Resolution No.: AC/II(21-22).2.RUS4

Scolled

١

S.P. Mandali's

RAMNARAIN RUIA AUTONOMOUS COLLEGE

(Affiliated to University of Mumbai)

Syllabus for: UG

Program: B. Sc.

Program Code: BOTANY(RUSBOT)

(Credit Based Semester and Grading System for the academic year 2021–2022)

S. P. Mandali's Ramnarain Ruia Autonomous College has adopted the Outcome Based Education model to make its science graduates globally competent and capable of advancing in their careers. The Bachelors Program in Science also encourages students to reflect on the broader purpose of their education.

PROGRAM OUTCOMES

РО	PO Description
_	A student completing Bachelor's Degree in Science program will be
	able to:
PO 1	Recall and explain acquired scientific knowledge in a comprehensive manner and apply the skills acquired in their chosen discipline. Interpret scientific ideas and relate its interconnectedness to various fields in science.
PO 2	Evaluate scientific ideas critically, analyse problems, explore options for practical demonstrations, illustrate work plans and execute them, organise data and draw inferences
PO 3	Explore and evaluate digital information and use it for knowledge upgradation. Apply relevant information so gathered for analysis and communication using appropriate digital tools
PO 4	Ask relevant questions, understand scientific relevance, hypothesize a scientific problem, construct and execute a project plan and analyse results.
PO 5	Take complex challenges, work responsibly and independently, as well as in cohesion with a team for completion of a task. Communicate effectively, convincingly and in an articulate manner.
PO 6	Apply scientific information with sensitivity to values of different cultural groups. Disseminate scientific knowledge effectively for upliftment of the society.
PO 7	Follow ethical practices at work place and be unbiased and critical in interpretation of scientific data. Understand the environmental issues and explore sustainable solutions for it.
PO 8	Keep abreast with current scientific developments in the specific discipline and adapt to technological advancements for better application of scientific knowledge as a lifelong learner

PROGRAM SPECIFIC OUTCOMES

PSO	PSO Description
	A student completing Bachelor's Degree in Science program in
	the subject of Botany will be able to:
	Lindenstand the basis server to a flavor 0 bisher alor to their life of
PSO 1	economic and ecological importance, also evolution from algae to angiosperms and their industrial applications
PSO 2	Develop an understanding of the principles underlying nomenclature and classification of Angiosperms, identify plants belonging to various families according to Bentham and Hooker's system.
PSO 3	Elucidate ecological interconnectedness of life by energy and nutrient flow, relate the physical features of the environment to the structure of populations, communities, ecosystems, pollution, bioremediation, natural resources, sustainability and importance of conservation.
PSO 4	Understand and relate priority areas such as genetics, cell and molecular biology, plant biotechnology and application of genetic engineering for the improvements of plants.
PSO 5	Gain knowledge about laws of inheritance, various genetic interactions, chromosomal aberrations, multiple alleles and mutations.
PSO 6	Analyze morphological and anatomical plant structures in the context of metabolic /physiological functions of plants, including embryological and palynological aspects
PSO 7	Apply ethnobotanical aspects and medicinal, dietary and cosmetic uses of plants with special reference to phytochemistry and usage as mentioned in different Pharmacoepia
PSO 8	Acquire the skills in handling scientific instruments, planning and performing laboratory experiments and application of suitable statistical tools.
PSO 9	Understand the finer aspects of emerging areas such as Molecular biology and Bioinformatics.
PSO 10	Develop practical skills in laboratory techniques in various fields of botany along with collection and interpretation of biological materials
PSO 11	Apply research based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of the information to provide valid conclusions.

PROGRAM OUTLINE

YEAR	SEM	COURSE CODE	COURSE TITLE	CREDITS	
-			RUSBOT 101	PLANT DIVERSITY-I	
			Microbes and Algae	02	
			Fungi	100	
			Bryophyta		
		RUSBOT 102	FORM AND FUNCTION- I	*	
			Cell biology) 02	
			Ecology		
			Genetics		
			Practicals		
		RUSBOTP	Plant Diversity -I, Form and	••	
EV		101,102	Function- I (Practicals I and II)	02	
ГТ		RUSBOT 201	PLANT DIVERSITY- II		
			Pteridophytes	02	
			Gymnosperms		
			Angiosperms		
	П	RUSBOT 202	FORM AND FUNCTION – II	02	
		I	Anatomy		
			Physiology		
			Horticulture and Medicinal Botany		
			Practicals		
		RUSBOTP	Plant Diversity - II, Form and	02	
		201,202	Function- II (Practicals I and II)		

Ramarain

		I	Angiosperms II	
		III	Embryology	
		IV	Plant micro techniques	
		RUSBOT 603	FORM AND FUNCTION VI	
		I	Physiology II	2.5
	VI	II	Genetics	
		III	Cosmetology	
		IV	Post-Harvest Technology	
		RUSBOT 604	CURRENT TRENDS IN PLANT SCIENCES IV	
		l	Economic Botany	2.5
		II	Plant Geography and Environmental Botany	~ °0
			Instrumentation	
		IV	Research methodology III	
		RUSBOTP 601.	Practical based on all the four	06
		602, 603,604	courses in theory	
¢.	unn	arain	Autonot	

Resolution No.: AC/II(21-22).2.RUS4

S.P. Mandali's

RAMNARAIN RUIA AUTONOMOUS COLLEGE

Syllabus for: F. Y

Program: B. Sc.

Program Code: Botany (RUSBOT)

(Credit Based Semester and Grading System for the academic year 2021–2022)

Course Code	UNIT	TOPICS	Credits
RUSBOT 101	•	PLANT DIVERSITY I	L
	I	Microbes and Algae	
	II	Fungi	02
		Bryophyta	
RUSBOT 102		FORM AND FUNCTION I	
	I	Cell biology	
	II	Ecology	02
	III	Genetics	
RUSBOTP	Practicals	Practical based on all the two	02
101, 102, 303	FIACICAIS	courses in theory	
			06

SEMESTER-II

Course Code	UNIT	TOPICS	Credits
RUSBOT 201	PLANT DIVERSITY I		
	I	Pteridophytes	
	II	Gymnosperms	02
		Angiosperms	
RUSBOT 202			
	I	Anatomy	
	II	Physiology	02
		Horticulture and Medicinal Botany	
RUSBOTP	Practicals	Practical based on all the two	02
201, 202		courses in theory	02
			06

Ramarain

RAMNARAIN RUIA AUTONOMOUS COLLEGE, SYLLABUS FOR B SC BOTANY, 2021-2022

6

SEMESTER-I

Course Code: RUSBOT 101 Course Title: Plant Diversity- I Academic year 2021 - 22

COURSE OUTCOMES: Upon successful completion of this course, learners will be able to;

COURSE	CO DESCRIPTION
OUTCOME	
OUTCOME	
CO 1	Understand the fundamental concepts /diversity related to different Microorganisms
CO 2	Develop an understanding of fungi and appreciate their adaptive strategies
001	Develop an understanding of rung and approvide their adaptive strategies
CO 3	Develop an understanding of fungi and appreciate their adaptive strategies
00.4	
CO 4	Evaluate the significance of fungi and its different types
CO 5	Develop critical understanding about bryophytes and the life cycle of <i>Riccia</i>
	bevelop entited and standing about bryophytes and the life cycle of Albela
CO 6	Analyze the anatomy and reproduction of <i>Riccia</i>

Detailed Syllabus

Course Code/Unit	Course/ Unit Title	Credits/Lect ures
RUSBOT 101	Plant Diversity I	Credits-2
UNIT I	Microbes and Algae	Lectures-15
	Introduction to Microbiology: Microorganisms in the living World, Groups of Microorganisms- Viruses, Bacteria, Rickettsiae, Mycoplasma, algae, Archaebacterium, Actinomycetes, fungi, Protozoa. Distribution of Microorganisms in Nature	
	Major Characteristics of Bacteria, Microscopic examination of bacteria- Basic principles of staining	
	Outline of Classification according to G.M. Smith and general characters of Cyanophyta and Chlorophyta	
	Life cycle and systematic position of <i>Nostoc</i> and <i>Spirogyra</i> .	
Y	Economic importance of algae with reference to biofuels, food and agar.	
UNIT II	Fungi	Lectures-15
	Outline of Classification according to G. M. Smith	
	General characters of Phycomycetes.	
	Structure, lifecycle and systematic position of Rhizopus and Albugo	
	Modes of nutrition in Fungi (Saprophytism, predation and Parasitism).	
	Economic importance of Fungi.	

UNIT III	Bryophyta	Lectures-15
	Outline of classification according to G.M. Smith	
	General characters and range of thallus organization in Hepaticae	
	Structure, life cycle and systematic position of <i>Riccia</i> .	
	Economic importance of Bryophyta	
	PRACTICALS	
RUSBOTP	Plant Diversity I	Cradit _ 1
101		Crean – T
1	To study bacteria using Gram staining method	
2	Study of viruses	0
3	Study of stages in the life cycle of Nostoc from fresh/ preserved mater	ial and
	permanent slides	
4	Study of stages in the life cycle of Spirogyra from fresh preserved	material and
	permanent slides	
5	Economic importance of algae: Ulva (food), Scenedesmus	and Chlorella
	(Biofuel), Spirulina(Neutraceutical), Gelidium (Agar)	
6	Study of stages in the life cycle of Rhizopus from fresh/ preserved	material and
	permanent slides	
7	Study of stages in the life cycle of Albugo from material and permanent s	slides
8	Economic importance of Fungi: Mushroom, Yeast, Ganoderma	a, Penicillium,
	Aspergillus, mycorrhiza- AM .	
9	Study of stages in the life cycle of <i>Riccia</i> from fresh/ preserved material.	

References:

- Pelczar M. J, Chan E.C., Krieg, N. R.1993. Microbiology by Pelczar Chan and Krieg 5th ed.
- Brodie J. and Lewis J.2007. Unravelling the algae: the past, present and future of algal systematics. CRC press, New York, pp. 335.
- Bellinger E.G. and Sigee D.C. 2010. Freshwater algae: Identification and use as bioindicators, Willey-Blackwell, UK, pp. 271.
- Desikachary T.V. 1959. Cyanophyta. ICAR, New Delhi.
- Graham L.E. and Wilcox L.W. 2000. Algae. Penticce-Hall, Inc, pp. 64
- Krishnamurthy V. 2000. Algae of India and neighboring countries Indian Chlorophycota, Oxford & IBH, New Delhi.
- Lee R.E. 2008. Phycology. Cambridge University Press, pp.547.
- College Botany Volume I and II. 2006. Gangulee, Das and Dutta latest edition.
 Central Education enterprises
- Prescott G.W.1969. The algae.
- Smith G.M.1950. The fresh water algae of the United States, Mc-Graw Hill NewYork.
- Srinivasan K.S. 1969. Phycologia India. Vol. I & II, BSI, Calcutta.
- Vashista B.R, Sinha A.K and Singh V.P. 2005. Botany for degree students –Algae, S. Chand's Publication.
- Ainsworth, Sussman and Sparrow. 1973. The fungi. Vol IV A & IV B. AcademicPress.
- Alexopolous C.J., Mims C.W. and Blackwell M.1999.4th Edition. IntroductoryMycology. Willey, New York, Alford R.A.

- Deacon J.W.2006. Fungal Biology. 4th Edition. Blackwell Publishing, ISBN.1405130660.
- Kendrick B.1994. The fifth kingdom (paperback), North America, New YorkPublisher.
 3rd Edition, ISBN- 10: 1585100226.
- Kirk et al.2001. Dictionary of fungi. 9th Edition, Wallingford: CABI, ISBN:085199377X.
- Mehrotra R.S. and Aneja K.R. 1990. An introduction to mycology. New AgePublishers, ISBN 8122400892.
- Miguel U., Richard H., and Samuel A. 2000. Illustrated dictionary of theMycology.Elvira Aguirre Acosta, Publisher: St. Paul, Minn: APS press, ISBN0890542570.
- Webster J. and Roland W. 2007. Introduction to fungi (3rd Edition) CambridgeUniversity Press, 978-0-521-80739-5.
- Dube H.C. 2004. An Introduction to fungi. Vikas Publishers.
- Sharma O.P. 2010. A text book of fungi. S.Chand's Publication.
- Vashista B.R and Sinha A.K. 2008. Botany for degree students Fungi. S.Chand's Publication.
- Cavers F.1976. The interrelationships of the Bryophytes. S.R. Technic, AshokRajpath, Patna.
- Chopra R.N. and Kumar P.K.1988. Biology of Bryophytes. John Wiley & Sons, New York, NY.
- Parihar N.S.1980. Bryophytes: An Introduction to Embryophyta. Vol I. CentralBook Depot, Allahabad.
- Watson E.V. 1971. Structure and Life of Bryophytes.3rd Edition. HutchinsonUniversity Library, London.

Course Code: RUSBOT 102

Course Title: Form and function – I

Academic year 2021 - 2022

COURSE OUTCOMES:

Upon successful completion of this course, learners will be able to;

COURSE OUTCOME	CO DESCRIPTION
CO 1	Understand chemical composition and structure of cell wall and membrane
CO 2	Explain the ultra structure and functions of the cell organelles
CO 3	Understand the basic principles of plant ecology and examine the structure and functions of eco-system
CO 4	Critically analyze climate change, biodiversity and its conservation
CO 5	Gain conceptual understanding of Mendelian Genetics, genetic basis of loci and alleles and sex linked inheritance

Detailed Syllabus

Course Code/Unit	Course/ Unit Title	Credits/
RUSBOT		20010100
102	Title: Form and Function-I	Credits – 2
UNIT I	Cell Biology	Lectures-15
	Prokaryotic and eukaryotic cell structure, General structure of plant	
	cell: cell wall, Plasma membrane (bilayer lipid structure, fluid mosaic	
	model) Mitosis	
	Ultra structure and functions of the following cell organelles:	
	Endoplasmic reticulum and Chloroplast.	
UNIT II	Environmental Biology	Lectures-15
	Types of ecosystems: aquatic and terrestrial.	
	Effect of climate change on ecosystems, role of IPCCC,	
	Biodiversity: types of biodiversity, endemics and wides	
	Biodiversity Hotspots and PAN	
Ý	Conservation Biology: ex situ and in situ methods, People's	
	Biodiversity Register,	
	The Biological Diversity Act, 2002; Convention on Biological Diversity	
UNIT III	Genetics	Lectures-15
	Phenotype/Genotype, Mendelian Genetics- monohybrid, dihybrid	
	ratios, test cross and back cross.	
	Epistatic and non epistatic interactions; multiple alleles.	
	Sex determination	

	Chromosomal Methods: heterogametic males and heterogametic			
	females. Sex determination in monoecious and dioecious plants. Genic			
	Balance Theory of sex determination in <i>Drosophila</i> , Lyon's Hypothesis			
	of X chromosome inactivation.			
	Sex linked inheritance- eye colour in Drosophila, Haemophilia, colour			
	blindness			
	Sex influenced inheritance- baldness in man			
PRACTICALS				
RUSBOTP 102	Form and Function-I	Credit – 1		
1	Examining various stages of mitosis in root tip cells (Allium)	Θ		

1	
2	Cell inclusions: Starch grains (Potato and Rice); Aleurone layer, Maize
3	Cystolith (<i>Ficus</i>); Raphides (<i>Pistia</i>); Sphaeraphides (<i>Opuntia</i>).
4	Identification of cell organelles with the help of photomicrograph Plastids: Chloroplast,
	Amyloplast, Endoplasmic reticulum and Nucleus.
5	Identification of plants adapted to different environmental conditions and internal structure adaptations: Hydrophytes free floating (<i>Pistia /Eichhornia</i>), Rooted floating (<i>Nymphaea</i>), submerged (<i>Hydrilla</i>), Mesophytes (any common plant), Hygrophytes (<i>Typha, Cyperus</i>), Epiphytes (Orchid aerial root)
6	Calculation of mean, median and mode.
7	Calculation of Standard deviation.
8	Frequency distribution, graphical representation of data- frequency polygon, histogram,
	pie chart.
9	Study of Karyotype – Human and Allium cepa

References

- Griffith Freeman and Company. 2000. An introduction to Genetic analysis.
- Brown TA. 2006. Gene Cloning and DNA Analysis. 5th Edition.
- Reece RJ, Wiley. 2004. Analysis of Genes and Genomes.
- Gupta, P.K. 1999. A Text Book of Cell and Molecular Biology. Rastogi Publication, Meerut. India.
- Verma, P. S., V. K. Agrawal. 2008. Cell Biology, Genetics, Molecular biology, Evolution and Ecology.3rd edition S. Chand & co. New Delhi, India.
- De Robertis and De Robertis. 8th Edition. 2017. Cell and Molecular Biology.
- Harvey et al. New York: W. H. Freeman. 2000. Molecular Cell Biology, 4th edition. ISBN-10: 0-7167-3136-3
- Watson, J. D. 2004. Molecular Biology of Gene. 5th Edition. Pearson Benjamin Cummings.
- Kothari, A. 1997. Understanding Biodiversity: Life Sustainability and Equity Orient Longman.
- Mukherjee B. Environmental Biology, Tata McGraw Hill Publishing Co. Ltd. New Delhi, India.
- Odum E. P 1983. Basic Ecology, Saunders, Philadelphia.
- Sharma, P.D. Ecology and Environment, Rastogi publication, Meerut, India.
- Purohit, S.S. and R. Ranjan. Ecology and Environmental Pollution, Agro-Bios Publishers, Jodhpur, India.

- Agrawal, K.C. 1996. Environmental Biology. Agro-Botanical Publisher, Bikaner India
- Heywood, V.H. and Watson, R.T. 1995. Global Biodiversity Assessment, Cambridge University Press, Cambridge.
- Hill, M. K. 1997. Understanding Environmental Pollution, Cambridge University Press.

MODALITY OF ASSESSMENT

Theory Examination Pattern:

Internal Assessment - 40% :40 marks.

MODALITY OF ASSESSMENT		
ory Exam	nination Pattern:	00
rnal Asse	essment - 40% :40 marks.	
Sr No	Evaluation type	Mar ks
1	Assignment / Field Visit/ Submission/Case study/ Surveys/On-line test/Active Participation(attentiveness/ability to answerquestions)/Participation in academic or Co- curricular activities	20
2	One class Test (multiple choice questions)	20

External examination - 60 %

Semester End Theory Assessment - 60 marks

- Duration These examinations shall be of 2 hours duration. i.
- ii. Paper Pattern:
 - 1. There shall be 03 questions each of 16 marks and 01 question of 12 marks. On each unit there will be one question & last question will be based on all the 03 units.
 - 2. All questions shall be compulsory with internal choice within the questions.

Questions	Options	Marks	Questions on
Q.1) A, B, C	Any 2 out of 3	16	Unit I
Q.2) A, B, C	Any 2 out of 3	16	Unit II
Q.3) A, B, C	Any 2 out of 3	16	Unit III
Q.4) a, b, c, d , e.	Any 3 out of 5	12	All units

Practical Examination Pattern:

Internal Examination:		
Heading	Practical	
Journal	05	
Practical participation	05	
Practical/ Field Report/	10	
Presentation		
Total	20	

External (Semester end practical examination):

Particulars	Practical
Laboratory work and/or Viva voce	30
Total	30

PRACTICAL BOOK/JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.

In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Co-ordinator / Incharge of the department; failing which the student will not be allowed to appear for the practical examination.

Overall Examination and Marks Distribution Pattern

Semester-I

101 Grand Course 102 Total Internal External Total Internal External Total Theory 100 40 60 100 40 60 200 20 30 50 100 **Practicals** 50 20 30

20

Semester-II Course Code: RUSBOT 201

Course Title: Plant Diversity- II

Academic year 2021 - 22

COURSE OUTCOMES:

Upon successful completion of this course, learners will be able to;

COURSE OUTCOME	CO DESCRIPTION
CO 1	Understand the basic principles of classification and salient features of
	Pteridophytes, Gymnosperms, Angiosperms and their economic importance.
CO 2	Analyze the anatomy and reproduction of Pteridophytes and Gymnosperms.
CO 3	Understand the principles underlying Bentham & Hooker's system of classification
	and identify plants from prescribed families.
CO 4	Gain knowledge about novel groups of plants

Detailed Syllabus

Course Code/Unit	Course/ Unit Title	Credits/ Lectures
RUSBOT 201	Title: Plant Diversity – II	Credits – 2
UNIT I	Pteridophytes	Lectures-15
1	Salient features and classification of Psilophyta and Lepidophyta upto orders according to G. M. Smith's classification.	
2	Structure life cycle, systematic position and alternation of generations in <i>Selaginella</i> .	
3	Stelar evolution.	
4	Economic importance and propagation of ferns.	
	Gymnosperms	Lectures-15
	General characters, Outline of classification according to C.J. Chamberlin	
2	Structure life cycle systematic position and alternation of generations in <i>Cycas</i> .	
3	Economic importance of Gymnosperms.	
4	Geological time scale.	
UNIT III	Angiosperms	Lectures-15
1	Definition of taxonomy, systematic botany, concepts of taxonomy,	
	aims of taxonomy.	

2	Study of following families: Malyacoao Leguminosao:		
Z	Casselpinassas Banilionassas Mimessa Selenassas		
	Caesalpinaceae, Fapilionaceae, Mininosae, Solanaceae,		
3	Secret life of plants: Insectivorous and parasitic plants		
	PRACTICALS		
RUSBOTP	Plant Diversity – II	Credits – 1	
201	i lant Diversity – n	Credits – T	
1	Study of stages in the life cycle of Selaginella, T.S. of rachis.		
2	T.S. of Selaginella stem	$\langle \mathcal{O} \rangle$	
3	Stelar evolution with the help of permanent slides, Protostele, haplostele,		
	actinostele, plectostele, mixed protostele, siphonostele, ectophloic, amphiphloic,		
	dictyostele, eustele and atactostele.		
4	Cycas: T.S of leaflet (Cycas pinna) microsporophyll, megasporophyll, coralloid root,		
	microspore, L.S. of ovule of Cycas- all specimens to be shown.		
5	Economic importance of Gymnosperms: Pinus (turpentine, wood, seeds)		
6	Leaf: simple leaf, types of compound leaves, Incisions of leaf, leaf base, a	pex, margins	
	and leaf shapes. Modifications of leaf: spine, tendril, hooks, phyllode, pit	cher,	
	Drosera or insectivorous plants.		
7	Inflorescence: Racemose: simple raceme, spike, catkin, corymb, umbel, spadix,		
	capitulum. Cymose, monochasial, dichasial, polychasial. Compound: Panicle,		
	cyathium, verticellaster, hypanthodium.		
8	Study of following families: Malvaceae, Leguminosae: Caesalpinaceae and		
	Papilionaceae, Mimosae, Solanaceae, Convolvulaceae, Amaryllidaceae.		
	Pollen morphology of the abovesaid families.		
	Morphological peculiarities, palynological studies and economic importance of the		
	members of these families.		
9	Identification and study of insectivorous and parasitic plants: Drosera, Neg	enthes,	
	Utricularia, Venus fly trap, Cuscuta, Loranthus, Viscum, Orobanche	·	
10	Propagation of ferns		

References:

- Sporne K.R.1986. The morphology of Pteridophytes. Hutchinson UniversityLibrary, London.
- Stewart W.N. and Rothwell G.W. 2005. Paleobotany and the Evolution of Plants.2nd Edition. Cambridge University Press.
- Arnold A.C. 2005. An Introduction to Paleobotany Agrobios, Jodhpur, India.
- Chamberlain C.J. 1998. Gymnosperms: Structure and evolution. CBS Publishers, New Delhi.
- Pant D.D. 2003. Cycas and allied Cycadophytes, BSIP, Publications.
- Sharma O.P. 2002. Gymnosperms, PragatiPrakashan, Meerut.
- Siddiqui, K.A. 2002. Elements of Palaeobotany, KitabMahal, Allahabad.
- Bhatnagar, S.P. and Moitra A. 1996. Gymnosperms, New Age International Pvt. Ltd., New Delhi
- Naik V. N.1994. Taxonomy of Angiosperms Tata McGraw Hill PublishingCompany.New Delhi.

- Dutta. S. C. 1988. Systematic Botany. Wiley Eastern Ltd. New Delhi.
- Gangulee, Das and Datta. 2002.College Botany, Vol. I., New Central Book Agency, Kolkata
- Singh V. and Jain D. K. 2010. Taxonomy of Angiosperms. Rastogy Publications Meerut.

Rannarain Buia Autonomous College

Course Code: RUSBOT 202 Course Title: Form and function - II Academic year 2021 – 22

COURSE OUTCOMES:

Upon successful completion of this course, learners will be able to;

COURSE	CO DESCRIPTION
OUTCOME	(\mathcal{O})
CO 1	Develop an understanding of concepts and fundamentals of plant anatomy.
CO 2	Evaluate the adaptive and protective systems of plants. $\$
CO 3	Explain the significance of photosynthesis and nutritional requirements of plants.
CO 4	Gain knowledge about various branches of horticulture.
CO 5	Critically evaluate different cultivation practices.
CO 6	Recognize basic medicinal plants/ functional foods and know their applications.
CO 7	Understand the basic concept of primary and secondary metabolites.

Detailed Syllabus

Course Code/Unit	Course/ Unit Title	Credits/Lect ures
RUSBOT 202	Title: Form and function – II	Credits – 2
UNIT I	Anatomy	Lectures-15
	Simple tissues, complex tissues, meristematic tissues, permanent	
	tissues, wall ingrowths and transfer cells, adcrustation and	
	incrustation, ergastic substances.	
	Primary structure of dicot and monocot root, stem and leaf (Kranz	
	anatomy).	
	Epidermal tissue system: types of hair, monocot and dicot stomata.	
UNIT II	Physiology	Lectures-15
	Photosynthesis: Plant pigments and their interaction with light,	
	Light reactions, photolysis of water, cyclic and	
	non-cyclic photophosphorylation, carbon fixation phase (C_3 , C_4	
	and CAM pathways).	
	Role of macronutrients and micronutrients in plants.	
	Structures of amino acids.	
UNIT III	Horticulture and Medicinal Botany	Lectures-15
	Introduction to horticulture: Definition, importance and objectives	
	of Horticulture, branches of Horticulture, Pomology, Olericulture,	
	Landscape Gardening, Nurseries and development	
	Propagation practices:	
	By Seeds: Advantages and disadvantages, method of seed	
	propagation, Seed treatment to control diseases,	
	Concept of microgreens, Health Benefits	

[
	Artificial methods of plant propagation	
	Cutting– Stem cutting and leaf cuttings.	
	Medicinal botany: Concept of primary and secondary metabolites,	
	difference between primary and secondary metabolites.	
	Grandma's pouch: Following plants have to be respect to	
	botanical source, part of the plant used, active constituents	
	present and medicinal uses: Ocimum sanctum, Justicia	
	adhatoda, Zingiber officinale, Curcuma longa, Santalum album,	
	Aloe vera.	
	Functional Foods : Garlic, Carrot, Citrus, Jackfruit, Drumstick and	
	Dill	
	PRACTICALS	
RUSBOTP		
202	Form and function – If	
1	Primary structure of dicot and monocot root.	
2	Primary structure of dicot and monocot stem.	
3	Study of dicot and monocot stomata.	
4	Epidermal outgrowths: with the help of mountings: Unicellular: Gossypium/Radish	
	Multicellular: Lantana/Sunflower	
	Glandular: Drosera and Stinging: Urtica – only identification with permanent slides.	
	Peltate: Thespesia	
	Stellate: Erythrina/ Sida acuta/ Solanum/ Helecteris	
	T-shaped: Avicennia	
5	Separation of chlorophyll pigments by strip paper chromatography.	
6	Separation of amino acids using strip paper chromatography.	
7	Extraction of anthocyanin pigments and their use as a pH indicator.	
8	Tests for alkaloids and tannins, chromatographic separation of alkaloids.	
9	Identification of plants/plant parts found in Grandma's Pouch.	
10	Identification of functional foods.	
11	Seed germination and calculate the percentage germination	
12	Method of growing microgreens.	
13	Plant propagation by stem cutting (hard wood), leaf cutting.	
14	Terrarium/Bottle garden/ Dish garden	

Note: One field excursions for habitat studies are compulsory.

Field work of not less than eight hours duration is equivalent to one period per week for a batch of 15 students.

References:

- Pandey. B. P. 2007. Plant Anatomy. S. Chand and Comp. Ltd. New Delhi.
- Esau K. 1993. Plant Anatomy. Wiley Eastern Ltd. New Delhi.
- Eames A.J. 1961 Morphology of the angiosperms. Mc. Graw Hill, New York.
- Wallis. T.E. 2014. Text books of pharmacognosy. CBS publishers and distributor New Delhi.
- Pathak, Khatri, Pathak. 2003. Fundamentals of plant pathology. Agrobios Ltd.
- Mehrotra, R.S. 1991. Plant Pathology. Tata McGraw Hill Company, Delhi.

- PandeyB.P.2009. Plant Pathology, S.Chand Co.
- Noggle and Fritz. 2002. Introduction to Plant Physiology. Prentice Hall Publisher.
- Verma, V. 2007. Text Book Of Plant Physiology. Ane Books India, New Delhi.
- Nobel, P.S. 2009. Physicochemical and Environmental Plant Physiology.4th edition. Academic Press, UK
- Taiz, L. and Zeiger, E. 2006. Plant Physiology.4th Edition. Sinnauers Associates. Saunders land, Massachusetts, USA.
- Salisbury F.B. and Ross C.B. 2005. Plant Physiology.5th Edition. WadsworthPublishing Co. Belmont CA.
- HelgiOPik, Stephen A. Rolfe, Arthur J. Willis. 2005. The Physiology of FloweringPlants, Cambridge University Press, UK.
- Kirkham, M.B. 2004. Principles of Soil and Plant Water Relations. Elsevier, Amsterdam, Netherlands.
- Dennis, D.T., Turpin, D.H., Lefebvre, D.D. and Layzell, D.B. 1997. Plant Metabolism. 2nd Edition. Longman Group, U.K.
- Fitter, A. and Hay, R.K.M. 2001. Environmental Physiology of Plants. Academic Press, UK.
- Press, M.C., Barker, M.G., and Scholes, J.D. 2000. Physiological Plant Ecology, British Ecological Society Symposium, Volume 39, Blackwell Science, UK.
- Crusess, W. B.2004. Commercial Unit and Vegetable Products, W.V. Special Indian Edition, Pub: Agrobios India
- Manay, S. and Shadaksharaswami, M.2004. Foods: Facts and Principles, New Age Publishers
- Acquaah G. (2002). Horticulture: Principles and Practices. Blackwell Publ.
- Peter K. V. (2009). Basics of Horticulture. New India Publ. Agency.
- Gopalaswamiengar K. S.(1935) Complete gardening in India
- Sadhu M.K. (1994) Plant Propagation, John Wiley & Sons; First edition.

MODALITY OF ASSESSMENT

Theory Examination Pattern:

Internal Assessment - 40% :40 marks.

Sr No	Evaluation type	Marks
2 ¹ <i>0</i>	Assignment / Field Visit/ Submission/Case study/ Survey report/ On-line test /Active Participation (attentiveness/ability to answer questions)/Participation in academic or Co-curricular activities	20
2	One class Test (multiple choice questions)	20

External examination - 60 %

Semester End Theory Assessment - 60 marks

- i. Duration These examinations shall be of **2 hours** duration.
- ii. Paper Pattern:

1. There shall be **03** questions each of **16** marks and **01** question of **12** marks. On each unit there will be one question & last question will be based on all the **03** units.

2. All questions shall be compulsory with internal choice within the questions.

Questions	Options	Marks	Questions on	
Q.1) A, B, C	Any 2 out of 3	16	Unit I	
Q.2) A, B, C	Any 2 out of 3	16	Unit II	
Q.3) A, B, C	Any 2 out of 3	16	Unit III	
Q.4) a, b, c, d , e.	Any 3 out of 5	12	All units	

Practical Examination Pattern:

Internal Exam	ination:	
Heading	Practical	
Journal	05	
Practical participation	05	
Practical/ Field Report/	10	
Presentation		
Total	20	

External (Semester end practical examination):

Particulars	Practical	
Laboratory work and/or Viva voce	30	
Total	30	

PRACTICAL BOOK/JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.

In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Co-ordinator / Incharge of the department; failing which the student will not be allowed to appear for the practical examination.

Overall Examination and Marks Distribution Pattern

Semester-II

Course 201			202			Grand Total	
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practicals	20	30	50	20	30	50	100

<u>x 0 x</u>