplet Splitting when more than two spins interact.	
5.00		 2.3 Pulse technique in NMR: The magnetization vector, spin-spin relaxation, spin-lattice relaxation. 2.4 ¹³C NMR Spectroscopy: 	
		Fourier Transform NMR; Off-Resonance and Spin-Decoupled, DEPT, Applications, 2-D NMR Spectroscopy (COSY). Nuclear Overhauser Effect Spectroscopy (NOESY). 2.4 Solid-state NMR	
		 2.5 Magnetic Resonance Imaging (MRI); 2.6 NMR Spectroscopy of ¹⁹F, ¹⁵N and ³¹P nuclides. 	

	III	ESR and Mossbauer Spectroscopy	(15L)
		3.1 Electron spin Resonance Spectroscopy-	
		3.1.1 Basic principle, hyperfine splitting (isotropic	
		systems);	
		3.1.2 .g-value and the factors affecting there of;	
		interactions affecting electron energies in	
		paramagnetic complexes (Zero-field splitting and	
		Kramer's degeneracy);	.0)
		3.1.3. An isotropic effect (the g-value and the hyperfine	92
		couplings); The EPR of triplet states; Structural	00
		applications to transition metal complexes.	
		3.2 Mossbauer Spectroscopy:	
		Basic principles of Mössbauer spectroscopy,	
		instrumentation, spectral parameters	
		a) Mössbauer Parameters- Isomer Shifts, quadrupole	
		splitting, Magnetic hyperfine interaction.	
		b) Application of Mössbauer spectroscopy with respect	
		to	
		i) Oxidation states of metal ion in compounds	
		ii) Structural elucidation	
		iii) Covalent and ionic compounds	
		iv) High spin low spin behaviour	
	IV	Catalysis	(15L)
		4.1 Introduction, history and importance of catalysis,	
		concept of activity, selectivity, poisoning,	
		promotion, turnover number and deactivation,	
	• _ A	4.2 Types of catalysis: homogeneous catalysis:	
		examples of homogeneous catalysis in gas phase,	
		and in solution phase, acid-base catalysis.	
	o v	4.3 heterogeneous catalysis: heterogeneous catalysis	
Raining		with gaseous reactants, liquid reactants, and	
		gaseous reactants, biocatalysis, autocatalysis,	
0,0		negative catalysis, characteristics of catalytic	
Y		reactions, activation energy and catalysis, theories	
,		of catalysis: the intermediate compound formation	
		theory, the adsorption theory	
		4.4 Mechanism of heterogeneous catalysis, kinetics of	
		heterogeneous catalytic reactions, Langmuir-	
		Hinshelwood model, Catalysis by semiconductors,	
		Boundary Layer theory, Wolkenstein's theory,	
		4.5 Preparation and Characterisation of Catalysts:	
		General methods of preparation of catalysts:	

precipitation, sol-gel, hydrothermal, impregnation, hydrolysis, vapour deposition. Activation of catalysts: calcinations, reduction. Catalyst characterization: surface area, pore size distribution, particle size determination, XPS,	
AES, UV-Vis, FTIR and thermal methods	

- 1. Heterogeneous Catalysis, D. K. Chakrabarty and B. Viswanathan, Hardcover Oct 2008

 New Age International Publishers).
- 2. Catalytic Chemistry, B. C. Gates, John Wiley and Sons Inc. (1992).
- 3. R.L.Carter, Molecular symmetry and Group theory, Wiley Learner Ed., 1996, John Wiley and Sons, (Asia) Pvt.Ltd.
- 4. C.N.Banwell and E.M.McCash, Fundamentals of Molecular Spectroscopy, 4thEd., Tata-McGraw-Hill, (1994).
- 5. M. L. Gupta, Atomic and Molecular Spectroscopy New Age International Publishers, (2001).
- 6. G.Aruldas, Molecular Structure and Spectroscopy, Prentice-Hall of India, (2001).
- 7. J.Michael Hollas, Modern Spectroscopy, 4thEd., John Wiley and Sons, (2004).
- 8. F.A.Cotton, Chemical applications of Group Theory, Wiley Learner Ed., 2006, John Wiley and Sons, (Asia) Pvt.Ltd.

M.Sc. Physical Chemistry SEMESTER-IV

Course Code: RPSCHEPOC-I 404

Course Title: INTELLECTUAL PROPERTY RIGHTS & CHEMINFORMATICS

Credits: 4 Academic year 2021-22

Course Outcomes:

After c	ompleting this course, the learner will be able to:
CO 1	Relate concept of intellectual property and the terms involved with respect to Indian
	Patent Law.
CO 2	Distinguish between patents and copyrights.
CO 3	Compare the economic impact and legislature involved in Intellectual property
	rights.
CO 4	Build knowledge about software tools pertaining to Cheminformatics and
	Molecular Modelling.
CO 5	Determine structure and sub-structure search online, determine SMILES codes for
	various molecules.
CO 6	Summarize knowledge about the application of the research-based tools.

Course Code	Unit	Course Title / Unit Title	Credits/
			Lectures
RPSCHEPOC-I	<u>IN</u>	TELLECTUAL PROPERTY RIGHTS &	4
404		CHEMINFORMATICS	
	I	Intellectual Property Rights-I	(15 L)
		1.1 Introduction to Intellectual Property:	
		Historical Perspective, Different types of IP,	
		Importance of protecting IP	
		1.2 Patents:	
		Historical Perspective, Basic and associated	
		right, WIPO, PCT system, Traditional	00
		Knowledge, Patents and Health care-balancing	
		promoting innovation with public health,	
		Software patents and their importance for India.	
		1.3 Industrial Designs:	
		Definition, how to obtain, features, International	
		design registration.	
		1.4 Copyrights:	
		Introduction, how to obtain, Differences from	
		Patents.	
		1.5 Trade Marks:	
		Introduction, how to obtain, Different types of	
		marks - Collective marks, certification marks,	
		service marks, trade names etc.	
		1.6 Geographical Indications:	
		Definition, rules for registration, prevention of	
	X	illegal exploitation, importance to India.	
•			
Paininais.	ÌK	Intellectual Property Rights-II	(15 L)
7.0		2.1 Trade Secrets:	
		Introduction and Historical Perspectives, Scope	
		of Protection, Risks involved and legal aspects	
		of Trade Secret Protection.	
		2.2 IP Infringement issue and enforcement:	
Y		Role of Judiciary, Role of law enforcement	
		agencies – Police, Customs etc.	
		2.3 Economic Value of Intellectual Property:	
		Intangible assets and their valuation, Intellectual	
		Property in the Indian context – Various Laws	
		in India Licensing and Technology transfer.	
		2.4 Different International agreements:	
		- World Trade Organization (WTO):	

		(i) General Agreement on Tariffs and	
		Trade (GATT), Trade Related	
		Intellectual Property Rights (TRIPS)	
		agreement	
		(ii) General Agreement on Trade Related	
		Services (GATS) Madrid Protocol.	
		(iii)Berne Convention	
		(iv)Budapest Treaty	
		- Paris Convention	40
		- WIPO and TRIPS, IPR and Plant	
		Breeders Rights, IPR and Biodiversity.	
	III	Cheminformatics-I	(15L)
		3.1 Introduction to Cheminformatics:	
		History and evolution of cheminformatics, Use	
		of Cheminformatics, Prospects of	
		cheminformatics, Molecular modelling and	
		structure elucidation.	
		3.2 Representation of molecules and chemical	
		reactions:	
		Nomenclature, Different types of notations,	
		SMILES coding, Matrix representations,	
		Structure of Molfiles and Sdfiles, Libraries and	
		toolkits, Different electronic effects, Reaction	
		classification.	
		3.3 Searching Chemical Structures:	
	V	Full structure search, sub-structure search,	
	Y	basic ideas, similarity search, three-	
	,	dimensional search methods, basics of	
A 70 /		computation of physical and chemical data and	
		structure descriptors, data visualization.	
	IV	Cheminformatics-II	(15L)
		4.1 Prediction of Properties of Compound,	
2-0		Linear Free Energy Relations, Quantitative	
Raininatain		Structure - Property Relations, Descriptor	
		Analysis, Model Building, Modelling	
		Toxicity, Structure - Spectra correlations,	
		Prediction NMR, IR and Mass spectra.	
		4.2 Computer Assisted Structure elucidations,	
		Computer assisted Synthesis Design,	
		Introduction to drug design, Target	
		Identification and Validation, Lead Finding	

and Optimization, analysis of HTS data, Virtual Screening, Design of Combinatorial Libraries, Ligand-based and Structure based Drug design. 4.3 Application of Cheminformatics in Drug Design.	
---	--

Reference Books:

- 1. Vivien Irish, Intellectual Property Rights for Engineers, 2nd Edition, British Library, (2008).
- 2. David I. Bainbridge, Intellectual Property, 8th Edition, Pearson, (2010).
- 3. Stephen Elias and Richard Stim, Patent Copyright & Trade Mark, 8th Edition, Nolo and Richard, (2013).
- 4. Johann Gasteiger and Thomas Engel, Chemoinformatics, Wiley-VCH, (2003).
- 5. Andrew R. Leach, Valerie J. Gillet, An Introduction to Chemoinformatics, Springer, (2007).
- 6. Barry A. Bunin, Jurgen Bajorath, Brian Siesel and Guillermo Morales, Chemoinformatics- Theory, Practice and Products, Springer, (2007).

M.Sc Physical Chemistry SEMESTER-IV

Course Code: RPSCHEPOC-II 404

Course Title: RESEARCH METHODOLOGY

Credits: 4 Academic year 2021-22

Course Outcomes:

After o	completing this course, the learner will be able to:
CO 1	Perceive basics of research methodology
CO 2	Conduct research by developing a problem
CO 3	Develop research paper writing, study formats of existing research papers and
	review papers
CO 4	Appraise importance of lab-safety and the safety protocols in R&D laboratories.
23	Annarain Pulla

Course Code	Unit	Course Title / Unit title	Credits/	
			Lectures	
RPSCHEPOC-		RESEARCH METHODOLOGY		
II 404	I	Review of Literature	(15L)	
		1.1 Print: Primary, Secondary and Tertiary		
		sources.		
		1.2 Journals:		
		Journal abbreviations, abstracts, current titles,	7 .	
		reviews, monographs, dictionaries, text-books,	0	
		current contents, Introduction to Chemical	0,0	
		Abstracts and Beilstein, Subject Index, Substance		
		Index, Author Index, Formula Index, and other		
		Indices with examples.		
		1.3 Digital:		
		Web sources, E-journals, Journal access, TOC		
		alerts, Hot articles, Citation Index, Impact factor,		
		H-index, E-consortium, UGC infonet, E-books,		
		Internet discussion groups and communities,		
		Blogs, preprint servers, Search engines, Scirus,		
		Google Scholar, ChemIndustry, Wiki-databases,		
		ChemSpider, Science Direct, SciFinder, Scopus.		
		1.4 Information Technology and Library		
		Resources: The Internet and World wide web, Internet		
		resources for Chemistry, finding and citing		
		published information.		
	II	Data Analysis	(15 L)	
•		2.1 The Investigative Approach:	(13 L)	
		Making and recording Measurements, SI units		
		and their use, Scientific methods and design of		
		experiments.		
		2.2 Analysis and Presentation of Data:		
Rainaire		Descriptive statistics, choosing and using		
		statistical tests, Chemometrics, Analysis of		
		Variance (ANOVA), Correlation and regression,		
		curve fitting, fitting of linear equations, simple		
		linear cases, weighted linear case, analysis of		
		residuals, general polynomial fitting, linearizing		
		transformations, exponential function fit, r and its		
		abuse, basic aspects of multiple linear regression		
		analysis.		

		Methods of Scientific Research and Writing	(15L)
		Scientific Papers	(131)
		3.1 Reporting practical and project work, writing	
		literature surveys and reviews, organizing a	
		poster display, giving an oral presentation.	
		3.2 Writing Scientific Papers: Justification for	
		scientific contributions, bibliography,	
		description of methods, conclusions, the need	
		for illustration, style, publications of scientific	0)
		work, writing ethics, avoiding plagiarism.	
			00
	IV	Chemical Safety & Ethical Handling of	(151.)
		Chemicals	(13L)
		4.1 Safe working procedure and protective	
		environment, protective apparel, emergency	
		procedure, first aid, laboratory ventilation,	
		safe storage and use of hazardous chemicals,	
		procedure for working with substances that	
		pose hazards, flammable or explosive hazards,	
		procedures for working with gases at	
		pressures above or below atmospheric	
		pressure	
		4.2 Safe storage and disposal of waste chemicals,	
		recovery, recycling and reuse of laboratory	
		chemicals, procedure for laboratory disposal	
		of explosives, identification, verification and	
		segregation of laboratory waste, disposal of	
		chemicals in the sanitary sewer system,	
	>	incineration and transportation of hazardous	
* O.	,	chemicals.	
	IV	description of methods, conclusions, the need for illustration, style, publications of scientific work, writing ethics, avoiding plagiarism. Chemical Safety & Ethical Handling of Chemicals 4.1 Safe working procedure and protective environment, protective apparel, emergency procedure, first aid, laboratory ventilation, safe storage and use of hazardous chemicals, procedure for working with substances that pose hazards, flammable or explosive hazards, procedures for working with gases at pressures above or below atmospheric pressure 4.2 Safe storage and disposal of waste chemicals, recovery, recycling and reuse of laboratory chemicals, procedure for laboratory disposal of explosives, identification, verification and segregation of laboratory waste, disposal of chemicals in the sanitary sewer system, incineration and transportation of hazardous	(15L)

Reference Books:

- 1. C. R. Kothari, Research Methodology- Methods and techniques, New Age International (P) Limited Publisher, (2004).
- 2. Yogesh Kumar Singh, Fundamental of Research Methodology and Statistics, New Age International (P) Limited Publisher, (2006).
- 3. Carol Ellison, Concise Guide to Writing Research Ppaers, McGraw-Hill, (2016).

- 4. Introductory Statistics, Prem S. Mann, C. Jay Lacke, 7th Edition, John Wiley and Sons, (2010).
- 5. Statistics From A to Z Confusing Concepts Clarified, Andrew A. Jawlik, John Wiley and Sons, (2016).

Rainarain Ruia Autonomous College

Rainarain Ruia

M.Sc Physical Chemistry Semester –IV Practical Credits: 8

RPSCHEP4P1

- 1. To determine hydrolysis constant and degree of hydrolysis of ammonium chloride and hence to estimate the dissociation constant of the base.
- 2. To determine the liquid junction potential with a concentration cell with and without transference.
- 3. To determine the molar conductance of a weak electrolyte at infinite dilution hence to determine its dissociation constant.
- 4. Determination of energy of n to Π^* transition in acetone and study of effect of solvent on energy of this transition by recording absorbance spectra in n-hexane and water.
- 5. Determination of isosbestic point of a given dye molecule by spectrophotometric method.
- 6. To determine the proton ligand stability constant of an organic acid and metal ligand stability constant of its complex by pH measurement.

RPSCHEP4P2

- 1. To determine the formula of the zinc (II) ammonia complex by partition method.
- 2. Determination of the chain linkage in poly (viny) alcohol) from viscosity measurements.
- 3. To study the kinetics of the decomposition of hydrogen peroxide in presence of ferric chloride solution and hence to study the effect of the catalyst on the decomposition reaction
- 4. To determine the rate constant and the order of the reaction between persulphate and iodide ions.
- 5. To determine the energy of activation and other thermodynamic parameters of activation for the reaction between persulphate and potassium iodide.
- 6. To determine the equilibrium constant for the reaction.

$$CaSO_4(s) + 2Ag^{+1}(aq) = Ag_2SO_4(s) + Ca^{-2}(aq)$$

RPSCHEP4P3

A. Interpretation of spectra/data:

- 1. Interpretation of vibrational-rotational spectra of rigid and non-rigid diatomic molecules
- 2. Interpretation of electronic spectra of diatomic molecules.
- 3. Interpretation of electronic spectra of simple polyatomic molecules.
- 4. Interpretation of NMR, ESR spectra.
- 5. Analysis of XRD pattern of cubic system
- 6. Interpretation of DTA, TG, and DTG curves

B. Use of plane-wave DFT based code: Quantum Espresso

Part 1: Using DFT for structure optimization or relaxation of structures and self-consistent field calculations for simple molecules or crystals.

Part 2: Interpretation of data from relaxation process, plotting of total and partial atom projected Density of States (DOS), obtaining band gap and deducing magnetic properties.

RPSCHEP4P4

Project Evaluation

Reference books:

- 1. Practical Physical Chemistry, A. Findary, T.A. Kitchner (Longmans, Green and Co)
- 2. Experiments in Physical Chemistry, J.M. Wilson, K.J. Newcombe, A.R. Denko, R.M.W. Richett (Pergamon Press)
- 3. Senior Practical Physical Chemistry, B.D. Khosla and V.S. Garg (R. Chand and Co.,

MODALITY OF ASSESSMENT

Theory Examination Pattern:

B) Internal Assessment - 40% (40 Marks)

Presentation: 20 Marks

Continuous Internal Assessment (CIA): 20 Marks

For each paper, learners are evaluated from their presentation based on the topic selected from syllabus. The assessment of presentation is as follows:

Sr. No	Evaluation type	Marks
1	Presentation content	10
2	Presentation skills	05
3	Viva	05
4	Continuous Internal Assessment (CIA) e.g. Test, Group discussion, assignment, open-book tests etc.	20
_	Total	40

B) External examination - 60 %

Semester End Theory Assessment 60 marks

- 1. Duration These examinations shall be of 2.5 hours duration.
- 2. Paper Pattern:
 - 2.1 There shall be **04** questions each of **15** marks. On each unit, there will be one question.
 - 2.2 All questions shall be compulsory with internal choice within the questions.

Questions	Options	Marks	Questions on
Q.1) A)	Any 3 out of 5	12	Unit I
Q.1) B)	Any 1 out of 2	3	
Q.2) A)	Any 3 out of 5	12	Unit II
Q.2) B)	Any 1 out of 2	3	
Q.3) A)	Any 3 out of 5	12	Unit III
Q.3) B)	Any 1 out of 2	3	
Q.4) A)	Any 3 out of 5	12	Unit IV
Q.4) B)	Any 1 out of 2	3	

Practical Examination Pattern:

Semester End Practical Examination: 50 marks

Experimental work	40
Viva	05
Journal	05

PRACTICAL BOOK/JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.

In case of loss of Journal, a Lost Certificate should be obtained from Head/ Coordinator / Incharge of the department; failing which the student will not be allowed to appear for the practical examination.

Overall Examination and Marks Distribution Pattern

Semester: IV

Course	4	01		4	02		Grand
				C			Total
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practical			50			50	100
Course	4	03	O	4	04		Grand
							Total
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practical			50			50	100

Total: 600 marks