Resolution No.: AC/II(20-21).2.RUS4

١

S.P. Mandali's

RAMNARAIN RUIA AUTONOMOUS COLLEGE

(Affiliated to University of Mumbai) Scolled

Syllabus for: UG

Program: B. Sc.

Program Code: BOTANY(RUSBOT)

(Credit Based Semester and Grading System for the academic year 2021-2022)

S. P. Mandali's Ramnarain Ruia Autonomous College has adopted the Outcome Based Education model to make its science graduates globally competent and capable of advancing in their careers. The Bachelors Program in Science also encourages students to reflect on the broader purpose of their education.

PROGRAM OUTCOMES

PO	PO Description
	A student completing Bachelor's Degree in Science program will be
	able to:
PO 1	Recall and explain acquired scientific knowledge in a comprehensive manner and apply the skills acquired in their chosen discipline. Interpret scientific ideas and relate its interconnectedness to various fields in science.
PO 2	Evaluate scientific ideas critically, analyse problems, explore options for practical demonstrations, illustrate work plans and execute them, organise data and draw inferences
PO 3	Explore and evaluate digital information and use it for knowledge upgradation. Apply relevant information so gathered for analysis and communication using appropriate digital tools
PO 4	Ask relevant questions, understand scientific relevance, hypothesize a scientific problem, construct and execute a project plan and analyse results.
PO 5	Take complex challenges, work responsibly and independently, as well as in cohesion with a team for completion of a task. Communicate effectively, convincingly and in an articulate manner.
PO 6	Apply scientific information with sensitivity to values of different cultural groups. Disseminate scientific knowledge effectively for upliftment of the society.
PO 7	Follow ethical practices at work place and be unbiased and critical in interpretation of scientific data. Understand the environmental issues and explore sustainable solutions for it.
PO 8	Keep abreast with current scientific developments in the specific discipline and adapt to technological advancements for better application of scientific knowledge as a lifelong learner

PROGRAM SPECIFIC OUTCOMES

PSO	PSO Description
	A student completing Bachelor's Degree in Science program in
	the subject of Botany will be able to:
PSO 1	Understand the basic concepts of lower & higher plants their life cycle, economic and ecological importance, also evolution from algae to angiosperms and their industrial applications
PSO 2	Develop an understanding of the principles underlying nomenclature and classification of Angiosperms, identify plants belonging to various families according to Bentham and Hooker's system.
PSO 3	Elucidate ecological interconnectedness of life by energy and nutrient flow, relate the physical features of the environment to the structure of populations, communities, ecosystems, pollution, bioremediation, natural resources, sustainability and importance of conservation.
PSO 4	Understand and relate priority areas such as genetics, cell and molecular biology, plant biotechnology and application of genetic engineering for the improvements of plants.
PSO 5	Gain knowledge about laws of inheritance, various genetic interactions, chromosomal aberrations, multiple alleles and mutations.
PSO 6	Analyze morphological and anatomical plant structures in the context of metabolic /physiological functions of plants, including embryological and palynological aspects
PSO 7	Apply ethnobotanical aspects and medicinal, dietary and cosmetic uses of plants with special reference to phytochemistry and usage as mentioned in different Pharmacoepia
PSO 8	Acquire the skills in handling scientific instruments, planning and performing laboratory experiments and application of suitable statistical tools.
PSO 9	Understand the finer aspects of emerging areas such as Molecular biology and Bioinformatics.
PSO 10	Develop practical skills in laboratory techniques in various fields of botany along with collection and interpretation of biological materials
PSO 11	Apply research based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of the information to provide valid conclusions.

Resolution No.: AC/II(21-22).2.RUS4

SE COM

S.P. Mandali's

RAMNARAIN RUIA AUTONOMOUS COLLEGE

Syllabus for: S. Y

Program: B. Sc.

Program Code: Botany (RUSBOT)

(Credit Based Semester and Grading System for the academic year 2021 – 2022)

4

SEMESTER III

Course Code	UNIT	TOPICS	Credits
RUSBOT 301 PLANT DIVERSITY III		PLANT DIVERSITY III	•
	I	Microbiology	
	II	Thallophyta (Algae) and Bryophyta	02
	III	Angiosperms	
RUSBOT 302		FORM AND FUNCTION III	
	I	Cell biology	
	II	Cytogenetics	02
	III	Molecular Biology	6
RUSBOT 303	CU	RRENT TRENDS IN PLANT SCIENCES	
	I	Pharmacognosy and Phytochemistry	
	II	Instrumentation	02
	111	Horticulture	02
		Industry based on plant products	
RUSBOTP	Practicals	Practical based on all the three	03
301, 302, 303	Tracticals	courses in theory	03
			09
		SEMESTER IV	
<u> </u>			

	-		
Course Code	UNIT	TOPICS	Credits
		PLANT DIVERSITY IV	
RUSBOT 401		Thallophyta: Fungi, Plant Pathology	
		and Lichens	02
	II	Pteridophyta and Paleobotany	02
	Щ V	Gymnosperms	
RUSBOT 402		FORM AND FUNCTION IV	
		Anatomy	
		Plant Physiology and Plant	02
. ?		Biochemistry	02
	III	Ecology and Environmental Botany	
RUSBOT 403	CU	RRENT TRENDS IN PLANT SCIENCES	ll
	I	Biotechnology	
	II	Biostatistics and Bioinformatics	02
		Research Methodology I	1
RUSBOTP 401,	Practicals	Practical based on all the three	03
402, 403	Fracticals	courses in theory	03
			09

20

SEMESTER -III

Course Code: RUSBOT 301

Course Title:Plant Diversity III

Academic year 2021 - 2022

COURSE OUTCOMES:

Upon successful completion of this course, learners will be able to;

COURSE OUTCOME	CO DESCRIPTION
CO 1	Examine the general characteristics of bacteria, their reproduction and culturing.
CO 2	Understand the applications of microorganisms in various fields and evaluate the Plant- Microbe interactions
CO 3	Develop critical understanding of the life cycles of algae and bryophytes
CO 4	Evaluate the economic importance and significance of algae and bryophytes
CO 5	Understand the principles underlying Bentham and Hooker's classification and identify plants from the prescribed families
CO 6	Analyse taxonomy in relation to anatomy and secondary metabolites

Course Code/Unit	Course/ Unit Title	Credits/Lect ures
RUSBOT 301	Title: Plant Diversity III	Credits – 2
UNIT I	Microbiology	Lectures-15
	Reproduction and Growth in Bacteria	
	Nutritional types, Physical conditions for growth	
	Cultivation of Bacteria-Bacteriological Media, Sterilization Pure	
	culture techniques, Cultural Characteristics of bacteria.	
	Plant- Microbe interactions-	
	Rhizosphere and Phylloshere microorganisms	
	Plant growth promoting bacteria(PGPB)	
	Root nodule associated bacteria- <i>Rhizobium</i> - infection process and	
	the mutualist association, Actinorhizae	
0.0		
UNIT II	Thallophyta (Algae) and Bryophyta	Lectures-15
,	General Characters of Division Chrysophyta and Phaeophyta:	
	Distribution, Cell structure, range of thallus, Economic Importance.	
	Structure, life cycle and systematic position of Vaucheria and	
	Sargassum	
	General account of Class Anthocerotae	
	Structure, life cycle and systematic position of Pellia and Anthoceros	
UNIT III	Angiosperms	Lectures-15
	Systematics: Categories and taxonomic hierarchy;	
	Plant Nomenclature	

	- Toyonomy in relation to	
	Taxonomy in relation to	
	 Anatomy Chemical constituents 	
	With the help of Bentham and Hooker's system of Classification for	
	flowering plants study the vegetative, floral characters and economic	
	importance of the following families:	
	Brassicaceae	
	Capparidaceae	
	Myrtaceae	
	Combretaceae	
	Rubiaceae	2
	Amaranthaceae	
	Euphorbiaceae	
	Palmae	
	PRACTICALS	
RUSBOTP	Plant Diversity III	Credit - 1
301		
1	Sterilization of glassware, preparation of media, slants and plates.	
2	Slide burial technique for rhizoplane fungi.	
3	Cultivation and staining of Rhizobium	
4	Study of stages in the life cycle of Vaucheria and Sargassum from fresh	n/ preserved
	material and permanent slides.	
5	Economic importance and range of thallus in Phaeophyta	
6	Study of stages in the life cycle of and Pellia from fresh/ preserved mate	erial and
	permanent slides.	
7	Study of stages in the life cycle of Anthoceros from fresh/ preserved ma	aterial and
	permanent slides.	
8	Study of plants for anatomy in relation to taxonomy	
9	Study of plants for Alkaloids, Tannins, Phenols and Flavonoids (chemo	taxonomy)
10	Study of one plant from each family prescribed for theory:	
	Brassicaceae	
	Capparidaceae	
	Myrtaceae	
	Combretaceae	
	Rubiaceae	
	Amaranthaceae	
	Euphorbiaceae	
	Palmae	
11	Morphological peculiarities, palynological studies and economic importa	ance of the
	members of these families.	
12	Preparation of herbarium and wet preservation technique	
iI		

- Pelczar M. J, Chan E.C., Krieg, N. R.1993. Microbiology by Pelczar Chan and Krieg 5th ed.
- Christopher, J. W. Joanne, W and Linda, S. 2007. Prescotts Microbiology, 13th ed.
- Brodie J. and Lewis J. 2007. Unravelling the algae: the past, present and future of algal systematics. CRC press, New York, pp. 335.
- Bellinger E.G. and Sigee D.C. 2010. Freshwater algae: Identification and use as bioindicators, Willey-Blackwell, UK, pp. 271.
- Misra J.N. 1996. Phaeophyceae in India. ICAR, New Delhi.
- Graham L.E. and Wilcox L.W. 2000. Algae. Penticce-Hall, Inc, pp. 64
- Krishnamurthy V. 2000. Algae of India and neighboring countries Indian Chlorophycota, Oxford & IBH, New Delhi.
- Lee R.E. 2008. Phycology. Cambridge University Press, pp.547.
- College Botany Volume I and II. 2006. Gangulee, Das and Dutta latest edition. Central Education enterprises
- Prescott G.W. 1969. The algae.
- Smith G.M. 1950. The fresh water algae of the United States, Mc-Graw Hill New York.
- Srinivasan K.S. 1969. Phycologia India. Vol. I & II, BSI, Calcutta.
- Vashista B.R, Sinha A.K and Singh V.P. 2005. Botany for degree students –Algae, S. Chand's Publication.
- Cavers F. 1976. The interrelationships of the Bryophytes. S.R. Technic, Ashok Rajpath, Patna.
- Chopra R.N. and Kumar P.K. 1988. Biology of Bryophytes. John Wiley & Sons, New York, NY.
- Parihar N.S. 1980. Bryophytes: An Introduction to Embryophyta. Vol I. Central Book Depot, Allahabad.
- Watson E.V. 1971. Structure and Life of Bryophytes. 3rd Edition. Hutchinson University Library, London.
- Davis P.H and V.H Heywood. 1963. Principles of Angiosperm Taxonomy. Oliver and BoydLondon.
- Gurucharan Singh. 2005. Systematics theory and practice (Oxford IBH)
- Heywood V.H. 1967. Plant Taxonomy, London.
- Lawrence, G.H.M. 1951. Taxonomy of Vascular Plants. N.Y.
- Sharma, O.P. 1993. Plant Taxonomy. Tata McGraw Hill. Publ. Co. Ltd. New Delhi, India.
- Singh, V. 1993. Taxonomy of Angiosperms Rastogi Publication. Meerut (U.P.)India.
- Singh, V., Pande, P.C. and D. K. Jain 1994. A Text Book of Botany: Angiosperms. RastogiPublications, Meerut (U. P.), India.
- Singh, M. P., Nayar, M.P. and R. P. Roy. 1994.Text Book of Forest Taxonomy, AnmolPubl. P. (Ltd.) New Delhi, India.
- Swingle D.B. 1946. A Text book of Systematic Botany. McGraw Hill Book Co. New York.
- Takhtajan A. 1969. Flowering Plants; Origin and Disposal.
- Theodore Cooke. 1903. The flora of The Presidency of Bombay Vol. I, II, III.

Course Code: RUSBOT 302

Course Title:Form and function - III

Academic year 2021 - 2022

COURSE OUTCOMES :

Upon successful completion of this course, learners will be able to;

COURSEOU	ICOMES :
Upon succes	sful completion of this course, learners will be able to;
COURSE OUTCOME	CO DESCRIPTION
CO 1	Develop understanding on the ultra structure and functions of the cell
001	
	organelles
CO 2	Critically understand the process of cell division and the structure of nucleic
	acids.
CO 3	Understand the details of cellular structures, causes and effects of variations in
	chromosome structure and number, extranuclear genetics.
CO 4	Gain an understanding of the fundamentals of molecular biology, understand
	and differentiate DNA replication and transcription.

Course Code/Unit	Course/ Unit Title	Credits/Lect ures
RUSBOT 302	Title: Form and function – III	Credits – 2
UNIT I	Cell biology	Lectures-15
	Ultra Structure and functions of the following cell organelles: Mitochondrion (membranes, cristae, F1 particles and matrix) Peroxisomes and Glyoxysomes, Ribosomes (prokaryotic, eukaryotic and subunits)	
	Cell Division and its significance: Cell Cycle, structure of Interphase Nucleus(nuclear envelope, chromatin network, nucleolus and nucleoplasm) Meiosis, Differences between Mitosis and Meiosis Nucleic Acids: Types, structure and functions of DNA and RNA	
UNITI	Cytogenetics	Lectures-15
	Variation in Chromosome structure (Chromosomal aberrations) Definition, Origin, Cytological and Genetic effects of the following: Deletions, Duplications, Inversions and Translocations.	
	Variation in Chromosome number: Origin and production, morphological and cytological features, applications in crop improvement and evolution of aneuploids and euploids (monoploids, autopolyploids and allopolyploids)	
	 Extra nuclear Genetics -Organelle heredity- Chloroplast determines heredity - Plastid transmission in plants, Streptomycin resistance in <i>Chlamydomonas</i>. Male sterility in maize 	

UNIT III	Molecular Biology Le	ectures-15
	DNA replication : Modes of Replication, Messelson and Stahl experiment	
	DNA replication in prokaryotes and eukaryotes- enzymes involved and molecular mechanism of replication.	
	 Protein Synthesis: Central dogma of protein synthesis Transcription in prokaryotes and eukaryotes: promoter sites, initiation, elongation and termination. 	())
	RNA processing: Adenylation and Capping	
	PRACTICALS	
RUSBOTP 302	Form and function – III	Credit – 1
1	Study of the ultra-structure of cell organelles prescribed for the photomicrographs	eory from
2	Estimation of DNA from plant material (one standard and one unknown)	
3	Estimation of RNA from plant material (one standard and one unknown)	
4	Chromatography: Separation of amino acids by circular paper chromatograph	hy
5	Separation of Carotenoids by thin layer chromatography	
6	Study of inheritance pattern with reference to Plastid inheritance	
7	Study of cytological consequences of chromosomal aberrations Chromosomal Bridge, Ring chromosome, Chromosomal ring) from permaner photomicrographs.	(Laggards, nt slides or
8	Study of meiosis from suitable plant material	
9	Determining the sequence of amino acids in the protein molecule synthesise given m-RNA strand (prokaryotic and eukaryotic)	ed from the

- Griffith Freeman and Company. 2000. An introduction to Genetic analysis.
- Brown TA. 2006. Gene Cloning and DNA Analysis. 5th Edition.
- Reece RJ, Wiley. 2004. Analysis of Genes and Genomes.
- Kreuzer H and Massey A, ASM. 2006. Recombinant DNA and Biotechnology- 2nd Edition.
- Allison LA. 2007. Fundamental Molecular Biology.
- Tagu D & Moussard C. INRA. 2006. Fundamental Molecular Biology.
- Gupta, P.K. 1999. A Text Book of Cell and Molecular Biology. Rastogi Publication, Meerut. India.
- Verma, P. S., V. K. Agrawal. 2008. Cell Biology, Genetics, Molecular biology, Evolution and Ecology.3rd edition S. Chand & co. New Delhi, India.
- De Robertis and De Robertis. 8th Edition. 2017. Cell and Molecular Biology.
- Harvey et al. New York: W. H. Freeman. 2000. Molecular Cell Biology, 4th edition. ISBN-10: 0-7167-3136-3

20

Course Code: RUSBOT 303 Course Title:Current trends in Plant Sciences - I Academic year 2021 – 2022

COURSE OUTCOMES :

Upon successful completion of this course, learners will be able to;

COURSE OUTCOME	CO DESCRIPTION
CO 1	Understand the importance of pharmacopoeias in plant identification and
	standardization.
CO 2	Understand the fundamental concepts of phytochemistry
CO 3	Classify and explain the principles of chromatography and microscopy
CO 4	Execute the techniques of plant propagation
CO 5	Understand the economic and commercial value of botanical products
CO 6	Understand the industrial relevance of botanicals with respect to current demands of
	industry

Course Code/Unit	Course/ Unit Title	Credits/Lect ures
RUSBOT 303	Current trends in Plant Sciences – I	Credits – 2
UNIT I	Pharmacognosy and phytochemistry	Lectures-15
	Introduction to pharmacopoeia. Indian pharmacopoeia, India Herbal pharmacopoeia, Ayurvedic pharmacopoeia Study of monograph from pharmacopoeia; any one example.	
	Study of secondary metabolites: Sources, properties, extraction, active constituents and therapeutic uses of alkaloids, glycosides, phenolic compounds (tannins, flavonoids) and terpenoids (volatile oils).	
	Classification of crude drugs, drug adulteration.	
	INSTRUMENTATION	Lectures-15
	Preservation methods : Dry and Wet method	
	Microscopy – Principle and working of Light, phase contrast, fluorescent and electron microscope.	
	Chromatography- Principles and techniques of paper and thin layer chromatography.	
	Principles and techniques of Horizontal and Vertical Gel electrophoresis	
UNIT III	Horticulture and Industry based on plant products	Lectures-15

	Horticulture	
	Propagation practices:	
	Layering – Definition, Types: Air Layering.	
	Grafting-Definition, advantages and disadvantages. Types: Splice,	
	Tongue	
	Urban Horticulture: Definition, objectives and types.	
	Green Tourism: Concept, scope, Green tourism in India, centres,	
	Case study: Horti tourism in Sikkim.	
	Industry based on plant products	
	Fibre yielding plants, Paper yielding plants, Spices and condiments: Cardamom (<i>Elettaria cardamomum</i> and <i>Amomum subulatum</i>), Jaivitri and Jaiphal (<i>Myristica fragrans</i>)	00
	Aromatherapy- Introduction, Botanical source and uses: <i>Calendula</i> , Lemon, Jasmine	×
	Botanicals and nutraceuticals - <i>Spirulina</i> , Vanillin, <i>Garcinia indica/ Garcinia cambogia, Stevia</i> , and Kale.	
	Industrial enzymes: Extraction methods and application: Cellulases, Papain, Bromelain.	
	PRACTICALS	
RUSBOTP 303	Current trends in Plant Sciences I	Credit– 1
1	Tests for secondary metabolites:	
	Tests/TLC for alkaloids from Strychnos (seeds) and Holarhhena	a (bark)
	Tests for glycosides from <i>Glycyrhhiza</i> rhizome/ <i>Aloe</i> leaf	
	Tests/TLC for tannins from Terminalia arjuna bark / Acacia cate	chu.
	Tests/TLC for flavonoids from Momordica charantia/ Trigonella	
	graecum	
	Tests/TLC for terpenoids from Mentha viridis/Coleus aromaticus	5
2	Study of Stomatal index (use of micrometer for measurement of size of	
3	Study of vein islet number	
4	Study of drug adulterants in black pepper seeds, cinnamon bark, turme chilli powder)	ric powder,
5		
5	Horizontal and Vertical Gel Electrophoresis – Demonstration	
6	Horizontal and Vertical Gel Electrophoresis – Demonstration Plant propagation by Air layering, Grafting and Budding	cals
6 7	Horizontal and Vertical Gel Electrophoresis – Demonstration Plant propagation by Air layering, Grafting and Budding Sources of: Fibres and Paper; Spices and condiments	cals
6 7	Horizontal and Vertical Gel Electrophoresis – Demonstration Plant propagation by Air layering, Grafting and Budding Sources of: Fibres and Paper; Spices and condiments Identification of botanical sources used in aromatherapy and nutraceuti	cals
6 7 8	Horizontal and Vertical Gel Electrophoresis – Demonstration Plant propagation by Air layering, Grafting and Budding Sources of: Fibres and Paper; Spices and condiments Identification of botanical sources used in aromatherapy and nutraceuti (examples as per theory)	cals
6 7 8	Horizontal and Vertical Gel Electrophoresis – Demonstration Plant propagation by Air layering, Grafting and Budding Sources of: Fibres and Paper; Spices and condiments Identification of botanical sources used in aromatherapy and nutraceuti (examples as per theory) Extraction and evaluation of enzymes	cals

- Wallis. T.E. 2014. Text books of pharmacognosy. CBS publishers and distributor New Delhi.
- Richard J. Lewis. 2012. Sax's Dangerous Properties of Industrial Materials. 12th Edition. John Wiley & Sons, Inc. ISBN: 978-0-470-62325-1.
- Daniel, M. 1991. Methods in Plant Chemistry and Economic Botany. KaiyaniPublishers, Ludhiana, India.
- Daniel, M. and S.D. Sabnis .1990. A Phytochemical Approach to Economic Botany.Kaiyani Publishers, Ludhiana, India
- Harborne, T.C. 1981. Phytochemical Methods: A Guide to Modem Techniques of Plant Analysis. Chapman and Hall, London, U.K
- Garry D Christian, James E O'reilvy. 1986. Instrumentation analysis. Alien and Bacon, Inc.
- Gordon MH and Macrae M. 1987. Instrumental analysis in the biological sciences.
- Wilson K and Walker JM.1994. Principles and techniques of practical biochemistry.
- Duddington, C.L, 1960. Practical microscopy. Pitman publications.
- Berlyn GP and Miksche JP. 1976. Botanical micro-techniques and cytochemistry.
- Acquaah G. (2002). Horticulture: Principles and Practices. Blackwell Publ.
- Peter K. V. (2009). Basics of Horticulture. New India Publ. Agency.
- Randhawa G.S. & Mukhopadhyay A. (1986)Floriculture in India, Allied Publishers

MODALITY OF ASSESSMENT

Theory Examination Pattern:

Internal Assessment - 40%: 40 marks.

Sr No	Evaluation type	Marks
1	Assignment/Field Visit/Case study/Survey report/ On-line test	20
	Active Participation (attentiveness/ability to answer	
	questions)/Participation in academic or Co-curricular activities	
2	One class Test (multiple choice questions)	20

External examination - 60 %

Semester End Theory Assessment - 60 marks

- i. Duration These examinations shall be of **2 hours** duration.
- ii. Paper Pattern:
 - There shall be 03 questions each of 16 marks and 01 question of 12 marks. On each unit there will be one question & last question will be based on all the 03 units.
 - 2. All questions shall be compulsory with internal choice within the questions.

Questions	Options	Marks	Questions on
Q.1) A, B, C	Any 2 out of 3	16	Unit I
Q.2) A, B, C	Any 2 out of 3	16	Unit II
Q.3) A, B, C	Any 2 out of 3	16	Unit III
Q.4) a, b, c, d , e.	Any 3 out of 5	12	All units

Practical Examination Pattern:

Internal Examination:

		20
Heading	Practical I	
Journal	05	
Practical participation	05	
Field visit/Institute visit report/ Assignment	10	
Total	20	

External (Semester end practical examination):

Particulars	Practical	
Laboratory work and/or Viva voce	30	
Total	30	

PRACTICAL BOOK/JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.

In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Co-ordinator / Incharge of the department; failing which the student will not be allowed to appear for the practical examination.

Overall Examination and Marks Distribution Pattern

Semester- III

Course	Course 301		302		303		Total per Course	Grand Total
/	Internal	External	Internal	External	Internal	External		
Theory	40	60	40	60	40	60	100	300
Practicals	20	30	20	30	20	30	50	150

<u>x 0 x</u>

RAMNARAIN RUIA AUTONOMOUS COLLEGE, SYLLABUS FOR B SC BOTANY, 2021-2022

SEMESTER -IV Course Code: RUSBOT 401 Course Title: Plant Diversity - IV Academic year 2021-22

COURSE OUTCOMES:

Upon successful completion of this course, learners will be able to;

COURSE OL	JTCOMES:
Upon succe	ssful completion of this course, learners will be able to;
COURSE	CO DESCRIPTION
OUTCOME	
CO 1	Develop critical understanding of the life cycles of fungi, plant diseases and their
	control measures.
CO 2	Develop an understanding of lichens and appreciate their adaptive strategies
CO 3	Demonstrate an understanding of Pteridophytes, Gymnosperms and fossil members
CO 4	Analyze the anatomy and reproduction of Pinus along with its ecological and
	economic importance.

Course Code/Unit	Course/ Unit Title	Credits/Lectures
RUSBOT 401	Plant Diversity – IV	Credits – 2
UNIT I	Thallophyta: Fungi, Plant Pathology and Lichens	Lectures-15
	General characters of Ascomycetae	
	Structure, life cycle and systematic position of <i>Aspergillus</i> and <i>Xylaria</i>	
	Plant Pathology - symptoms, causative organism, disease cycle and control measures of Powdery mildew and Late blight of Potato	
	Lichens- classification, structure, method of reproduction, economic importance and ecological significance of lichens.	
UNIT II	Pteridophyta and Paleobotany	Lectures-15
Y	Salient features and classification of Calamophyta and Pterophyta upto orders (G M Smith's system of classification)	
	Structure, life cycle and systematic position of <i>Equisetum and Lycopodium</i>	
	Paleobotany- Formation and types of fossils; Structure and	
	systematic position of form genus <i>Rhynia</i>	
UNIT III	Gymnosperms	Lectures-15
	Salient features, classification up to orders (with examples of	
	each) (Chamberlain's system of classification to be followed)	

	Structure life cycle and systematic position of <i>Pinus</i>
	Structure and systematic position of the form genus Cordaites
	PRACTICALS
RUSBOTP 401	Plant Diversity IV Credit - 1
1	Study of stages in the life cycle of <i>Aspergillus</i> from fresh/ preserved material and permanent slides.
2	Study of stages in the life cycle of <i>Xylaria</i> from fresh/ preserved material and permanent slides.
3	Study of fungal diseases as prescribed for theory.
4	Study of Lichens (crustose, foliose and fruticose).
5	Study of stages in the life cycle of <i>Equisetum and Lycopodium</i> from fresh/ preserve material and permanent slides.
6	Study of form genera Rhynia with the help of permanent slides/ photomicrographs
7	Study of stages in the life cycle of <i>Pinus</i> from fresh/ preserved material and permanent slides.
8	Study of the form genus <i>Cordaites</i> with the help of permanent slide/ photomicrographs.

- Ainsworth, Sussman and Sparrow. 1973. The fungi. Vol IV A & IV B. AcademicPress.
- Alexopolous C.J., Mims C.W. and Blackwell M.1999.4th Edition. IntroductoryMycology. Willey, New York, Alford R.A.
- Deacon J.W.2006. Fungal Biology. 4th Edition. Blackwell Publishing, ISBN.1405130660.
- Kendrick B.1994. The fifth kingdom (paperback), North America, New YorkPublisher.
 3rd Edition, ISBN- 10: 1585100226.
- Mehrotra R.S. and Aneja K.R. 1990. An introduction to mycology. New AgePublishers, ISBN 8122400892.
- Miguel U., Richard H., and Samuel A. 2000. Illustrated dictionary of the Mycology.Elvira Aguirre Acosta, Publisher: St. Paul, Minn: APS press, ISBN0890542570.
- Webster J. and Roland W. 2007. Introduction to fungi (3rd Edition) CambridgeUniversity Press, 978-0-521-80739-5.
- Dube H.C. 2004. An Introduction to fungi. Vikas Publishers.
- Sharma O.P. 2010. A text book of fungi. S.Chand's Publication.
- Vashista B.R and Sinha A.K. 2008. Botany for degree students Fungi. S.Chand's Publication.
- Nair, M.C. &Balakrishnan, S. 1986. Beneficial fungi and their utilization. Scientific Publishers, Jodhpur.
- Hale Mason, E. 1983. The Biology of Lichens. 3rd Ed. Edward Arnold, London. 11
- Nash, T.H. 1996. Lichen Biology. Cambridge University Press.
- Pathak, Khatri, Pathak. 2003. Fundamentals of plant pathology. Agrobios Ltd.
- Mehrotra, R.S. 1991. Plant Pathology. Tata McGraw Hill Company, Delhi.

- Pandey B.P.2009. Plant Pathology, S. Chand Co. •
- Sporne K.R. 1986. The morphology of Pteridophytes. Hutchinson University Library, London.
- Stewart W.N. and Rathwell G.W. 1993. Paleobotany and the Evolution of plants. CambridgeUniversity Press.
- Arnold A.C. 2005. An Introduction to Paleobotany Agrobios, Jodhpur, India.
- Chamberlain C.J. 1998. Gymnosperms: Structure and evolution. CBS Publishers, New Delhi.
- Coulter J.M. and Chamberlain C.J. 1991. Morphology of Gymnosperms. Central Books, Allahabad.
- Sporne K.R. 1994. The morphology of gymnosperms. BI Publications Pvt. Ltd. New • Delhi
- Vasishta P.C. 2004. Gymnosperms. S. Chand & Company, New Delhi.
- Sharma O.P. 2002. Gymnosperms, PragatiPrakashan, Meerut.
- Bhatnagar S.P. and Moitra A. 1997. Gymnosperms. New Age India publishers, New Delhi.
- perms. Biswas C. and Johri B.M. 1997. TheGymnosperms. Narosa Publishing House, New

Course Code: RUSBOT 402

Course Title:Form and function - IV

Academic year 2021 - 22

COURSE OUTCOMES:

Upon successful completion of this course, learners will be able to;

COURSE OUTCOME	CO DESCRIPTION
CO 1	Understand the fundamental concepts of plant anatomy with respect to secondary growth, mechanical and conducting tissue systems and their role in adaptations to various habitats.
CO 2	Understand the basic concepts and explain the significance of carbohydrate metabolism, respiration, photorespiration and fundamentals of enzymology
CO 3	Connect the principles governing ecology and environmental biology with respect to biogeochemical cycles, edaphic factors, and community ecology
CO 4	Classify the soils on the basis of physical, chemical and biological components

Course Code/Unit	Course/ Unit Title	Credits/Lect ures
RUSBOT 402	Title: Form and function – IV	Credits – 2
UNIT I	Anatomy	Lectures-15
	Normal secondary growth in dicotyledonous stem and root.	
	Growth rings, periderm, lenticels, tyloses	
	Mechanical tissue system and	
	 Tissues providing mechanical strength and support and their disposition 	
	 I-girders in aerial and underground organs Conducting tissue system 	
	Study of ecological adaptations: Xerophytes and halophytes	
UNIT II	Plant Physiology and Plant Biochemistry	Lectures-15
	Carbohydrates: Structure(sugars, starch, cellulose, agar and pectin) and metabolism(biosynthesis and degradation of sucrose, starch and cellulose)	
F	Respiration: Aerobic: Glycolysis, TCA Cycle, ETS and Energetics of respiration; anaerobic respiration.	
	Photorespiration: Mechanism of photorespiration, Energetics and significance of photorespiration	
	Enzymes - Nomenclature, classification, mode of action, enzyme kinetics, Michaelis Menten equation, competitive, non competitive and uncompetitive inhibitors	
UNIT III	Ecology and Environmental Botany	Lectures-15
	Ecological factors: Concept of environmental factors. Soil as an edaphic factor, Soil composition, types of soil, soil formation, soil profile.	

	Community ecology - Characters of community - Quantitative characters and Qualitative characters	
	Environmental Impact Assessment (ESIA)	
	PRACTICALS	
RUSBOTP 402	Form and function IV Cred	lit – 1
1	Study of normal secondary growth in the stem and root of a Dicotyledonous pla (Sunflower, stem and root)	nt
2	Study of mechanical tissues in Typha leaf, Salvia stem and Cyperus leaf	
3	Study of ecological adaptations: Xerophytes and halophytes	
4	Study of conducting tissues, Growth rings, periderm, lenticels, tyloses.	
5	Tests for carbohydrates	
6	Q_{10} – germinating seeds using phenol red indicator.	
7	Enzymes: HRP effect of pH variation on enzyme activity.	
8	Study of the working of the following Ecological Instruments- Soil thermometer, testing kit, Soil pH, Wind anemometer.	Soil
9	Mechanical analysis of soil by the sieve method and pH of soil.	
10	Quantitative estimation of organic matter of the soil by Walkley and Blacks Rap titration method.	id
11	Study of vegetation by the list quadrat method.	

- Pandey B. P.2007. Plant Anatomy. S. Chand and Comp. Ltd. New Delhi.
- Esau K. 1993. Plant Anatomy. Wiley Eastern Ltd. New Delhi.
- Forester, A.S. 1960. Practical Plant Anatomy. D. Van Nostrand Company Inc.
- Mauseth, J.D. 1988. Plant Anatomy The Benjamin Cumming Publishing Co.
- Noggle and Fritz. 2002. Introduction to Plant Physiology. Prentice Hall Publisher.
- Verma, V. 2007. Text Book Of Plant Physiology. Ane Books India, New Delhi.
- Nobel, P.S. 2009. Physicochemical and Environmental Plant Physiology.4th edition. Academic Press, UK
- Taiz, L. and Zeiger, E. 2006. Plant Physiology.4th Edition. Sinnauers Associates. Saunders land, Massachusetts, USA.
- Salisbury F.B. and Ross C.B. 2005. Plant Physiology.5th Edition. WadsworthPublishing Co. Belmont CA.
- Dennis, D.T., Turpin, D.H., Lefebvre, D.D. and Layzell, D.B. 1997. PlantMetabolism. 2nd Edition. Longman Group, U.K.
- Agrawal, K.C. 1996. Environmental Biology. Agro-Botanical Publisher, Bikaner India
- Ambasta, R.S. 1988. A Text of Plant Ecology, Student Friends & Co. Varanasi, India.
- Ambasta,R.S.1990.Environmental and Pollution, Student Friends & co. Varanasi,India.
- Chapman, J.L. and Reiss, M.J. 1998. Ecology: Principles and Applications. Cambridge University Press, Cambridge
- Dash, M.C. 1993. Fundamentals of Ecology, Tata McGraw Hill Publishing Co. Ltd. New Delhi, India.
- Heywood, V.H. and Watson, R.T. 1995. Global Biodiversity Assessment, CambridgeUniversity Press, Cambridge.

- Hill, M. K. 1997. Understanding Environmental Pollution, Cambridge University Press.
- Kapur, P. And Govil, S.R.2000.Experimental Plant Ecology. CBSPublishers and Distributors, New Delhi, India.
- Kothari, A. 1997.Understanding Biodiversity: Life Sustainability and EquityOrientLongman.
- Krebs, C.J.1989. Ecological Methodology. Harper and Row, NewYork, USA.
- Kumar, H.D. 1996. Modern Concept of Ecology. 4th Edition. Vikas Publishing House. (P)Ltd. New Delhi.
- Kumar, H.D. 1997. General Ecology, Vikas Publishing House (P.) Ltd. New Delhi.
- Kochhar, P. L. Plant Ecology, Genetics and Evolution, S. Nagin& Co. Ltd. New Delhi.
- Moore, P.W. and ChapmanS.B. 1986.Method in Plant Ecology. Blackwell ScientificPublications.
- Mukherjee B. Environmental Biology, Tata McGraw Hill Publishing Co. Ltd. New Delhi, India.
- OdumE. P1983.Basic Ecology, Saunders, Philadelphia.
- Odum, E. P. 1986. Fundamental of Ecology, Natraj Publishers, Dehradun, India.
- Purohit, S.S. and Ranjan,R. Ecology and Environmental Pollution, AgroBiosPublishers, Jodhpur, India.
- Sharma, P.D. Ecology and Environment, Rastogi publication, Meerut, India.
- Subrahmanyam, N. S. And Sambamurty, A.V.S.S. 2000. Ecology Narosa PublishingHouse, New Delhi, India.
- Swaminathan, M. S. And Kocchar, S. L. 1989.Plant and Society. MacmillanPublications Ltd. London, U.K.
- Verma, P. S. and Agrawal, V.K. Principles of ecology. S. Chand & co. (Pvt.) Ltd. RamNagar, New Delhi. India

Course Code: RUSBOT 403

Course Title:Current Trends in Plant Sciences – II

Academic year 2021 - 2022

COURSE OUTCOMES:

Upon successful completion of this course, learners will be able to;

COURSE OUTCOME	CO DESCRIPTION
CO 1	Understand the core concepts and fundamentals of plant tissue culture and its Applications
CO 2	Describe the fundamentals of R-DNA technology.
CO 3	Apply the concepts of Biostatistics for problem solving
CO 4	Comprehend the fundamental concepts related to descriptive and inferential Biostatistics
CO 5	Understand the concept of databases and its applications
CO 6	Recall the basic concepts of research and GLP

Course Code/Unit	Unit Course/ Unit Title				
RUSBOT 403	Title: Current Trends in Plant Sciences- II	Credits – 2			
UNIT I	Biotechnology	Lectures15			
	Introduction to plant tissue culture				
	A historic perspective				
	Laboratory organization and techniques in plant tissue cultureTotipotency				
	 Morphogenesis(Organogenesis - Rhizogenesis, Caulogenesis) 				
	Organ culture – root cultures, meristem cultures, embryo culture				
	 Problems in plant tissue culture: contamination, phenolics and recalcitrance. 				
	• Factors responsible for <i>in vitro</i> and <i>ex vitro</i> hardening				
	R-DNA technology-				
	Gene cloning				
	 Enzymes involved in Gene cloning 				
	Vectors used for Gene cloning.				
UNIT II	Biostatistics and Bioinformatics	Lectures-15			
	Biostatistics:				
	The chi square test.				
	 Correlation – Calculation of coefficient of correlation. 				
	Bioinformatics:				

- . Dubey, R.C. 2009. Textbook of Biotechnology. S. Chand, Delhi.
- Chawla, H.S. 2008. Plant Biotechnology: Laboratory Manual for Plant Biotechnology, Oxford and IBH Publishing, New Delhi
- Gupta, P. K. 2010. Elements of Biotechnology. Rastogi Publications.
- Kumar, U. 2000. Methods in Plant Tissue Culture, Agrobios, Jodhpur. India.
- Purohit, S.S. 2003. Agricultural Biotechnology, Agrobias, Jodhpur, India.
- Smith, I.E. Biotechnology, Cambridge University Press. Cambridge.
- Niemeyer C.M. and Mirkin. C.A. 2004. Nanobiotechnology, Concepts, Applications and perspectives.
- Jogdand, S.N. 1993. Advances in Biotechnology. Himalaya Publ. House. NewDelhi,India.
- Rastogi. 2009. Fundamentals of Biostatistics. Ane Books Pvt. Ltd.
- Khan I and Khanum. 2008. Fundamentals of Biostatistics, Ukaaz Publications, Hyderabad.
- Westhead. 2002.Instant Notes on Bioinformatics. Taylor Francis Publications.
- Bryan Bergeron M.D. 2008. Bioinformatics Computing.PHI Publications New Delhi.
- Bedekar V. H.1982. How to write assignment and research papers, dissertations and thesis. Kanak publications.
- Kothari– C.R. 2004. Research Methodology –Methodsand Techniques, New Age International Ltd. Publishers, New Delhi.

MODALITY OF ASSESSMENT

Theory Examination Pattern:

Internal Assessment - 40%: 40 marks.

Sr No	Evaluation type	Marks
1	Assignment / Field Visit/ Submissions/Survey reports/Case study/ On-line test /Active Participation (attentiveness/ability to answer questions)/Participation in academic or Co-curricular activities	20
2	One class Test (multiple choice questions)	20

External examination - 60 %

Semester End Theory Assessment - 60 marks

- Duration These examinations shall be of 2 hours duration. i.
- ii. Paper Pattern:
 - 1. There shall be 03 questions each of 16 marks and 01 question of 12 marks. On each unit there will be one question & last question will be based on all the 03 units.
 - 2. All questions shall be compulsory with internal choice within the questions.

Questions	Options	Marks	Questions on
Q.1) A, B, C	Any 2 out of 3	16	Unit I
Q.2) A, B, C	Any 2 out of 3	16	Unit II
Q.3) A, B, C	Any 2 out of 3	16	Unit III
Q.4) a, b, c, d , e.	Any 3 out of 5	12	All units

Practical Examination Pattern:

Internal Examination:

	Heading	Practical I
	Journal	05
	Practical participation	05
00	Field visit/Institute visit report/ Assignment	10
	Total	20
01.	External (Semester en	d practical examination)

External (Semester end practical examination):

Particulars	Practical
Laboratory work and/or Viva voce	30
Total	30

PRACTICAL BOOK/JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.

In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Co-ordinator / Incharge of the department; failing which the student will not be allowed to appear for the practical examination.

Overall Examination and Marks Distribution Pattern

		Overall Exar		nd Marks Dis nester- IV	stribution F	Pattern	ege	
Course	4	01	4	02		403	Total per Course	Grand Total
	Internal	External	Internal	External	Internal	External		
Theory	40	60	40	60	40	60	100	300
Practicals	20	30	20	30	20	30	50	150
Ŗ	anno	sain						