

Resolution Number: AC/II(22-23).3.RPS5

S. P. Mandali's Ramnarain Ruia Autonomous College

s college (Affiliated to University of Mumbai)

Syllabus for SEMESTER I and II

Program: M.Sc. Organic /Physical/Inorganic Chemistry

Program Code: (RPSCHE)

(Credit based semester and grading system with effect from the academic year 2023-2024)

GRADUATE ATTRIBUTES

GA	Description					
A stude	A student after completing Master's in Science program will be able to					
GA 1	Demonstrate in depth understanding in the relevant science discipline. Recall, explain,					
	extrapolate and organize conceptual scientific knowledge for execution and application					
	and also to evaluate its relevance.					
GA 2	Critically evaluate, analyse and comprehend a scientific problem. Think creatively,					
	experiment and generate a solution independently, check and validate it and modify if					
	necessary.					
GA 3	Access, evaluate, understand and compare digital information from various sources and					
	apply it for scientific knowledge acquisition as well as scientific data analysis and					
	presentation.					
GA 4	Articulate scientific ideas, put forth a hypothesis, design and execute testing tools and					
	draw relevant inferences. Communicate the research work in appropriate scientific					
	language.					
GA 5	Demonstrate initiative, competence and tenacity at the workplace. Successfully plan					
	and execute tasks independently as well as with team members. Effectively					
	communicate and present complex information accurately and appropriately to					
	different groups.					
GA 6	Use an objective, unbiased and non-manipulative approach in collection and					
	interpretation of scientific data and avoid plagiarism and violation of Intellectual					
	Property Rights. Appreciate and be sensitive to environmental and sustainability issues					
	and understand its scientific significance and global relevance.					
GA 7	Translate academic research into innovation and creatively design scientific solutions					
	to problems. Exemplify project plans, use management skills and lead a team for					
2.0	planning and execution of a task.					
GA 8	Understand cross disciplinary relevance of scientific developments and relearn and					
	reskill so as to adapt to technological advancements.					

PROGRAM OUTCOMES

PO	Description
A studen	t completing Master's degree in Science Program in the subject of chemistry will
be able to	0:
PO 1	Acquire in-depth knowledge of the advance concepts in the branch of
	specialization viz, Physical, Inorganic, Organic & Analytical.
PO 2	Design and carry out analysis as well as accurately record and analyse the results.
PO 3	Explain the findings and share the results with scientists and non scientist with the
	help of the written and oral communication skills acquire during the course.
PO 4	Apply the skills to do specialized research in the core and applied areas of
	chemical sciences.
PO 5	Explore new areas of research in chemistry and allied fields of science and
	technology.
PO 6	Demonstrating the developed skills such as problem solving approach, critical
	thinking, analytical reasoning, team work and effective communication for
	solving the applied research problems related to their field.
PO 7	Explain why chemistry plays an integral role in addressing social, economic and
	environmental problems.
PO 8	Become professionally skilled for higher studies in research institutions and to
	work in industries.
2	
y	

PROGRAM OUTLINE

YEAR	SEM	COURSE	Type of	COURSE TITLE	CREDITS
		CODE	Course		
M.Sc. I	I	RPSCHE.O	Discipline	Physical Chemistry	3
		501	Specific		
		301	Core I		
		RPSCHEP	Practical	Physical Chemistry	1
		.0501	DSC I	Practicals I	
		RPSCHE.O	Discipline	Inorganic Chemistry	3
		502	Specific		20
		502	Core II		200
		RPSCHEP	Practical	Inorganic Chemistry	1 01
		.0502	DSC II	Practicals I	\
		RPSCHE.O	Discipline	Organic Chemistry	3
			Specific		
		503	Core III		
		RPSCHEP	Practical	Organic Chemistry	1
		.0503	DSC III	Practicals I	•
		.0303	DSC III	Quality Control In	2
		RPSCHE.O	Discipline	Chemical Industries	
		504	Specific	T T T	
		504	Core IV	1	
		DDCDMC		DECEADOIL	4
		RPSRMC	RM	RESEARCH	4
		HE.O505	D': 1	METHODOLOGY	
		RPSCHEA.	Discipline	Fundamentals Of	2
		O507	Specific	Analytical	3
		•	Elective	Chemistry	
		RPSCHE	Practical on	Practicals on	1
		AP.O507	DSE	Fundamentals of	
				Analytical	
				Chemistry	
	II	RPSCHE.E	Discipline	Physical Chemistry	3
	A .	511	Specific		
		311	Core I		
		RPSCHEP	Practical	Physical Chemistry	1
4		.E511	DSC I	Practicals II	
Rair		RPSCHE.E	Discipline	Inorganic Chemistry	3
0,0		512	Specific		
V		512	Core II		
7		RPSCHEP	Practical	Inorganic Chemistry	1
		.E512	DSC II	Practicals II	
		RPSCHE.E	Discipline	Organic Chemistry	3
			Specific		
		513	Core III		
		RPSCHEP	Practical	Organic Chemistry	1
		.E513	DSC III	Practicals II	
			Discipline	Quality Control In	2
		RPSCHE.E	Specific	Chemical Industries	_
		514	Core IV	II	
		1	COLCIV	11	

	RPSCHEA.	Discipline	Fundamentals Of	3
	E517	Specific	Analytical	
	EST	Elective	Chemistry	
	RPSCHE	Practical on	Fundamentals Of	1
	AP.E517	DSE	Analytical	
			Chemistry Practicals	
			II	
	RPSCHE	Research		4
	RP.E519	project		

Ramarain Ruia Autonomous

Ramarain Ruia

Course Code: RPSCHE.O501 Course Title: PHYSICAL CHEMISTRY Academic year 2023-24.

Course Outcomes:

After con	npletion of this Course, the learner will be able to:
CO1	Derive Maxwell equations and understand their significance.
CO2	Connect quantum mechanical operators to observables.
CO3	Calculate probabilities, amplitudes, averages values of the observables.
CO3	Derive rate laws of different types of the reactions.

		DETAILED SYLLABUS	Credits/Hours
Course Code	Unit	Course title / Unit Title	3/45
		PHYSICAL CHEMISTRY	3
RPSCHE.O501	I	Thermodynamics I 1.1 Recapitulation :- Heat, Work, & Conservation of energy – The basic concepts, the first law, infinitesimal changes, mechanical work, work of compression & expansion, free expansion, Expansion against constant pressure, reversible expansion, Heat :- heat capacity, enthalpy. State functions & differentials – state functions, Exact & Inexact differential, changes in internal energy, the temperature dependence of the internal energy, Temperature dependence of the enthalpy. Work of adiabatic expansion Irreversible adiabatic expansion, reversible adiabatic expansion. 1.2 The Second law of Thermodynamics Measuring the dispersal the entropy, The second law, the definition of entropy, the entropy changes in the universe – The enthalpy change when a system is heated, Entropy changes in surroundings, the entropy of phase transition, the entropy of irreversible changes. Concentrating	

	on the system – The Helmoltz & Gibbs function,
	some remarks on the Helmholtz function,
	· ·
	Maximum work, some remarks to Gibbs
	function Evaluating the entropy & Gibbs
	function, The Third law of Thermodynamics,
	Third law entropies standard molar Gibbs
	function.
	1.3 Combining First & Second Law – One way
	of developing the fundamental equations
	Properties of the Gibbs function, the temperature
	dependence of the Gibbs functions, the pressure
	Properties of the Gibbs function, the temperature dependence of the Gibbs functions, the pressure dependence of the Gibbs functions, The
	Chemical potential of a perfect gas, the open
	system & changes of composition.
	Chemical Kinetics-I
	2.1Rate laws for complex reactions, parallel
	reaction with example of nuclear reactions and
	fluorescence decay, opposing reactions, rate
	constants by temperature jump method,
	consecutive reactions, rate determining step and
	steady state approximation.
	2.2 Collision theory of reaction rates, collision
	cross-sections, rate coefficient, steric factor,
	Straight chain reactions. Theory of absolute
	reaction rates activated complex theory,
	potential energy surface, and thermodynamic
	interpretation, comparison of results with Eyring
	and Arrhenius equations.
i i	2.3Some inorganic mechanisms: formation and
	decomposition of phosgene, decomposition of
	ozone, Reaction between Hydrogen and
	Bromine and some general examples Organic
Raininario	Decompositions: Decomposition of ethane,
	decomposition of acetaldehyde Gas phase
2.0	combustion: Reaction between hydrogen and
	oxygen, Semenov – Hinshelwood and
	Thompson mechanism, Explosion limits and
	factors affecting explosion limits.
	2.4 Elementary Reactions in Solution: - Solvent
	Effects on reaction rates, Reactions between
	ions- influence of solvent Dielectric constant,
	influence of ionic strength, Linear free energy
	relationships.
	retationships.

	2.5 Steady state and pre-equilibrium	
	approximations, Lindemann mechanism for the	
	unimolecular reaction. Enzyme catalysis –	
	Michaelis-Menten Mechanism, Lineweaver and	
	· ·	
	Eadie plots.	
	Quantum Chemistry I	
	3.1 Classical Mechanics, failure of classical	
	mechanics: Need for Quantum Mechanics.	
	3.2 Particle waves and Schrödinger wave	
	equation, wave functions, properties of wave	20
	functions,	. 0.0
	3.3 Normalization of wave functions,	1000
	orthogonality of wave functions.	
	3.4 Operators and their algebra, linear and	
	Hermitian operators, operators for the dynamic	
	variables of a system such as position, linear	
	momentum, angular momentum, total energy,	
	eigen functions, eigen values and eigen value	
	equation, Schrödinger wave equation as the	
	eigen value equation of the Hamiltonian	
	operator, average value and the expectation	
	value of a dynamic variable of the system,	
III	Postulates of Quantum Mechanics,	
	Schrödinger's Time independent wave equation	
	from Schrödinger's time dependent wave	
	equation.	
	3.5 Application of quantum mechanics to the	
	following systems:	
	3.5.1 Free particle,	
	3.5.2 Particle in a box one, two- and three-	
	dimensional box, separation of variables,	
	Expression for the system's wave function, the	
	expression for the system's energy, the concept	
	of quantization, introduction of quantum	
2.0	number, degeneracy of the energy levels.	
Rainina id.	3.5.3 Harmonic oscillator, approximate solution	
	of the equation, Hermite polynomials, the	
	expression for wave function, the expression for	
	energy, use of the recursion formula.	
	7.0	
	References:	
	1. Atkins' Physical Chemistry by Julio De	
	Paula, Peter Atkins, James Keeler.	

2.	Physical Chemistry by Thomas Engel and	
	Philip Reid.	
3.	Chemical Kinetics, 3rd Edition by Laidler.	
4.	Principles of Chemical Kinetics by James	
	House's.	
5.	Quantum Chemistry by R.K. Prasad	
6.	Quantum Chemistry-Including Spectroscopy	
	Sen B.K.	

Semester-I Practical

Course Code	Physical Chemistry Practicals I	Credits/Hours
Course Code	Thysical Chemistry Tracticals 1	1/30
	Non – Instrumental	1/30
	 To determine the heat of solution (ΔH) of a sparingly soluble acid (benzoic /salicylic acid) from solubility measurement at three different temperatures. 	
	2. To study acid-catalyzed iodination of acetone by titration method.	
RPSCHEP.	3. To study the influence of ionic strength on the rate of ionic reactions.	
O501	Instrumental	1
3302	1. To determine pKa values of phosphoric acid by potentiometric titration with sodium hydroxide using a glass electrode.	
	To determine Hammett constant of m- and p- amino benzoic acid/nitro benzoic acid by pH measurement.	
	3. To determine the CMC of sodium Lauryl Sulphate from the measurement of conductivities at different concentrations.	
0.0	References:	
	1. Practical Physical Chemistry, B. Viswanathan and P.S.Raghavan, Viva Books Private Limited, 2005.	
	 Experimental Physical Chemistry, V.D. Athawale and P. Mathur, New Age. 	
	3. S.W. Rajbhoj and T.K. Chondhekar, Systematic Experimental Physical Chemistry, Anjali Publication, 2013.	

4. Garland C.W., Nifler J.W. and Schoemaber D.P., "Experiments in Physical Chemistry", 7th
Ed., McGraw-Hill International. 2002.

Course Code: RPSCHE.O502 Course Title: INORGANIC CHEMISTRY

Academic year 2023-24 Course Outcomes:

After con	mpletion of this Course, the learner will be able to:
CO 1	Comprehend the derivation of different hybridizations such as sp, sp ² , sp3 using
	sigma bonding concept.
CO 2	Recognize the concept of MOT and how MOT is constructed for polyatomic
	molecules.
CO 3	Understand Symmetry operations and Symmetry elements.
CO 4	Differentiate Abelian and Non-abelian point groups.
CO 5	Use of Great Orthogonality Theorem for construction of character table.
CO 6	Examine chemical bonding, visualizing molecular orbitals, behaviour of atoms,
	molecules and solids using group theory.
CO 7	Aware of the various methods/ techniques used to detect complex formation
	between metal and ligand
CO 8	Interpret the electronic spectra of octahedral and square planar complexes.

Course Code	Unit	Course title / Unit Title	Credits/Hours 3/45
		INORGANIC CHEMISTRY	
		Chemical Bonding	
Y		1.1 Discussion of involvement of <i>d</i> -orbitals in	
		various types of hybridizations. Concept of	
RPSCHE.O502	I	resonance, resonance energy, Formal charge with examples.	
		1.2 Critical analysis of VBT.	
		1.3 Molecular Orbital Theory for diatomic species of First transition Series.	

	1.4 Molecular Orbital Theory for Polyatomic	
	species considering σ bonding for SF ₆ , CO ₂ ,	
	B ₂ H ₆ molecular species.	
	1.5 Chemical Forces:	
	1.5.1 Hydrogen bonding – Concept, Types,	
	Properties, Methods of Detection, and	
	Importance.	
	1.5.2 Intermolecular Forces: Dipole-Dipole	
	Interaction, Induced dipole-Induced dipole	
	Interaction	.0
	1.5.3 Effects of Chemical Forces: Melting and	-02
	Boiling Points, Solubility	100
	•	
	Molecular Symmetry and Group Theory 2.1 Symmetry criterion of optical activity,) '
	symmetry restrictions on dipole moment. A	
	systematic procedure for symmetry	
	classification of molecules.	
	2.2 Concepts of Groups, Sub-groups, Classes of	
	Symmetry operations, Group Multiplication	
	Tables. Abelian and non-Abelian point	
	groups.	
	2.3 Representation of Groups: Matrix representation of symmetry operations,	
	reducible and irreducible representations.	
	The Great Orthogonality Theorem and its	
II	application in construction of character	
	tables for point groups C_2v , C_3v and D_{2h} ,	
	structure of character tables.	
	2.4 Applications of Group Theory:	
	2.4.1 Symmetry adapted linear combinations	
	(SALC), symmetry aspects of MO theory, sigma bonding in AB _n	
	theory, sigma bonding in AB _n (Ammonia, CH ₄) molecule.	
	2.4.2 Determination of symmetry species for	
	translations and rotations.	
	2.4.3 Mulliken's notations for irreducible	
2 altita tal	representations.	
2	2.4.4 Group-subgroup relationships.	
Y	Characterisation of Coordination	
	compounds	
	3.1 Detection of Complex Formation: Formation	
	of precipitate, Conductivity measurements,	
III	Spectral method (Colour Change in Solution),	
	pH method, magnetic measurements.	
	3.2 Determination of formation constants of	
	metal complexes: Spectroscopic methods viz.,	
	Job's method, mole-ratio and slope-ratio	

	methods for determination of stepwise format	ion
	constants of metal complexes.	
	3.3 Interpretation of electronic spectra	for
	octahedral and square planar complexes.	1
	3.4 Spectral calculations using Or and Tanabe-Sugano diagram, calculation	gel
	electronic parameters such as Δ , B,	
	Nephelauxetic ratio.	· ,
	(Numerical Problem expected).	
	References:	60
	1. Wai-Kee Li, Gong-Du Zhou a	and CO
	Thomas Chungwai Mak, Advand	ced
	Structural Inorganic Chemis	rry,
	Oxford University Press, 2008.	
	2. B. R. Puri, L. R. Sharma and K.	
	Kalia, Principles of Inorga	nic
	Chemistry, 33 rd Edition, Vis	hal
	Publishing CO., 2017-2018.	
	3. P.W. Atkins, T. Overton, J. Rour	·ke,
	M. Weller and F. Armstrong; Shri	ver
	& Atkins: Inorganic Chemis	try,
	6 th ed. Oxford University Pre	ess,
	2014.	
	4. K. V. Reddy. Symmetry a	and
	Spectroscopy of Molecules,	2 nd
	Edition, New Age Internatio	nal
	Publishers, New Delhi, 2009.	(
2217172,21	5. S. Swarnalakshmi, T. Saroja and	R.
200	M. Ezhilarasi, A Simple Approach	ı to
7	Group Theory in Chemist	try,
	Universities Press, 2008.	
	6. G. Miessler and D. Tarr, Inorga	nic
	Chemistry, 3 rd Ed., Pears	son
	Education, 2004.	
	7. Lesley E. Smart, Elaine A. Moo	ore,
	Solid State Chemistry Introducti	on,

	3 rd Edition, Taylor & Francis Group,
	LLC, 2005.
8.	C. E. Housecroft and A. G. Sharpe,
	Inorganic Chemistry, Pearson
	Education Limited,2 nd Edition, 2005.
9.	F. A. Cotton, Chemical Applications
	of Group Theory, 2 nd Edition, Wiley
	Eastern
	Eastern Ltd., 1989. P. Caralan, V. Barralin ann. Canaina
10.	R Gopalan, V Ramalingam, Concise
	Coordination Chemistry, Vikas
	Publishing House
	Pvt. Ltd. 2001.
	J. E. Huheey, E. A. Keiter and R. L.
	Keiter; Inorganic Chemistry:
	Principles of Structure and
	Reactivity, Pearson Education, 2006.

Semester I Practical

Course Code	x 0	Inorganic Chemistry Practicals I	Credits/Hours 1/30
RPSCHEP.	07	Non Instrumental	1
O502		Inorganic Preparations (Synthesis and	
		Characterization):	
	1.	Hexammine nickel (II) sulphate	
,	2.	Bis(ethylenediammine) Copper (II) Sulphate	
		Instrumental	
	1.	Determination of titanium (IV) colorimetrically.	
	2.	Determination of Electrolytic nature of inorganic	
		compounds by Conductance measurement.	

3.	Determination	of	Copper	(II)	using	EDTA	
	spectrophotome	trica	lly				

Course Code: RPSCHE.O503 Course Title: ORGANIC CHEMISTRY Academic year 2023-24

Course Outcomes:

After con	mpletion of this course, the learner will be able to:
CO 1	Know the kinetic and thermodynamic requirements of organic reactions and a few
	methods to determine the reaction mechanisms.
CO 2	Recognize the factors affecting acidity and basicity.
CO 3	Understand advanced nucleophilic substitutions with special emphasis on
	Neighbouring Group Participations (NGP) and factors affecting the NGP.
CO 4	Identify structural, thermochemical, and magnetic criteria for aromaticity,
	including NMR characteristics of aromatic systems.
CO 5	Comprehend the concept of chirality, Molecules with tri- and tetra-coordinate
	centres, Axial and planar chirality and prochirality.
CO 6	Explore the applications of different oxidizing and reducing agents in organic
	reactions.

Course Code	Unit	Course title / Unit Title	Credits/Hours 3/45
		ORGANIC CHEMISTRY	
RPSCHE.O503	I	1.1. Oxidation: General mechanism, selectivity, and important applications of the following: 1.1.1. Dehydrogenation: Dehydrogenation of C-C bonds including aromatization of six membered rings using chloranil and DDQ. 1.1.2. Oxidation of alcohols to aldehydes and ketones: Chromium reagents such as K2Cr2O7/H2SO4 (Jones reagent), CrO3-pyridine (Collin's reagent), PCC (Corey's reagent) and PDC (Cornforth reagent),	

		hypervalent iodine reagents (IBX, Dess- Martin	
		periodinane). DMSO based reagents (Swern	
		oxidation), Corey-Kim oxidation - advantages	
		over Swern and limitations; and Pfitzner-Moffatt	
		oxidation-DCC and DMSO and Oppenauer	
		oxidation.	
		1.1.3. Oxidation involving C-C bonds	
		cleavage:	
		Glycols using HIO4; cycloalkanones using	
		CrO3; carbon-carbon double bond using CrO3,	(7)
		_	00
		NaIO4 and OsO4; aromatic rings using RuO4 and NaIO4.	100
		1.1.4. Oxidation involving replacement of) '
		hydrogen by oxygen: oxidation of CH2 to CO by	
		SeO2, oxidation of aryl methanes by CrO2Cl2	
		(Etard oxidation).	
		1.1.5. Oxidation of aldehydes and ketones:	
		with H2O2 (Dakin reaction), with peroxy acid	
		(Baeyer-Villiger oxidation)	
		1.2. Reduction: General mechanism, selectivity,	
		and important applications of the following	
		reducing reagents:	
		1.2.2. Metal hydride reduction: Boron reagents	
		(NaBH4, NaCNBH3, diborane, 9-BBN,	
		Na(OAc)3BH, aluminium reagents (LiAlH4,	
		DIBAL-H, Red Al, L and K- selectrides).	
		2.1 Nucleophilic Substitution Reactions	
		2.1.1 Aliphatic nucleophilic substitution: SN1,	
	'	SN2, SN reactions, mixed SN1 and SN2 and	
		SET mechanisms. SN reactions involving NGP -	
Ó		participation by aryl rings, α-and pi-bonds.	
		Factors affecting these reactions: substrate,	
Raining		nucleophilicity, solvent, steric effect, hard-soft	
		interaction, and leaving group. Ambident	
2	TT	nucleophiles. SNcA, SN1', and SN2 reactions.	
	II	SN at sp ² (vinylic) carbon.	
		2.1.2 Aromatic nucleophilic substitution:	
		SNAr, SN1, benzyne mechanisms. Ipso, cine,	
		tele, and vicarious substitution.	
		2.1.3 Ester hydrolysis: Classification,	
		nomenclature, and study of all eight mechanisms	
		of acid and base-catalyzed hydrolysis with	
		suitable examples.	
		2.2 Aromaticity:	
	l .	•	ı

	2.2.1 Structure, thermochemical, and magnetic	
	criteria for aromaticity, including NMR	
	characteristics of aromatic systems.	
	Delocalization and aromaticity.	
	2.2.2 Application of HMO theory to	
	monocyclic conjugated systems. Frost-Musulin	
	diagrams. Huckel's (4n+2) and 4n rules.	
	Aromatic and antiaromatic compounds up-to 18	
	carbon atoms. Homoaromatic compounds.	
	_	
		00
	heterocycles, metallocenes, azulenes, annulenes,	100
	aromatic ions and Fullerene (C60).	
	3.1. Concept of Chirality: Recognition of	D *
	symmetry elements.	
	3.2. Molecules with tri- and tetra-coordinate	
	centers: Compounds with carbon, silicon,	
	nitrogen, phosphorous and sulphur chiral	
	centers, relative configurational stabilities.	
	3.3. Molecules with two or more chiral centers:	
	Constitutionally unsymmetrical molecules:	
	erythro-threo and syn-anti systems of	
	nomenclature. Interconversion of Fischer,	
	Sawhorse, Newman, and Flying wedge	
	projections. Constitutionally symmetrical	
	molecules with odd and even numbers of chiral	
	centers: enantiomeric and meso forms, the	
	concept of stereogenic, chirotopic, and	
	pseudoasymmetric centers. R-S nomenclature	
ul.	for chiral centers in acyclic and cyclic	
	compounds.	
	3.4. Axial and Planar chirality: Principles of	
	axial and planar chirality. Stereochemical	
	1	
	features and configurational descriptors (R,S)	
	for the following classes of compounds: allenes,	
	alkylidene	
Rainina ka	cycloalkanes, spirans, biaryls (buttressing effect)	
	(including BINOLs and BINAPs), ansa	
	compounds, cyclophanes, and trans-	
	cyclooctenes.	
	3.5 Acids and Bases: Factors affecting acidity	
	and basicity: Electronegativity and inductive	
	effect, resonance, bond strength, electrostatic	
	effects, hybridization, aromaticity, and	
	solvation. Comparative study of acidity and	
	sorvation. Comparative study of actuity and	

basicity of organic compounds on the basis of
pKa values, Leveling effect, and non-aqueous
solvents. Acid and base catalysis – general and
specific catalysis with examples.
References:
1. Advanced Organic Chemistry:
Reactions, Mechanisms and Structure,
Michael B. Smith, Jerry March, Wiley.
2. Molecular Orbital and Organic chemical
reactions, Ian Fleming Reference
Edition, Wiley
3. Stereochemistry of Organic Compounds-
Principles and Applications, D. Nasipuri.
New International Publishers Ltd.
4. Stereochemistry: Conformation and
mechamism, P.S. Kalsi, New Age
International, New Delhi.
5. Organic Reaction Mechanisms, V.K.
Ahluwalia, R.K. Parasher, Alpha Science
International, 2011.

Semester I Practical

Course Code		Organic Chemistry Practicals I	Credits/Hours
			1/30
RPSCHEP.O503	One-s	tep preparations (1.0 g scale):	
2.0	1.	Bromobenzene to p-nitrobromobenzene	
	2.	Benzoin to benzil	
	3.	2-Naphthol to BINOL	
	4.	Benzoquinone to 1,2,4-triacetoxybenzene	
	5.	o-Phenylenediamine to 2,3-	
		diphenylquinoxaline	
	6.	Anthracene to anthraquinone	

Course Code: RPSCHE.O504

Course Title:

Academic year 2023-24

Course Outcomes:

After c	After completion of this Course, the learner will be able to:							
CO 1	Outline the role and importance of Quality control, quality assurance, TQM and							
	QMS.							
CO 2	Apply the knowledge learned to all scientific data analyses during their studies and							
	future career-related activities.							

Course Code	Unit	Course Title / Unit Title	Credits/ Hours 2/30
		Quality Control in Chemical Industries I	
RPSCH E.O504	I	1.1 Statistical Quality Control Techniques: Statistical treatment of data. Control charts, Performance Evaluation uncertainties in measurement. Validation of analytical methods. 1.2 Quality control and Quality Assurance: Definitions, Focus, Goals, Parameters, and Responsibility of QA and QC 2.1 Quality Management System (QMS): Evolution and significance of Quality Management, types of quality standards for laboratories, total quality management (TQM),philosophy implementation of TQM (reference of Kaizen, Six Sigma approach & 5S), quality audits and quality reviews, responsibility of laboratory staff for quality and problems, QBD	2
		References:	
		 Fundamentals of Analytical Chemistry, By Douglas A. Skoog, Donald M. West, F. James Holler, Stanley R. Crouch, 9th Edition, 2004. ISO 9000 Quality Systems Handbook, Fourth Edition, David Hoyle. (Free download). Quality in the Analytical Laboratory, Elizabeth Pichard, Wiley India, 2007. 	

4.	Safety and Hazards Management in Chemical Industries,	
	M N Vyas, Atlantic Publisher.	

Discipline Specific Elective (DSE) Course Code: RPSCHEAN.O507

Course Title: Fundamentals of Analytical Chemistry

Academic year 2023-24

Course Outcomes:

After cor	mpletion of this Course, the learner will be able to:
CO 1	Identify the relationships among the different instrument components and the flow
	of information from the characteristics of the analyte through the components to
	the numerical or graphical output produced by the instrument.
CO 2	Explain the working principle and Enlist the applications of UV visible and IR
	spectroscopy.
CO 3	Elaborate on the basic principle underlying the different types of thermal methods
	and will understand how these methods are employed in industries and research
	for characterization of sample.
CO 4	Compare the technique of DTA with DSC.
CO 5	Comprehend the utility of automation in chemical analysis.
CO 6	Outline the Objectives of automation in chemical analysis.
CO 7	Enlist the advantages and disadvantages of Automatic Analysis.

Course Code	Unit	Course Title / Unit Title	Credits/Hours 3/45
y		ANALYTICAL CHEMISTRY	
RPSCHEAN.O507	I	 1.1 Concentration of a solution based on volume and mass units. 1.2 Calculations of ppm, ppb and dilution of the solutions, concept of mmol. 1.3 Stoichiometry of chemical reactions, concept of kg mol, limiting reactant, theoretical and Practical yield. Solubility and 	

	solubility equilibria, effect of the presence of	
	common ion.	
	1.3.1 Calculations of pH of acids, bases,	
	acidic and basic buffers.	
	1.3.2 Concept of formation constants,	
	stability and instability constants, stepwise	
	formation constants.	
	1.4 Oxidation number, rules for assigning	
	oxidation number, redox reaction in term of	
	· ·	0)
	oxidation number, oxidizing and reducing	00
	agents, equivalent weight of oxidizing and	100
	reducing agents, stoichiometry of redox	
	titration (Normality of a solution of a) ,
	oxidizing / reducing agent and its relationship	
	with molarity)	
	2.1 Recapitulation and FT Technique:	
	2.1.1 Recapitulation of basic concepts,	
	Electromagnetic spectrum, Sources,	
	Detectors, sample containers.	
	2.1.2 Laser as a source of radiation, Fibre	
	optics	
	2.1.3 Introduction of Fourier Transform	
	2.2 Molecular Ultraviolet and Visible	
	Spectroscopy	
	2.2.1 Derivation of Beer- Lambert's Law and	
	its limitations, factors affecting molecular	
	absorption, types of transitions (emphasis on	
	charge transfer absorption), pH, temperature,	
, II	solvent and effect of substituents.	
1		
	2.2.2 Applications of Ultraviolet and Visible	
	spectroscopy:	
	On charge transfer absorption	
	Simultaneous spectroscopy	
	Derivative Spectroscopy	
2 aininai alii	2.2.3 Dual spectrometry – Introduction,	
	Principle, Instrumentation and Applications.	
	(NUMERICALS ARE EXPECTED)	
	2.3 Infrared Absorption Spectroscopy:	
	2.3.1 Instrumentation: Sources, Sample	
	handling, Transducers, Dispersive, non-	
	dispersive instrument	
	2.3.2 FTIR and its advantages	
	<u> </u>	l

		2.3.3 Applications of IR (Mid IR, Near IR,	
		Far IR): Qualitative with emphasis on	
		"Finger print" region, Quantitative analysis,	
		Advantages and Limitations of IR	
		2.3.4 Introduction and basic principles of	
		diffuse reflectance spectroscopy.	
		3.1 Thermal Methods:	
		3.1.1 Introduction:	
		Recapitulation of types of thermal methods,	20
		comparison between TGA and DTA.	. 0.0
		3.1.2 Differential Scanning Calorimetry-	1000
		Principle, comparison of DTA and DSC,	
		Instrumentation, Block diagram, Nature of	
		DSC Curve, Factors affecting curves (sample	
		size, sample shape, pressure).	
		3.1.3 Applications –	
		The heat of reaction, Specific heat, Safety	
	III	screening, Polymers, liquid crystals,	
		Percentage crystallinity, oxidative stability,	
		Drug analysis, Magnetic transition. E.g.	
		Analysis of Polyethylene for its crystallinity.	
		3.2 Automation in Chemical Analysis:	
		Need for automation, Objectives of	
		automation, An overview of automated	
		instruments and instrumentation, process	
		control analysis, flow injection analysis,	
		discrete automated systems, automatic	
. ?	, ,	analysis based on multilayered films, gas	
		monitoring equipment, Automatic titrators.	
		References:	
2211		1. Modern Analytical Chemistry, David	
Y		Harvey, McGraw-Hill Higher	
		Education, 2000.	
		2. Principles of Instrumental Analysis -	
		Skoog, Holler and Nieman, 6 th Edition,	
		2017	
		3. Fundamentals of Analytical	
		Chemistry, By Douglas A. Skoog,	

		Donald M. West, F. James Holler,	
		Stanley R. Crouch, 9th Edition, 2004.	
	4.	ISO 9000 Quality Systems Handbook,	
		Fourth Edition, David Hoyle. (Free	
		download).	
	5.	Quality in the Analytical Laboratory,	
		Elizabeth Pichard, Wiley India, 2007.	
	6.	Safety and Hazards Management in	20
		Chemical Industries, M N Vyas, Atlantic	100
		Publisher.	
	7.	Analytical chemistry: Problems &)
		Solutions by S.M. Khopkar New Delhi,	
		New Age International (P) Ltd., 2002.	
	8.	H. H. Willard, L. L. Merritt, J. A. Dean,	
		F. A. Settle, Instrumental Methods of	
		Analysis,6 th Edition, CBS Publisher,	
		1988.	
	9.	R. D. Braun, Introduction to	
		Instrumental Analysis, McGraw Hill	
		Publisher, 1985	
	10.	G. W. Ewing, Instrumental Methods of	
		Chemical Analysis, 5 th Edition, McGraw	
		Hill Publisher, 1960.	
	11.	Vogel Quantitative Chemical Analysis,	
		Pearson, 6 th Edition, 2009.	
Raininarain	12.	Analytical Chemistry by Open Course:	
2		Thermal Methods by James W. Dodd	
7		& Renneth H. Tonge.	

Semester I Practical

Code	Prac	ticals on Fundamentals of Analytical	CREDITS/Hours
		Chemistry	1/30
RPSCHEANP.	1.	Simultaneous determination of Cr(VI) and	
O507		Mn(VII) in a mixture	0
		spectrophotometrically.	100
	2.	To determine the amount of nitrite present	
		in the given water sample colorimetrically.	0'
	3.	To determine the percentage purity of a	
		sample (glycine/sodium benzoate/primary	
		amine) by titration with perchloric acid in	
		a non-aqueous medium using a glass	
		calomel system potentiometrically.	
	4.	To carry out an assay of the sodium	
		chloride injection by Volhard's method.	
		(Statistical method)	
	5.	To determine the amount of Cr(III) and	
		Fe(II) individually in a mixture of the two	
		by titration with EDTA.	
	6.	To determine (a) the ion exchange	
		capacity (b) the exchange efficiency of the	
		given cation exchange resin.	
		-	

Course Code: RPSRMCHE.O505

Course Title: RESEARCH METHODOLOGY

Academic year 2023-24

Course Outcomes:

After c	ompletion of this Course, the learner will be able to:
CO 1	Understand basics of research methodology
CO 2	Get the technical know-how of research from developing a problem.
CO 3	Be able to write a research paper, study formats of existing research papers and
	review papers
CO 4	Be aware about importance of lab-safety and the safety protocols in R&D
	laboratories.

		DETAILED STELLADES	Credits/
Course	Unit	Course Title / Unit Title	Hours
Code			4/60
		• & ′	
		1.1 Print: Primary, Secondary and Tertiary sources Review of	
		Literature	
		1.2 Journals:	
	٨	1.3 Journal abbreviations, abstracts, current titles, reviews,	
	$\hat{\alpha}$	monographs, dictionaries, text-books, current contents,	
	1	Introduction to Chemical Abstracts and Beilstein, Subject	
		Index, Substance Index, Author Index, Formula Index, and	
RPSRM	7	other Indices with examples.	
CHE.O	I	1.4 Digital:	
505		1.5 Web sources, E-journals, Journal access, TOC alerts, Hot	
		articles, Citation Index, Impact factor, H-index, E-consortium,	
		UGC infonet, E-books, Internet discussion groups and	
		communities, Blogs, preprint servers, Search engines, Scirus,	
		Google Scholar, ChemIndustry, Wiki-databases,	
		ChemSpider, Science Direct, SciFinder, Scopus.	
		1.6 Information Technology and Library Resources:	
		1.7 The Internet and World wide web, Internet resources for	
		Chemistry, finding and citing published information.	

		Data Analysis	
		2.1 The Investigative Approach:	
		Making and recording Measurements, SI units and their use,	
		Scientific methods and design of experiments	
		2.2 Analysis and Presentation of Data: Descriptive statistics,	
	II	choosing and using statistical tests, Chemometrics, Analysis	
		of Variance (ANOVA), Correlation and regression, curve	
		fitting, fitting of linear equations, simple linear cases,	
		weighted linear case, analysis of residuals, general polynomial	
		fitting, linearizing transformations, exponential function fit, r	10
		and its abuse, basic aspects of multiple linear regression analysis	.92
		Methods of Scientific Research and Writing Scientific	50
		Papers	
		3.1 Reporting practical and project work, writing literature	
		surveys and reviews, organizing a poster display, giving an	
	III	oral presentation.	
		3.2 Writing Scientific Papers: Justification for scientific	
		contributions, bibliography, description of methods,	
		conclusions, the need for illustration, style, publications of	
		scientific work, writing ethics, avoiding plagiarism.	
		Chemical Safety & Ethical Handling of Chemicals	
		4.1 Safe working procedure and protective environment,	
		protective apparel, emergency procedure, first aid, laboratory	
		ventilation, safe storage and use of hazardous chemicals,	
		procedure for working with substances that pose hazards,	
		flammable or explosive hazards, procedures for working with	
	IV	gases at pressures above or below atmospheric pressure	
		4.2 Safe storage and disposal of waste chemicals, recovery,	
		recycling and reuse of laboratory chemicals, procedure for	
	A	laboratory disposal of explosives, identification, verification	
	20	and segregation of laboratory waste, disposal of chemicals in	
		the sanitary sewer system, incineration and transportation of	
225	Y	hazardous chemicals.	
		Reference:	
~		1. Reasearch methodology, New age publication By	
/		R.C.Kothari, Gaurav Garg	
		2. Research Methodology By Dr. Baidyanath Mishra	

Course Code: RPSCHE.O511 Course Title: PHYSICAL CHEMISTRY

Academic year 2023-24

Course Outcomes:

		(/)			
After c	After completion of this Course, the learner will be able to:				
CO 1	Predict spontaneous nature of thermodynamic mixing.	10,0			
CO 2	Calculate energy of hydrogen atom.				
CO 3	Draw the atomic orbital and locate radial and angular nodes.	A O			
CO 4	Understand construction and working of various types of Batt	teries			

Γ	1		
Course			Credits/
Code	Unit	Course Title / Unit Title	Hours
Code			3/45
		PHYSICAL CHEMISTRY	
		Thermodynamics II	
		1.1 Fugacity of real gases, Determination of fugacity of real	
		gases using the graphical method and from the equation of	
		state. The equilibrium constant for real gases in terms of	
		fugacity.	
		1.2 Physical Transformation of pure materials. The stability of	
		phases, Phase equilibrium & phase diagrams, the solid-liquid	
		boundary, the liquid-vapour boundary, the solid- vapour	
		boundary, and the solid-liquid-vapour equilibrium. Three-	
RPSCH	10	component system formation of one, two, and three pair of	
E.0511		partially miscible liquids.	
E.0311		1.3 Real solutions: Chemical potential in non-ideal solutions	
		excess functions of non-ideal solutions Gibbs Duhem	
		Margules equation.	
Y		1.4 The physical transformation of simple mixtures, Partial	
		molar quantities Partial molar volume, Partial molar Gibbs	
		function, the thermodynamics of mixing – the Gibbs function	
	of mixi	of mixing after thermodynamics mixing functions.	
		1.5 Bioenergetics: standard free energy change in biochemical	
		reactions, exergonic, endergonic.	
		Electrochemistry	
	II	2.1 Debye-Hückel theory of activity coefficient, Debye-	
		Hückel limiting law and its extension to higher concentration	

		(derivations are expected). Electrolytic conductance and ionic		
		interaction, relaxation effect, Debye-Hückel- Onsager		
		equation (derivation expected). Validity of this equation for		
		an aqueous and non-aqueous solution, deviations from		
		Onsager equation,		
		2.2 Batteries: Alkaline fuel cells, Phosphoric acid fuel cells,		
		High-temperature fuel cells [Solid –Oxide Fuel Cells (SOFC)		
		and Molten Carbonate Fuel Cells]		
		2.3 Bio-electrochemistry: Introduction, cells and membranes,		
		membrane potentials, theory of membrane potentials,	20	
		interfacial electron transfer in biological systems, and	92	
		adsorption of proteins onto metals from solution, electron		
		transfer from modified metals to dissolved protein in solution,		
		enzymes as electrodes.		
		Quantum Chemistry II		
		3.1 Rigid rotor, spherical coordinates Schrödinger wave		
		equation in spherical coordinates, separation of the variables,		
		the phi equation, wave-function, quantum number, theta		
		equation, wave function, quantization of rotational energy,		
		spherical harmonics.		
		3.2 Hydrogen atom, the two-particle problem, separation of		
		the energy as translational and potential, separation of		
	III	variables, the R the Θ and the ϕ equations, solution of the		
		equation, the introduction of the four quantum numbers and		
		their interdependence on the basis of the solutions of the three		
		equations, total wave function, the expression for the energy,		
		probability density function, distances, and energies in atomic		
		units, radial and angular plots., points of maximum		
		probability, expressions for the total wave function for 1s,2s,		
	A	2p and 3d orbitals of hydrogen.		
	- 2	D 6		
		References:		
~		1. Ira R. Levine, Physical Chemistry, 5th Edn., Tata		
	Y	McGraw-Hill New Delhi, 2002.		
~		2. Ira N. Levine, Quantum Chemistry, 5th Edn., Pearson		
y		Education (Singapore) Pte. Ltd., Indian Branch, New		
		Delhi, 2000.		
		3. Bockris, John O'M., Reddy, Amulya K.N., Gamboa-		
		Aldeco, Maria E., Modern Electrochemistry, 2A, Plenum		
		Publishers, 1998.		
		4. A Textbook of Physical Chemistry by K L Kapoor Vol 1		
		to 5.		
		5. A.K. Chandra, Introductory Quantum Chemistry, Tata		
		McGraw – Hill, 1994.		

Semester II Practical

Course Code		Physical Chemistry Practicals II	Credits /Hours 1/30
RPSCHEP.O		Non – Instrumental	
511	1.	Determine the densities of a series of solutions and calculate the partial molar volume of the component.	
	2.	To study the variation of calcium sulphate with ionic strength and hence determine the thermodynamic solubility product of CaSO ₄ at room temperature.	
	3.	Polar plots of atomic orbitals such as 1s, $2p_z$, and $3dz^2$ orbitals by using the angular part of hydrogen atom wave functions.	1
		Instrumental	
	4.	To verify Ostwald's dilution law and to determine the dissociation constant of a weak monobasic acid conductometrically.	
	5.	To study the effect of substituent on the dissociation constant of acetic acid conductometrically.	
	6.	To determine the mean ionic activity coefficient of an electrolyte by e.m.f. measurement.	
Rainin		 References: Practical Physical Chemistry, B. Viswanathan and P.S.Raghavan, Viva Books Private Limited, 2005. Experimental Physical Chemistry, V.D. Athawale and P. Mathur, New Age. S.W. Rajbhoj and T.K. Chondhekar, Systematic Experimental Physical Chemistry, Anjali Publication, 2013. Garland C.W., Nifler J.W. and Schoemaber D.P., "Experiments in Physical Chemistry", 7th Ed., McGraw-Hill International. 2002.	

Course Code: RPSCHE.O512

Course Title: INORGANIC CHEMISTRY

Academic year 2023-24

Course Outcomes:

After c	ompletion of this Course, the learner will be able to:
CO 1	Analyse the reaction pathways of metal complexes and to develop a deeper
	understanding of their mechanisms.
CO 2	Know the rate behaviour of the reaction using reaction mechanism.
CO 3	Recognize the general shape of the transition state using trans effect, steric effect and
	stereochemistry of the coordination complexes.
CO 4	Illustrate the importance of 18 and 16 electron rules.
CO 5	Understand the structure and bonding involved in d block Organometallic
	compounds on the basis of VBT and MOT.
CO 6	Critically review environmental issues as a matter of widespread public concern.
CO 7	Know the toxicology of certain elements through case studies.
CO 8	Identify the importance of essential elements for the organisms.
CO 9	Evaluate the role of metal ions in biological systems.

	DETAILED STELABOS				
Course Code	Unit	Course Title / Unit Title	Credits/ Hours 3/45		
		INORGANIC CHEMISTRY			
RPSCH E.O512	I	Inorganic Reaction Mechanism Rate of reactions, factors affecting the rate of reactions, techniques for determination of the rate of reaction (Direct chemical analysis, spectrophotometric method, electrochemical and flow methods). Ligand substitution reactions of: 1.2.1 Octahedral complexes without breaking of metal-ligand bond (Use of isotopic labelling method) 1.2.2 Square planar complexes, trans-effect, its theories, and			
		applications. Mechanism and factors affecting these substitution reactions.			

		1.3 Stereochemistry of substitution reactions of octahedral	
		complexes. (Isomerisation and racemization reactions and	
		applications.)	
		1.4 Electron-transfer processes:	
		_	
		1.4.1 Inner-sphere mechanism	
		1.4.2 Outer-sphere mechanism	
		1.4.3 Complimentary and non-complimentary reactions.	
		Organometallic Chemistry of Transition metals	
		2.1 Eighteen and sixteen electron rule and electron counting	
		with examples.	40
		2.2 Types of organometallic reactions;	20
		2.2.1 Reactions That Occur at the Metal	
		2.2.1.1 Ligand substitution	
		2.2.1.2 Oxidative addition	
		2.2.1.3 Reductive elimination	
		2.2.2 Reactions Involving Modification of Ligands 2.2.2.1 Insertion and Deinsertion (Elimination)	
		2.2.2.1 Insertion and Defisertion (Eminiation) 2.2.2.2 Nucleophilic Addition to the Ligand	
		2.2.2.3 Nucleophilic Abstraction	
		2.2.2.4 Electrophilic Reactions	
		2.3 Metathesis and Polymerization Reactions	
	II	2.3.1 π Bond Metathesis	
		2.3.2 σ Bond Metathesis	
		2.3.3 Alkyne Metathesis	
		2.4 Transition Metal—Carbene and —Carbyne Complexes:	
		Structure, Preparation, and Chemistry:	
		2.4.1 Structure of Metal Carbene	
		2.4.2 Synthesis of Metal Carbene Complexes	
		2.4.3 Reactions of Metal–Carbene Complexes	
		2.4.4 Metal—Carbyne Complexes	
		2.5 Preparation and properties of the following compounds:	
		Sandwich compounds of Fe, Cr and Half Sandwich	
	_	compounds of Cr, Mo.	
		2.6 Structure and bonding on the basis of VBT and MOT in	
		the following Organometallic compounds: Zeise's salt,	
		ferrocene and bis(arene)chromium(0).	
		Environmental Chemistry	
0.0		3.1 Conception of Heavy Metals: Critical discussion on heavy	
		metals.	
/		3.2 Toxicity of metallic species: Mercury, lead, cadmium,	
		arsenic, copper and chromium, with respect to their	
	III	sources, distribution, speciation, biochemical effects and	
	1111	toxicology, control and treatment.	
		3.3 Case Studies:	
		(a) Itai-itai disease for Cadmium toxicity,	
		(b) Arsenic Poisoning in the Indo-Bangladesh region.	
		3.4 Biological oxygen carriers; hemoglobin, hemerythrene	
		and hemocyanine- structure of metal active center and	
		and hemocyanine- structure of filetal active center and	

11.00 1 1 1 D.00
differences in mechanism of oxygen binding, Differences
between hemoglobin and myoglobin: Cooperativity of oxygen
binding in hemoglobin and Hill equation, pH dependence of
oxygen affinity in hemoglobin and myoglobin and its
implications.
3.5 Metal ion transport and storage: Ionophores, transferrin,
ferritin and metallothionins
3.6 Medicinal applications of cis-platin and related compound
References:
1. P. Atkins, T. Overton, J. Rourke, M. Weller and F.
Armstrong, Inorganic Chemistry, 5 th Edition, Oxford
University Press, 2010.
2. Gurdeep Raj, Advanced Inorganic Chemistry-Vol.II,
12 th Edition, Goel publishing house, 2012.
3. B. R. Puri, L. R. Sharma and K. C. Kalia, Principles of
Inorganic Chemistry, Milestone Publishers, 2013-
2014.
4. R. Gopalan and V. Ramlingam, Concise Coordination
chemistry, Vikas Publishing house Pvt. Ltd., 2001.
5. Robert B. Jordan, Reaction Mechanisms of Inorganic
and Organometallic Systems, 3 rd Edition, Oxford
University Press 2008.
6. Catherine E. Housecroft and Alan G. Sharpe, Inorganic
Chemistry, 2 nd Edition, Pearson Education Limited,
2005.

Semester II Practical

Course Code		Inorganic Chemistry Practicals II	Credits
a althi			/Hours 1/30
~		Ores and Alloys (Non-instrumental)	
,	1.	Analysis of Devarda's alloy	_
	2.	Analysis of Cu – Ni alloy	_
RPSCHEP.O51	3.	Analysis of Limestone.	
2		Instrumental	
	1.	Estimation of Copper using Iodometric method	
		Potentiometrically.	
	2.	Estimation of Fe ⁺³ solution using Ce(IV) ions	
1		Potentiometrically	

Course Code: RPSCHE.O513 Course Title: ORGANIC CHEMISTRY Academic year 2023-24

Course Outcomes:

After c	ompletion of this Course, the learner will be able to:
CO 1	Correlate between kinetically and thermodynamically formed enolates and the
	factors affecting their formation.
CO 2	Understand the interaction of carbon nucleophiles with carbonyl groups and its
	reaction mechanism.
CO 3	Draw the mechanism and stereochemistry (if applicable) of various rearrangement
	reactions.
CO 4	Apply Molecular orbital theory to organic molecules with special emphasis on the
	FMO theory
CO 5	Make use of advanced application of UV, IR and NMR spectroscopy techniques in
	structural elucidation of molecules.
CO 6	Know the concept of McLafferty Rearrangement and its implications on
	Fragmentation pattern of molecules.

Course Code	Unit Course Title / Unit Title	Credits/ Hours 3/45
	ORGANIC CHEMISTRY	

RPSCHE.O51		Alkylation of Nucleophilic Carbon Intermediates
3		1.1 Alkylation of Nucleophilic Carbon Intermediates:
		1.1.1 Generation of carbanion, kinetic and
		thermodynamic enolate
		formation, Regioselectivity in enolate
		formation, alkylation of enolates.
		1.1.2 Generation and alkylation of dianion, medium
		effects in the alkylation of enolates, oxygen
		versus carbon as the site of alkylation. 1.1.3
		Alkylation of aldehydes, ketones, esters, amides and
		nitriles.
		1.1.4 Nitrogen analogs of enols and enolates-
		Enamines and Imines anions, alkylation of enamines
	I	and imines.
		1.1.5 Alkylation of carbon nucleophiles by
		conjugate addition (Michael reaction).
		1.2 Reaction of carbon nucleophiles with
		carbonyl groups:
		1.2.1 Mechanism of Acid and base catalysed Aldol
		condensation, Mixed Aldol condensation with
		aromatic aldehydes, regiochemistry in mixed
	• ^	reactions of aliphatic aldehydes and ketones,
	500	intramolecular Aldol reaction and Robinson
		annulation.
		1.2.2 Addition reactions with amines and iminium
2-21717		ions; Mannich reaction.
20		1.2.3 Amine catalyzed condensation reaction:
y		Knoevenagel reaction. Acylation of carbanions.
		Reactions and Rearrangements
		Mechanisms, stereochemistry (if applicable) and
	II	applications of the following:
		2.1 Reactions: Baylis-Hilman reaction, McMurry
		Coupling, Corey-Fuchs reaction, Nef reaction,
		Passerini reaction.

	2.2Concerted rearrangements: Hofmann, Curtius,	
	Lossen, Schmidt, Wolff, Boulton-Katritzky.	
	2.3 Cationic rearrangements: Tiffeneau-Demjanov,	
	Pummerer, Dienone-phenol, Rupe, Wagner-	
	Meerwein.	
	2.4 Anionic rearrangements: Brook, Neber, Von	
	Richter, Wittig, Gabriel-Colman, Payne.	
	Spectrometry	250
	3.1 Ultraviolet spectroscopy: Recapitulation, UV	
	spectra of dienes, conjugated polyenes (cyclic and	
	acyclic), carbonyl and unsaturated carbonyl	
	compounds, substituted aromatic compounds. Factors	
	affecting the position and intensity of UV bands -	
	effect of conjugation, steric factor, pH, and solvent	
	polarity. Calculation of absorption maxima for above	
	classes of compounds by Woodward-Fieser rules	
	(using Woodward-Fieser tables for values for	
	substituents).	
	3.2 Infrared spectroscopy: Fundamental, overtone	
III	and combination bands, vibrational coupling, factors	
	affecting vibrational frequency (atomic weight,	
	conjugation, ring size, solvent and hydrogen	
	bonding). Characteristic vibrational frequencies for	
	alkanes, alkenes, alkynes, aromatics, alcohols, ethers,	
	phenols, amines, nitriles and nitro compounds.	
Rainination	Detailed study of vibrational frequencies of carbonyl	
•	compounds, aldehydes, ketones, esters, amides, acids,	
	acid halides, anhydrides, lactones, lactams and	
	conjugated carbonyl compounds.	
	3.3 .Proton Magnetic Resonance Spectroscopy:	
	Principle, Chemical shift, Factors affecting chemical	
	shift (Electronegativity, H-bonding, Anisotropy	
	effects). Chemical and magnetic equivalence,	

Chemical shift values and correlation for protons
bonded to carbon and other nuclei as in alcohols,
phenols, enols, carboxylic acids, amines, amides.
Spin-spin coupling, Coupling constant (J), Factors
affecting J, geminal, vicinal and long range coupling
(allylic and aromatic). First order spectra, Karplus
equation.
3.4. Structure determination involving individual or
combined use of the above spectral techniques.
\(\rightarrow\)
 References: Advanced Organic Chemistry Part B: Reactions and Synthesis, F. A Carey and R.J Sundberg, 4th Edition. Organic Chemistry, J. Claydens, N. Greeves, S. Warren and P. Wothers, Oxford University Press. Advanced Organic Chemistry: Reactions, Mechanisms and Structure, Michael B. Smith, Jerry March, Wiley. Organic Synthesis, Jagdamba Singh, L.D.S. Yadav, Pragati Prakashan. Organic Spectroscopy-Principles and Applications, Jagmohan, Narosa Publication.

Semester II Practical

Course Code	Organic Chemistry Practicals II	Credits/ Hours 1/30
RPSCHEP.O513	Separation of binary mixture using physical and chemical	1
	methods. (Characterization and identification of one of the	
	components)	
	The following types are expected:	

	(i) Water soluble/water insoluble solid and water insoluble	
	solid,	
	(ii) Non-volatile liquid-Non-volatile liquid (chemical	
	separation)	
	(iii) Water-insoluble solid-Non-volatile liquid.	
	(Tatalain mintana)	
	(Total six mixtures)	
	Course Code: RPSCHE.O514	
	Course Title:	
	Academic year 2023-24	
Course Outcomes:		
After completion	of this Course the learner will be oble to	

Course Title:

Course Outcomes:

After c	After completion of this Course, the learner will be able to:		
CO 1	Outline the role and importance of safety, accreditations and GLP in industries.		
CO 2	Apply the knowledge learned to all scientific data analyses during their studies and future career-related activities.		

Course Code	Unit	Course Title / Unit Title	Credits/ Hours 2/30
RPSCH E.O514	I I	Quality Control in Chemical Industries II 1.1 Accreditations: Accreditation of Laboratories, Introduction to ISO series, Indian Government Standards (ISI, Hallmark, Agmark). 1.2 Safety in Laboratories: Basic concepts of Safety in Laboratories, Personal Protection Equipment (PPE), OSHA, Toxic Hazard (TH) classifications, Hazardous Chemical Processes (including process calorimetry / thermal build up concepts). (30L)	2
	П	2.1 Good Laboratory Practices (GLP): Principle, Objective, OECD guidelines, The US FDA 21CFR58, Klimisch score, GMP in Drugs and Pharmaceutical Industries Accreditation of QC laboratories: Tools and Mechanisms ICH Guidelines on Drug substances and Products.	

References:	
References:	
1. Fundamentals of Analytical Chemistry, By Douglas A.	
Skoog, Donald M. West, F. James Holler, Stanley R.	
Crouch, 9 th Edition, 2004.	
2. ISO 9000 Quality Systems Handbook, Fourth Edition,	
David Hoyle. (Free download).	
3. Quality in the Analytical Laboratory, Elizabeth Pichard,	
Wiley India, 2007.	
4. Safety and Hazards Management in Chemical Industries,	
M N Vyas, Atlantic Publisher.	

Course Code: RPSCHEAN.E517

Course Title: ANALYTICAL CHEMISTRY

Academic year 2023-24

Course Outcomes:

After con	After completion of this Course, the learner will be able to:		
CO 1	Utilize GC & HPLC techniques for separation of the different components present		
	in a sample.		
CO 2	Make use of X-ray spectroscopy for qualitative and quantitative analysis of		
	elements.		
CO 3	Describe the function of different components of a mass spectrometer.		
CO 4	Select the best method from among those covered in these units while carrying out		
	analysis of a sample and will be able to justify their choice.		

Course Code	Unit	Course Title / Unit Title	Credits/ Hours 3/45
		ANALYTICAL CHEMISTRY	3
RPSCHEAN.E		1.1 Recapitulation of basic concepts in	
517		chromatography: Classification of	
	I	chromatographic methods, requirements of an	
		ideal detector, types of detectors in LC and GC,	
7.0-		comparative account of detectors with reference to	

	their applications (LC and GC respectively),	
	qualitative and quantitative analysis.	
	1.2 Concept of plate and rate theories in	
	chromatography: efficiency, resolution,	
	selectivity and separation capability. Van Deemter	
	equation and broadening of chromatographic	
	peaks. Optimization of chromatographic	
	conditions.	
	1.3 Gas Chromatography: Instrumentation of GC with	
	special reference to sample injection systems	
	split/splitless, column types, solid/ liquid	
	stationary phases, column switching techniques,	
	temperature programming, Thermionic and mass	
	spectrometric detector, Applications.	
	1.4 High Performance Liquid Chromatography	
	(HPLC): Normal phase and reversed phase with	
	special reference to types of commercially	
	available columns (Use of C8 and C18 columns).	
	Diode array type and fluorescence detector,	
	Applications of HPLC. Chiral and ion	
	chromatography.	
•	2.1 X-ray spectroscopy: principle, instrumentation	
80	and applications of X-ray fluorescence, absorption	
	and diffraction spectroscopy.	
Rainin air	2.2 Mass spectrometry : recapitulation,	
	instrumentation, ion sources for molecular studies,	
II II	electron impact, field ionization, field desorption,	
	chemical ionization and fast atom bombardment,	
	Electro spray ionization (ESI) and Matrix-assisted	
	desorption-ionization (MALDI) sources. Mass	
	analyzers: Quadrupole, time of flight, ion trap,	
	Magnetic Sector and Hybrid. Applications.	
III	3.1Surface Analytical Techniques:	

	3.1.1 Introduction, Principle, Instrumentation and
	Applications of:
	3.1.2 Scanning Electron Microscopy (SEM)
	3.1.3 .Scanning Tunneling Microscopy (STM)
	3.1.4 Transmission Electron Microscopy (TEM)
	3.1.5 Electron Spectroscopy: principles,
	instrumentation and applications of the following
	ESCA (XPS), AUGER and UPS.
	3.2 Atomic Spectroscopy:
	3.2.1 Advantages and Limitations of AAS
	3.2.2 Atomic Spectroscopy based on plasma sources
	- Introduction, Principle, Instrumentation and
	Applications.
	References:
	1. Principles of Instrumental Analysis - Skoog,
	Holler and Nieman, 5 th Edition.
	2. Analytical Chemistry Principles – John H
	Kennedy, 2nd edition, Saunders College
	Publishing 1990.
	3. Modern Analytical Chemistry David Harvey;
	McGraw Hill Higher education publishers, 2000.
•	4. Vogel's Text book of quantitative chemical
X 0	analysis, 6th edition, Pearson Education Limited,
	2007.
Reality of the	
	5. Electrochemical Methods Fundamentals and
	Applications, Allen J Bard and Larry R Faulkner,
	John Wiley and Sons, 1980.
	6. Instrumental Methods of Analysis Willard, Merrit,
	Dean and Settle, 7 th edition, CBS publishers.
	7. Analytical chemistry by Garry D Christian,6 th
	edition, John Wiley & Sons.

8. R. D. Braun, Introduction to Instrumental	
Analysis, McGraw Hill Publisher.	
9. Fundamentals of Analytical Chemistry, By	
Douglas A. Skoog, Donald M. West, F. James	
Holler, Stanley R. Crouch, 9 th Edition, 2004.	

Practical

Course Code		Analytical Chemistry Practicals II	Credits/
			Hours
			1/30
RPSCHEAN.E	1.	To determine amount of potassium in the given	1
517		sample of fertilizers using flame photometer by	
		standard addition method.	
	2.	To determine amount of Ti(III) and Fe(II) in a mixture	
		by titration with Ce(IV) potentiometrically.	
	3.	To determine the amount of Fe(II) and Fe(III) in a	
		mixture using 1,10-phenanthroline	
		spectrophotometrically.	
	4.	To determine the lead and tin content of a solder alloy	
		by titration with EDTA.	
	5.	To determine amount of Cu(II) present in the given	
		solution containing a mixture of Cu(II) and Fe(II).	
	6.	To determine the breakthrough capacity of a cation	
20.0		exchange resin.	
Course Code		Research Project	Credits/
>			Hours
			4/60

Discipline Specific Course I,II and III **Modality of Assessment**

	Discipline Specific Course I,II and III Modality of Assessment	2
•	nination Pattern: al Assessment - 40% (30 Marks)	
Sr. No.	Evaluation Type	Marks
1	Presentations	15
2	Class Test (MCQ / Objectives)	15
	Total	30

B) External Examination: 60 % (45 marks) Semester End Examination:

1. Duration - These examinations shall be of 1 Hr 30 Mins duration.

Theory question paper pattern:-

2. There shall be three questions each of 15 marks. All questions shall be compulsory with internal choice within the questions.

Questions	Options	Marks	Questions based on
Q.1)	Any 3 out of 5	15	Unit I
0.00			
Q.2)	Any 3 out of 5	15	Unit II
Q.3)	Any 3 out of 5	15	Unit III
	Total	45	

Practical Examination Pattern:

(A) External Examination: 100 % (50

Marks)Semester End Practical

Examination:

Particulars	Discipline Specific Course I,II and III Practicals	
Laboratory Work	40	
Journal	05	
Viva	05	
Total	50	70

PRACTICAL BOOK/JOURNAL

- ➤ The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.
- In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Co-ordinator / In-charge of the department; failing which the student will not be allowed to appear for the practical examination.

Discipline Specific Course IV Modality of Assessment

Theory Examination Pattern:

External Examination: 100 % (50 marks)

Semester End Theory Examination:

1. Duration - These examinations shall be of 2 Hr duration.

Theory question paper pattern:-

2. There shall be two questions each of 25 marks. All questions shall be compulsory with internal choice within the questions.

Questions	Options	Marks	Questions based on
Q.1)	Any 5 out of 7	25	Unit I
Q.2)	Any 5 out of 7	25	Unit II
	Total	50	

College

Modality of Assessment Discipline Specific Elective

Theory Examination Pattern:

A) Internal Assessment - 40% (30 Marks)

Sr. No.	Evaluation Type	Marks
1	Presentations	15
2	Class Test (MCQ / Objectives)	15
	Total	30

- B) External Examination: 60 % (45 marks) Semester End Theory Examination:
- 1. Duration These examinations shall be of 1 Hr 30 Mins duration.

Theory question paper pattern:

2. There shall be three questions each of 15 marks. All questions shall be compulsory with internal choice within the questions.

Questions	Options	Marks	Questions based on
Q.1)	Any 3 out of 5	15	Unit I
Q.2)	Any 3 out of 5	15	Unit II
Q.3)	Any 3 out of 5	15	Unit III
	Total	45	

Practical Examination Pattern:

(B) External Examination: 100 % (50

Marks)Semester End Practical

Examination:

Particulars	Discipline Specific Elective Practicals
Laboratory Work	40
Journal	05
Viva	05
Total	50
	Modality of Assessment Research Methodology
Theory Examination Pa	ttern:
A) Internal Assessm	ent - 40% (40 Marks)

Modality of Assessment Research Methodology

Sr. No.	Evaluation Type	Marks
1	Presentations / Assignment / Class Test / Open Book Test	40
	Total	40

B) External Examination: 60 % (60

marks) Semester End Theory

Examination:

1. Duration - These examinations shall be of 2 Hr 30 min duration.

Theory question paper pattern:-

2. There shall be three questions each of 15 marks. All questions shall be compulsory with internal choice within the questions.

Questions	Options	Marks	Questions based on
Q.1)	Any 3 out of 5	15	Unit I
Q.2)	Any 3 out of 5	15	Unit II
Q.3)	Any 3 out of 5	15	Unit III
Q.4)	Any 3 out of 5	15	Unit IV

Total	60	

Modality of Assessment Research Project

		C0118
	Modality of Assessment	
Sr.No.	Research Project Criteria	Marks
1.	Project Proposal/ Selection	10
2.	Literature Survey	10
3.	Project Work including Monthly Report	60
4.	Final Dissertation	20
	NO Y	Total = 100 M
	Rija	
	arain Pulia	
	atain Ruia	
	atain Ruia Ann	