RAMNARAIN RUIA AUTONOMOUS COLLEGE, SYLLABUS FOR M.Sc-II Analytical Chemistry 2023-2024

Resolution Number: AC/II (22-23).3.RPS5

S.P. Mandali Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for Semester III and IV Program: M.Sc. (Analytical Chemistry) Program Code: (RPSCHEA)

(Credit Based Semester and Grading System with effect from

the academic year 2023–2024)

		SEMESTER-III		
Course Code	Unit	Course Title / Unit Title	Credit	
		Quality in Analytical Chemistry		
-	Ι	Quality in Analytical Chemistry – I		
RPSCHEA301	II	Quality in Analytical Chemistry – II	4	
	III	Chromatographic Techniques -I		
	IV	Chromatographic Techniques -II		
	A	Advanced Instrumental Techniques		
-	Ι	Spectral Methods I		
RPSCHEA302	II	Hyphenated Techniques	4	
	III	Radiochemical & Thermal methods		
	IV	Electroanalytical Methods		
	Bio	analytical Chemistry & Food Analysis		
-	Ι	Bioanalytical chemistry		
RPSCHEA303	II	Immunological Methods	4	
	III	Food Analysis – I		
-	IV	Food Analysis – II		
	Enviror	umental & Certain Industrially Important Materials		
-	I	Air Pollution		
RPSCHEAEC-I 304	П	Water Quality Standards	4	
	Ш	Other Types Of Pollution		
	IV	Green Chemistry		
~ ()	P	Pharmaceutical & Organic Analysis		
	Ι	Pharmaceutical Analysis		
RPSCHEAEC-II 304	II	Drugs	4	
	III	Forensic Science		
~0	IV	Cosmetic Analysis		
RPSCHEA3P1				
RPSCHEA3P2				
RPSCHEA3P3		Practical	8	
RPSCHEA3P4				

Course Code	Unit	Course Title/Unit Title	Credit
		eparation Techniques & Industrial Materials	
	I	Separation Science	
RPSCHEA401	II	Electrophoresis	4
	III	Separation, Analysis and Standardization of Herbal	
	IV	based products. Industrial Materials	
	IV	Advanced Instrumental Techniques	
	I	Spectral Methods II	
RPSCHEA402	II	Spectral Methods III	4
	III	Spectral Methods IV	
	IV	Micellaneous Techniques	
	En	vironmental & Certain Industrially Important	
		Materials	
RPSCHEA403	Ι	Effluent Treatment	4
NISCHEA405	II	Solid Waste Management	4
	III	Plastics and Polymers	
	IV	Metallurgy	
	In	tellectual Property Rights & Cheminformatics	
	Ι	Introduction to Intellectual Property – I	
RPSCHEAOC-I 404	Π	Introduction to Intellectual Property - II	4
	III	Cheminformatics-I	
	IV	Cheminformatics-II	
		Research Methodology	
	I	Review of Literature	
RPSCHEAOC-II 404	П	Data Analysis	4
M SCHEACC-II 104	III	Methods of Scientific Research and Writing Scientific Papers	-
	IV	Chemical Safety & Ethical Handling of Chemicals	
RPSCHEA4P1			
RPSCHEA4P2		Practical	8
RPSCHEA4P3			8
RPSCHEA4P4		Project Evaluation	

SEMESTER-III

Course Code : RPSCHEA301

Course Title : QUALITY IN ANALYTICAL CHEMISTRY

Academic year 2023–2024.

Course Outcomes:

After co	ompletion of this course, the learner will be able to,
CO 1	Elaborate on the concept of Sampling and various methods involved in sample
	preparation and storage.
CO 2	Select the best method out of all the methods available for the analysis of samples.
CO 3	Calculate the uncertainty involved in a measurement.
CO 4	Describe the sources & different methods used for the enhancement of signal to
	noise ratio.
CO 5	Apply the parameters involved in method validation for developing a new method
	for the analysis of a sample.
CO 6	Make use of the principles involved in various chromatographic techniques such as
	Ionexchange, Size exclusion, SCF, Affinity, Inverse & UPLC to carry out
	separation & analysis of sample.

Course Code	Unit	Course Title/Unit Title	Credits/ Lectures
RPSCHEA301	QUAL	ITY IN ANALYTICAL CHEMISTRY	4
	I	Quality in Analytical Chemistry-I	`15 L
		1.1. Sampling: Definition, types of sample,	
		sampling plan, quality of sample, sub-sampling,	
	5	Sampling of raw materials, intermediates and	
	,	finished products. Sample preparations -	
		dissolution technology and decomposition,	
		storage of samples. Pre-treatment of samples:	
		soil, food and cosmetics. (8L)	
		1.2. Selection of the Method: Sources of	
		methods, factors to consider when selecting a	

method, performance criteria for methods used, reasons for incorrect analytical results, method validation, and quality by design (PAT). (7L) II Quality in Analytical Chemistry – II 15 L 2.1. Measurement of uncertainty: Definition and evaluation of uncertainty, putting uncertainty to use, interpretation of results and improving the quality of results. (4L) 2.2. Signal to noise: Signal to noise ratio, sources of noise in instrumental analysis. Signal to noise reduction and software methods for noise reduction. (6L) 2.3. Principle, process and application of solid phase extraction (5L) 15 L III Chromatographic Techniques -I 15 L 3.1. Ion exchange chromatography: Ion exchange equilibria, breakthrough capacity, inorganic ion exchangers, synthetic ion exchangers, chelating resins and their applications for separation of inorganic and organic compounds. (5L) 3.2. Ion chromatography: Principle, instrumentation with special reference to separation and suppressor columns, applications. (2L) 3.3. Exclusion chromatography: Theory, instrumentation including new detector technology like Laser light scattering detectors and applications of gel permeation chromatography, retention behavior, inorganic molecular sieves, determination of molecular				
validation, and quality by design (PAT). (7L) II Quality in Analytical Chemistry – II 15 L 2.1. Measurement of uncertainty: Definition and evaluation of uncertainty, putting uncertainty to use, interpretation of results and improving the quality of results. (4L) 2.2. Signal to noise: Signal to noise ratio, sources of noise in instrumental analysis. Signal to noise enhancement, hardware devices for noise reduction and software methods for noise reduction. (6L) 2.3. Principle, process and application of solid phase extraction and Solid phase micro extraction (5L) III Chromatographic Techniques -I 15 L 3.1. Ion exchange chromatography: Ion exchange equilibria, breakthrough capacity, inorganic ion exchangers, synthetic ion exchangers, chelating resins and their applications for separation of inorganic and organic compounds. (5L) 3.2. Ion chromatography: Principle, instrumentation with special reference to separation and suppressor columns, applications. (2L) 3.3. Exclusion chromatography: Theory, instrumentation including new detector technology like Laser light scattering detectors and applications of gel permeation chromatography, retention behavior, inorganic			method, performance criteria for methods used,	
II Quality in Analytical Chemistry – II 15 L 2.1. Measurement of uncertainty: Definition and evaluation of uncertainty: putting uncertainty to use, interpretation of results and improving the quality of results. (4L) 2.2. Signal to noise: Signal to noise ratio, sources of noise in instrumental analysis. Signal to noise enhancement, hardware devices for noise reduction and software methods for noise reduction. (6L) 2.3. Principle, process and application of solid phase extraction and Solid phase micro extraction (5L) 15 L 3.1. Ion exchange chromatography: Ion exchange equilibria, breakthrough capacity, inorganic ion exchangers, synthetic ion exchangers, chelating resins and their applications for separation of inorganic and organic compounds. (5L) 3.2. Ion chromatography: Principle, instrumentation with special reference to separation and suppressor columns, applications. (2L) 3.3. Exclusion chromatography: Theory, instrumentation including new detector technology like Laser light scattering detectors and applications of gel permeation chromatography, retention behavior, inorganic			reasons for incorrect analytical results, method	
2.1. Measurement of uncertainty: Definition and evaluation of uncertainty, putting uncertainty to use, interpretation of results and improving the quality of results. (4L) 2.2. Signal to noise: Signal to noise ratio, sources of noise in instrumental analysis. Signal to noise enhancement, hardware devices for noise reduction and software methods for noise reduction. (6L) 2.3. Principle, process and application of solid phase extraction and Solid phase micro extraction (5L) III Chromatographic Techniques -I 15 L 3.1. Ion exchange chromatography: Ion exchangers, chelating resins and their applications for separation of inorganic and organic compounds. (5L) 3.2. Ion chromatography: Principle, instrumentation with special reference to separation and suppressor columns, applications. (2L) 3.3. Exclusion chromatography: Theory, instrumentation including new detector technology like Laser light scattering detectors and applications of gel permeation chromatography, retention behavior, inorganic			validation, and quality by design (PAT). (7L)	
and evaluation of uncertainty, putting uncertainty to use, interpretation of results and improving the quality of results. (4L) 2.2. Signal to noise: Signal to noise ratio, sources of noise in instrumental analysis. Signal to noise enhancement, hardware devices for noise reduction and software methods for noise reduction. (6L) 2.3. Principle, process and application of solid phase extraction and Solid phase micro extraction (5L) III Chromatographic Techniques -I 15 L 3.1. Ion exchange chromatography: Ion exchange equilibria, breakthrough capacity, inorganic ion exchangers, synthetic ion exchangers, chelating resins and their applications for separation of inorganic and organic compounds. (5L) 3.2. Ion chromatography: Principle, instrumentation with special reference to separation and suppressor columns, applications. (2L) 3.3. Exclusion chromatography: Theory, instrumentation including new detector technology like Laser light scattering detectors and applications of gel permeation chromatography, retention behavior, inorganic		II	Quality in Analytical Chemistry – II	15 L
uncertainty to use, interpretation of results and improving the quality of results. (4L) 2.2. Signal to noise: Signal to noise ratio, sources of noise in instrumental analysis. Signal to noise enhancement, hardware devices for noise reduction and software methods for noise reduction. (6L) 2.3. Principle, process and application of solid phase extraction and Solid phase micro extraction (5L) III Chromatographic Techniques -1 15 L 3.1. Ion exchange chromatography: Ion exchange equilibria, breakthrough capacity, inorganic ion exchangers, synthetic ion exchangers, chelating resins and their applications for separation of inorganic and organic compounds. (5L) 3.2. Ion chromatography: Principle, instrumentation with special reference to separation and suppressor columns, applications. (2L) 3.3. Exclusion chromatography: Theory, instrumentation including new detector technology like Laser light scattering detectors and applications of gel permeation chromatography, retention behavior, inorganic			2.1. Measurement of uncertainty: Definition	
improving the quality of results. (4L) 2.2. Signal to noise: Signal to noise ratio, sources of noise in instrumental analysis. Signal to noise enhancement, hardware devices for noise reduction and software methods for noise reduction. (6L) 2.3. Principle, process and application of solid phase extraction and Solid phase micro extraction (5L) III Chromatographic Techniques -I 15 L 3.1. Ion exchange chromatography: Ion exchange equilibria, breakthrough capacity, inorganic ion exchangers, synthetic ion exchangers, chelating resins and their applications for separation of inorganic and organic compounds. (5L) 3.2. Ion chromatography: Principle, instrumentation with special reference to separation and suppressor columns, applications. (2L) 3.3. Exclusion chromatography: Theory, instrumentation including new detector technology like Laser light scattering detectors and applications of gel permeation chromatography, retention behavior, inorganic			and evaluation of uncertainty, putting	
2.2. Signal to noise: Signal to noise ratio, sources of noise in instrumental analysis. Signal to noise enhancement, hardware devices for noise reduction and software methods for noise reduction. (6L) 2.3. Principle, process and application of solid phase extraction and Solid phase micro extraction (5L) III Chromatographic Techniques -I 15 L 3.1. Ion exchange chromatography: Ion exchange equilibria, breakthrough capacity, inorganic ion exchangers, synthetic ion exchangers, chelating resins and their applications for separation of inorganic and organic compounds. (5L) 3.2. Ion chromatography: Principle, instrumentation with special reference to separation and suppressor columns, applications. (2L) 3.3. Exclusion chromatography: Theory, instrumentation including new detector technology like Laser light scattering detectors and applications of gel permeation chromatography, retention behavior, inorganic			uncertainty to use, interpretation of results and	
sources of noise in instrumental analysis. Signal to noise enhancement, hardware devices for noise reduction and software methods for noise reduction. (6L) 2.3. Principle, process and application of solid phase extraction and Solid phase micro extraction (5L) III Chromatographic Techniques -I 15 L 3.1. Ion exchange chromatography: Ion exchange equilibria, breakthrough capacity, inorganic ion exchangers, synthetic ion exchangers, chelating resins and their applications for separation of inorganic and organic compounds. (5L) 3.2. Ion chromatography: Principle, instrumentation with special reference to separation and suppressor columns, applications. (2L) 3.3. Exclusion chromatography: Theory, instrumentation including new detector technology like Laser light scattering detectors and applications of gel permeation chromatography, retention behavior, inorganic			improving the quality of results. (4L)	
to noise enhancement, hardware devices for noise reduction and software methods for noise reduction. (6L)2.3. Principle, process and application of solid phase extraction and Solid phase micro extraction (5L)IIIChromatographic Techniques -I15 L3.1. Ion exchange chromatography: Ion exchange equilibria, breakthrough capacity, inorganic ion exchangers, synthetic ion exchangers, chelating resins and their applications for separation of inorganic and organic compounds. (5L)3.2. Ion chromatography: Principle, instrumentation with special reference to separation and suppressor columns, applications. (2L)3.3. Exclusion chromatography: Theory, instrumentation including new detector technology like Laser light scattering detectors and applications of gel permeation chromatography, retention behavior, inorganic			2.2. Signal to noise: Signal to noise ratio,	
noise reduction and software methods for noise reduction. (6L)2.3. Principle, process and application of solid phase extraction and Solid phase micro extraction (5L)IIIChromatographic Techniques -I15 L3.1. Ion exchange chromatography: Ion exchange equilibria, breakthrough capacity, inorganic ion exchangers, synthetic ion exchangers, chelating resins and their applications for separation of inorganic and organic compounds. (5L)3.2. Ion chromatography: Principle, instrumentation with special reference to separation and suppressor columns, applications. (2L)3.3. Exclusion chromatography: Theory, instrumentation including new detector technology like Laser light scattering detectors and applications of gel permeation chromatography, retention behavior, inorganic			sources of noise in instrumental analysis. Signal	
reduction. (6L)2.3. Principle, process and application of solid phase extraction and Solid phase micro extraction (5L)IIIChromatographic Techniques -I15 L3.1. Ion exchange chromatography: Ion exchange equilibria, breakthrough capacity, inorganic ion exchangers, synthetic ion exchangers, chelating resins and their applications for separation of inorganic and organic compounds. (5L)3.2. Ion chromatography: Principle, instrumentation with special reference to separation and suppressor columns, applications. (2L)3.3. Exclusion chromatography: Theory, instrumentation including new detector technology like Laser light scattering detectors and applications of gel permeation chromatography, retention behavior, inorganic			to noise enhancement, hardware devices for	
2.3. Principle, process and application of solid phase extraction and Solid phase micro extraction (5L)IIIChromatographic Techniques -I15 L3.1. Ion exchange chromatography: Ion exchange equilibria, breakthrough capacity, inorganic ion exchangers, synthetic ion exchangers, chelating resins and their applications for separation of inorganic and organic compounds. (5L)3.2. Ion separation and suppressor columns, applications. (2L)3.3. Exclusion chromatography: Theory, instrumentation including new detector technology like Laser light scattering detectors and applications of gel permeation chromatography, retention behavior, inorganic			noise reduction and software methods for noise	
phase extraction and Solid phase micro extraction (5L)111IIIChromatographic Techniques -I15 L3.1. Ion exchange chromatography: Ion exchange equilibria, breakthrough capacity, inorganic ion exchangers, synthetic ion exchangers, chelating resins and their applications for separation of inorganic and organic compounds. (5L)3.2. Ion chromatography: Principle, instrumentation with special reference to separation and suppressor columns, applications. (2L)3.3. Exclusion chromatography: Theory, instrumentation including new detector technology like Laser light scattering detectors and applications of gel permeation chromatography, retention behavior, inorganic			reduction. (6L)	
extraction (5L)IIIChromatographic Techniques -I15 L3.1. Ion exchange chromatography: Ion exchange equilibria, breakthrough capacity, inorganie ion exchangers, synthetic ion exchangers, chelating resins and their applications for separation of inorganic and organic compounds. (5L)3.2. Ion chromatography: Principle, instrumentation with special reference to separation and suppressor columns, applications. (2L)3.3. Exclusion chromatography: Theory, instrumentation including new detector technology like Laser light scattering detectors and applications of gel permeation chromatography, retention behavior, inorganic			2.3. Principle, process and application of solid	
IIIChromatographic Techniques -I15 L3.1. Ion exchange chromatography: Ion exchange equilibria, breakthrough capacity, inorganic ion exchangers, synthetic ion exchangers, chelating resins and their applications for separation of inorganic and organic compounds. (5L)3.2. Ion chromatography: Principle, instrumentation with special reference to separation and suppressor columns, applications. (2L)3.3. Exclusion chromatography: Theory, instrumentation including new detector technology like Laser light scattering detectors and applications of gel permeation chromatography, retention behavior, inorganic			phase extraction and Solid phase micro	
3.1. Ion exchange chromatography: Ion exchange equilibria, breakthrough capacity, inorganic ion exchangers, synthetic ion exchangers, chelating resins and their applications for separation of inorganic and organic compounds. (5L)3.2. Ion chromatography: Principle, instrumentation with special reference to separation and suppressor columns, applications. (2L)3.3. Exclusion chromatography: Theory, instrumentation including new detector technology like Laser light scattering detectors and applications of gel permeation chromatography, retention behavior, inorganic			extraction (5L)	
 exchange equilibria, breakthrough capacity, inorganic ion exchangers, synthetic ion exchangers, chelating resins and their applications for separation of inorganic and organic compounds. (5L) 3.2. Ion chromatography: Principle, instrumentation with special reference to separation and suppressor columns, applications. (2L) 3.3. Exclusion chromatography: Theory, instrumentation including new detector technology like Laser light scattering detectors and applications of gel permeation chromatography, retention behavior, inorganic 		III	Chromatographic Techniques -I	15 L
inorganic ion exchangers, synthetic ion exchangers, chelating resins and their applications for separation of inorganic and organic compounds. (5L) 3.2. Ion chromatography: Principle, instrumentation with special reference to separation and suppressor columns, applications. (2L) 3.3. Exclusion chromatography: Theory, instrumentation including new detector technology like Laser light scattering detectors and applications of gel permeation chromatography, retention behavior, inorganic			3.1. Ion exchange chromatography: Ion	
 exchangers, chelating resins and their applications for separation of inorganic and organic compounds. (5L) 3.2. Ion chromatography: Principle, instrumentation with special reference to separation and suppressor columns, applications. (2L) 3.3. Exclusion chromatography: Theory, instrumentation including new detector technology like Laser light scattering detectors and applications of gel permeation chromatography, retention behavior, inorganic 			exchange equilibria, breakthrough capacity,	
 applications for separation of inorganic and organic compounds. (5L) 3.2. Ion chromatography: Principle, instrumentation with special reference to separation and suppressor columns, applications. (2L) 3.3. Exclusion chromatography: Theory, instrumentation including new detector technology like Laser light scattering detectors and applications of gel permeation chromatography, retention behavior, inorganic 			inorganic ion exchangers, synthetic ion	
organic compounds. (5L) 3.2. Ion chromatography: Principle, instrumentation with special reference to separation and suppressor columns, applications. (2L) 3.3. Exclusion chromatography: Theory, instrumentation including new detector technology like Laser light scattering detectors and applications of gel permeation chromatography, retention behavior, inorganic			exchangers, chelating resins and their	
 3.2. Ion chromatography: Principle, instrumentation with special reference to separation and suppressor columns, applications. (2L) 3.3. Exclusion chromatography: Theory, instrumentation including new detector technology like Laser light scattering detectors and applications of gel permeation chromatography, retention behavior, inorganic 		0	applications for separation of inorganic and	
instrumentation with special reference to separation and suppressor columns, applications. (2L) 3.3. Exclusion chromatography: Theory, instrumentation including new detector technology like Laser light scattering detectors and applications of gel permeation chromatography, retention behavior, inorganic			organic compounds. (5L)	
separation and suppressor columns, applications. (2L) 3.3. Exclusion chromatography: Theory, instrumentation including new detector technology like Laser light scattering detectors and applications of gel permeation chromatography, retention behavior, inorganic		$\mathbf{\Lambda}$	3.2 . Ion chromatography: Principle,	
applications. (2L) 3.3. Exclusion chromatography: Theory, instrumentation including new detector technology like Laser light scattering detectors and applications of gel permeation chromatography, retention behavior, inorganic			instrumentation with special reference to	
3.3. Exclusion chromatography: Theory, instrumentation including new detector technology like Laser light scattering detectors and applications of gel permeation chromatography, retention behavior, inorganic	6		separation and suppressor columns,	
instrumentation including new detector technology like Laser light scattering detectors and applications of gel permeation chromatography, retention behavior, inorganic			applications. (2L)	
technology like Laser light scattering detectors and applications of gel permeation chromatography, retention behavior, inorganic	~0`		3.3. Exclusion chromatography: Theory,	
and applications of gel permeation chromatography, retention behavior, inorganic			instrumentation including new detector	
chromatography, retention behavior, inorganic			technology like Laser light scattering detectors	
molecular sieves, determination of molecular	5			
			molecular sieves, determination of molecular	

	weight of polymers and application to		0
	biomolecule (5L)	Ċ.	X
	3.4 Advances in HPLC: UPLC, 2D LC, Multi-		ろ
	dimensional LC, Automation in LC, New		
	column technologies. Sub 3 micron columns,		
	Core columns, capillary columns, micro LC,	\mathbf{O}^{-}	
	Nano LC etc. (4L)		
IV	Chromatographic Techniques -II	15 L	
	4.1.Supercritical Fluid		
	Chromatography (SFC) and		
	Supercritical Fluid Extraction		
	(SFE): Theory, concept of critical state		
	of matter and supercritical state, types		
	of supercritical fluids, theory behind the		
	separation, instrumentation,		
	applications to environmental, food,		
	pharmaceuticals and polymeric		
	analysis. (7L)		
	4.2.Affinity Chromatography:		
	Principle, instrumentation and applications (3L)		
	4.3. Chiral Chromatography:		
	Principle, Instrumentation, chiral columns,		
	applications (3L)		
	4.4. Inverse gas Chromatography (2L)		

- 1. E Prichard, Quality in the analytical chemistry laboratory, John Wiley and sons N.Y(1997).
- 2. W Funk, V Dammann, G. Donnevert, Quality assurance in analytical Chemistry, VCH Weinheim (1995).
- 3. Richard Anderson, Sample Pretreatment & Separation, (Open learning).
- 4. Lalit Singh and Vijay Sharma, Quality by Design (QbD) Approach in Pharmaceuticals: Status, Challenges and Next Steps, Drug Delivery Letters, 2015, 5, 2-8.
- D. A. Skoog, F. J. Holler and J.A. Niemann, Principles of Instrumental Analysis, 5th Edition (1998).

- H. H. Willard, L. L. Merritt Jr, J. A. Dean and F. A. Settle Jr, Instrumental Methods of Analysis, 7th Ed CBS (1986).
- 7. R. D. Braun, Introduction to Instrumental Analysis, Mc Graw Hill (1987).
- 8. G. D. Christian, Analytical Chemistry, 4th Ed. John Wiley, New York (1986).
- 9. D.A. Skoog and D. M. West and F. J. Holler Holt- Saunders, Fundamentals of Analytical Chemistry 6th Edition (1992).
- 10. J A Dean, Van Nostrand Reinhold, Chemical methods of separation,(1969).
- 11. J Marcus and A. S. Kertes, Solvent extraction and ion exchange, Wiley INC (1969).
- 12. Larry Taylor, Supercritical Fluid Extraction, Wiley publishers N.Y.(1996).
- 13. O Samuelson, Ion exchange separation in analytical chemistry, John Wiley 2nd ed.(1963).

Course Code : RPSCHEA302

Course Title: ADVANCED INSTRUMENTAL TECHNIQUES

Academic year 2023–2024

Course Outcomes:

After c	ompletion of this course, the learner will be able to,
CO 1	Make use of the surface analytical techniques(such as SIMS,PIXE) for obtaining
	information about the surfaces while characterizing the samples.
CO 2	Enlist the advantages of development of hyphenated techniques and will be able to
	explain the different types of interfaces that are used to achieve this hyphenation.
CO 3	Apply the principle underlying spectroelectrochemistry& the use of optically
	transparent electrodes to carry out the analysis of samples.
CO 4	Elaborate on the essential principles underlying the applications of thermal methods
	and radiochemical methods.
CO 5	Develop a working knowledge of various methods used in polarography.
CO 6	Explain anodic, cathodic and adsorptive stripping methods in voltammetry.
CO 7	Select a suitable method of voltammetry for the analysis of a particular sample.

Course Code	Unit	Course Title / Unit Title	Credits/ Lectures
RPSCHEA302		ADVANCED INSTRUMENTAL	4
		TECHNIQUES	
	I	Spectral Methods I	15 L
		1.1 Surface Analytical Techniques: Preparation of	
		the surface, difficulties involved in the surface	
		analysis. (1L)	
		1.2 Principle, instrumentation and applications	
		of the following:	
		a. ATR-FTIR spectroscopy (2L)	
		b. Secondary Ion mass spectroscopy (SIMS)	
		(2L)	
		c. X-Ray Photoelectron Spectroscopy (XPS)	
		(2L)	
		d. Low-Energy Ion Scattering Spectroscopy	
		(LEIS) and Rutherford Backscattering (2L)	
		e. Scanning Probe Microscopy including	
		AFM, CFM (3L)	
		1.3 Nuclear Quadrupole Resonance (NQR),	
		ENDOR, ELDOR. (3L)	
	Π	Hyphenated Techniques	15 L
•	\sim	2.1 Concept of hyphenation, need for hyphenation,	
•		possible hyphenations. (1L)	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		<b>2.2.</b> Interfacing devices, instrumentation and	
		applications of GC – MS,(Head space GC, Pyrolysis	
		GC), GC -FTIR (3L)	
		<b>2.3</b> LC-MS: Interface and Ionization techniques for	
		LC-MS, Thermospray, Particle beam, FAB, and	
		Atmospheric Pressure Ionization (API) Techniques.	
		(3L)	
		2.4 Different Mass Analyzers, Magnetic Sector,	



		-		
		Quadrupole, Ion Trap, Time of Flight, FTICR (3L)		.0.
		2.5 LC-MS/MS: Tandem MS, Triple Quad MS,		0
		Collision Induced Dissociation Cell, Different scan		5
		events, MRM transitions. Hybrid MS/MS.		
		Applications of Tandem MS. (3L)		
		2.6 Radiochromatography (2L)	V	
	III	Radiochemical And Thermal Methods	15 L	
		3.1 Enthalpimetric methods and thermometric		
		titrations.		
		3.2 Thermal analysis- Principle, Interfacing,		
		instrumentation and Applications of (a)		
		Simultaneous Thermal Analysis- TG-DTA and TG-		
		DSC		
		3.3 Evolved gas analysis- TG-MS and TG-FTIR		
		(8L)		
		3.4. Activation analysis- NAA, radiometric		
		titrations and radio-release methods, isotope dilution		
		method, introduction, principle, single dilution		
		method, double dilution method and applications.		
		<b>3.5</b> Auto, X-ray and Gamma Radiography (7L).		
	IV	Electroanalytical Methods	15 L	
		4.1 Current Sampled (TAST) Polarography,		
35		Normal and Differential Pulse Polarography,		
		Differential double Pulse Polarography (2L)		
		4.2 Potential Sweep methods- Linear Sweep		
	Þ.	Voltammetry and Cyclic voltammetry.		
		Potential Step method- Chronoamperomertry		
		(2L)		
		4.3 Controlled potential technique-		
		Chronopotentiometry (2L)		
		4.4 Stripping Voltammetry- anodic, cathodic, and		
		adsorption (2L)		
				]



4.5.Chemically and electrolytically modified
electrodes and ultra- microelectrodes in
voltammetry, Biosensor (2L)
4.6 Corrosion and electrochemistry, Use of Galvano
stat and potentio stat (3L)
4.7 Spectro-electrochemistry (2L)

- D. A. Skoog, F. J. Holler and J.A. Niemann, Principles of Instrumental Analysis, 5th Edition (1998).
- H. H. Willard, L. L. Merritt Jr, J. A. Dean and F. A. Settle Jr Instrumental Methods of Analysis, 7th Ed CBS (1986).
- 3. R. D. Braun, Introduction to Instrumental Analysis, Mc Graw Hill (1987).
- 4. G. D. Christian, Analytical Chemistry, 4th Ed. John Wiley, New York (1986).
- 5. D .A. Skoog and D. M. West and F. J. Holler Holt- Saunders, Fundamentals of Analytical Chemistry, 6th Edition (1992).
- 6. A. J. Bard and Marcel Dekker, Electroanalytical Chemistry, New York, (A series of volumes).
- 7. J.J. Lingane, Electroanalytical Chemistry, 2nd Ed Interscience, New York (1958).
- 8. A. M. Bond, Marcel Dekker, Modern Polarographic Methods in Analytical Chemistry, New York, (1980).
- 9. KamlaZutski, Introduction to polarography and allied techniques,( 2006).
- R. V. Parish. Ellis Horwood, Chichester, NMR, NQR, EPR, and Mössbauer Spectroscopy in Inorganic Chemistry.



## **Course Code : RPSCHEA303**

# Course Title: BIOANALYTICAL CHEMISTRY AND FOOD ANALYSIS

# Academic year 2023–2024

#### **Course Outcomes:**

After c	After completion of this course, the learner will be able to						
CO 1	Describe the composition of body fluids (blood & Urine).						
CO 2	Enlist the physiological and nutritional significance of vitamins & biological macromolecules.						
CO 3	Apply the various analytical (microbiological techniques) learned for the analysis of these vitamins and biological macromolecules which in turn will help them in identification and diagnosis of diseases.						
CO 4	Explain the mechanism of operation of immune system.						
CO 5	Describe the various food preservation techniques that are widely practiced in food industries as quality control measure.						
CO 6	Design an experiment to confirm the presence and amount of various components present in different types of food samples for further label claim studies.						

<b>Course Code</b>	Unit	<b>Course Title / Unit Title</b>			
Course Coue	Omt	Course Thie / Omit Thie	Lectures		
RPSCHEA303	BIOANALYTICAL CHEMISTRY AND FOOD				
		ANALYSIS			
	Ι	Bioanalytical Chemistry	15 L		
		1.1. Body Fluids- Composition of body fluids and detection of			
		abnormal levels of glucose, creatinine, uric acid in blood,			
		protein, ketone bodies and bilirubin in urine leading to			
		diagnosis of diseases. (5L)			
		<b>1.2.</b> Physiological and nutritional significance of vitamins			
		(water soluble and fat soluble) and minerals. (5L)			
0		<b>1.3.</b> Analytical techniques (including microbiological			
~		techniques) for vitamins. (5L)			
	II	Immunological Methods	15 L		



	<b>2.1.</b> General processes of immune response, antigen-antibody	
	reactions, precipitation reactions, radio, enzyme and fluoro-	
	immunoassays. (8L)	
	2.2. Human Nutrition: Biological values and estimation of	
	enzymes, carbohydrates, proteins, essential amino acids and	
	lipids. (7L)	
III	Food Analysis – I	15 L
	<b>3.1.</b> Fuel value of food and importance of food nutrients (2L)	
	<b>3.2. Food Additives</b> – General idea about Food processing and	
	preservation, Chemical preservatives, fortifying agents,	
	emulsifiers, texturizing agents, flavours, colours, artificial	
	sweeteners, enzymes. Analysis of food products for flavoring	
	agents and colour. (5L)	
	<b>3.3.Food Contaminants</b> – Trace metals and pesticide residues,	
	contaminants from industrial wastes (polychlorinated	
	polyphenols, dioxins), toxicants formed during food	
	processing (aromatic hydrocarbons, nitrosamines), veterinary	
	drug residues and melamine contaminants. Identification and	
	estimation technique use for contamination (8L)	
 IV	Food Analysis – II	15 T
<b>I</b> V		15 L
	4.1. Food packaging – Introduction, types of packing	15 L
		15 L
	4.1. Food packaging – Introduction, types of packing	15 L
	<b>4.1. Food packaging</b> – Introduction, types of packing materials, properties and industrial requirements.(2L)	15 L
	<ul> <li>4.1. Food packaging – Introduction, types of packing materials, properties and industrial requirements.(2L)</li> <li>4.2. Processing and Quality requirements of Milk and milk</li> </ul>	15 L
	<ul> <li>4.1. Food packaging – Introduction, types of packing materials, properties and industrial requirements.(2L)</li> <li>4.2. Processing and Quality requirements of Milk and milk products (cheese, butter and ice cream), vegetables and fruits,</li> </ul>	15 L
3	<ul> <li>4.1. Food packaging – Introduction, types of packing materials, properties and industrial requirements.(2L)</li> <li>4.2. Processing and Quality requirements of Milk and milk products (cheese, butter and ice cream), vegetables and fruits, meat and meat Products. (6L)</li> </ul>	13 L
2	<ul> <li>4.1. Food packaging – Introduction, types of packing materials, properties and industrial requirements.(2L)</li> <li>4.2. Processing and Quality requirements of Milk and milk products (cheese, butter and ice cream), vegetables and fruits, meat and meat Products. (6L)</li> <li>4.3 Analysis of Milk – Fat content, proteins, acidity,</li> </ul>	13 L
3	<ul> <li>4.1. Food packaging – Introduction, types of packing materials, properties and industrial requirements.(2L)</li> <li>4.2. Processing and Quality requirements of Milk and milk products (cheese, butter and ice cream), vegetables and fruits, meat and meat Products. (6L)</li> <li>4.3 Analysis of Milk – Fat content, proteins, acidity, bacteriological quality, milk adulterants and antibiotics.(2L)</li> </ul>	13 L
	<ul> <li>4.1. Food packaging – Introduction, types of packing materials, properties and industrial requirements.(2L)</li> <li>4.2. Processing and Quality requirements of Milk and milk products (cheese, butter and ice cream), vegetables and fruits, meat and meat Products. (6L)</li> <li>4.3 Analysis of Milk – Fat content, proteins, acidity, bacteriological quality, milk adulterants and antibiotics.(2L)</li> <li>4.4. Analysis of Oils and Fats – Acid value, sap value, iodine</li> </ul>	15 L
	<ul> <li>4.1. Food packaging – Introduction, types of packing materials, properties and industrial requirements.(2L)</li> <li>4.2. Processing and Quality requirements of Milk and milk products (cheese, butter and ice cream), vegetables and fruits, meat and meat Products. (6L)</li> <li>4.3 Analysis of Milk – Fat content, proteins, acidity, bacteriological quality, milk adulterants and antibiotics.(2L)</li> <li>4.4. Analysis of Oils and Fats – Acid value, sap value, iodine value. Determination of rancidity and antioxidants,</li> </ul>	15 L
	<ul> <li>4.1. Food packaging – Introduction, types of packing materials, properties and industrial requirements.(2L)</li> <li>4.2. Processing and Quality requirements of Milk and milk products (cheese, butter and ice cream), vegetables and fruits, meat and meat Products. (6L)</li> <li>4.3 Analysis of Milk – Fat content, proteins, acidity, bacteriological quality, milk adulterants and antibiotics.(2L)</li> <li>4.4. Analysis of Oils and Fats – Acid value, sap value, iodine value. Determination of rancidity and antioxidants, Unsaturated or saturated fats, triglyceride analysis (2L)</li> </ul>	15 L

- 1. H. Stephen Stoker, General, organic and biological chemistry, Cengage Learning.
- 2. S. R. Mikkelesen and E. Corton, Bioanalytical Chemistry, John Wiley and sons (2004).
- 3. D, J. Homes and H. Peck, Analytical Biochemistry, Longman (1983).
- 4. S.K.Sawhney and Randhir Singh, Introductory practical biochemistry, 1st edition, Narosa Publishing house.
- 5. S. Sadashivam and A. Manickam ,Biochemical methods, 3rd edition, New age international (P) limited,Publishers.
- 6. A.Y.Sathe, A first Course in Food Analysis, New age international (P) limited, Publishers.
- 7. David Pearson, Chemical Analysis of food, 7thedition, Chemical publishing company, New York.
- 8. Morris B Jacobs, The chemical analysis of Food and Food Products.
- 9. Gribbin et al, Principles of package development.
- 10. MacgraWreyco, Modern packaging Encyclopedia and planning guide.

## **Course Code : RPSCHEAEC-I 304**

# Course Title : ENVIRONMENTAL AND CERTAIN INDUSTRIALLY IMPORTANT

## MATERIALS

## Academic year 2023–2024

#### **Course outcomes:**

After con	npletion of this course, the learner will be able to
CO 1	List the major sources of different types of pollutants.
CO 2	Classify the different types of pollutants.
CO 3	Estimate the pollutants present in air.
CO 4	Outline the role of pollution control boards in monitoring and controlling pollution.
CO 5	Apply the methods learned in sampling of these pollutants to procure a sample for analysis.
CO 6	Indicate appropriate measures to reduce/or minimize the effects of these pollutants on
2	environment.
CO 7	Evaluate the quality of potable water based on the guidelines laid down by the regulatory
5	bodies.
CO 8	Acquire awareness of the principles of green chemistry.
CO 9	Plan out the synthesis of a sample by incorporating benign and environmentally safe solvents.



Course Code RPSCHEAEC-I 304	Unit	Course Title/Unit Title ENVIRONMENTAL AND CERTAIN	Credits/ Lectures
KI SCHEAEC-I 504	IND	INDUSTRIALLY IMPORTANT MATERIALS	
	Ι	Air Pollution	15 L
		1.1. Sources, classification, pollutants and permissible	
		limits.(2L)	
		1.2 Sampling methods for air, flew gas, Industrial Exhaust,	
		stag samples etc. (2L)	
		1.3. Importance of automobile exhaust control and its	
		limits New BS VI regulations(2L)	
		1.4. Sampling and analysis of: Particulate matter, aerosols,	
		ammonia and organic vapors. SPM analysis on ESP (3L)	
		<b>1.5</b> . Carbon credit and global issues related to air pollution.	
		(3L)	
		<b>1.6.</b> Greenhouse gases and their substitutes. (1L)	
		<b>1.7.</b> Environmental Legislation: role of pollution control	
		boards, article 48A and 51A, Motor Vehicle Act and	
		method of analysis with respect to PUC. (2L)	
	II	Water Quality Standards	15 L
	5	2.1 Water: quality and requirements of potable water,	
	$\sim$	direct and indirect pollutants for potable water reservoirs,	
.?		quality of potable water from natural sources. (4L)	
		<b>2.2</b> TOC, DO, BOD, COD and TN measurement in water	
		(2L)	
		<b>2.3.</b> Bore well water quality and analytical parameters.	
		Quality of bottled mineral water (3L)	
		<b>2.4</b> . Process of purification of bore well water to bottled	
0'0'		mineral water. (2L)	
		2.5 Regulatory requirements for packaged drinking water	



	(4L)	
III	Other Types Of Pollution	15 L
	3.1 Soil pollution and Soil Analysis : sources of soil	
	pollution and their control, sampling of soil, determination	
	of water holding capacity, determination total nitrogen,	
	ammonia and nitrates, fertility of soil and effect of	
	pollution on it, synthetic fertilizers and their long term	
	effect on soil quality. (6L)	
	3.2 Noise Pollution : sources, effects, methods of	
	measurements and control measures.(2L)	
	<b>3.3 Thermal Pollution:</b> definition, source, impact, control	
	measures, working of cooling towers and cooling ponds,	
	involved economy (3L)	
	3.4 Radioactive pollutants: source, exposure hazards,	
	precautions in handling and safety, Long term effects. (2L)	
	3.5 Environmental Audits: concept of audit, authorities,	
	evaluation methodology, benefits and certification (2L)	
IV	Green Chemistry	15 L
	4.1. Principle and concepts of green chemistry:	
	sustainable development and green chemistry, atom	
	economy, examples of atom economic and atom	
	uneconomic reactions, reducing toxicity (4L)	
	<b>4.2. Organic solvents:</b> environmentally benign solutions,	
	solvent free systems, supercritical fluids (only	
	introduction) Ionic liquids as catalysts and solvents (4L)	
	4.3 Emerging Green Technologies: photochemical	
	reactions (advantages and challenges), examples.	
	Chemistry using microwaves, sonochemistry and	
	electrochemical synthesis. (4L)	
	4.4. Designing Greener Processes: Inherently Safer	
	Designs (ISD), Process intensification (PI) in-process	
	monitoring. (3L)	



- 1. A. K. De, Environmental Chemistry, 2nd Edition. Wiley (1989).
- 2. S. M. Khopkar, Environmental Pollution Analysis, John Wiely (1993).
- 3. SharadGokhale, Air Pollution Sampling And Analysis, IIT Guwahati, May (2009).
- 4. S. M. Khopkar, Environmental Pollution Analysis, New Age International publication (2011).
- Seonard'lCiacere, Water And Water Pollution (hand book) Ed., Vol I to IV, Marcel Dekker inc. New.York(1972).
- 6. Arvindkumar, Water pollution, APH publishing (2004)
- 7. Simon Parsons, Bruce Jefferson, Introduction to Potable Water Treatment Processes, Paperback publication.
- 8. Guidelines for drinking-water quality, Third edition, (incorporating first and second addenda). WHO report.
- 9. S.G. Misra and Dinesh Mani, Soil pollution, APH Publishing Corporation, (2009).
- 10. AbrahimMirsal, Soil Pollution: origin, monitoring and remediation, Springer (2010).
- 11. Donald F Anthrop, Noise Pollution, Lexington Books, (1973)
- 12. N. Birsen, Kairat K. Kadyrzhanov, Environmental Protection Against Radioactive Pollution Springer publication, (2003).
- 13. Green chemistry An Introductory text, Mzike Lancaster, Royal Society of Chemistry (2002).
- 14. K. G. Das, Dekker, Pesticide Analysis, (1981).
- 15. S. L Chpra, J.S Kanwar, Analytical, Agricultural Chemistry Kalyani publication.

Raulua



# Course Code : RPSCHEAEC-II 304

# Course Title : PHARMACEUTICAL AND ORGANIC ANALYSIS

# Academic year 2023–2024

#### **Course Outcomes:**

After co	ompletion of this course, the learners will be able to,
CO 1	Categorize the different types of drugs and dosage forms.
CO 2	Outline the role of FDA in pharmaceutical industry.
CO 3	Make use of the different methods learned to estimate the amount of drug present in a sample.
CO 4	Apply the concept of impurity profiling, stability studies, limit tests, bioavailability and bioequivalence while ensuring the uniformity in standards of quality, efficacy & safety of pharmaceutical products.
CO 5	Elaborate on the role of analytical chemistry in forensic laboratories.
CO 6	Identify and estimate the amount of the toxins found at crime scenes.
CO 7	Evaluate the quality of the cosmetic products by carrying out their analysis using the methods learned.

Course Code	Unit	Course Title / Unit Title	Credits/ Lectures
RPSCHEAEC-II 304	P	HARMACEUTICAL AND ORGANIC ANALYSIS	4
	I	Pharmaceutical Analysis	15 L
•		1.1 General idea regarding the Pharmaceutical	
		Industry, definition and classification of drugs,	
		introduction to pharmaceutical formulations,	
		classification of dosage forms. Role of FDA in	
~0`		pharmaceutical industries.(5L)	
		<b>1.2</b> Sources of impurities in pharmaceutical products	
		and raw materials. (3L)	
		<b>1.3</b> Standardization of finished products and their	
<b>D'O'</b>		characteristics, official methods of quality control.	
C C		(3L)	



<b>1.4. Pharmaceutical Legislation:</b> Introduction	0
drug acts, drug rules (schedules), concept of regulator	v
affairs in pharmaceuticals, review of GLP and GM	
and their regulations for analytical labs, roles ar	
responsibilities of personnel, appropriate design ar	
placement of laboratory equipment, requirements for	
maintenance and calibration. (4L)	
II Drugs	15
<b>2.1.</b> Analysis of compounds based on function	al
groups, instrumental methods for analysis of drug	s,
assays involving chromatographic separation	s,
proximate assays, assays of enzyme containing	g
substances, biological and microbiological assays an	d
tests. (6L)	
2.2 Limit tests, solubility tests, disintegration test	s,
stability studies (4L)	
<b>2.3</b> Bioequivalence and bioavailability studies. (2L)	
<b>2.4</b> Impurity profile of drugs (2L)	
<b>2.5</b> .Polymers in pharmaceuticals and novel dru	g
delivery systems.(1L)	0
III Forensic Science	15
<b>3.1</b> Analytical Chemistry in Forensic Science: General	
idea.(2L)	
<b>3.2 Forensic Analysis:</b> Blood, DNA profiling, Hair	
analysis, Finger printsAlcohol in body fluids, systematic	
drug identification.(5L)	
<b>3.3 Analytical Toxicology:</b> Isolation, identification and	
determination of:	
<b>3.3.1 Narcotics:</b> Heroin, morphine and cocaine.	
<b>3.3.2 Stimulants:</b> Amphetamines and caffeine.	
<b>3.3.3 Depressants:</b> Benzodiazepines, Barbiturates and	
Mandrax.	
ivialiti ax.	
<b>3.3.4 Hallucinogens:</b> LSD and Cannabis.	

 $\sim$ 



	<b>3.3.6</b> Viscera, stomach wash, vomit and postmortem blood	
	for poisons like – cyanide, arsenic, mercury, insecticides	
	and pesticides.	00
	3.3.7 Analysis of explosives (8L)	6.2
IV	Cosmetic Analysis	15
	<b>4.1. Cosmetics:</b> Introduction. Evaluation of cosmetic	
	materials, raw materials and additives. Formulation,	
	standards and methods of analysis.(2L)	
	4.2. Deodorants and antiperspirants: Al, Zn, Boric	
	acid, chlorides, sulphates, hexachlorophene,	
	methanamine, phenolsulphonates and urea.(3L)	
	4.3. Face powder: Fats, fatty acids, boric acid, barium	
	sulphate, Ca, Mg, Ti, Fe, oxides of Ti, Fe and Al	
	(total).(3L)	
	4.4. Hair tonic: 2,5-diaminotoluene, potassium	
	borates, sodium perborate, pyrogallol, resorcinol,	
	salicylic acid, dithioglycollic acid (in permanent	
	wavers) (3L)	
	4.5 Creams and Lotions: Types of emulsions,	
	chloroform soluble materials, glycerol, pH emulsion,	
	ash analysis, nonvolatile matter (IR spectroscopy) (2L)	
0	4.6 Lipsticks: General analysis, determination of -	
X	nonvolatile matter, lakes and fillers, trichloroethylene-	
	acetone soluble contents.(2L)	

- 1. Kenneth Antonio Connors, Text book of Pharmaceutical Analysis, Wiley, (2001).
- 2. Indian Pharmacopeia, Volume I and II.
- 3. M L Mehra, The Handbook of Drug Laws, University Book Agency, Ahmedabad,(1997).
- 4. Takeru Higuchi, Chemical Analysis of Drugs, Interscience Publishers, (1995).
- 5. Foster Dee Snell et al, Encyclopedia of Industrial Chemical Analysis, Interscience Publishers,(1967).
- 6. Official methods of analysis of AOAC international,18th edition 2005,AOAC international.
- 7. Suzanne Bell, Forensic Chemistry, Pearson Prentice Hall Publication, (2006).



RAMNARAIN RUIA AUTONOMOUS COLLEGE, SYLLABUS FOR M.Sc Sem-III Analytical Chemistry 2023-2024

- 8. David E Newton, Forensic Chemistry, Infobase Publishing,(2007).
- 9. Harry's Cosmetology, 7th Ed, Longman Scientific Co.
- 10. Edward Sagarin, Cosmetic Technology, Interscience Publishers,(1957).
- 11. Edgar George Thommsen, Francis Chilson, Modern Cosmetics, Drug and Cosmetic Industry,(1947).
- 12. Government of India Publications of Food, Drug and Cosmetic Act and Rules.
- 13. Encyclopedia of Analytical Chemistry, Volume 3, Academic Press,(1995).

# **SEMESTER – III**

#### **Practical**

RPSCHEA3P1		Group A	Credits
	Determination of the	e pK value of an indicator.	
	Determination of a	miline and ethanolamine in a mixture of two	in
	acetonitrile by poten	ntiometric titration.	
<b>3.</b> Determination of mixture of halides potentiometrically.			
	4. Estimation of strong acid, weak acid and salt in the given mixtu		
	conductometrically.		02
-	Analysis of mixture	of carbonate and bicarbonate using pH metry	
	Simultaneous deter	mination of mixture of metal ions (copper and lea	ad)
	by electrogravimetry	у.	
	Separation of parabe	enes using HPLC. Find number of theoretical pla	tes
	Separation of alcoho	ol / ester by GC.	
RPSCHEA3P2		Group B	Credits
	Estimation of drugs	by non aqueous titration: Pyridoxine hydrochlori	de,
	Mebendazole.		
	Determination of pe	ercent purity of methyleneblue.	
	Estimation of chole	esterol and Uric acid in the given sample of blo	ood
	serum		02
	Estimation of Gluco	ose by Folin-Wu method.	
	Estimation of fluorio	de in a tooth paste	
		Ca-pentathonate/calcium lactate tablets.	
	Estimation of Ca in	Ca-pentationale/calcium factale tablets.	

RPSCHEA 3P3	Group C	Credits
	<b>1.</b> Total reducing sugars before and after inversion in honey using: (a)	
	Cole's Ferricyanide (b) Lane - Eynon method.	0.9
	2. Analysis of lactose in milk	
	3. Estimation of Vitamin C in lemon Juice/squash by Dichlorophenol-	
	indophenol method	02
	<b>4.</b> Analysis of oil sample for the determination of SAP value, Iodine value.	
	<b>5.</b> Estimation of aldehyde in lemon oil / Cinnamon oil	
	6. Analysis of milk for its Ca, P and Fecontent.	
	7. Caffeine in tea by HPLC and UV.	
<b>RPSCHEA 3P4</b>	Group D	Credits
	1. Determination of Silica by molybdenum blue method.	
	2. Estimation of copper by extractive photometry.	
	<b>3.</b> Estimation of Glycine by Sorensen formol titration .	
	4. Separation of Ni(II) and Co(II) using anion exchanger column.	02
	<b>5.</b> Estimation of vitamin C using KBrO ₃ method.	
	6. Analysis of detergents: Active detergent matter, alkalinity and Oxygen	
	releasing capacity.	

- G H Jeffery, J Bassett, J Mendhem, R C Denney, Vogel's Textbook Of Quantitative Chemical Analysis, 3rd Edition, Longman Scientific & Technical,(1989).
- 2. Official methods of analysis of AOAC international,18th edition 2005,AOAC international.



## **MODALITY OF ASSESSMENT**

#### **Theory Examination Pattern:**

A) Internal Assessment - 40% (40 Marks)

**Presentation: 20 Marks** 

**Continuous Internal Assessment (CIA): 20 Marks** 

For each paper, learners are evaluated from their presentation based on the topic selected from syllabus. The assessment of presentation is as follows:

Sr. No	Evaluation type	Marks
1	Presentation content	10
2	Presentation skills	05
3	Viva	05
4	Continuous Internal Assessment (CIA) e.g. Test, Group discussion, assignment, open-book tests etc.	20
	Total	40

#### B) External examination - 60 %

#### Semester End Theory Assessment - 60 marks

Duration - These examinations shall be of **2.5 hours** duration.

2. Paper Pattern:

1.

2.1 There shall be 04 questions each of 15 marks. On each unit, there will be one question.

**2.2** All questions shall be compulsory with internal choice within the questions.

Questions	Options	Marks	Questions on
Q.1) A)	Any 3 out of 5	12	Unit I
Q.1) B)	Any 1 out of 2	3	
Q.2) A)	Any 3 out of 5	12	Unit II
Q.2) B)	Any 1 out of 2	3	
Q.3) A)	Any 3 out of 5	12	Unit III
Q.3) B)	Any 1 out of 2	3	
Q.4) A)	Any 3 out of 5	12	Unit IV
Q.4) B)	Any 1 out of 2	3	

#### **Practical Examination Pattern:**

#### Semester End Practical Examination: 50 marks

Experimental work	40
Viva	05
Journal	05

# PRACTICAL BOOK/JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.

In case of loss of Journal, a Lost Certificate should be obtained from Head/ Coordinator / In-charge of the department; failing which the student will not be allowed to appear for the practical examination.

Course	301		302				Grand
			1				Total
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practical			50			50	100
Course	303			3	04		Grand
							Total
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practical			50			50	100

#### **Overall Examination and Marks Distribution Pattern**

#### Total: 600 marks



# SEMESTER-IV Course Code : RPSCHEA 401 <u>Course Title : SEPARATION TECHNIQUES AND INDUSTRIAL MATERIALS</u> Academic year 2023–2024

#### **Course Outcomes:**

After co	After completion of this course, the learners will be able to,				
CO 1	Identify and design the suitable membrane separation technique for intended problem.				
CO 2	Elaborate on the importance of concept of pH ¹ / ₂ in solvent extraction.				
CO 3	Select an appropriate method for the processing, extraction using different techniques and standardization of the herbal materials as per WHO cGMP guidelines.				
CO 4	Recommend methods for the biodegradation of insectiscides and pestiscides.				
CO 5	Judge the quality of the detergents by making use of the various methods which are used in industries for carrying out their analysis.				
CO 6	Enlist properties of an ideal fuel.				
<b>CO 7</b>	Determine the calorific value of fuels using the methodologies learned.				
CO 8	Separate & estimate the amount of biomolecules using appropriate electrophoretic technique.				

Course Code	Unit	Course Title/Unit Title	Credits/ Lectures
RPSCHEA 401	SEPARATION TECHNIQUES AND INDUSTRIAL MATERIALS		
	Ι	Separation Science	15
	•	1.1.Membrane separation processes: operating	
		principles and applications of microfiltration, ultra-	
	$\mathbf{O}$	filtration, reverse osmosis, dialysis and electro-dialysis.	
		(6L)	
~0		1.2. Recapitulation of solvent extraction, roles of solvent	
		extraction in analytical chemistry, solvent extraction in sample	
		preparation and pretreatment steps, microwave assisted	
		extraction. (4L)	
$\mathbf{D}_{\mathbf{O}}$		1.1 Concept of pH 1/2, expression for pH ¹ / ₂ and its significance	
		(2L)	



	1	1	
		<b>1.4 Craig countercurrent extraction</b> : Theoretical treatment	
		and application in biological sample.(3L).	
	II	Electrophoresis	15 L
		<b>2.1. Electrophoresis:</b> Introduction, factors affecting migration	0
		rate, supporting media (gel, paper, cellulose, acetate, starch,	
		polyacrylamide, agarose, sephedax and thin layers) (7L)	
		2.2 Techniques of Electrophoresis: low and high voltage, SDS-	
		PAGE, continuous electrophoresis, capillary electrophoresis,	
		zone, gel, isoelectric focusing, isotaechophoresis, 2D gel	
		electrophoresis and miceller electro kinetic capillary	
		chromatography, instrumentation, detection and applications.	
		(8L)	
	III	Separation, Analysis and Standardization of Herbal based products.	15 L
		3.1. Herbs as a raw material: Definition of herb, herbal	
		medicine, herbal Medicinal products, herbal drug preparation.	
		Sources of herbs. Selection, identification and authentication of	
		herbal materials, drying and processing of herbal raw materials,	
		drying and processing of herbal raw material.(6L)	
		3.2 Extraction of herbal materials: Choice of solvent for	
		extraction, methods used for extraction and principles involved	
		in extraction.(3L)	
		3.3 Standardization of herbal formulation and herbal extracts:	
		Standardization of herbal extract as per WHO cGMP guidelines,	
		physical, chemical, spectral and toxicological standardization,	
		qualitative and quantitative estimations.(6L)	
	IV	Industrial Materials	15 L
		4.1 Insecticides, Pesticides: Definition, classification of	
~0		insecticides pesticides. Biodegradation of insecticides and	
		pesticides (5L).	
$\langle V \rangle$		4.2 Soaps and Detergents: Classification and composition,	
		qualitative analysis, quantitative analysis of detergents-	
3		alkalinity, active ingredients and oxygen releasing capacity.	
P		Biodegradable detergents (5L)	



4.3 Petrochemical products: Crude oils, fuels, and calorific	
values, fractional distillation process and fractions, properties of	)
fuel, composition of fuel, flashpoint, fire point, corrosion test,	
carbon residue and impact on environment. (5L)	

- Kaushik Nath , Membrane Separation Processes , 2nd edition, Prentice Hall of India Private limited, (2008).
- 2. G. D. Christian, Analytical Chemistry, 4th Ed. John Wiley, New York (1986).
- 3. D. A. Skoog and D. M. West and F. J Holler Holt- Saunders, Fundamentals of Analytical Chemistry, 6th Edition (1998).
- 4. J.B.Harborne,Phytochemical Methods-A Guide to modern techniques in plant analysis, 3rdedition,Chapman & Hall.
- 5. O.P.Varmani, A.K.Narula, Industrial chemistry, Galgotia.
- 6. O.P.Varmani,A.K.Narula, Applied Chemistry Theory and practice, 2nd edition, New age international publishers.
- 7. Upadhyay, Nath, Biophysical chemistry Principles and techniques, Himalaya Publishing House.
- 8. Maureen Melvin, Electrophoresis, (Analytical Chemistry by Open learning).



# Course Code : RPSCHEA 402 <u>Course Title : ADVANCED INSTRUMENTAL TECHNIQUES</u> Academic year 2023–2024

#### **Course Outcomes:**

After co	ompletion of this course, the learners will be able to,
CO 1	Explain the basic theory of 1H NMR spectroscopy & Raman Spectroscopy.
CO 2	Describe the working of the different components of NMR spectrophotometer & Raman
	spectrometer and will be able to explain how the spectrum is recorded.
CO 3	Apply ¹ H, ¹³ C, ³¹ Pand ¹⁹ F NMR spectroscopy techniques in combination with other spectroscopic
	data to carry out structure determination.
CO 4	Explain the mechanism of formation and fragmentation of ions in gas phase.
CO 5	Interpret the information contained in the mass spectra.
CO 6	Apply the basic working principles involved in the spectroscopic techniques learned for carrying
	out identification and analysis of samples.
CO 7	Make use of the phenomenon of chemiluminescence for varied applications.
CO 8	Elaborate on the concept of ORD & CD.
CO 9	Discuss the principle, instrumentation involved in Photoacoustic spectroscopy and will be able
	to use it for the trace analysis of solid, liquid and gaseous samples.

Course Code	Unit	Course Title/ Unit Title	Credits/ Lectures
<b>RPSCHEA402</b>	ADVANCED INSTRUMENTAL TECHNIQUES		
	Ι	Spectral Methods II	15 L
		NMR Spectroscopy	
	<b>1</b> 0 1	1.1. Theory and Instrumentation- recapitulation, FTNMR, 2D	
0		NMR,- FID signal generation mechanism, Techniques in 2D	
		NMR- homo nuclear correlation spectroscopy (COSY), total	
		correlation spectroscopy (TOCSY), heteronuclear correlation	
		(HETCOR). Application of NMR in structural elucidation (9L)	
		1.2 Radio waves in imaging- principle instrumentation and	
		applications of MRI(1L)	
		<b>1.3.</b> Application of NMR to other nuclei ${}^{13}C$ , ${}^{31}P$ and ${}^{19}F$	



	spectroscopy (3L)	
	<b>1.4 Electron spin resonance spectroscopy (ESR)</b> : basics,	0
	instrumentation and applications (2L)	0.7
II	Spectral Methods III	15 L
	2.1 Mass spectroscopy: recapitulation, correlation of mass	
	spectra with molecularstructure- EI and CI Ionization,	
	Instrumentation, and Fragmentation. interpretation of mass	
	spectra, analytical information derived frommass spectra-	
	molecular identification, meta stable peaks, Fragmentation	
	Reactions (9L)	
	2.2 Raman spectroscopy: Theory, Mechanism of Raman and	
	Rayleigh Scattering, Instrumentation, Applications. Resonance	
	and Surface enhanced Raman Spectroscopy.(4L)	
	The problems based on MS, NMR and IR Spectra (2L)	
III	Spectral Methods IV	15 L
	Principle, Instrumentation, and Applications of	
	2.1. Atomic Emission Spectroscopy- based on plasma and	
	electrical discharge sources, quantitation with Inductively couple	
	plasma spectroscopy. (5L)	
	2.2. Background correction in Graphite Furnace AAS and	
	Correction of spectral interference in ICP. (4L)	
	2.3 Quantitative analysis by AAS and ICP using external standard	
	and standard addition method. (3L)	
	<b>2.4 ICP-MS:</b> Instrumentation, Interface and applications for trace	
	level analysis of elements. (3L)	
IV	Miscellaneous Techniques	15 L
	Principle, Instrumentation and Applications of:	
	4.1. Chemiluminesescence Methods: Principle, Apparatus,	
	Quantitative Chemiluminescence - Gas phase and liquid phase	
03	Quantitative Chemiluminescence - Gas phase and liquid phase chemiluminescent analysis and titrations(application for	



4.2. Chirooptical Methods : ORD, CD (special application for	_ (
Bioanalysis) (5L)	0
4.3. Photoacoustic spectroscopy (3L)	00
4.4. Laser Induced Fluorescence (LIF) Spectroscopy (4L)	

- 1. G. D. Christian, Analytical Chemistry, 4thedition. John Wiley, New York (1986).
- D. A. Skoog and D. M. West and F. J Holler Holt- Saunders, Fundamentals of Analytical Chemistry, 6th Edition (1998).
- 3. D. A. Skoog, F. J. Holler and J.A. Niemann, Principles of Instrumental Analysis, 5thedition.
- 4. H. H. Willard, L. L. Merritt Jr, J. A. Dean and F. A, Instrumental methods of Analysis,.
- 5. P. J. Haines, Thermal methods of Analysis, Blackie Academic & Professional, London (1995).
- 6. W. W. Wendlandt, Thermal Analysis, 3rd Edition, John Wiley, N.Y. (1986).
- E. P. Bertain, Principles and Practices of X-ray spectrometric Analysis, 2ndedition, Plenum Press, NY, (1975)
- 8. D. Bane, B. Forkman, B. Persson, Nuclear Analytical Chemistry, Chartwell Bratt Ltd (1984).
- 9. Roger S. Macomber, A Complete Introduction to Modern NMR Spectroscopy,1st Edition
- 10. Robert. M.Silverstein, Spectrometric Identification of Organic Compounds Hardcover, Wiley.



# Course Code : RPSCHEA 403 <u>Course Title : ENVIRONMENTAL AND CERTAIN INDUSTRIALLY IMPORTANT</u> <u>MATERIALS</u> Academic year 2023–2024

#### **Course Outcomes:**

After co	mpletion of this course, the learner will be able to,
CO 1	Elaborate on the various physical, chemical and biological processes which are used in CETP to
	remove the contaminants from wastewater.
CO 2	Apply the concept of recycling, reuse & reclamation in managing solid waste in real life.
CO 3	Classify the different types of plastics.
CO 4	Outline the importance of additives in plastic.
CO 5	Estimate the amount of metallic impurities in plastics.
CO 6	Describe the composition of paints.
CO 7	Make use of the methodologies learned to carry out the analysis of each and every component
	present in paints.
CO 8	Develop an understanding of zone refining and vacuum fusion and extraction techniques.
CO 9	Classify the kinds of elements that can be purified by the process of zone refining.
CO 10	Suggest a method for analyzing different elements present in ores & alloys.

Course Code	Unit	Course Title/Unit Title	Credits/ Lectures
RPSCHEA 403	ENV	<b>IRONMENTAL AND CERTAIN INDUSTRIALLY</b>	1
		IMPORTANT MATERIALS	4
	Ι	Effluent Treatment	15 L
		<b>1.1.Effluent treatment:</b> primary secondary and tertiary (2L)	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		<b>1.2</b> Plant general construction and process flow charts(3L)	
		1.3 Treatment and disposal of sewage.(3L)	
		1.4. Effluent parameters for metallurgical industry Permissible	
		limits for metal (example Cr, As, Pb, Cd etc) traces in the	
0.0.		effluent.(2L)	
Y		1.5 Recycle and reuse of process and treated (effluent) water.	

		(2L)	
		1.6 Recovery of metals from effluent, modern methods –	
		electrodialysis, electrodeposition and Ion Exchange etc.(3L)	04
	II	Solid Waste Management	15 L
		2.1.Solid waste types and characteristic (2L)	
		2.2. Solid waste management: objectives, concept of recycle,	
		reuse and recovery (3L)	
		2.3. Methods of solid waste disposal.(2L)	
		2.4. Treatment and disposal of sludge / dry cake (3L)	
		2.5 Managing non-decomposable solid wastes (2L)	
		2.6 Bio- medical waste : Introduction , Classification and	
		methods of disposal (3L)	
	III	Plastics and Polymers	15 L
		3.1.Plastics: Classification of plastic, determination of additives,	
		molecular weight distribution, analysis of plastic and polymers	
		based on styrene, vinyl chloride, ethylene, acrylic and cellulosic	
		plastics. (5L)	
		3.2 Metallic impurities in plastic and their determination, (2L)	
		3.3 Impact of plastic on environment as pollutant.(2L)	
		3.4 Paints and pigments: Types of paints pigments,	
		determination of volatile and non - volatile components, Flash	
		point (significance and method of determination), separation and	
		analysis of pigments, binders and thinners.(3L)	
		3.5 Role of Organo silicones in paints and their impact on	
		environment.(3L)	
	IV	Metallurgy	15 L
		4.1. Ores and minerals: Dressing of ores, pollution due to	
		metallurgical processes (ore dressing, calcination, smelting)	
		(3L)	
		4.2. Chemical analysis of ores for principal constituents	
		:Galena,Pyrolusite, Bauxite, Hematite, Monazite (4L)	
10		4.3 Alloys: definition, analysis of Cupronickel, Magnelium,	
		Steel And Stainless Steel, Bronze, Gun metal.(4L)	

4.4 Techniques of purification: Zone refining, analysis of high		
puritymaterials like silicon, vacuum fusion and extraction		
techniques. (4L).		

- 1. H.R.Singh, Environmental Biology, S.Chand& Company Ltd.
- 2. P.S.Sindhu, Environmental Chemistry, New age international (P) limited Publishers.
- 3. Balram Pani, Textbook of Environmental Chemistry, I.K. International Publishing House Pvt.Ltd (2007).
- Sameer.K.Banerji , Environmental Chemistry, 2nd edition, Prentice Hall of India Private Limited.
- 5. K Sasikumar and SanoopGopi Krishna, Solid waste management, PHI publication (2009).
- 6. Surendrakumar, Solid waste management, Northen Book Center (2009).
- G. S. Sodhi, Fundamental Concepts of Environmental Chemistry,2nd edition, Alpha Science, (2005).
- 8. Manual of Procedures for Chemical and Instrumental Analysis of Ores, Minerals, and Ore Dressing Products. Government of India Ministry of Steel & Mines, Indian Bureau of Mines,(1979).
- Alloying: understanding the basics, edited by Joseph R. Davis, ASM International (2001).
- Zone refining and allied techniques, Norman L. Parr, G. Newnes Technology &Engineering (1960).

Course Code : RPSCHEAOC-I 404 <u>Course Title : INTELLECTUAL PROPERTY RIGHTS & CHEMINFORMATICS</u> Academic year 2023–2024

Course Outcomes:

After co	ompletion of this course, the learner will be able to:
CO 1	Be well versed with the concept of intellectual property and the terms involved with respect to Indian Patent Law.
CO 2	Distinguish between patents and copyrights.
CO 3	Elaborate on the economical impact and legislature involved in Intellectual property rights.
CO 4	Make use of the software tools pertaining to Cheminformatics and Molecular Modelling.
CO 5	Conduct structure and sub-structure search online, determine SMILES codes for various molecules.
CO 6	Gain knowledge about the application of the research based tools.

Course Code	Unit	Course Title / Unit Title	Credits/		
Course Coue	Um	Course Thie/ Onit Thie	Lectures		
RPSCHEAOC-I	IN	TELLECTUAL PROPERTY RIGHTS AND	4		
404		CHEMINFORMATICS			
	Ι	Introduction to Intellectual Property - I	15 L		
		1.1 Introduction to Intellectual Property:[2L]			
	G	Historical Perspective, Different types of IP, Importance of			
		protecting IP.			
		1.2 Patents:[5L]			
	5	Historical Perspective, Basic and associated right, WIPO,			
		PCT system, Traditional Knowledge, Patents and Health			
		care-balancing promoting innovation with public health,			
		Software patents and their importance for India.			
		1.3 Industrial Designs:[2L]			
		Definition, How to obtain, features, International design			
		registration.			
		1.4.Copyrights:[2L]			
0'0'		Introduction, How to obtain, Differences from Patents.			
		1.5 Trade Marks:[2L]			

		Introduction, How to obtain, Different types of marks -	
		Collective marks, certification marks, service marks, trade	
		names etc.	07
		1.6 Geographical Indications:[2L]	
		Definition, rules for registration, prevention of illegal	
		exploitation, importance to India.	
	II	Introduction to Intellectual Property-II	15 L
		2.1 Trade Secrets:[2L]	
		Introduction and Historical Perspectives, Scope of	
		Protection, Risks involved and legal aspects of Trade Secret	
		Protection.	
		2.2IP Infringement issue and enforcement:[2L]	
		Role of Judiciary, Role of law enforcement agencies -	
		Police, Customs etc.	
		2.3 Economic Value of Intellectual Property:[5L]	
		Intangible assests and their valuation, Intellectual Property	
		in the Indian context – Various Laws in India Licensing and	
		Technology transfer.	
		2.4 Different International agreements:[6L]	
	C	2.4.1 World Trade Organization (WTO):General	
		Agreement on Tariffs and Trade (GATT), Trade	
		Related Intellectual Property Rights (TRIPS)	
		agreement.General Agreement on Trade Related	
. ?		Services (GATS) Madrid	
		Protocol.BerneConvention.Budapest Treaty	
		2.4.2 Paris Convention: WIPO and TRIPS, IPR and	
		Plant Breeders Rights, IPR and Biodiversity.	
	III	Cheminformatics-I	15 L

 History and evolution of cheminformatics, Use of Cheminformatics, Prospects of cheminformatics, Molecular modeling and structure elucidation. 3.2 Representation of molecules and chemical reactions:[5L] Nomenclature, Different types of notations, SMILES coding, Matrix representations, Structure of Molfiles and Sdéiles, Librarias and taolkits, Different electronic effects. 	eor
 modeling and structure elucidation. 3.2 Representation of molecules and chemical reactions:[5L] Nomenclature, Different types of notations, SMILES coding, Matrix representations, Structure of Molfiles and 	C
3.2 Representation of molecules and chemical reactions:[5L] Nomenclature, Different types of notations, SMILES coding, Matrix representations, Structure of Molfiles and	
reactions:[5L] Nomenclature, Different types of notations, SMILES coding, Matrix representations, Structure of Molfiles and	
Nomenclature, Different types of notations, SMILES coding, Matrix representations, Structure of Molfiles and	
coding, Matrix representations, Structure of Molfiles and	
Selfiles, Librarias and toollyits, Different electronic offects	
Sdfiles, Libraries and toolkits, Different electronic effects,	
Reaction classification.	
3.3 Searching Chemical Structures:[5L]	
Full structure search, sub-structure search, basic ideas,	
similarity search, three dimensional search methods, basics	
of computation of physical and chemical data and structure	
descriptors, data visualization.	
IV Cheminformatics-II	15 L
4.1 Prediction of Properties of Compound, Linear Free	
Energy Relations, Quantitative Structure – Property	
Relations, Descriptor Analysis, Model Building, Modeling	
Toxicity, Structure – Spectra correlations, Prediction NMR,	
IR and Mass spectra.	
4.2 Computer Assisted Structure elucidations, Computer	
assisted Synthesis Design, Introduction to drug design,	
Target Identification and Validation, Lead Finding and	
Optimization, analysis of HTS data, Virtual Screening,	
Design of Combinatorial Libraries, Ligand-based and	
Structure based Drug design,	
4.3 Application of Cheminformatics in Drug Design.	
	 Full structure search, sub-structure search, basic ideas, similarity search, three dimensional search methods, basics of computation of physical and chemical data and structure descriptors, data visualization. IV Cheminformatics-II 4.1 Prediction of Properties of Compound, Linear Free Energy Relations, Quantitative Structure – Property Relations, Descriptor Analysis, Model Building, Modeling Toxicity, Structure – Spectra correlations, Prediction NMR, IR and Mass spectra. 4.2 Computer Assisted Structure elucidations, Computer assisted Synthesis Design, Introduction to drug design, Target Identification and Validation, Lead Finding and Optimization, analysis of HTS data, Virtual Screening, Design of Combinatorial Libraries, Ligand-based and Structure based Drug design,

- 1. Vivien Irish, Intellectual Property Rights for Engineers, 2nd Edition, British Library, (2008).
- 2. David I. Bainbridge, Intellectual Property, 8th Edition, Pearson, (2010).
- Stephen Elias and Richard Stim, Patent Copyright & Trade Mark, 8th Edition, Nolo and Richard, (2013).
- 4. Johann Gasteiger and Thomas Engel, Chemoinformatics, Wiley-VCH, (2003).
- 5. Andrew R. Leach, Valerie J. Gillet, An Introduction to Chemoinformatics, Springer, (2007).
- 6. Barry A. Bunin, Jurgen Bajorath, Brian Siesel and Guillermo Morales, Chemoinformatics- Theory, Practice and Products, Springer, (2007).

Course Code : RPSCHEAOC-II 404 <u>Course Title : RESEARCH METHODOLOGY</u> Academic year 2023–2024

Course Outcomes:

After t	he completion of this course, the learner will be able to:
CO 1	Know basics of research methodology
CO 2	Get the technical know-how of research from developing a problem.
CO 3	Write a research paper, study formats of existing research papers and review papers.
CO 4	Be aware about importance of lab-safety and the safety protocols in R&D laboratories.

Course Code	Unit	Course Title / Unit Title	Credits/ Lectures
RPSCHEAOC-II 404		Research Methodology	4
	Ι	Review of Literature	15 L
	9	 1.1 Print:[5L] Primary, Secondary and Tertiary sources. 1.2 Journals: Journal abbreviations, abstracts, current titles, reviews, monographs, dictionaries, text-books, current contents, Introduction to Chemical Abstracts and Beilstein, Subject Index, Substance Index, Author Index, Formula Index, and other Indices with examples. 1.3 Digital:[5L] Web sources, E-journals, Journal access, TOC alerts, Hot articles, Citation Index, Impact factor, H-index, E-consortium, UGC infonet, E-books, Internet discussion groups and communities, Blogs, preprint 	
5		servers, Search engines, Scirus, Google Scholar,	

	ChemIndustry, Wiki-databases, ChemSpider, Science	0
	Direct, SciFinder, Scopus.	- XV
	1.4 Information Technology and Library	
	Resources:[5L]	
	The Internet and World wide web, Internet resources	
	for Chemistry, finding and citing published	
	information.	
II	Data Analysis	15 L
	2.1 The Investigative Approach:	
	Making and recording Measurements, SI units and	
	their use, Scientific methods and design of	
	experiments.	
	2.2 Analysis and Presentation of Data:	
	Descriptive statistics, choosing and using statistical	
	tests, Chemometrics, Analysis of Variance	
	(ANOVA), Correlation and regression, curve fitting,	
	fitting of linear equations, simple linear cases,	
	weighted linear case, analysis of residuals, general	
	polynomial fitting, linearizing transformations,	
Q	exponential function fit, r and its abuse, basic aspects	
	of multiple linear regression analysis.	
m	Methods of Scientific Research and Writing	15 L
	Scientific Papers	
(° O+ '	3.1Reporting practical and project work, Writing	
	literature surveys and reviews, organizing a poster	
	display, giving an oral presentation.	
	3.2 Writing Scientific Papers:	
	Justification for scientific contributions, bibliography,	
0'0'	description of methods, conclusions, the need for	
	illustration, style, publications of scientific work,	

	writing ethics, avoiding plagiarism.	.0
IV	Chemical Safety & Ethical Handling of Chemicals	15 L
	4.1Safe working procedure and protective	0.9
	environment, protective apparel, emergency	
	procedure, first aid, laboratory ventilation, safe	
	storage and use of hazardous chemicals, procedure	
	for working with substances that pose hazards,	s.Co
	flammable or explosive hazards, procedures for	
	working with gases at pressures above or below	
	atmospheric pressure.	
	4.2 Safe storage and disposal of waste chemicals,	
	recovery, recycling and reuse of laboratory	
	chemicals, procedure for laboratory disposal of	
	explosives, identification, verification and	
	segregation of laboratory waste, disposal of	
	chemicals in the sanitary sewer system, incineration	
	and transportation of hazardous chemicals.	

- 1. C. R. Kothari, Research Methodology- Methods and techniques, New Age International (P) Limited Publisher, (2004).
- Yogesh Kumar Singh, Fundamental of Research Methodology and Statistics, New Age International (P) Limited Publisher, (2006).
- 3. Carol Ellison, Concise Guide to Writing Research Ppaers, McGraw-Hill, (2016).
- 4. Prem S. Mann, C. Jay Lacke, Introductory Statistics, 7th Edition, John Wiley and Sons,(2010).
- 5. Andrew A. Jawlik, Statistics From A to Z Confusing Concepts Clarified, John Wiley and Sons, (2016).

		SEMESTER – IV Bractical	.0
RPSCHEA4P1		<u>Practical</u> Group A	Credits
	1.	Analysis of tamrabhasma by AAS and UV	5
	2.	Estimation of Na+ in dairy whitener by flame photometry	
	3.	Spectrophotometric determination of pH of buffer solution.	
	4.	Simultaneous determination of Ti^{3+} and V^{5+} spectrophotometrically by	2
		H ₂ O ₂ method	02
	5.	Estimation of Aspirin by conductometrically.	
	6.	Recording and interpretation of IR spectra of given compound.	
	7.	Identification of components of essential oils by GCMS.	
	8.	Determination of water in organic solvent by Karl Fischer method.	
RPSCHEA4P2		Group B	Credits
	1.	To analyze Pyrolusite for: Fe by redox titration and / or Mn by	
		colorimetry.	
	2.	To analyze galena for: Pb by Complexometric	
	3.	Analysis of Cupronickel alloy by electrogravimetry.	02
	4.	To analyze Magnelium for Mg titrimetrically.	
	5.	To analyze Bronze for Zn by volumetric method	
	6.	To analyze Steel for: Ni and Cr	
RPSCHEA4P3		Group C	Credits
	Inte	erpretation of spectral data (UV, IR, PMR, CMR, Mass spectra, XRD,	
	The	ermal)	
	A le	earner will be given UV, IR, PMR, CMR, Mass spectra, of a compound	
	from	n which preliminary information should be reported within first half an hour	02
	of	the examination without referring to any book/reference material. The	
		plete structure of the compound may then be elucidated by referring to any	
		ndard text-book/reference material etc	
	(Mi	inimum 8 spectral analysis)	
RPSCHEA4P4		Group D	Credits
		Project Evaluation	02

- G H Jeffery, J Bassett, J Mendhem, R C Denney, Vogel's Textbook Of Quantitative Chemical Analysis, 3rd Edition, Longman Scientific & Technical, 1989.
- 2. Official methods of analysis of AOAC international,18th edition 2005,AOAC international.

Page | 38

MODALITY OF ASSESSMENT

Theory Examination Pattern:

B) Internal Assessment - 40% - 40 Marks

Presentation: 20 Marks

Continuous Internal Assessment (CIA): 20 Marks

For each paper, learners are evaluated from their presentation based on the topic selected from syllabus. The assessment of presentation is as follows:

<i>a</i> •		
Sr. No	Evaluation type	Marks
1	Presentation content	10
2	Presentation skills	05
3	Viva	05
4	Continuous Internal Assessment (CIA) e.g. Test, Group discussion, assignment, open-book tests etc.	20
	Total	40

B) External examination - 60 % - 60 Marks

Semester End Theory Examination - 60 marks

- i. Duration These examinations shall be of **2.5 hours** duration.
- ii. Paper Pattern:
 - 1. There shall be 04 questions each of 15 marks. On each unit there will be one question.
 - 2. All questions shall be compulsory with internal choice within the questions.

Questions	Options	Marks	Questions on
Q.1)A)	Any 3 out of 5	12	Unit I
Q.1)B)	Any 1 out of 2	3	
Q.2)A)	Any 3 out of 5	12	Unit II
Q.2)B)	Any 1 out of 2	3	
Q.3)A)	Any 3 out of 5	12	Unit III
Q.3)B)	Any 1 out of 2	3	
Q.4)A)	Any 3 out of 5	12	Unit IV
Q.4)B)	Any 1 out of 2	3	
	Total	60	

Practical Examination Pattern:

Semester end practical examination: 50 marks

Experimental work	40	
Viva	05	
Journal	05	
Total	50	

PRACTICAL BOOK/JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.

In case of loss of Journal, a Lost Certificate should be obtained from Head/ Co-ordinator / In-charge of the department; failing which the student will not be allowed to appear for the practical examination.

Course	401		402				Grand Total
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practical		~	50		1	50	100
Course	403			404			Grand Total
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practical	(0)		50			50	100

Overall Examination and Marks Distribution Pattern

Total: 600 marks