Resolution No.: AC/II (20-21).2.RPS4

S.P. Mandali's RAMNARAIN RUIA AUTONOMOUS COLLEGE

is collect (Affiliated to University of Mumbai)

Syllabus for: Semester I to IV

Program: M. Sc.

Program Code: Botany (RPSBOT)

Specialization: Molecular Biology, Cytogenetics and **Plant Biotechnology**

(Credit Based Semester and Grading System for the academic year 2020-2021)

PROGRAM OUTCOMES

In the post graduate courses, S.P.Mandali'sRamnarainRuia Autonomous College is committed to impart conceptual and procedural knowledge in specific subject areas that would build diverse creative abilities in the learner. The College also thrives to make its Science post graduates research/ job ready as well as adaptable to revolutionary changes happening in this era of Industry 4.0.

РО	PO Description
PO	·
	A student completing Masters in Science program will be able
	to:
PO 1	Demonstrate in depth understanding in the relevant science
	discipline. Recall, explain, extrapolate and organize conceptual
	scientific knowledge for execution and application and also to
	evaluate its relevance.
PO 2	Critically evaluate, analyze and comprehend a scientific problem.
	Think creatively, experiment and generate a solution independently,
	check and validate it and modify if necessary.
PO 3	Access, evaluate, understand and compare digital information from
	various sources and apply it for scientific knowledge acquisition as
	well as scientific data analysis and presentation.
PO 4	Articulate scientific ideas, put forth a hypothesis, design and
	execute testing tools and draw relevant inferences. Communicate
	the research work in appropriate scientific language.
PO 5	Demonstrate initiative, competence and tenacity at the workplace.
	Successfully plan and execute tasks independently as well as with
	team members. Effectively communicate and present complex
	information accurately and appropriately to different groups.
PO 6	Use an objective, unbiased and non-manipulative approach in
	collection and interpretation of scientific data and avoid plagiarism
	and violation of Intellectual Property Rights. Appreciate and be
	sensitive to environmental and sustainability issues and understand
	its scientific significance and global relevance.
PO 7	Translate academic research into innovation and creatively design
	scientific solutions to problems. Exemplify project plans, use
	management skills and lead a team for planning and execution of a
	task.
PO 8	Understand cross disciplinary relevance of scientific developments
	and relearn and reskill so as to adapt to technological
	advancements.

PROGRAM SPECIFIC OUTCOMES

PSO	PSO Description
	A student completing Masters in Science program in the subject
	of Botany will be able to:
PSO 1	Gain adequate knowledge on major groups of plants -Cryptogams to Phanerogams, learn the inter-relationships, phylogeny and evolutionary concepts, biodiversity in relation to habitat correlate with climate change, land and forest degradation and Paleobotany to trace the evolution of plants
PSO 2	Comprehend the concepts of plant taxonomy with respect to principles of ICN, evolution, concept of characters and methods to illustrate evolutionary relationships. Familiarize with the latest classification system and role of BSI
PSO 3	Gain core knowledge of foundational concepts of anatomy, developmental botany, ultra structure and function of cell membranes cyto-genetics, physiology and ecology and their application in contemporary research/biological systems
PSO 4	Critically evaluate the functioning of organisms at the genomic and cellular level, Relate physiological adaptations, development and reproduction of higher plants.
PSO 5	Outline the utilization of various plant groups, ethnobotanical aspects, active constituents and medicinal uses of plants with special reference to usage as mentioned in different Pharmacopoeia.
PSO 6	Apply the skills in handling scientific instruments in planning and executing biological research, demonstrate proficiency in the experimental techniques and methods of analysis appropriate for their area of specialization
PSO 7	Apply the principles of biostatistics and bioinformatics in biological research, evaluate the scientific content, apply the scientific methods in formulating hypothesis and data analysis.
PSO 8	Apply the technique of plant tissue culture for the propagation of the plants which is the need in the society /industry, apply the methods of in vitro techniques for product enhancement
PSO 9	Apply the fundamentals of Nanotechnology, Environmental biotechnology and food biotechnology in various fields
PSO 10	Understand and Apply the techniques of plant breeding procedures for hybridization, stress tolerance and genetic engineering of plants.
PSO 11	Develop critical and logical thinking capacity and prepare themself to qualify various competitive exams like MPSC, UPSC,SET, GATE, CSIR and UGC NET

PROGRAM OUTLINE

YEAR	SEM	COURSE CODE	COURSE TITLE	CREDITS
		RPSBOT 101	PLANT DIVERSITY – I	04
	I	Phycology I		
		II	Phycology II	
		III	Mycology I	
		IV	Mycology II	
		RPSBOT 102	PLANT DIVERSITY- II	04
->/	_	1	Bryophyta	
FY	ı	II	Pteridophyta	
		III	Gymnosperms	
		IV	Origin of Angiosperms	
		RPSBOT 103	DEVELOPMENTAL BOTANY AND RESEARCH METHODOLOGY	04
		I	Developmental Botany	
		II	Palynology	
		III	Research Methodology I	
		IV	Research Methodology II	
		RPSBOT 104	INSTRUMENTATION AND TEHNIQUES	04
		I	Centrifugation and chromatography	
		II	Microscopy and spectroscopy	
		III	Tracer techniques and PCR	
		IV	pH, Buffers and Electrophoresis	
			PRACTICAL	
		RPSBOTP 101	Plant Diversity- I	02
		RPSBOTP 102	Plant Diversity –II	02
		RPSBOTP 103	Developmental Botany and Research Methodology	02
		RPSBOTP 104	Instrumentation and Techniques	02
		RPSBOT 201	PLANT DIVERSITY- II	04
	(20	I	Angiosperms I	
		II	Angiosperms II	
		III	Anatomy I	
		IV	Anatomy II	
		RPSBOT 202	PLANT PHYSIOLOGY- I	04
		I	Photosynthesis I (Eukaryotes)	
		II	Photosynthesis II (Prokaryotes)	
		III	Protein structure	
		IV	Plant Hormones	

ı	KAIVIINAKAIIN I	RUIA AUTUNUIVIUUS	COLLEGE, SYLLABUS FOR MISC BUTANY, 2020-2021	Explore • Experience • Excel
		RPSBOT 203	PLANT PHYSIOLOGY- II	04
			Stress Physiology	
FY	II	II	Seed Physiology	
		III	Environmental Botany I	
		IV	Environmental Botany II	
		RPSBOT 204	CURRENT TRENDS IN BOTANY	04
		I	Medicinal botany dietetics	
		II	Traditional knowledge and IPR	
		III	Biostatistics	.01
		IV	Bioinformatics	
			PRACTICAL	9
		RPSBOTP 201	Plant diversity- II	02
		RPSBOTP 202	Plant physiology- I	02
		RPSBOTP 203	Plant physiology- II	02
		RPSBOTP 204	Current Trends in Botany	02
			SEMESTER III	
		RPSBOT301	TECHNIQUES AND INSTRUMENTATION I	04
		I	Biostatistics	
		II	Bioinformatics	
		III	pH and buffers and Electrophoresis	
		IV	Centrifugation	
		RPSBOT302	MOLECULAR BIOLOGY I	04
		I	DNA Replication	
		II	Transcription	
		III	RNA Processing	
		IV	Translation	
		RPSBOT303	PLANT BIOTECHNOLOGY I	04
			Plant Tissue Culture I	
	III	II.	Plant Tissue Culture II	
SY	""	Ш	Plant Tissue Culture III	
		IV	Commercial Aspects	
		RPSBOT304	MOLECULAR BIOLOGY AND CYTOGENETICS I	04
			Cytology	
		II	Cancer Biology	
		III	Immune Systems	
		IV	Genetic Disorders	
		I V	PRACTICAL	
		RPSBOTP 301	Techniques and Instrumentation I	02
		RPSBOTP 302	Molecular Biology I	02
		RPSBOTP 303	Plant Biotechnology I	02
		RPSBOTP 304	Project	02
			SEMESTER IV	
		RPSBOT401	TECHNIQUES AND INSTRUMENTATION II	04
		I	Microscopy & Spectroscopy	
		II	Chromatography	

		111011111010110111000	COLLEGE, STELADOS FOR IVI SC DOTAINT, 2020-2021	Explore • Experience • Excel
	III	Tracer Techniques and PCR		
		IV	Membrane biophysics and plant growth in	
	IV	microgravity		
		RPSBOT402	MOLECULAR BIOLOGY II	04
		I	Gene regulation I	
		II	Gene regulation II	
SY	IV	III	Gene regulation III	
31	'	IV	Cell signaling	
		RPSBOT403	PLANT BIOTECHNOLOGY II	04
		I	Environmental Biotechnology	. 01
		II	Traditional knowledge and IPR	
		III	Nanotechnology	9)
		IV	Food Biotechnology	
		RPSBOT404	MOLECULAR BIOLOGY AND CYTOGENETICS II	04
		I	Plant Breeding I	
		II	Plant Breeding II	
		III	Molecular Plant Breeding	
		IV	Plant Genetic Engineering	
			PRACTICAL	
		RPSBOTP 401	Techniques and Instrumentation II	02
		RPSBOTP 402	Molecular Biology II	02
		RPSBOTP 403	Plant Biotechnology II	02
		RPSBOTP 404	Project	02
Total				96

Resolution No.: AC/II (20-21).2.RPS4

S.P. Mandali's RAMNARAIN RUIA AUTONOMOUS COLLEGE

(Affiliated to University of Mumbai)

Syllabus for: Semester I & II

Program: M. Sc.

Program Code: Botany (RPSBOT)

(Credit Based Semester and Grading System for the academic year 2020–2021)

SEMESTER I

Course Code	UNIT	TITLE	Credits	Lectures/ Week
		PLANT DIVERSITY – I	-	
RPSBOT 101	I	Phycology I		1
	II	Phycology II	4	1
	III	Mycology I	4	1
	IV	Mycology II	.10	1
		PLANT DIVERSITY- II		
RPSBOT 102	<u> </u>	Bryophyta	60.	1
	II	Pteridophyta	Δ.	1
	III	Gymnosperms	_	1
	IV	Origin of Angiosperms	7	1
	DEV	ELOPMENTAL BOTANY AND RESEARCH	METHODO	DLOGY
RPSBOT 103		Developmental Botany		1
	II	Palynology	4	1
	III	Research Methodology I	_	1
	IV	Research Methodology II		1
		INSTRUMENTATION AND TECHNIQUES	<u> </u>	1
RPSBOT 104	I	Centrifugation and chromatography		1
	II	Microscopy and spectroscopy	4	1
	III	Tracer techniques and PCR	_	1
	IV	pH, Buffers and Electrophoresis		1
				1
RPSBOTP 101		Plant Diversity I	02	04
RPSBOTP 102		Plant Diversity – II	02 02	04
RPSBOTP 103	Develop	Developmental Botany and Research Methodology		04
RPSBOTP 104	.0	Instrumentation and Techniques	02	04
	3/1		24	

SEMESTER II

Course Code	UNIT	TITLE	Credits	Lectures/ Week
		PLANT DIVERSITY – III		•
RPSBOT 201		Angiosperms I		1
	II	Angiosperms II	4	1
	III	Anatomy I	4	1
	IV	Anatomy II		01
		PLANT PHYSIOLOGY – I		40
RPSBOT 202	I	Photosynthesis I (Eukaryotes)	× C	1
	II	Photosynthesis II (Prokaryotes)	4	1
	III	Protein structure		1
	IV	Plant Hormones		1
		PLANT PHYSIOLOGY II		
RPSBOT 203	I	Stress Physiology		1
	II	Seed Physiology	4	1
	III	Environmental Botany I	-	1
	IV	Environmental Botany II		1
		CURRENT TRENDS IN BOTANY		
RPSBOT 204		Medicinal botany dietetics		1
	II	Traditional knowledge and IPR	4	1
	III	Biostatistics	7	1
	IV	Bioinformatics		1
RPSBOTP 201		Plant Diversity – III	02	04
RPSBOTP 202		Plant Physiology-I	02	04
RPSBOTP 203		Plant Physiology – II	02	04
RPSBOTP 204		Current trends in Botany	02	04
			24	

SEMESTER I

Course Code: RPSBOT 101

Course Title: Plant Diversity-I

Academic year 2020-21

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	Upon successful completion of this course, learners will be able to;
CO 1	Understand the morphology, structure, reproduction, classification and evolution of
	Algae and Fungi.
CO 2	Comprehend the detailed study of commercial cultivation technologies and industrial
	application of Algae.
CO 3	Gain knowledge of plant diseases, identify and apply suitable control measures in
	an environmentally sustainable manner.
CO 4	Apply the fundamental knowledge of importance of fungi in various fields.

RPSBOT 101	Title: Plant Diversity – I	Credits - 4
UNIT I	Phycology I	15 Lectures
	Classification of Algae upto orders as proposed by Gilbert M. Smith	
	Origin and Evolution of Sex in Algae	
	Fossil Algae	
UNIT II	Phycology II	15 Lectures
	Techniques in commercial Cultivation of Algae for Protein and Secondary metabolites, Carbon credit, Antibiotics, Biofuel	
	Detrimental Algae and their control	
	Toxic Algae, Parasitic Algae	
	Water Blooms and Red Tides in India and across the world, Utility,	
	Disadvantages and Control of Algal blooms	
	Algae as a Source of Pharmaceuticals and Nutraceuticals	
\sim ?	Algal collection and preservation	
UNIT III	Mycology I	15 Lectures
	Classification of fungi, upto orders, according to the system proposed by Alexopoulos	
	Sexuality in Fungi	
	General account of spore bearing organs and their arrangements in various groups of fungi; spore release and dispersal.	
	History of plant pathology, Host-parasite relationship	
	Classification of plant diseases based on symptoms	
	Study of the following diseases with reference to symptoms, causal	

	organism and disease cycle: Late blight of potato Covered smut of			
	barley, Citrus canker, Leaf curl			
UNIT IV	Mycology II	15 Lectures		
	Economic importance of fungi: Application of fungi with respect to -			
	agriculture, industries, food and medicine, Harmful activities.			
	Mycorrhiza: type, distribution and significance with reference to			
	agriculture and forestry.			
		0,		
	PRACTICALS			
RPSBOTP 101	Plant Diversity-Cryptogams I	Credits – 2		
1	Study of following type with reference to their systematic position, thallus and			
	reproductive structures:			
	Scytonema, Lyngbya, Anabaena, Volvox, Oedogonium, Scenedesmus, Ulothrix,			
	Ulva, Pithophora, Closterium, Nitella, Padina and Gracilaria.	_		
2	Extraction of algal pigments and their separation by paper chromatogra	phy.		
3	Culturing of algae / Estimation of metabolites			
4	Study of algal growth curve			
5	Students are to collect and identify algae from different habitat and p			
	based on 5 characters or visit an Algal research station. Prepare and s	ubmit a report		
	of the field work/research station visit.3 and 4 project(submission)	D = = 1=1==		
6	Mycology: Stemonitis, Saprolegnia, Phytophthora, Xylaria, Peziz	a, Daedalea,		
7	Ganoderma, Alternaria and Trichoderma.			
7	Collection and identification of common forest fungi (5 types).			
8	Plant diseases: Late blight of potato Covered smut of barley, Citrus curl	canker, Lear		
9	Economic Importance of fungi: Beauveria, Verticillium, Penicilli	lium , Yeast,		
	Ganoderma, Mycorrhiza			

- 1. Chapman, V. J. 1962. The Algae. Macmillan & Co. Ltd.
- 2. Fritsch, F. E. (Vol. I, II) 1977. The structure and reproduction of Algae. Cambridge UniversityPress.
- 3. Gilbert M Smith.1951. Manual of Phycology. ChronicaBotanica Co.
- 4. Gilbert M Smith. 1971. Cryptogamic Botany (Vol. 1): Algae and Fungi. Tata McGraw Hill.
- 5. Harold C Bold, Michael J Wynne 1978. Introduction to Algae: Structure andreproduction.Prentice Hall
- 6. M O P lyengar and T V Desikachary 1981. ICAR Publication.
- 7. Pringsheim E G 1949. Pure culture of Algae. Cambridge University Press.
- 8. Sambamurty A V S. 2005. A Textbook of Algae. I K International publishers Pvt Ltd.
- 9. Sharma O P.2011. Textbook of Algae. Tata McGraw Hill.
- 10. Singh V, Pandey P C and Jain D K. 2010.Text book of Botany, RastogiPublication.Online Resources
- 11. Kumar HD (1988) Introductory Phycology. Affiliated East-West Press Ltd. New Delh
- 12. Morris I (1986) Introduction to the Algae. Cambridge University Press, UK
- 13. Round FE 1986 The Biology of Algae. Cambridge University Press, UK
- 14. Alexopoulos C.J., Mims, C.W. & Blackwell, M. 1996. Introductory Mycology. 4th edition. John Wiley& Sons Inc.

- 15. Ainsworth, G.C., Sparrow, K.F.&Susmann, A.S.(Eds.) 1973. The Fungi An Advanced Treatise. Vol 1 -4. Academic Press.
- 16. Burnett, J.H. 1970. Fundamentals of Mycology. Edward Amolds.
- 17. Dubey, H.C. 1990. An Introduction to Fungi. 2nd Edition. Vikas Publishers, New Delhi.
- 18. Hale Mason, E. 1983. The Biology of Lichens. 3rd Ed. Edward Arnold, London. 11
- 19. Jennings, D.H. &Lysek, G. 1999. Fungal |Biology. Bios Scientific Publishers.
- 20. Mehrotra, R.S. & Aneja, K.R. 1990. An Introduction to Mycology. New Age International Publishers.
- 21. Landecker, Elizabeth Moore. 1996. Fundamentals of Fungi. 4th Ed. Prentice Hall.
- 22. Nair, M.C. and Balakrishnan, S. 1986. Beneficial fungi and their utilization. Scientific Publishers, Jodhpur.
- 23. Nash, T.H. 1996. Lichen Biology. Cambridge University Press.
- 24. Webster, John 1980. Introduction to Fungi. Cambridge University Press.
- 25. Agrios, G. N. 1997. Plant pathology. 4th Ed., Academic Press. 13. Bilgrami, K.H. & Dube, H.C. A Text Book of Modern Plant Pathology. Vikas Publishers, New Delhi.
- 26. Mehrotra, R.S.1980. Plant Pathology. Tata McGraw Hill.
- 27. Pandey, B. P. 1999. Plant Pathology -pathogen and plant disease. S. Chand & Co.

Course Code: RPSBOT 102 Course Title:Plant Diversity – II Academic year 2020 - 21

COURSE OUTCOMES:

COURSE	DESCRIPTION			
OUTCOME	Upon successful completion of this course, learners will be able to;			
CO 1	Develop critical understanding about the classification of Bryophytes and			
	Pteridophytes as wellas their origin and evolution			
CO 2	Outline the economic importance of Bryophytes and Pteridophytes.			
CO 3	Demonstrate the cultivation techniques and maintenance of ornamental ferns.			
CO 4	Understand the structures of fossil forms and correlate the same in evolutionary studies			
CO 5	Develop critical understanding about the classification of Gymnosperms and comprehend the affinities and interrelationships between various orders			
CO 6	Differentiate between gymnosperms and angiosperms, as well as their origin and evolution in various eras.			

RPSBOT 102	Title: Plant Diversity – II	Credits - 4
UNIT I	Bryophyta	15 Lectures
	Classification of Bryophyta, up to orders, according to the system	
	proposed by G.M.Smith and recent systems of classification.	
	Alternation of generation in Bryophyta.	
	Origin and evolution of Bryophyta with reference to habitat and form	
	Evolution of the gametophyte and sex organs in Bryophytes	
	Evolution of the Sporophyte in Bryophyta	
	Economic importance of Bryophytes2	
	₹'0'	
UNIT II	Pteridophyta Pteridophyta	15 Lectures
	Classification of Pteridophyta, up to orders, according to the system proposed by G.M.Smith.	
	Cultivation and maintenance of ornamental Ferns	
Δ	Economic importance of Pteridophytes.	
	The geological time scale and a study of fossil Pteridophytes (Horneophyton, Cladoxylon, Sphenophyllum, Glossopteris, Williamsonia, Medullosa)	
UNIT III	Gymnosperms	15 Lectures
	Classification of gymnosperms upto orders according to the system proposed by C. J. Chamberlain, recent systems of classification. General characters; affinities and interrelationships of	
	Cycadofilicales, Bennettitales and Cordaitales.	

UNIT IV	Origin of Angiosperms	15 Lectures
	Origin and evolution of angiosperms	
	The primitive angiospermic flower; primitive and advanced character in	
	angiosperms.	
	PRACTICALS	_
RPSBOTP 102	Plant Diversity – Spermatophyta I	Credits – 2
1	Bryophyta: Study of following type with reference to systematic position reproductive structures: <i>Targionia, Plagiochasma, Fimbraria, Pellia, Pogorama, Plagiochasma, Plagiochasm</i>	
2	Pteridophyta: Study of following type with reference to their system thallus and reproductive structures: <i>Isoetes, Ophioglossum, Pteris, Lygodium</i> and <i>Azolla</i>	
3	Economic Importance Pterdiophytes : Lycopodium, Azolla	
4	Study of fossils: Horneophyton, Cladoxylon, Sphenophyllum, Williamsonia, Medullosa	Glossopteris,
5	Gymnosperms: Study of following type with reference to their system vegetative and reproductive structures: <i>Cordaites</i> (Fossil), <i>Auraucaria</i> , <i>Podocarpus</i> and <i>Juniperus</i>	
6	Angiosperms: Preparation of a cladogram with selected members of a	family

- 1. Banks H.P. (1968) The early history of Land plants. In evolution and environment, ed. E.T.Drake. New Haven: Yale Univ. Press, pp, 73-107
- 2. Banks H.P. (1970) Evolution and plants of past. (Belmont, California, Wadsworth).
- 3. Lacey, W. A. (1969). Fossil Bryophytes.Biological Reviews, 44,189-205. 21. Mehra, P.N. and O. N. Handoo (1953).
- 4. Morphology of *Anthoceros erectus* and *A. himalayensis* and the phylogeny of the anthocerotales. Bot. Gaz.114:371-382.
- 5. Parihar N. S. (1976). An introduction to Embryophyta, Bryophyta (Centaral Book House, Allahabad)
- 6. Bhatnagar S.P. and Moitra A. (1997) Gymnosperms. New Age India publishers, New Delhi.
- 7. Biswas C. and Johri B.M. (1997) TheGymnosperms. Narosa Publishing House, New Delhi.
- 8. Chamberlain C.J. (1998) Gymnosperms: Structure and evolution. CBS Publishers, New Delhi
- 9. Arnold C. A. (1947) An Introduction to Paleobotany. McGraw Hill Book company, New York.
- 10. Coulter J.M. and Chamberlain C.J. (1991) Morphology of Gymnosperms. Central Books, Allahabad.
- 11. Singh V.P. (2006) Gymnosperms. Sarup and Sons, New Delhi.
- 12. Sporne K.R. (1994) The morphology of gymnosperms. BI Publications Pvt. Ltd. New Delhi
- 13. Vasishta P.C. (2004) Gymnosperms. S. Chand & Company, New Delhi.
- 14. Biswas, C and Johri, B.N. (2004), The Gymnosperms, Narosa Publishing House, New Delhi.
- 15. Coulter J.M. and Chamberlain C.J.(1978): Morphology of Gymnosperms, Central Book Depot, Allahabad.
- 16. Kakkar, R.K.andKakkar, B.R. (1995), The Gymnosperms (Fossils and Living), Central Publishing House, Allahabad.
- 17. Sharma O.P. (2002) Gymnosperms, PragatiPrakashan, Meerut.
- 18. Siddiqui, K.A. (2002) Elements of Palaeobotany, KitabMahal, Allahabad.
- 19. Bhatnagar, S.P. and Moitra A. (1996), Gymnosperms, New Age International Pvt. Ltd., New Delhi.
- 20. Singh, H. (1978), Embryology of Gymnosperms, Encyclopedia of Plant Anatomy X, Gebryder,

- Bortragear, Berlin.
- 21. Pant, D.D. (2003): Cycas and allied Cycadophytes, BSIP, Publications.
- C.J. **CBS** 22. Chamberlain (1986);Gymnosperms, structure Evolution, and publishersanddistributors, New Delhi.
- 23. Grant, V. 1971. Plant Speciation, Columbia University press, London.
- 24. Grant W. F. 1984. Plant Biosystematics. Academic press, London.
- 25. Harisson, H.J. 1971. New concept in flowering plant Taxonomy. Hickman educational books Ltd. London.
- 26. Hislop-Harisson, J. 1967.Plant Taxonomy.English Language Book Sco.And Edward Arnold Pub.Ltd, UK.
- 27. Heywood, V. H. and Moore, D. M. 1984. Current concepts in Plant Taxonomy. Academic Press, London.
- 28. Jones, A. D. and Wibins, A. D. 1971. Variation and adaptation in Plant species Hickman and Co. New York.
- 29. Jones, S. B., Jr.andLuchsinger, A. E. 1986. Plant Systematics (gd edition). McGraw -Hill Book Co., New York.
- 30. Nordentam, B., El Gazaly, G. and kassas, M. 2000. Plant systematic for 21stcentury. Portland Atics.H Relification Relificati press.Ltd, London.
- 31. Radford, A. E. 1986. Fundamentals of plant systematics. Harper and Raw publication, USA

Course Code: RPSBOT 103 Course Title:Developmental Botany and Research Methodology Academic year 2020– 21

COURSE OUTCOMES:

COURSE	DESCRIPTION				
OUTCOME	Upon successful completion of this course, learners will be able to;				
CO 1	Understand the fundamentals of the development of male and female				
	gametophytes, embryo and fertilization.				
CO 2	Understand the structure of Angiosprm pollen and analyze the special relationships				
	of pollen grains in pollen tetrads as well as the phylogeny of Angiosperm pollen				
CO 3	Apply palynological information to plant systematics, agriculture and horticulture				
CO 4	Develop the ability to design a research project and prepare a work plan.				
CO 5	Recognise the resources for accessing scholarly articles, published papers,				
	abstract writing and bibliographic management.				
CO 6	Understand methods of data collection, tools for data analysis and ethical issues in				
	educational research.				

RPSBOT 103	Title: Developmental Botany and Research Methodology	Credits – 4
UNIT I	Developmental Botany	15 Lectures
	Male gametophyte: Gene expression, male sterility sperm	
	dimorphism and hybrid seed production; pollen storage; pollen embryos.	
	Female gametophyte: Types of embryo sacs; structure of embryo sac cells.	
	Pollination, pollen-pistil interaction and fertilization: floral characteristics	
03	Seed development and fruit growth; endosperm development during Early, Maturation and Desiccation stages; embryogenesis, ultrastructure and nucellar cytology; cell lineage during late embryo development; storage proteins of endosperm and embryo; apomixis; embryo culture; dynamics of fruit growth; biochemistry and molecular biology of fruit maturation	
UNIT II	Palynology	15 Lectures
	Special relationships of pollen grain in pollen tetrads: • Young Microspores: their arrangement and number in tetrads. • Pollen Wall: o Ultrastructure o Morphogenesis: Formation of Aperture Pattern, Primexine formation, Exine and Intine development, Pollen attaching vehicles.	
	Phylogeny of Angiosperm Pollen:	

		<u> </u>					
	• Evolutionary Trends among pollen grains based on						
	Palynotaxonomic work: Evolutionary trends in Aperture, Ornamentation and Stratification.						
	Phylogenetic Considerations:						
	o Pollen Evolution in Early Angiosperms,						
	o Phylogeny of Dicotyledons, and Monocotyledons,						
	o Role of Pollen Morphology in Phylogeny and Plant Taxonomy.						
	Applications of Palynology in Agriculture and Horticulture						
	Applications of Falyhology in Agriculture and Horticulture						
UNIT III	Research Methodology I	15 Lectures					
<u> </u>	Introduction: Research design principles, execution of work,						
	interpretation of results.	\mathcal{O}					
	Review of literature)					
	Library: Structure of a scientific library, journals, books, Digital						
	library and E books						
	Catalogue:						
	Classification of books (Universal Decimal System).						
	Journals: Indexing journals, H-index, abstracting journals,						
	research journals, review journals, e-journals.						
	Impact factor of journals, NCBI-Pub Med.						
	Reprints, Secondary storage devices, Internet, open access						
	initiative, INFLIBNET, INSDOC. Google Scholar						
	 Preparation of index cards: Author index and subject index; 						
	Open source, bibliography management system.						
UNIT IV	Research Methodology II	15 Lectures					
	Research and sampling design						
	Measurement of scaling technique						
	Methods of data collection						
	Data analysis –SPSS and MS Excel						
	Ethics in research						
	PRACTICALS	Г					
RPSBOTP 103	Developmental Botany and Research Methodology	Credits - 2					
1	A study of Microsporogenesis and megasorogenesis with the help of p sides	ermanent					
2	In vitro germination of pollen grains						
3	Effect of temperature on pollen viability						
4	Effect of temperature on short - term storage of pollen						
5	Study of pollen attaching vehicles						
6	Study of the morphology of the pollen (using Chitale's and acetolysis	mothod) from					
U	the families; Malvaceae, Asteraceae, Convolvulaceae, Labiatae and G						
7	Visit a scientific library or documentation centre and submit a report	nannat.					
8	,						
ı ö	Present a literature review						

- 1. Bhojwani S S and Bhatnagar S. S 2001. Embryology of AngiospermsVikas Publishers, New Delhi
- 2. Bhattacharya, K., Majumdar, M.R. and Bhattacharya, S.G. 2006. A Textbook of Palynology. New Central Book Agency (P) Ltd. New Delhi.
- 3. Nair, P.K.K. (1970) Pollen Morphology of Angiosperms. Vikas Publications, New Delhi.
- 4. Nair, P.K.K.1985. Essentials of Palynology. Today & Tomorrow Printers and Publishers , New Delhi.
- 5. Shivanna, K.R. and Rangaswamy, N.S. 1992. Pollen Biology –A Laboratory Manual. Narosa Publishing House, New Delhi
- 6. Raghavan, V. 1997. Molecular Embryology of Flowering Plants. Cambridge University Press, Cambridge.
- 7. Raghavan, V. 1999. Developmental Biology of Flowering Plants. Springer Verlag, New York.
- 8. Sedgely, M. and Griffin, A.R. 1989. Sexual Reproduction of Tree Crops, Academic Press, London.
- 9. Shivanna, K.R. and Sawhney, V.K. (eds) 1997. Pollen Biotechnology for Crop Production and Improvement, Cambridge University Press, Cambridge.
- 10. Shivana, K.R. and Rangaswamy, N.S. 1992. Pollen Biology: A Laboratory Manual. Springer-Verlag, Berlin.
- 11. Shivana, K.R. and Johri, B.M. 1985. The Angiosperm Pollen: Structure and Function. Wiley Eastern Ltd., New York.
- 12. Anderson J, Durston B H, Poole 1970. Thesis and assignment writing. Wiley eastern.
- 13. Bedekar V. H.1982. How to write assignment and research papers, dissertations and thesis. Kanak publications.
- 14. Kothari– C.R. 2004. Research Methodology –Methods and Techniques, New Age International LTd. Publishers, New Delhi.

Course Code: RPSBOT 104

Course Title: Instrumentation and techniques

Academic year 2020 - 21

COURSE OUTCOMES:

COURSE	DESCRIPTION				
OUTCOME	Upon successful completion of this course, learners will be able to;				
CO 1	Understand the principles, working and applications of centrifugation and				
	chromatography.				
CO 2	Apply the principles, working and applications of fluorescence microscopy, electron				
	microscopy and spectroscopy				
CO 3	Apply electrophoretic techniques for separation of macromolecules.				
CO 4	Understand the basic principles of tracer techniques and PCR and their applications				
CO 5	Understand the science behind the preparation of various buffers and its applications				
	in experiments.				

RPSBOT 104	Title: Instrumentation and techniques	Credits - 4
UNIT I	Centrifugation and Chromatography	15 Lectures
	Basic principles of Sedimentation	
	Types of rotors	
	Differential and density gradient centrifugation	
	Preparative centrifugation and Applications; Analytical centrifugation and applications.	
	General Principle of chromatography.	
	Techniques and applications of Ion exchange, Affinity Chromatography and HPLC	
	Application / validation of herbal drugs using HPTLC.	
UNIT II	Microscopy and Spectroscopy	15 Lectures
	Principles, instrumentation, working and applications of Fluorescence microscope, TEM, SEM.	
\sim ?	Biological sample preparation for electron microscopy.	
	IR, GC MS, LC MS, AAS, ICP- AES, Plasma Emission spectroscopy, NMR, 2D NMR, MS	
UNIT III	Tracer techniques and PCR	15 Lectures
	Radioactive isotopes and autoradiography	
	Principle, instrumentation &technique: Geiger-Muller counter, Liquid	
	scintillation counters	
	Applications of isotopes in biology: Tracer techniques	
UNIT IV	pH , Buffers and Electrophoresis	15 Lectures

	pH and buffer solutions, acids and bases, strong acids and bases, hydrogen ion concentration, dissociation of acids and bases, measurement of pH, titration curves. Physiological BUFFERS Electrophoresis: Theory and application PAGE (Native & SDS) and AGE, 2D Electrophoresis	
	PAGE (Native & 3D3) and AGE, 2D Electrophoresis	
	PRACTICALS	
RPSBOTP 104	Instrumentation and techniques	Credits - 2
1	Preparation of buffers (phosphate and acetate)	0,
2	Determination of pKa	
3	Density gradient centrifugation	
4	Separation of proteins by Ion exchange chromatography	
5	Separation of phytochemicals using chromatographic techniques	
6	Separation of amino acids/ Plant pigments by two dimensional chroma	tography.
7	Separation of seed proteins using PAGE.	
8	DNA Amplification using PCR (Demonstration)	
9	Viscosity studies of proteins: standard BSA and varying concentrations	of urea

References

- 1) Berlyn GP and Miksche JP. 1976. Botanical micro-techniques and cytochemisty
- 2) Chang R (1971). Basic principles of spectroscopy. McGraw Hill.
- 3) Garry D Christian, James E O'reilvy (1986). Instrumentation analysis. Alien and Bacon, Inc.
- 4) Gordon MH and Macrae M. 1987. Instrumental analysis in the biological sciences.
- 5) Henry B Bull (1971). An Introduction to physical biochemistry. F A Devis Co.
- 6) Wilson K and Walker JM.1994. Principles and techniques of practical biochemistry.
- 7) Allan Peacock, H. 1966. Elementary Microtechnique. Edward Arnold Publ.
- 8) Duddington, C.L, 1960. Practical microscopy. Pitman publ.
- 9) Perkampus H (1992). UV-VIS Spectroscopy and its applications. Springer-Verlag.
- 10) Pesce A J, Rosen C G, Pasty T L. Fluorescence Spectroscopy: An introduction for Biology
- 11) Vanholdem K.E. and W.C.Johnson, 1998. Principles of Physical Biochemistry

.

MODALITY OF ASSESSMENT

Theory Examination Pattern:

A) Internal Assessment - 40%: 40 marks.

Sr No	Evaluation type	Marks
1	Seminar presentation/ Short Project presentation / Photo documentation report of field visit/ Industry Visit Report /Presentation based on Research papers and references/Class Tests	30
2	Continuous assessment on the basis of participation in departmental activities	10

B) External examination - 60 %

Semester End Theory Assessment - 60 marks

- i. Duration These examinations shall be of 2½ hours duration.
- ii. Paper Pattern:
 - 1. There shall be **05** questions each of **12**. On each unit there will be one question & last question will be based on all the **04** units.
 - 2. All questions shall be compulsory with internal choice within the questions.

Questions	Options	Marks	Questions on
Q.1)	Any 1 out of 2	12	Unit I
Q.2)	Any 1 out of 2	12	Unit II
Q.3)	Any 1 out of 2	12	Unit III
Q.4)	Any 1 out of 2	12	Unit IV
Q.5)	3 short notes out of 5	12	All Units

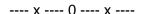
Practical Examination Pattern:

(A) External (Semester end practical examination):

Particulars	Practical 1
Laboratory work and /or Viva voce	50
Total	50

PRACTICAL BOOK/JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.



In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Co-ordinator / Incharge of the department; failing which the student will not be allowed to appear for the practical examination.

Overall Examination and Marks Distribution Pattern

Semester- I

	T				mester- I				T	1.
Course	RPSB	OT101	RPSBO	OT 102	RPSB	OT 103	RPSB	OT 104	Total per Course	Grand Total
	Internal	External	Internal	External	Internal	External	Internal	External	0	
Theory	40	60	40	60	40	60	40	60	100	400
Practical	5	i 0	5	0	5	0		50	50	200
			digin		RUI	onor				

SEMESTER II

Course Code: RPSBOT 201

Course Title:Plant Diversity-III

Academic year 2020- 21

COURSE OUTCOMES:

COURSE	DESCRIPTION			
OUTCOME	Upon successful completion of this course, learners will be able to;			
CO 1	Understand Rules of nomenclature according to ICN.			
CO 2	Comprehend evolutionary relationships among Angiosperms, learn concept of			
	character weghing, methods of illustrating evolutionary relationships			
CO 3	Understand the basic concepts in anatomy regarding origin of tissue systems and			
	organogenesis.			
CO 4	Demonstrate wood primitive and evolved wood elements and photosymthetic			
	systems in leaves			
CO 5	Classify plants to their respective families based on morphological and			
	palynological characters.			

RPSBOT 201	Title: Plant Diversity –III	Credits - 4
UNIT I	Angiosperms I	15 Lectures
	An International Code of Nomenclature (I.C.N) History and basic Principles.	
	Principles for assessment of relationships, delimitation of taxa and attribution of rank: a. criteria b. guidelines c. practical considerations, d. use of categories	
	APG system of classification	
	Botanical Survey of India	
UNIT II	Angiosperms II	15 Lectures
	Evolution, Variation and speciation, Biosystematic categories, Biotypes and Ecotypes.	
6.0	Concept of characters: Introduction, type function values of taxonomic importance. Variations; OTUs, character weighting and coding; cluster analysis; Phenograms, cladograms (definitions and differences), methods of illustrating evolutionary relationship (phylogenetic tree, cladogram).	
UNIT III	Anatomy I	15 Lectures
	Meristems: Definition type of meristems, apical cell theory, histogen theory and Tunica corpus theory	
	Sensory and tactile tissue system: Tactile sense organs, gravitational and optical sense organs	

UNIT IV	Anatomy II	15 Lectures
	Morphogenesis and organogenesis in plants: Organization of shoot	
	and root apical meristems; shoot and root development, Quiescent centre; Root cap, origin of lateral root.	
	Leaf development and phyllotaxy; transition of flowering, floral	
	meristems and floral development in Arabidopsis and Antirrhinum	
	PRACTICALS	
RPSBOTP 201	Plant Diversity- III	Credits - 2
1	Angiosperms: A study of the following plant families their peculiarities and economic importance: Menispermaceae, Portulacace Passifloraceae, Meliaceae, Sapindaceae, Lythraceae, Chenopodiaceae, Liliaceae, Scitaminae, Cyperaceae	eae, Guttiferae,
2	Identification of genus and species with the help of flora volumes. (In above mentioned families, all families studied in undergraduate included)	
3	Study of wood elements in <i>Annona, Michelia, Sterculia</i> and <i>Thuja</i> , usi maceration technique.	ng the
4	Study of the following leaves with respect to leaf surface characters (vertical epidermis, stomata, epidermal outgrowth): Pistia, Ficus, Avicennia are	
5	Photosynthetic system in Pinus (arm palisade): Cyperus, Ficus, and C	Dxalis

- 1. Grant, V. 1971. Plant Speciation, Columbia University press, London.
- 2. Grant W. F. 1984. Plant Biosystematics. Academic press, London.
- 3. Harisson, H.J. 1971. New concept in flowering plant Taxonomy. Hickman educational books Ltd. London.
- 4. Hislop-Harisson, J. 1967.Plant Taxonomy.English Language Book Sco.And Edward Arnold Pub.Ltd, UK.
- 5. Heywood, V. H. and Moore, D. M. 1984. Current concepts in Plant Taxonomy. Academic Press, London.
- 6. Jones, A. D. and Wibins, A. D. 1971. Variation and adaptation in Plant species Hickman and Co. New York.
- 7. Jones, S. B., Jr.andLuchsinger, A. E. 1986. Plant Systematics (gd edition). McGraw -Hill Book Co., New York.
- 8. Nordentam, B., El Gazaly, G. and kassas, M. 2000.Plant systematic for 21stcentury.Portland press.Ltd, London.
- 9. Easu, K. 1983. Plant Anatomy Wiley Eastern Limited.
- 10. Fahn, A. 1977 Plant Anatomy. Pergamon Press.
- 11. Forester, A.S. 1960. Practical Plant Anatomy. D. Van Nostrand Company Inc.
- 12. Mauseth, J.D. 1988. Plant Anatomy The Benjamin Cumming Publishing Co.

Course Code: RPSBOT 202 Course Title: PLANT PHYSIOLOGY- I Academic year 2020 - 21

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	Upon successful completion of this course, learners will be able to;
CO 1	Compare and contrast photosynthetic pathways involved in Eukaryotes and
	Prokaryotes.
CO 2	Understand protein dynamics
CO 3	Comprehend plant hormone production, utilization and destruction.
CO 4	Discuss and apply the physiological processes of plants.

RPSBOT 202	Title: Plant Physiology- I	Credits – 4
UNIT I	Photosynthesis I (Eukaryotes)	15 Lectures
	Regulation of C ₃ , C ₄ and CAM pathways of photosynthesis: Role of	
	light in the activation of dark phase enzymes, regulation of	
	RUBISCO, PEPcase, light effect, modulators and coordination of	
	light , dark phase.	
	C ₄ Photosynthesis: inter and intra-cellular transport of metabolites, carbonic anhydrase, PEPcase, NADP-MDH and PPDK.	
	Regulation of CAM through transport of metabolites.	
	Pentose Phosphate Pathway and its importance	
	Artificial photosynthesis	
UNIT II	Photosynthesis II (Prokaryotes)	15 Lectures
	Photosynthesis of prokaryotes: Pigment systems in bacteria and	
	Cyanobacteria, light harvesting mechanisms, reductive TCA cycle.	
UNIT III	Protein structure	15 Lectures
	Primary, secondary, tertiary and quaternary structural features	
	andtheir analysis – Theoretical and experimental;	
	Protein folding – biophysical and cellular aspects.	
UNIT IV	Plant hormones	15 Lectures
	Biosynthesis, storage, breakdown and transport (Auxins,	
	Gibberellins, Cytokinins, Ethylene, Abscisic acid, Inositol,	
	Jasmonic acid, Brassinosteroids). Bioassay techniques.	
	Phytohormones in signal transduction, plant hormone receptors.	

PRACTICALS		
RPSBOTP 202	Plant Physiology- I	Credits - 2
1	Enzyme kinetics : Determination of Km and Vmax of the enzyme an amylase)	nylase purified
2	Extraction of cellulase from a suitable fungal culture and study of e by DNSA method	nzyme activity
3	Immobilisation of yeast cells and study of invertase activity.	
4	Quantitative study of diurnal fluctuation in titratable acid number (T plant.	AN) in a CAM
5	Extraction and estimation of GOT and GPT from suitable plant mater	rial.
6	Separation of organic acids by paper chromatography.	,0)
7	Separation of sugars by paper chromatography)
8	A study of the enzyme polyphenol oxidase, from potato peels.	
9	Solvent extraction of chlorophyll a/b, xanthophylls and study of absolute	rption pattern

- 1. William G. Hopkins, 1999. Introduction to Plant Physiology, 2nd edition, John Wiley A Sons, Inc.
- 2. Lincoln Taiz and Eduardo Zeiger, 2002. Plant Physiology 2nd edition, Sinauer Associates, Inc. Publishers Sunderland, Massachusetts.
- 3. Frank B. Salisbury and Cleon W.Ross, 2002. Plant physiology 3 rd edition CBS publishers and distributors.
- 4. Noggle G.R. and Fritz G. J., 1986 Introductory Plant Physiology Prentice Hall.
- 5. Goodwin Y.W. and Mercer E.I., 2003 Introduction to Plant Biochemistry, 2nd edition. CBS Publishers and distributors.
- 6. Bajracharya, D. 1999. Experiments in Plant Physiology: A Laboratory Manual. Narosa Publishing House, New Delhi.
- 7. Cooper, T.G. 1977. Tools in Biochemistry. John Wiley, New York, USA.
- 8. Copeland, R.A. 1996. Enzymes: A Practical Introduction to Structure, Mechanism and Data Analysis. VCH Publishers, New York.
- 9. Dennison C. 1999.A guide to Protein Isolation. Kluwer Academic Publishers, Dordrecht, The Netherland.
- 10. Devi, P. 2000. Principles and Methods of Plant Molecular Biology, Biochemistry and Genetics. Agrobios, Jodhpur, India.

Course Code: RPSBOT 203 Course Title:Plant Physiology- II Academic year 2020 - 21

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	Upon successful completion of this course, learners will be able to;
CO 1	Develop a deeper understanding of responses of plants to abiotic and biotic
	stresses.
CO 2	Distinguish key physiological processes underlying seed germination.
CO 3	Analyze the physiological factors that regulate growth and development processes
	of plants.
CO 4	Understand the basic concepts of population ecology and biogeography.
CO 5	Develop a deeper understanding of ecological principles and apply the same for
	conservation methodologies.

RPSBOT	Title: Plant Physiology- II	Credits – 4
203		45 Lasturas
UNIT I	Stress Physiology	15 Lectures
	Responses of plants to biotic (pathogen and insects) and abiotic	
	(water, temperature and salt) stresses; mechanism of resistance to	
	biotic stress and tolerance to abiotic stress. Role of phytoalexins in	
	plant disease resistance.	
UNIT II	Seed Physiology	15 Lectures
	Physiology and biochemistry of seed germination mobilization of	
	food reserves, germination and growth factors, seed dormancy,	
	control and release of dormancy	
	MADS - box genes	
UNIT III	Environmental Botany I	15 Lectures
	The Environment: Physical environment; biotic environment; biotic	
0,0	andabiotic interactions.	
	Habitat and Niche: concept of habitat and niche; niche width and	
	overlap; fundamental and realized niche; resource partitioning;	
	character displacement.	
	Population Ecology: Characteristics of a population; population	
	growth curves; population regulation; life history strategies (r and K	
	selection); concept of meta-population-demes and dispersal,	
	interdemic extinctions, age structured population.	
UNIT IV	Environmental Botany II	15 Lectures
	Species interactions: types of interactions, interspecific	

	competition, herbivory, carnivory, pollination and symbiosis	
	Biogeography: Major terrestrial biomes, theory of island	
	biogeography; biogeographical zones of India.	
	Environmental Botany- Present concern: Conservation of genetic	
	resources, gene pools land races, Global warming and costal	
	ecosystems.	
	Depletion of forest cover, threats to mangroves. Urbanization and	
	plant cover PRACTICALS	
RPSBOTP	FRACTICALS	
203	Plant Physiology- II	Credits - 2
1	Breaking of seed dormancy by Physical and Chemical methods	
2	Effect of water and salinity stress on chlorophyll content of leaves.	,
3	Effect of water and salinity stress on Proline content of leaves	
4	Comparison of two population of a species collected from two areas.	
5	Determination of primary production of an area by harvest method (Te	errestrial/
	aquatic).	
6	Determination of primary production of an area by chlorophyll method	
7	Determination of Nygard index of algae in a water body.	
8	Determination of dust load on leaves of roadside plant.	
9	Determination of Stomatal Index of leaves	
10	Determination of epidermal architecture of leaves.	
11	Determination of LAI of different types of trees.	
12	Assessment of pollution in ambient air, on the basis of injured leaf are	a.
13	Field exercises:	
	Practical exercises are planned for better understanding of the state of	
	rather than 5-hour units. Field exercises are expected to be cor	
	excursion and field diaries maintained for submission during tests.	
	work can be carried out in the laboratory with help of plant and soil s	samples collect
	from the field.	
	Assessment of erosion status of land along a 'stream' on a slope or or	
	Assessment of status of waste land, on the basis of its appearance a growth.	nd visible plant
	Assessment of degradation of a forest on the basis of its canopy constrata and species diversity	ver and height,

- 1. William G. Hopkins, 1999. Introduction to Plant Physiology, 2nd edition, John Wiley A Sons, Inc.
- 2. Lincoln Taiz and Eduardo Zeiger, 2002. Plant Physiology 2nd edition, Sinauer Associates, Inc. Publishers Sunderland, Massachusetts.
- 3. Frank B. Salisbury and Cleon W.Ross 2002. Plant Physiology 3 rd edition CBS publishers and distributors.
- 4. Noggle G.R. and Fritz G. J.1986. Introductory Plant Physiology Prentice Hall.
- 5. Goodwin Y.W., and Mercer E.I. 2003. Introduction to Plant Biochemistry, 2nd edition. CBS Publishers and distributors.
- 6. Buchanan, B.B., Gruissem, W. and Jones, R. L. 2000 Biochemistry and Molecular Biology of Plants. American Soc. Of Plant Physiologists, Maryland, USA.
- 7. 7 Moore, T.C. 1989. Biochemistry and Physiology of Plant Hormones (2nded).

- SpringerVerlag, New York, USA.
- 8. Nobel, P.S.1999. Physicochemical and Environmental Plant Physiology (2nd ed). Academic Press, Diego, USA.
- 9. Ambasht R.S. 1995 A text book of plant ecology Student and co. Varanasi-5
- 10. Salisbury, F.B. and Ross, C.W.1992: Plant Physiology (4thed). Wadsworth Publishing Co., California, USA.
- 11. Billings WB 1964 Plants and the ecosystem Macmillan & co, London.
- 12. Clements FE 1916 Plant succession, An analysis of the development of vegetation. Carnegie Institute of Washington.
- 13. Cragg JB 1968 The theory and practice of conservation, IUCN Publ, New Series No. 12, 25-35.
- 14. Dash MC 1993 Fundamentals of Ecology WB Saunders and co. Philadelphia USA.
- 15. Frankel OH, Soule ME, 1981, Conservation and Evolution, Cambridge Univ Press.
- 16. Grace J 1983, Plant atmosphere relationships. Champman& Hall.
- 17. Greig Smith P 1983, Quantitative plant ecology, Univ California Press, California.
- 18. Hutchings MJ (ed) 1988, Plant population biology, Blackwell.
- 19. Hutchinson GE 1978, An introduction to population ecology. Yale Univ. Press.
- 20. Kochhar PL 1986 Plant Ecology Ratanprakashan, Mandi, Agra.
- 21. Krebs GJ 1972 Ecology Harper and Row Publ, New York.
- 22. Kumar HD 1994 Modern concepts of ecology. Vikas publishing house pvt ltd, New Delhi.
- 23. May RM (ed) 1981 Theoretical Ecology, Blackwell
- 24. Odum EP 1963 Ecology Holt Reinhart and Winston Inc.
- 25. Odum EP 1983 Basic Ecology, Saunders Publ Philadelphia.
- 26. Reynolds CS 1984 The ecology of phytoplankton, Cambridge Univ Press
- 27. Silverton JW 1982 Introduction to plant population ecology, Longman.
- 28. Southwick CH 1983 (ed) Global Ecology Sinauer.
- 29. Whittaker RH 1975 Communities and Ecosystems (2nded) MacMillan, New York

Course Code: RPSBOT 204 Course Title: CURRENT TRENDS IN BOTANY Academic year 2020 - 21

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	Upon successful completion of this course, learners will be able to;
CO 1	Understand basic principles of traditional forms of medicine and therapeutic value of
	medicinal plants and Indian plant foods.
CO 2	Critically evaluate medicinal herbs for quality parameters and adulterants.
CO 3	Develop a deeper understanding of different forms of IPR's, procedures and process
	of patent filing, the need for protection of traditional knowledge
CO 4	Apply biostatistical tools in order to collect, tabulate, analyze and interpret data and
	develop competence in hypothesis testing.
CO 5	Apply tools of bioinformatics in retrieving, aligning sequences, in order to derive
	sequence properties, elucidate structures and relate it with function.

RPSBOT 204	Title: Current trends in Botany	Credits - 4
UNIT I	Medicinal Botany and Dietetics	15 Lectures
	History, scope and importance of medicinal botany	
	Principles of traditional systems of medicines: Ayurveda, Siddha and Unani	
	Monograph of Drugs with respect to Botanical Source, Geographical distribution, Macroscopic and microscopic Characters, Chemical constituents, therapeutic uses, and adulterants of a) <i>Terminalia chebula</i> (fruits), b) <i>Terminalia bellerica</i> (fruits) and c) <i>Butea monosperma</i> (Flowers, leaves and bark), d) <i>Foeniculum vulgare</i> (fruits) e) <i>Tinospora cordifolia</i> (stem)	
0,0	Essential oils (<i>Eucalyptus</i> and <i>Citronella</i>), fatty oil (Sesame, and coconut), and Medicinal uses of the above.	
	Food as Medicine for the treatment of –Arthritis, Renal Disease (Kidney Stone and nephrotoxicity), Constipation, Piles, blood pressure and female reproductive disorders.	
	 Therapeutic value of Indian Plant Foods: Cereals –Oats and Ragi; Pulses – Green Gram, Black Gram and Soyabean; Fruits – Jambul, Amla, Guava, Mulberry and Ber; Spices and Condiments – Coriander, Cumin, Asafoetida and Clove 	

UNIT II	Traditional Knowledge and IPR	15 Lectures
	Different property rights & IPR in India	
	IPR: Objectives, process & scope	
	TRIPS & Patent laws: Introduction & standards for patent protection	
	WTO& Indian Patent Laws	
	Protection of traditional knowledge— objective, concept of traditional	
	knowledge, holders, issue concerning, bio-prospecting and	
	biopiracy; Advantages of IPR, some case studies	
	International Depository authority ,Gene patenting, plant variety	
	protection, trade secrets & plant breeders right	(2)
	protection, trade secrets & plant breeders right	
UNIT III	Biostatistics	15 Lectures
OIVII III	Hypothesis testing: Theory of errors – Type I and Type II errors, Null	15 Lectures
	Hypothesis,	
	z-test	
	Test of significance.	
	Introduction to ANOVA, One-way & two way ANOVA,	
	Dunett's test.	
	Randomized Block Design and Latin Square.	
	(5 problems to be solved in each category)	
UNIT IV	Bioinformatics	15 Lectures
	Specialized databases: EST, GSS, KEGG, OMIM	
	System biology and Bioinformatics, Biological pathway analysis	
	 System biology database and tools: Reactome, Plant 	
	Reactome, Pathway commons	
	Conserved regions in nucleotide and protein sequences	
	Gene finding and motif finding	
	Prediction of Secondary and tertiary structure of protein	
	Tertiary structure prediction methods: Homology modelling,	
	Threading, Ab-initio methods.	
	Introduction to Markov chain and Hidden Markov Model.	
	Use of Hidden Markov model in Protein structure prediction	
	• Ose of Flidder Markov flidder in Frotein Structure prediction	
	PRACTICALS	
RPSBOTP	FRACTICALS	
204	Current trends in Botany	Credits - 2
204	A study of the following modicinal plants/plant parts with re-	noot to thoir
(20	A study of the following medicinal plants/plant parts with respharmacognostic characters for authentication of the drug source:	•
	chebula(fruits), b) Terminalia bellerica (fruits) c) Butea monosperma(F	
		lowers, leaves
	and bark), d) Foeniculum vulgare(Fruit) e) Tinosporacordifolia(stem)	n nolorition and
2	Estimation of total ash content, extractive values in solvents of varying	
	using different extraction techniques from any medicinal plant materia	a as per indian
	Pharmacopeia standards.	
3	Patent search	
4	Patent filing	
5	Hypothesis testing, Normal deviate test.	
6	ANOVA- one way & two way	

7	Randomized block Design and Latin square
8	Visualisation of biological pathway- KEGG Pathway, Plant Reactome
9	Use of BLAST and its variants
10	Motif finding using MEME
11	Protein structure prediction: Homology modelling based structure prediction tool- SWISS model
12	Protein profiling using SWISSPROT : MASCOT

- 1. Sambamurthy AVSS and Subramanyan N S 2000 Economic Botany of Crop Plants Asiatech publishers.
- 2. GMP for Botanicals Regulatory and Quality issues on Phytomedicine, Businesshorizons, New Delhi, First edition, 2003. Robert Verpoorte, Pulok K Mukharjee.
- 3. Hand Book on Ayurvedic Medicines, H. Panda, National Institute of Industrial Research, New Delhi 2000.
- 4. Sivarajan V. V. and Indira, B. 1994 Ayurvedic drugs and their plant sources. Oxford &IBH Publishing Co, New Delhi.
- 5. Trease, G. E. and Evans, W. L. 1983 Pharmacognosy 12th ed. Bailliere Tindall, London.
- 6. Vaidya, B. 1982. Some controversial drugs in Indain medicine. ChaukambicaOrientalia, Varanasi.
- 7. Harborne, J. 1984 Phytochemical methods. Ed Chapman & Hall, London
- 8. Mann, J., Davidson, R. S., Hobbs, J. B., Benthorpe, D. V. and Harborne Natural products, Longman Scientific and Technical Co, Essex
- 9. Smith, P. M. 1976 The Chemotaxonomy of plants Edward Arnold, London.
- 10. Rastogi, R.P. and Mehrotra, B.N. 1991. Compedium of Indian medicinal plants Vol.I&II. Publishers. Central Drug Research Institute Lucknow and Publications and Information Directorate New Delhi
- 11. Vijay adnhaleshi C 2004 Compendium on Controversial Drugs, JagdguruSrimanMadhwacharyaMoolamahasamsthana Sri RaghavendraswamyMatha, Manthralayam.
- 12. Bryan Bergeron M.D. 2008, Bioinformatics Computing.PHI Publications New Delhi.
- 13. Cantor, C.R. and P.R. Schimel 2010. Biophysical chemistry by, W.H. Freeman & Co.,
- 14. Freeman Dyson 1999, Origin of life, Cambridge University Press
- 15. Glasel A. and M.P.Duetscher.1995. Introduction to Biophysical Methods for protein and nucleic acid Research. Academic Press.
- 16. Goon, A.M., Gupta, M.K. and Dasgupta, B. (1986) Fundamentals of Statistics (Vol.2). The world press Private limited, Calcutta.
- 17. Gupta,S.C. and Kapoor,V.K.(1993) Fundamentals of applied statistics. Sulthan Chand and Sons, New Delhi
- 18. Gupta, S.P(2001) Statistical methods. Sulthan Chand and Sons, New Delhi.
- 19. Khan I and Khanum (2008) Fundamentals of Biostatistics, Ukaaz Publications, Hyderabad
- 20. Alfonso Valencia &Blascheke. L. 2005. Developing Bioinformatics Skills. Orille's Publication.
- 21. Bernard R. Glick and Jack J. Pasternak, 2001. Molecular Biotechnology 2nd edition, ASM press Washington DC.
- 22. Brown, C.W, I.Campbell and F.G. Priest, 1987. Introduction to Biotechnology. Blackwell scientific publications, Oxford
- 23. Chawla, H.S, 2000. Introduction to Biotechnology. Oxford & IBH Publishing Co Pvt. Ltd, New Delhi.
- 24. Hamilton, C.(2006) Biodiversity, Biopiracy and Benefits: What allegations of Biopiracy tell us about intellectual property. Blackwell publishing Ltd., Oxford.

- 25. Heink, U and Kowarik,I. (2010) What criteria should be used to select biodiversity indicators. Biodiversity Conservation 19:3769-3797.
- 26. Ram Reddy, S. Surekha , M. and Krishna Reddy, V (2016). Biodiversity Traditional Knowledge Intellectual Property Rights . Scientific Publishers.
- 27. Unnikrishna,P and Suneetha,M. (2012). Biodiversity ,traditional knowledge and community health: strengthening linkages. Institute for Advanced Studies, United Nations University, Tokyo
- 28. Wood ,A., Pamela, S.E.and Johanna, M.(2000). The root causes of biodiversity loss. United Kingdom: Early –Scan Publications.

MODALITY OF ASSESSMENT

Theory Examination Pattern:

A) Internal Assessment - 40%: 40 marks.

Sr No	Evaluation type	Marks
1	Seminar presentation/ Short Project presentation / Photo	30
	documentation report of field visit/ Industry Visit Report	
	/Presentation based on Research papers and references/Class	
	Tests	
2	Continuous assessment on the basis of participation in	10
	departmental activities	

B) External examination - 60 %

Semester End Theory Assessment - 60 marks

- i. Duration These examinations shall be of 2½ hours duration.
- ii. Paper Pattern:
 - 1. There shall be **05** questions each of **12** marks .On each unit there will be one question & last question will be based on all the **04** units.
 - 2. All questions shall be compulsory with internal choice within the questions.

Questions	Options	Marks	Questions on
Q.1)	Any 1 out of 2	12	Unit I
Q.2)	Any 1 out of 2	12	Unit II
Q.3)	Any 1 out of 2	12	Unit III
Q.4)	Any 1 out of 2	12	Unit IV
Q.5)	3 short notes out of 5	12	All Units

Practical Examination Pattern:

(A) External (Semester end practical examination):

Particulars	Practical 1
Laboratory work and /or Viva voce	50
Total	50

PRACTICAL BOOK/JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.

In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Co-ordinator / Incharge of the department; failing which the student will not be allowed to appear for the practical examination.

Overall Examination and Marks Distribution Pattern

Semester- II

Course	RPSBOT 201		RPSBO	OT 202	RPSBOT 203		RPSBOT 204		Total per Course	Grand Total
	Internal	External	Internal	External	Internal	External	Internal	External		
Theory	40	60	40	60	40	60	40	60	100	400
Practical	50		5	0	50		50		50	200

Resolution No.: AC/II (20-21).2.RPS4

S.P. Mandali's RAMNARAIN RUIA AUTONOMOUS COLLEGE

Syllabus for: Semester III and IV

Program: M. Sc.

Program Code: Botany (RPSBOT)

(Credit Based Semester and Grading System for the academic year 2020 – 2021)

SEMESTER III

Course Code	UNIT	TOPICS	Credits	Lectures/ Week
		TECHNIQUES AND INSTRUMENTA	TION I	
RPSBOT 301	I	Biostatistics		1
	II	Bioinformatics	4	1
	III	pH and buffers and Electrophoresis	4	0.1
	IV	Centrifugation		1
		MOLECULAR BIOLOGY I	.10	,)
RPSBOT 302	I	DNA Replication		1
	II	Transcription		1
	III	RNA Processing	4	1
	IV	Translation		1
		PLANT BIOTECHNOLOGY I		
RPSBOT 303	I	Plant Tissue Culture I		1
	II	Plant Tissue Culture II		1
	III	Plant Tissue Culture III	4	1
	IV	Commercial Aspects		1
	M	OLECULAR BIOLOGY AND CYTOG	ENETICS I	
RPSBOT 304	I	Cytology		1
	II	Cancer Biology	4	1
	III	Immune Systems	4	1
	IV	Genetic Disorders		1
RPSBOTP 301		Techniques and Instrumentation I	02	04
RPSBOTP 302		Molecular Biology I	02	04
RPSBOTP 303	40	Plant Biotechnology I	02	04
RPSBOTP 304		Project	02	04
			24	

SEMESTER IV

Course Code	UNIT	TOPICS	Credits	Lectures/ Week
	TE	CHNIQUES AND INSTRUMENTATION	N II	
RPSBOT 401	ı	Microscopy & Spectroscopy		1
	II	Chromatography		1
	III	Tracer Techniques and PCR	4	1
	IV	Membrane biophysics and plant growth in microgravity		1

RPSBOT 402		MOLECULAR BIOLOGY II		
	I	Gene regulation I		1
	II	Gene regulation II	4	1
	III	Gene regulation III	4	1
	IV	Cell signalling		1
		PLANT BIOTECHNOLOGY II		1
RPSBOT 403	ı	Environmental Biotechnology		1
	II	Traditional knowledge and IPR	4	1
	III	Nanotechnology	4	۸/01
	IV	Food Biotechnology	. 0	9) 1
	MO	DLECULAR BIOLOGY AND CYTOGE	NETICS II	
RPSBOT 404	I	Plant Breeding I	~ 0,	1
	II	Plant Breeding II		1
	III	Molecular Plant Breeding	4	1
	IV	Plant Genetic Engineering		1
		PRACTICALS		
RPSBOTP 401		Techniques and Instrumentation II	02	04
RPSBOTP 402		Molecular Biology II	02	04
RPSBOTP 403		Plant Biotechnology II	02	04
RPSBOTP 404		Project	02	04
			24	
Rain	narain P			
5311	*			

SEMESTER III

Course Code: RPSBOT 301

Course Title:Techniques and Instrumentation I

Academic year 2020 - 21

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	Upon successful completion of this course, learners will be able to;
CO 1	Apply biostatistical tools inorder to collect, tabulate, analyze and interpret data and
	develop competence in hypothesis testing.
CO 2	Apply tools of bioinformatics in retrieving, aligning sequences, inorder to derive
	sequence properties, elucidate structures and relate it with function.
CO 3	Understand the science behind the preparation of various buffers and its
	applications in experiments.
CO 4	Apply electrophoretic techniques for separation of macromolecules
CO 5	Understand the principles, working and applications of centrifugation

RPSBOT	Techniques and Instrumentation I	Credits – 4
301		
UNIT I	Biostatistics	15 Lectures
	Hypothesis testing: Theory of errors – Type I and Type II errors,	
	Null Hypothesis,	
	z-test	
	Test of significance.	
	Introduction to ANOVA, One-way & two way ANOVA,	
	Dunett's test.	
	Randomized Block Design and Latin Square. (5	
	problems to be solved in each category)	
UNIT II	Bioinformatics	15 Lectures
	Databases of bioinformatics: Primary, Secondary and tertiary	
0.0	 Nucleic acid sequence databases: GenBank, EMBL, DDBJ 	
	 Protein sequence databases: SWISS-PROT, TrEMBL, PIR, 	
_	PDB	
	 Genome Databases at NCBI, EBI, TIGR, SANGER 	
	Markov Chains & Hidden Markov Models:	
	Introduction to Markov Chains and Hidden Markov models, HMM	
	for protein structure prediction	
	Plant Reactome	
	Bioinformatics as a tool in Taxonomy studies	

UNIT III	pH and Buffers; Electrophoresis	15 Lectures
	pH and buffer solutions, acids and bases, strong acids and bases,	
	hydrogen ion concentration, dissociation of acids and bases,	
	measurement of pH, titration curves.	
	Physiological Buffers.	
	Electrophoresis: Theory and application	
	PAGE (Native & SDS) and AGE , 2D Electrophoresis	
UNIT IV	Centrifugation	15 Lectures
	Basics principle of Sedimentation	70
	Types of rotors	20)
	Differential & density gradient centrifugation	0
	Preparative centrifugation & Applications; Analytical centrifugation	>
	& applications.	
	PRACTICALS	
RPSBOTP 301	Techniques and Instrumentation I	Credits - 2
1	Hypothesis testing, Normal deviate test.	
2	ANOVA- one way & two way	
3	Randomized block Design and Latin square	
4	HMM for protein structure prediction	
5	Plant Reactome	
6	Bioinformatics as a tool in Taxonomy studies	
7	Preparation of buffers (phosphate and acetate)	
8	Determination of pKa	
9	Density gradient centrifugation	

- 1. Bryan Bergeron M.D. 2008, Bioinformatics Computing.PHI Publications New Delhi.
- 2. Cantor, C.R. and P.R. Schimel 2010. Biophysical chemistry by, W.H. Freeman & Co.,
- 3. Freeman Dyson 1999, Origin of life, Cambridge University Press
- 4. Glasel A. and M.P.Duetscher.1995. Introduction to Biophysical Methods for protein and nucleic acid Research. Academic Press.
- 5. Goon, A.M., Gupta, M.K. and Dasgupta, B. (1986) Fundamentals of Statistics (Vol.2). The world press Private limited, Calcutta.
- 6. Gupta, S.C. and Kapoor, V.K. (1993) Fundamentals of applied statistics. Sulthan Chand and Sons, New Delhi
- 7. Gupta, S.P(2001) Statistical methods. Sulthan Chand and Sons, New Delhi.
- 8. Khan I and Khanum (2008) Fundamentals of Biostatistics, Ukaaz Publications, Hyderabad
- 9. 16) Vanholdem K.E. and W.C.Johnson, 1998. Principles of Physical Biochemistry
- 10. Wilson & Walker 1986. Practical biochemistry: Principles & Techniques. Cambridge Univ. Press.
- 11. Alfonso Valencia &Blascheke. L. 2005. Developing Bioinformatics Skills. Orille's Publication.

Course Code: RPSBOT 302 Course Title:Molecular Biology I Academic year 2020 - 21

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	Upon successful completion of this course, learners will be able to;
CO 1	Develop basic understanding of cellular and molecular biology, understand various
	molecular mechanisms of replication, RNA processing and translation.
CO 2	Distinguish between molecular mechanisms of prokaryotes and eukaryotes.
CO 3	Gain insights about recent advances in molecular biology.
CO 4	Build a career in the field of molecular biology.

RPSBOT	Molecular Biology I	Credits - 4
302		451
UNIT I	DNA Replication	15 Lectures
	Molecular details of DNA replication in prokaryotes and eukaryotes.	
	Assembly of raw DNA into nucleosomes.	
	DNA recombination, Holliday model for recombination.	
	1.0.	
UNIT II	Transcription	15 Lectures
	Transcription, RNA synthesis, classes of RNA and the genes that code for them.	
	Transcription of protein coding genes, prokaryotes and eukaryotes, mRNA molecule.	
	Transcription of other genes, ribosomal RNA, tRNA.	
UNIT III	RNA processing	15 Lectures
	Capping, polyadenylation, splicing, introns and exons.	
0.0	snRNA, Types and significance of snRNA, snRNA in spliceosome,	
	Non coding RNAs, ribozyme, riboswitches, RNA localization.	
UNIT IV	Translation	15 Lectures
	Protein structure, nature of genetic code, translation of genetic message.	
	Post translational modifications, localization, chaperons.	
	PRACTICALS	

RPSBOTP 302	Molecular Biology I	Credits - 2
1	Aseptic techniques, safe handling of microorganisms.	
2	Establishing pure cultures, streak plate method (T-streak and pentage) Pour plate, spread plate.	gon method),
3	Maintenance of cultures - Paraffin embedding, Lyophilisation.	
4	Preparation of culture medium, stock solutions	
5	Determination of cell number, viable count method (using pour plate dilution technique).	and serial
6	Separation of seed proteins using PAGE.	70
7	Analysis of proteins by one and two dimensional gel electrophoresis.	20)
8	Genomic DNA isolation and quantification.	0

- 1. Lewin B. 2000. Genes VII. Oxford University Press, New York.
- 2. Alberts, B., Bray, D Lewis, J., Raff, M., Roberts, K and Walter 1999. Molecular Biology of the Cell. Garland Publishing, Inc., New York.
- 3. Wolfe S.L 1993 Molecular and Cellular Biology, Wadsworth Publishing Co., California, USA.
- 4. Gupta. P.K. 1995. Cytogenetics. Rastogi& Co., Meerut.
- 5. Glick. B.R. & Thompson. J.E. 1993. Methods in Plant Molecular Biology and Biotechnology. CRC Press, Boc Raton, Florida.
- 6. Sybenga. J. 1973. General Cytogenetics. American Elsevier Pub. Co., New York.
- 7. Swanson, Merz& Young. 1967. Cytogenetics. Prentice Hall India.
- 8. Lewis. K.R. & John. B. 1963. Chromosome Marker. J & A Churchill Co., London
- 9. Wilson. J.,& Hunt. T. 2007. Molecular Biology of the Cell. 5th Edition. The Problems Book. 2nd Edition. Garland Publisher, New York.
- 10. Celis. J.E. (Ed.). 2006. Cell Biology: A Laboratory Hand Book. 3rd Edition. Elsevier, USA.
- 11. Lodish. H., Berk. A., Kaiser. C.A., Kreiger. M., Scott. P.M., Bretcher. A., Ploegh. H.,&Matsudaira. P. 2004. Molecular Cell Biology. 5th Edition. W.H. Freeman and Co., New York.
- 12. Kleinsmith. L.J. & Kish. V.M. 1995. Principles of Cell and Molecular Biology. 2nd Edition. Harper Collins College Publishes., New York, USA.
- 13. William. K., Cummings. S., Spencer. M.R.,& Charlotte. A. 2013. Essentials of Genetics. Pearson Books, Delhi.
- 14. Hartwell L. 2011. Genetics: From Genes to Genomes, Study Guide and Solution Manual. 4th Edition. Nero.
- 15. Bass. H. &Birchler. J. 2011. Plant Cytogenetics: Genome Structure and Chrmosome Function. Springer, New York.
- 16. Russel. P.J. 2009. Genetics A Molecular Approach. 3rd Edition. Pearson Benjamin Cummings, San Francisco, USA.
- 17. Roy. D. 2009. Cytogenetics. Alfa Science International Ltd., UK.
- 18. Gupta. P.K. 1995. Cytogenetics. Rastogi& Co., Meerut.
- 19. Sybenga. J. 1992. Cytogenetics in Plant Breeding. Springer London Ltd.
- 20. Swanon. M. & Young. 1982. Cytogenetics. Prentice Hall, India.

Course Code: RPSBOT 303 Course Title:PlantBiotechnology I

Academic year 2020 - 21

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	Upon successful completion of this course, learners will be able to;
CO 1	Understand the basic concepts, technical skills, hands-on experience and training
	in plant tissue culture.
CO 2	Develop competency in production and enhancement of secondary metabolites
CO 3	Understand advanced methods of biotransformation for product enhancement
CO 4	Apply the fundamental principles of transgenic plants in phytoremediation and in
	vitro germ plasm conservation.
CO 5	Understand the basic principles of effective bioreactor design for large scale
	production of metabolites.

RPSBOT	Plant Biotechnology I	Credits – 4
303		
UNIT I	Plant Tissue Culture I	15 Lectures
	Plant improvement through somaclonal variations.	
	Plant cell culture systems: a potential renewable source of flavours,	
	fragrances, and colorants	
	Metabolic engineering: Production of useful secondary metabolites	
	through regulation of biosynthetic pathway in cell and tissue	
	suspension culture	
UNIT II	Plant Tissue Culture II	15 Lectures
	Plant cell cultures as chemical factories: Cell suspension,	
	enhancement of product formation using biotic and abiotic elicitors,	
	immobilization, permeabilization and product recovery.	
	Biotransformation using: Freely suspended plant cells and	
	Immobilized plant cells	
	Biotransformation for Vanillin production from Capsicum cell	
0'	cultures.	
UNIT III	Plant Tissue Culture III	15 Lectures
	In vitro storage of Germplasm, Cryopreservation	
	Studies on Agrobacterium mediated transformed root cultures.	
	Transgenic plants in phytoremediation	
	Scale –up of secondary metabolites from hairy roots	
	Risk assessment and the regulatory frame work	
UNIT IV	Commercial aspects	15 Lectures

		_			
	The quest for commercial production from plant cell: scaling up of				
	cell cultures,				
	Bioreactors: factors for bioreactor design, pneumatically				
	agitated bioreactors, comparison of bioreactors, operating				
	mode, batch, fed-batch, semi continuous, two stage operation,				
	continuous				
	cultivation.				
	Factors for growth in Bioreactors.				
	Shikonin production by <i>Lithospemumerythrorhizon</i> cell cultures.				
	PRACTICALS				
RPSBOTP	Dient Dietechnology I				
303	Plant Biotechnology I Credits - 2				
1	Preparation of stock solutions				
2	Preparation of MS basal medium & Defined medium				
3	Callus induction				
4	Regeneration of the callus				
5	Micropropagation				
6	Isolation of bioactive compounds from callus and plant source using TLC.				
7	Enhancement of product formation using biotic or abiotic elicitor (Total phenolics/				
	flavonoids).				
8	Types of Bioreactors.				
9	Agrobacterium mediated transformed root cultures				
10	Study of mitotic index.	٦			
11	Blood group testing.	٦			
12	Identification of genetic diseases by chemical tests.				
13	Karyotypes of genetic disorders.				

- 1) Bhojwani. S.S. &Razdan. M.K. 1996. Plant Tissue Culture: Theory and Practice (Rev.Ed.). Elsevier Science Publishers, New York.
- 2) Chawla. H.S 1999. Introduction to Plant Biotechnology. Oxford & IBH.
- 3) Collin. H.A & Edwards. S. 1998. Plant Cell Culture. Bioscientific Publishers, Oxford, UK.
- 4) Gamborg& Phillips. Plant Cell, Tissue and Organ Culture. Narosa Publications.
- 5) Jain. S.M., Sopory. S.K. &Valleux. R.E. 1996. In Vitro Haploid Production in Higher Plants. Volumes 1 to 5. Fundamental Aspects and Methods. Kluwer Academic Publishers, Dordrecth, Netherlands.
- 6) Kalyan Kumar De. 1997. Plant Tissue Culture. NCB Agency, Kolkata.
- 7) Ramawat. K.G. &Merillon. J.M. 2007. Biotechnology: Secondary Metabolites. 2nd Ed. Science Pub., Netherlands.
- 8) Razdan. M.K. 2003. An Introduction to Plant Tissue Culture. Oxford & IBH, New Delhi
- 9) ShuklaYM,PatelNJ,JithendraJD,BhatnagarR,Talati JG ,Kathiria KB 2009, Plant Secondary Metabolites, New India Publishing Agency, Gujarat.

Course Code: RPSBOT 304 Course Title:Molecular Biology and Cytogenetics I Academic year 2020 - 21

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	Upon successful completion of this course, learners will be able to;
CO 1	Understand the structure of the cell membrane, its function, regulatory aspects of cell division and PCD.
CO 2	Gain knowledge about the nature, development and causes of cancer.
CO 3	Acquire knowledge about the components of the immune system and applications
	in health care.
CO 4	Apply the knowledge of genetic disorders for genetic counseling and therapy.
CO 5	Understand the concept of various biochemical, sex linked and cardiovascular
	disorders.

RPSBOT	Detailed Syllabus	
304	Molecular Biology and Cytogenetics I	Credits – 4
UNIT I	Cytology	15 Lectures
	Cell membrane and permeability: Molecular models of cell membrane, cell permeability. Differentiation of cell membrane, intercellular communications and gap junctions. Cell coat and cell recognition, cell surface.	
2	Cell Cycle and Apoptosis: Check points during cell cycle-G1 to S, progression of S phase, G2 to M phase, Anaphase check points and components involved as regulators of check points, role of cyclins and CDKs, synthesis and degradation of cyclins, structural features of CDKs and cyclins, activation and inactivation of cyclin dependent kinases; role of RBs, E2Fs, and DP proteins, P53, different types of Cyclin dependent CDKs, CDC25, CAKs, Wee1 proteins, nim-proteins, SCFs, Anaphase Promoting Complexes APC (cyclosomes), Centrosome activation- structure, duplication of centrosomes, Role of nucleophosmins, organization of mitotic apparatus, binding of tractile fibers to kinetochore complexes, molecular motors involved in movement of chromosomes to equatorial plate and in anaphase movement; cytokinesis by cleavage and phragmoplast formation- different gene products and structures involved and the mechanisms of cytokinesis. Cell Plate formation, PCD. Organization and function of mitochondrial and chloroplast genomes.	

UNIT II	Cancer Biology	15 Lectures			
	Cancer cells: Characteristics, division, spread, treatment. Course				
	of cancer cell formation, Carcinogens: radiations, chemicals,				
	oncogenic virus				
	Cancer and mutations, reproductive properties of transformed				
	animal cell in culture, oncogenes, protoncogenes and their				
	conversion. Oncogenes and growth factors.				
	Stem cells, Regenerative medicine				
UNIT III	Immune System	15 Lectures			
	Phylogeny of immune system, innate and acquired immunity,				
	nature and biology of antigens, major histocompatibility complex	0			
	cells of immune system, regulation of immune responses.				
	Immunity in Health and Disease: Immunodeficiency and AIDS				
UNIT IV	Genetic Diseases	15 Lectures			
	Genetic disorders, genetic counselling and gene therapy				
	Biochemical disorders, sex linked disorders				
	Cardiovascular disorders.				
	PRACTICALS				
RPSBOTP	Ducitor	Credits - 2			
304	Project	Credits - 2			
	Projects will be allotted in third semester and students will submit pro	oject			
	proposal having introduction, review of literature, well defined materi	al and			
	methods, expected results and references				

- **1)** Glick. B.R. & Thompson. J.E. 1993. Methods in Plant Molecular Biology and Biotechnology. CRC Press, Boc Raton, Florida.
- 2) Sybenga. J. 1973. General Cytogenetics. American Elsevier Pub. Co., New York.
- 3) Swanson, Merz& Young. 1967. Cytogenetics. Prentice Hall India.
- 4) Lewis, K.R. & John. B. 1963. Chromosome Marker, J & A Churchill Co., London.
- **5)** Alberts. B., Breyer. D., Hopkin. K., Johnson. A.D., Lewis. J., Raff M., Roberts. K. &Watter. P. 2014. Essential Cell Biology. 4th Edition. Garland Publishers, New York.
- **6)** Karp. G. 2013. Cell and Molecular Biology Concepts and Experiments. 7th Edition. Wiley Global Education, USA.
- 7) De Robertis and De Robertis 2005 (Eight edition) (Indian) Cell and Molecular Biology, Lippincott Williams, Philadelphia. [B.I Publications Pvt. Ltd. New Delhi].
- 8) Sadova David 2004 (First Indian Edition). Cell Biology, New Delhi.
- 9) Albert Etal 2002 (Fourth Edition). Molecular Biology of the cell, Garland Science (laylar and Francis) New York Group (wt)
- **10)** LodishEtal 2004 (Fifth Edition). Molecular Cell Biology, W H Freeman and company, New York.
- 11) Powar C.B 2005 (Third Edition). Cell Biology, Himalaya Publishing, Mumbai.

- 12) Roy S.C and KKDe 2005 (Second Edition). Cell Biology, New central Book Agency Private Ltd., Kolkata.
- 13) Verma P.S and Agarwal V.K 2006 Cell Biology, Genetics, Molecular Biology, Evolution, Ecology. S.Chand and Company, New Delhi.
- 14) Gerald Karp 1999 Cell and Molecular Biology- Concept and Expts. John Wiley and Schelne., USA.
- 15) Swanon. M. & Young. 1982. Cytogenetics. Prentice Hall, India
- 16) Snustad. P & Simmons. M.J. 2003. Principles of Genetics. 3rd Ed. John Wiley & Sons Inc., USA Collegi

MODALITY OF ASSESSMENT

Theory Examination Pattern:

A) Internal Assessment - 40%: 40 marks.

Sr No	Evaluation type	Marks
1	Seminar presentation/ Short Project presentation / Photo documentation report of field visit/ Industry Visit Report /Presentation based on Research papers and references/Class Tests	30
2	Continuous assessment on the basis of participation in departmental activities	10

B) External examination - 60 %

Semester End Theory Assessment - 60 marks

- Duration These examinations shall be of 21/2 hours duration.
- ii. Paper Pattern:
 - 1. There shall be **05** questions each of **12** marks. On each unit there will be one question & last question will be based on all the 04 units.
 - All questions shall be compulsory with internal choice within the questions.

Questions	Options	Marks	Questions on
Q.1)	Any 1 out of 2	12	Unit I
Q.2)	Any 1 out of 2	12	Unit II
Q.3)	Any 1 out of 2	12	Unit III
Q.4)	Any 1 out of 2	12	Unit IV
Q.5)	Any 3 out of 5	12	All Units

Practical Examination Pattern:

External (Semester end practical examination):

Particulars	Practical 1
Laboratory work / Viva	50
Total	50

PRACTICAL BOOK/JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.

In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Co-ordinator / Incharge of the department; failing which the student will not be allowed to appear for the practical examination.

Overall Examination and Marks Distribution Pattern

Semester- III

Course	RPSBOT 301		RPSBOT 301 RPSBOT 302 RPSBOT 303		RPSBOT 304		Total per Course	Grand Total		
	Internal	External	Internal	External	Internal	External	Internal	External		
Theory	40	60	40	60	40	60	40	60	100	400
Practical	5	0	5	0	5	0	5	0	50	200

SEMESTER IV

Course Code: RPSBOT 401

Course Title:Techniques and Instrumentation II

Academic year 2020 - 21

COURSE OUTCOMES:

COURSE	DESCRIPTION					
OUTCOME	Upon successful completion of this course, learners will be able to;					
CO 1	Apply the principles, working and applications of fluorescence microscopy,					
	electron microscopy and spectroscopy					
CO 2	Understand the principles, working and applications of chromatography					
CO 3	Understand the basic principles of tracer techniques and PCR and their					
	applications.					
CO 4	Interpret the role of membrane biophysics in human disease research.					
CO 5	Demonstrate the isolation and characterization of plant membranes.					
CO 6	Gather knowledge about plant research in microgravity.					

RPSBOT 401	Techniques and Instrumentation II	Credits - 4
UNIT I	Microscopy and Spectroscopy	15 Lectures
	Principles, instrumentation, working and applications Fluorescence of microscope, TEM, SEM.	
	Biological sample preparation for electron microscopy.	
	IR, GC MS, AAS, Plasma Emission spectroscopy, NMR, MS	
UNIT II	Chromatography	15 Lectures
200	General Principle of chromatography.	
	Techniques and applications of Ion exchange, Affinity Chromatography&HPLC	
	Application / validation of herbal drugs using HPTLC.	
UNIT III	Tracer techniques & PCR	15 Lectures
	Radioactive isotopes and autoradiography	

	Principle, instrumentation &technique: Geiger-Muller counter,	
	Liquid scintillation counters	
	Applications of isotopes in biology: Tracer techniques	
UNIT IV	Membrane biophysics and plant growth in Microgravity	15 Lectures
	Conformational properties of membranes.	
	Modification of cell membrane and Biophysical importance.	
	Isolation and characterization of plant membranes.	.0,
	Effect of microgravity on plant growth.	
	PRACTICALS	
RPSBOTP 401	Techniques and Instrumentation	Credits - 2
1	Separation of proteins by Ion exchange chromatography	
2	Separation of phytochemicals using column chromatography.	
3	Separation of amino acids/ Plant pigments by two dimensional chrom	atography.
4	DNA Amplification using PCR (Demonstration)	
5	Viscosity studies of proteins: standard BSA and varying concentration	ns of urea
6	Isolation of plasma membrane	
7	Industrial visit and report submission.	

- 1) Berlyn GP and Miksche JP. 1976. Botanical micro-techniques and cytochemisty
- 2) Chang R (1971). Basic principles of spectroscopy. McGraw Hill.
- 3) Garry D Christian, James E O'reilvy (1986). Instrumentation analysis. Alien and
- 4) Bacon, Inc. Gordon MH and Macrae M. 1987. Instrumental analysis in the biological sciences.
- 5) Henry B Bull (1971). An Introduction to physical biochemistry. F A Devis Co.
- 6) Stanford J R (1975). Foundation of Biophysics. Academic press.
- 7) Wilson K and Walker JM.1994. Principles and techniques of practical biochemistry.
- 8) Allan peacock, H. 1966. Elementary Microtechnique. Edward Arnold Publ.
- 9) Duddington, C.L, 1960. Practical microscopy. Pitman publ.
- 10) Perkampus H (1992). UV-VIS Spectroscopy and its applications. Springer-Verlag.
- 11) Pesce A J, Rosen C G, Pasty T L. Fluorescence Spectroscopy: An introduction for Biology

Course Code: RPSBOT 402

Course Title:Molecular Biology II

Academic year 2020 - 21

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	Upon successful completion of this course, learners will be able to;
CO 1	Compare expression of gene regulation in prokaryotes and eukaryotes.
CO 2	Understand the working of the operon.
CO 3	Students will be exposed to the basics of cell signaling and can classify different
	forms of signaling.
CO 4	Understand the concepts of "omoics"
CO 5	Analyze different signaling pathways which play an important role in metabolism
	and development of the organism.
CO 5	Apply this knowledge in various research fields.

RPSBOT 402	Molecular Biology II	Credits – 4
UNIT I	Gene Regulation I	15 Lectures
	Regulations of gene expression in bacteria – trp operon, ara operon, histidine operon.	
	Regulation of gene expression in bacteriophage λ.	
UNIT II	Gene Regulation II	15 Lectures
	Control of gene expression in eukaryotes, Transcriptional control, RNA processing control, mRNA translocation control, mRNA degradation control, protein degradation control	
	Gene editing-(CRISPR-cas technologies - Biotechnology application)	
0		
UNIT III	Gene Regulation III	15 Lectures
	Genomics, proteomics and metabolomics	
	Genetic regulation of development in <i>Drosophila</i> Developmental stages in <i>Drosophila</i> – embryonic development, imaginal discs, homeotic genes	
UNIT IV	Cell signaling	15 Lectures

	Hormones and their receptors, cell surface receptor, , intracellular						
	receptor, signaling through G-protein coupled receptors, signal						
	relay pathways-signal transduction pathways, second messengers,						
	regulation of signaling pathways, bacterial and plant two-						
	component systems, light signaling in plants, bacterial chemotaxis						
	and quorum sensing.						
	Forms of signalling (paracrine, synaptic, autocrine, endocrine, cell						
	to cell contact)						
	PRACTICALS						
DDODOTD							
RPSBOTP 402	Molecular Biology II	Credits - 2					
402		Credits - 2					
	Molecular Biology II Isolation of plasmid DNA Quantification of plasmid DNA	Credits - 2					
402 1	Isolation of plasmid DNA	Credits - 2					
402 1 2	Isolation of plasmid DNA Quantification of plasmid DNA	Credits - 2					
402 1 2 3	Isolation of plasmid DNA Quantification of plasmid DNA Agarose gel electrophoresis separation of plasmid DNA	Credits - 2					
402 1 2 3 4	Isolation of plasmid DNA Quantification of plasmid DNA Agarose gel electrophoresis separation of plasmid DNA Restriction enzyme digestion and separation of fragments	Credits - 2					
402 1 2 3 4 5	Isolation of plasmid DNA Quantification of plasmid DNA Agarose gel electrophoresis separation of plasmid DNA Restriction enzyme digestion and separation of fragments Southern blot transfer technique	Credits - 2					

- 1) De Robertis& De Robertis, 2004. Cell and Molecular Biology. Lippincott. Williams and Wilkins. USA.
- 2) Freifelder, 1990. Molecular Biology, Narosa Publishing House, New Delhi.
- Jain, H.K. 2000. Genetics, Oxford & IBH, New Delhi 13. Jocelyn E Krebs, Elliott S Goldstein, Stephen T Kilpatrick (2011). Lewin's Genes X. Jones and Bartlett Publishers
- 4) Mary A. Schuler Raymond and E.Zrelinski, 2005. Methods in Plant Molecular Biology, Academic Press an imprint of Elsevier
- 5) Peter Porella, 1998. Introduction to Molecular Biology, McGraw Hill, New York 6) Rastogi, S.C. 2004. Cell Biology. New age International Pub. New Delhi.
- 7) Robert J Brooker (2009). Genetics: analysis and principles (III Edn). McGraw Hill.
- 8) Schuler MA and Selinski, R. 1989. Methods in molecular Biology
- 9) David A Micklos, Greg A Freyer with David A Crotty (2003). DNA Science: A first course (II Edn).
- 10) Swanson, C.P. 1972. Cytology and Cytogenetics. Mac Millan. New York.
- 11) Goodenough U, 1990. Genetics. Armugam N, 1992. Organic evolution.
- 12) Basu.S.B. and M.Hossain.2004. Principles of Genetics. Books and Allied (P). Ltd, Kolkatta.
- 13) Benjamin, Levin. 2004. Genes VIII. Oxford university press. Blackwell Science Ltd.
- 14) Benjamin Lewin (2000). Genes VII. Oxford university press. Blackwell Science Ltd.
- 15) Daniel L Hartl, Elizabeth W Jones (2009). Genetics: Analysis of genes and genomes (VII Edn). Jones and Bartlett publishers.
- 16) Gardner, E.J. 1972. Principles of genetics. Willey Eastern Pvt.Ltd.
- 17) George Ledyard Stebbins (1971). Process of Organic evolution.
- 18) Gupta, P.K, 2000. Gentics. Rasatogi publications, Meerut.
- 19) Gurbachan and S. Miglani, 2000. Basic Genetics, Narosa Publishing House, New Delhi.

20) Strickberger (2005). Genetics (III Edn). Prentice Hall of India Pvt. Ltd.

Course Code: RPSBOT 403 Course Title:Plant Biotechnology II Academic year 2020 - 21

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	Upon successful completion of this course, learners will be able to;
CO 1	Develop ideas and technologies to increase production and use of biofuels and
	biological source of energy.
CO 2	Develop a deeper understanding of different forms of IPR's, procedures and
	process of patent filing, the need for protection of traditional knowledge
CO 3	Understand the rapidly developing field of nanotechnology and developing skills for
	advanced research endeavors in nanotechnology.
CO 4	Understand the pros and cons of nanotechnology and applicability of the same in
	various fields.
CO 5	Comprehend the requirement and technologies involved in food biotechnology and
	implementation of quality control parameters.

RPSBOT 403	Plant Biotechnology II	Credits – 4		
UNIT I	Environmental Biotechnology	15 Lectures		
	Biosorption: use of fungi, algae and biological components			
	Biomass for energy: Sources of biomass, advantages & disadvantages, uses of biomass			
	Biogas production from food processing waste: vegetable canning waste, flour, molasses etc.			
0	Biocomposting			
	Ethanol from biomass and Ligno-cellulosic residue			
	GMO's			
UNIT II	Traditional Knowledge & IPR	15 Lectures		
	Different property rights & IPR in India			
	IPR: Objectives, process & scope			
	TRIPS & Patent laws: Introduction & standards for patent protection			
	WTO& Indian Patent Laws			

	Protection of traditional knowledge- objective, concept of	
	traditional knowledge, holders, issue concerning, bio-prospecting	
	and biopiracy; Advantages of IPR, some case studies	
	International Depository authority ,Gene patenting, plant variety	
	protection, trade secrets & plant breeders right	
UNIT III	Nanotechnology	15 Lectures
	Introduction, properties of nano-materials.	
	Green synthesis of nano-materials, biological methods, use of	
	microbial system & plant extracts, use of proteins & templates like	70
	DNA	70)
	Characterization of nanoparticles (FTIR, SEM, TEM, STEM,	0
	Scanning Tunneling Microscope, Atomic Force Microscope, UV-	
	Vis,)	
	Application of nano-materials in food, cosmetics, agriculture,	
	environment management and medicine	
	Risk of Nanomaterial to human health and Environment	
UNIT IV	Food Biotechnology	15 Lectures
	History and development of biotechnology, Application of genetics	
	to food production.	
	Methods of molecular cloning, immobilization of microbial and	
	cultured plant cells.	
	Genetically modified foods (GMF), Food Fermentation technology-	
	bioreactors and bioprocessing, Production of food flavour, colour.	
	polysaccharides, amino acids, vitamins, baker's yeast, brewer's	
	yeast, Single Cell Protein and Single Cell Oil.	
	Factors affecting spoilage	
	Quality control of food	
	PRACTICALS	
RPSBOTP	Dient Dietecknele w. II	One dite.
403	Plant Biotechnology II	Credits - 2
1	Biogas production from food processing waste	
2	Patent search and patent filing	
3	Biocomposting (pH, conductivity and organic matter content)	
4	Synthesis of nanoparticles	
5	Characterization of nanoparticles by UV spectroscopy.	
6	Market survey on the availability of Genetically modified foods (GMF	·).
7	Production of yoghurt using Direct into Vat cultures	,
8	Development of a fermented food/drink utilizing plant products /anim	al products or
	byproducts as substrate	1
L	71	

References:

1) Botkin, D.B. and E.A. Keller. 2004. Environmental Science. 5th ed. John Wiley and Sons.

- 2) Bernhardsen, T. 1999. Geographic Information System: An Introduction. 02nd Edition, John Wiley and Sons.
- 3) Canter, L.W. 1996. Environmental Impact Assessment. McGraw Hill, New York.
- 4) Alan Scragg, 2005. Environemntal Biotechnology. II Edition. Oxford University Press. New York.
- 5) Bernard R. Glick and Jack J. Pasternak, 2001. Molecular Biotechnology 2nd edition, ASM press Washington DC.
- 6) Brown, C.W, I.Campbell and F.G. Priest, 1987. Introduction to Biotechnology. Blackwell scientific publications, Oxford
- 7) Chawla, H.S, 2000. Introduction to Biotechnology. Oxford & IBH Publishing Co Pvt. Ltd, New Delhi.
- 8) Hamilton, C.(2006) Biodiversity, Biopiracy and Benefits: What allegations of Biopiracy tell us about intellectual property. Blackwell publishing Ltd., Oxford.
- 9) Heink, U and Kowarik,I. (2010) What criteria should be used to select biodiversity indicators. Biodiversity Conservation 19:3769-3797.
- 10) Ram Reddy,S. Surekha ,M. and Krishna Reddy,V (2016). Biodiversity Traditional Knowledge Intellectual Property Rights .Scientific Publishers.
- 11) Unnikrishna,P and Suneetha,M. (2012). Biodiversity ,traditional knowledge and community health : strengthening linkages .Institute for Advanced Studies, United Nations University ,Tokyo
- 12) Wood ,A., Pamela, S.E.and Johanna, M.(2000). The root causes of biodiversity loss. United Kingdom: Early –Scan Publications.
- 13) Bagchi, D., Lau, F.C. and Ghosh, D.K. (Eds.). 2010. Biotechnology in functional foods and nutraceuticals. CRC Press, Boca Raton, Florida, USA.
- 14) Duggan, C., Watkins, J.B. and Walker, W.A. (Eds.). 2008. Nutrition in pediatrics: basic science and clinical applications. People's Medical Publishing House, Hamilton, USA.
- 15) Government of Canada, 2013. Nutraceuticals / Functional Foods and Health Claims on Foods. Policy Paper. Hasler, C.M. (Ed.) 2005. Regulation of functional foods and nutraceuticals: A global perspective. IFT Press and Wiley-Blackwell, Ames, Iowa, USA.
- Katsilambros, K. 2011. Clinical nutrition in practice. John Wiley & Sons, New York. USA.
- 17) Nestle, M. 2002. Food politics. University of California Press, Berkeley, USA.
- 18) Pathak, Y.V. (Ed.) 2010. Handbook of nutraceuticals. vol. 1: Ingredients, formulations, and applications. CRC Press, Boca Raton, Florida, USA.
- 19) Shahidi, F. and Naczk, M. (EDs.) 2003. Phenolics in food and nutraceuticals. 2nd edition. CRC Press, Boca Raton, Florida, USA.
- J. Draper 1988. Plant Genetic Transformation and Gene Expression Blackwell Scientific Publications, Oxford.
- 21) R.W. Old, S.B. Primrose. 2004. Principles of Gene Manipulation. An Introduction to Genetic Engineering. Fifth Edition, Blackwell Science Publications.

Course Code: RPSBOT 404 Course Title:Moleculaology and Cytogenetics II Academic year 2020 - 21

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	Upon successful completion of this course, learners will be able to;
CO 1	Understand the fundamental aspects of plant breeding and hybridization along with
	the latest molecular techniques.
CO 2	Apply plant breeding principles for large scale production of high yielding, abiotic
	and biotic stress resistant plants in agriculture and horticulture.
CO 3	Outline various applications and achievements of distant hybridization in crop
	improvement.
CO 4	Apply DNA-based molecular marker aided breeding techniques in plant genetic
	engineering.
CO 5	Explore the major contributions of plant breeding institutes in India.

RPSBOT 404	Molecular Biology and Cytogenetics II	Credits – 4
UNIT I	Plant Breeding I	15 Lectures
	Aims and objectives, plant introductions and acclimatization.	
	Selection – mass, pure line and clonal.	
	Hybridization techniques, hybridization in self-pollinated and cross pollinated plants.	
	Genetic control and manipulation of breeding systems including male sterility and apomixes	
UNIT II	Plant Breeding II	15 Lectures
	Distant hybridization: In nature (plant breeding) – Barriers to the production of distant hybrids; Unreduced gametes in distant hybridization; Sterility in distant hybrids; Consequences of segregation in distant hybrids;	
	Applications and Achievements of distant hybridization in crop improvement; Limitations of distant hybrids.	
UNIT III	Molecular plant Breeding (Transgenic Crops)	15 Lectures
	Natural method of gene transfer (<i>Agrobacterium</i> and virus), selectable markers	

	Artificial methods of gene transfer: Direct DNA uptake by						
	protoplast, electroporation, liposome mediated and particle gun						
	transformation						
	Production of Transgenic plants :virus resistant & Herbicide –						
	resistant, plants, Bt Cotton, Golden rice						
UNIT IV	Plant Genetic Engineering	15 Lectures					
	Production of bio pharmaceuticals in transgenic plants.						
	Edible vaccines &Plantibodies						
	DNA-based molecular marker aided breeding: RAPD, RFLP, AFLP,						
	STS, ISSR, Microsatellites						
	Contribution of plant breeding institutes in India						
		•					
	PRACTICALS						
RPSBOTP							
404	Project	Credits - 2					
1	A research project will be discussed, executed, results tabulated and using appropriate statistical tools. The same will be presented in the dissertation at the time of practical examination.	•					

- 1) Al Chaudhari, H.K. (1984). Elementary principles of plant breeding Oxford IBH..New Delhi lards R W (1995). Principles of Plant Breeding. John Wiley and Sons, Inc.
- 2) Allard, R.W, 1960. Principles of plant breeding. John Willeg, New York.
- 3) Chaudhary, H. K. (2001) Plant Breeding Theory and Practice, Oxford IBH Ltd, New Delhi, India
- 4) David Allen Sleper, John Milton. (2006). Breeding Field Crops. Blackwell Publishing
- 5) Dwivedi and Singh (1980) Essentials of Plant Techniques, 2nd Ed., Scientific Publishers. Moan Bhavan Udaipur, India.
- 6) Gardner, E.J. (1972). Principles of genetics. Willey Eastern Pvt.Ltd.
- 7) Ghahal G S and Gosal S S (2002). Principles and procedures of Plant Breeding. Narosa Publishing House.
- 8) Hays, K.K. Immer, F.R. and Smith, D.C. (1985). Methods in plant breeding .Tata McGraw Hill.Newyork.
- 9) Neal.C.Stopskopf. (1999). Plant Breeding Theory & Practices. Scientific Publ, Jodhpur.
- 10) Sharma J R (1994). Principles and practices of Plant Breeding. Tata McGraw-Hill Publishers
- 11) Singh, B.D. 2001. Plant Breeding, Principles and Methods. Kalyani Publications,
- 12) Swaminathan, M.S, P.K.Gupta and V.Singa. (1983). Cytogenetics of crop plants. Macmillan India Ltd, New Delhi.
- 13) Sharma J R (1994). Principles and practices of Plant Breeding. Tata McGraw-Hill Publishers
- 14) Potrykus and G.Spangenberg, 1995 Gene Transfer to plants Springer, Berlin. Heidelberg
- 15) J. Sambrook, E.F.Fritsch and T.Maniatis 1989. Molecular Cloning A Laboratory Manual
- 16) Adrian Slater, Nigel Scott and Mark Flower, 2000 Plant Biotechnology -The GeneticManipulation of Plants, Oxford University Press,).

MODALITY OF ASSESSMENT

Theory Examination Pattern:

A) Internal Assessment - 40%: 40 marks.

Sr No	Evaluation type	Marks
1	Seminar presentation/ Short Project presentation / Photo documentation report of field visit/ Industry Visit Report /Presentation based on Research papers and references/Class Tests	30
2	Continuous assessment on the basis of participation in departmental activities	10

B) External examination - 60 %

Semester End Theory Assessment - 60 marks

- i. Duration These examinations shall be of 2½ hours duration.
- ii. Paper Pattern:
 - 1. There shall be **05** questions each of **12** marks. On each unit there will be one question & last question will be based on all the **04** units.
 - 2. All questions shall be compulsory with internal choice within the questions.

Questions	Options	Marks	Questions on	
Q.1)	Any 1 out of 2	12	Unit I	
Q.2)	Any 1 out of 2	12	Unit II	
Q.3)	Any 1 out of 2	12	Unit III	
Q.4)	Any 1 out of 2	12	Unit IV	
Q.5)	Any 3 out of 5	12	All Units	

Practical Examination Pattern:

External (Semester end practical examination):

Particulars	Practical 1		
Laboratory work /Viva	50		
Total	50		

PRACTICAL BOOK/JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.

In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Co-ordinator / Incharge of the department; failing which the student will not be allowed to appear for the practical examination.

Overall Examination and Marks Distribution Pattern

Semester- IV

Course	RPSBOT 401		RPSBO	RPSBOT 402 RPSBOT 403		OT 403	RPSBOT 404		Total per Course	Grand Total
	Internal	External	Internal	External	Internal	External	Internal	External		
Theory	40	60	40	60	40	60	40	60	100	400
Practicals	50		50 50		5	0	50	200		

