S. P. Mandali's Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for

Program: B.Sc

Program Code: RUSBOT

(As per the guidelines of National Education Policy 2020 Academic year 2023-24)

(Choice based Credit System)

GRADUATE ATTRIBUTES

S. P. Mandali's Ramnarain Ruia Autonomous College has adopted the Outcome Based Education model to make its science graduates globally competent and capable of advancing in their careers. The Bachelors Program in Science also encourages students to reflect on the broader purpose of their education.

PROGRAM SPECIFIC OUTCOMES

	GA Description
GAs	
	A student completing Bachelor's Degree in Science program will be
	able to:
GA 1	Recall and explain acquired scientific knowledge in a comprehensive manner and apply the skills acquired in their chosen discipline. Interpret scientific ideas and relate its interconnectedness to various fields in science.
GA 2	Evaluate scientific ideas critically, analyse problems, explore options for practical demonstrations, illustrate work plans and execute them, organise data and draw inferences
GA 3	Explore and evaluate digital information and use it for knowledge upgradation. Apply relevant information so gathered for analysis and communication using appropriate digital tools
GA 4	Ask relevant questions, understand scientific relevance, hypothesize a scientific problem, construct and execute a project plan and analyse results.
GA 5	Take complex challenges, work responsibly and independently, as well as in cohesion with a team for completion of a task. Communicate effectively, convincingly and in an articulate manner.
GA 6	Apply scientific information with sensitivity to values of different cultural groups. Disseminate scientific knowledge effectively for upliftment of the society.
GA 7	Follow ethical practices at work place and be unbiased and critical in interpretation of scientific data. Understand the environmental issues and explore sustainable solutions for it.
GA 8	Keep abreast with current scientific developments in the specific discipline and adapt to technological advancements for better application of scientific knowledge as a lifelong learner

PROGRAM OUTCOMES

РО	PO Description
	A student completing Bachelor's Degree in Science program inthe
	subject of Botany will be able to:
PO 1	Understand the basic concepts of lower & higher plants their life cycle, economic and ecological importance, also evolution from algae to angiosperms and their industrial applications
PO 2	Develop an understanding of the principles underlying nomenclatureand classification of Angiosperms, identify plants belonging to various families according to Bentham and Hooker's system.
PO 3	Elucidate ecological interconnectedness of life by energy and nutrientflow, relate the physical features of the environment to the structure of populations, communities, ecosystems, pollution, bioremediation, natural resources, sustainability and importance of conservation.
PO 4	Understand and relate priority areas such as genetics, cell and molecular biology, plant biotechnology and application of genetic engineering for the improvements of plants.
PO 5	Gain knowledge about laws of inheritance, various genetic interactions, chromosomal aberrations, multiple alleles and mutations.
PO 6	Analyze morphological and anatomical plant structures in the context of metabolic /physiological functions of plants, including embryological and palynological aspects
PO 7	Apply ethnobotanical aspects and medicinal, dietary and cosmetic uses of plants with special reference to phytochemistry and usage as mentioned in different Pharmacoepia
PO 8	Acquire the skills in handling scientific instruments, planning and performing laboratory experiments and application of suitable statistical tools.
PO 9	Understand the finer aspects of emerging areas such as Molecular biology and Bioinformatics.
PO10	Develop practical skills in laboratory techniques in various fields of botany along with collection and interpretation of biological materials
PO11	Apply research based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of the information to provide valid conclusions.

CREDIT STRUCTURE- BSc

	Semester DSC DSE		Subject 2		GE/ OE	and Skill course	Ability	OJT/FP/CEPCC,	Total
Semester				(Across disciplines)	Enhancement Course (VSC) & SEC	Enhancement Course/ VEC/IKS	RP	Credits	
1	4		4	4 (2*2)	VSC-2 + SEC -2	AEC- 2 (CSK) + VEC- 2 (Env Sc.) + IKS-2		22	
2	4		4	4 (2*2)	VSC-2 + SEC-2	AEC-2 (CSK)+ VEC-2 (Understanding India)	CC-2	22	
Total	8		8	8	8	10	2	44	
Exit op	otion: awa			_		s and an additional	4 credit Core N	SQF	
3	Major 8		Minor 4	2	VSC-2	AEC-2 MIL	FP -2, CC-2	22	
4	Major 8		Minor 4	2	SEC-2	AEC-2 MIL	CEP-2, CC-2	22	
Total	16		8	4	4	4	8	44	
Exit o	ption: aw		-	_		and an additional a	4 credit Core NS	QF	
5	DSC 12	DSE 4	Minor 2		VSC-2		CEP/FP-2	22	
6	DSC 12	DSE 4	Minor 2				OJT-4	22	
Total	24	8	4		2		6	44	
Exit option: award of UG Degree in Major with 132 credits or Continue with Major for Honours/ Research									

COURSE OUTLINE

Discipline Specific Core

Course Code: RUSBOT.0101

YEAR	SEM	COURSE CODE	Type of Course	COURSE TITLE	CREDITS
F.Y.	I	RUSBOT.O101	Discipline Specific Core(DSC)	i.Microbiology, Algae and Fungi 2. Environmental Botany 3. Cytogenetics	300
	ı	RUSBOTP.O101	Practical	PLANT SCIENCE- I	1
F.Y.	II	RUSBOT.E111	Discipline Specific Core(DSC)	i.Bryophyta, Pteridophyta and Gymnosperms ii.Plant Systematics iii. Anatomy	3
	II	RUSBOTP.E111	Practical	PLANT SCIENCE- II	1

SEMESTER I

Course Code: RUSBOT.0101

Course Title: PLANT SCIENCE- I

Discipline Specific Core Course

Academic year 2023-24

COURSE OUTCOMES:

COURSE	DESCRIPTION			
OUTCOME	A student completing this course will be able to:			
CO 1	Explain the diversity and techniques used for visualisation of microorganisms.			
CO 2	Outline the classification of Algae and interpret their Industrial applications			
CO 3	Classify fungi, lichens and appreciate their adaptive strategies			
CO 4	Explain the basic principles of plant ecology and examine the structure and functions of eco-system.			
CO 5	Discuss climate change, biodiversity and its conservation.			
CO 6	Explain Mendelian Genetics, genetic basis of loci and alleles, sex determination in plants and jumping genes			
CO 7	Relate the structure with functions of thallophytes and classes of plants adapted			

to different environmental conditions.

DETAILED SYLLABUS

Course Code/Unit	Course/ Unit Title	Credits/ Hrs
RUSBOT.O101	PLANT SCIENCE – I	Credits-3
UNIT I	Microbiology, Algae, Fungi and Lichens	Hours -15
	 Introduction to Microbiology: Microorganisms in the living World, Groups of Microorganisms- Distribution of Microorganisms in Nature Major Characteristics of Bacteria, Basic principles of staining Outline of Classification of algae according to G.M. Smith upto orders and their general characters. Range of thallus structure in algae. Role of Algae in (nutraceutical, pharmaceutical, biofuels, food, 	
	 biofertilizers, and agar) Outline of Classification of fungi according to G. M. Smith upto orders and their general characters Modes of nutrition in Fungi (Saprophytism, predation and Parasitism). Fungi in the field of Medicine, Agriculture, Biofertilizers, Biopesticides, brewing & baking, enzymes, Colorants, bioluminescent fungi, human and plant pathogens, Association of fungi with Algae (roots of higher plants), leafcutter ants, termites. Introduction to lichens, types of lichens, ecological significance 	
UNIT II	Environmental Botany	Hours-15
	 Types of ecosystems: aquatic and terrestrial and Mangrove ecosystem Effect of climate change on ecosystems, role of IPCC, Biodiversity: types of biodiversity, endemics and wides Conservation of Biodiversity: ex situ and in situ methods, People's Biodiversity Register Biodiversity Hotspots and PAN The Biological Diversity Act, 2002; Convention on Biological Diversity Sustainable heritage management Sustainable Development Goal(SDG's) 	Hours-13
UNIT III	CytoGenetics	Hours -15
	 Prokaryotic and eukaryotic cell structure, General structure of plant cell: cell wall, Plasma membrane (bilayer lipid structure, fluid mosaic model) Mitosis 	
	Phenotype/Genotype, Mendelian Genetics- monohybrid, dihybrid	

	Explore o Experience o Excel
	ratios, test cross and back cross. • Epistatic and non epistatic interactions; multiple alleles.
	 Sex determination in plants Genic Balance Theory of sex determination in Drosophila, Lyon's Hypothesis of X chromosome inactivation. Jumping genes
	PRACTICAL
RUSBOTP.0101	Plant Science I Credits -
1	Introduction on handling, use and maintenance of microscopes and other laboratory equipments To study bacteria using Gram staining method
2	Study of stages in the life cycle of <i>Nostoc</i> and <i>Spirogyra</i> from fresh/ preserved mate andpermanent slides
3	Study of stages in the life cycle of <i>Rhizopus</i> and <i>Peziza</i> from fresh/ preserved material and permanent slides
4	Morphological identification of members of Algae, Fungi and Lichens according to G N Smith's classification
5	Examining various stages of mitosis in root tip cells (Allium)
6	Cell inclusions: Starch grains (Potato and Rice); Aleurone layer, Maize; Cystolith (Ficus); Raphides (Pistia); Sphaeraphides (Opuntia).
7	Identification of plants adapted to different environmental conditions: Hydrophytes free floating (<i>Pistia</i>), Rooted floating (<i>Nymphaea</i>), submerged (<i>Hydrilla</i>), Mesophytes (any common plant), Hygrophytes (<i>Typha</i>), Epiphytes (Orchid aerial root), Halophytes (<i>Avicennia</i>)
8	Calculation of mean, median and mode, Calculation of Standard deviation
9	Frequency distribution, graphical representation of data-frequency polygon, histogram, pie chart.
10	Study of Karyotype – Human and <i>Allium cepa</i>
	Preparing Biodiversity register- report submission

SEMESTER II

Course Code : RUSBOT.E111

Course Title: PLANT SCIENCE-II

Academic year 2023-24

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	A student completing this course will be able to:
CO 1	Outline the classification and salient features of Bryophytes, Pteridophytes, Gymnosperms and Angiosperms and their ecological significance and economic importance
CO 2	Summarize the principles underlying Bentham & Hooker's system of classification
CO 3	Identify plants from prescribed families
CO 4	Outline the concepts and fundamentals of plant anatomy.
CO 5	Interpret the adaptive and protective systems of plants.
CO6	Relate the structure with function of diverse groups of plants.

DETAILED SYLLABUS

Course Code/Unit	Course/ Unit Title	Credits/ Hours
RUSBOT. E111	PLANT SCIENCE – II	Credits 3
UNIT I	Bryophyta, Pteridophyta and Gymnosperms	Hours -15
	 Outline of classification of Bryophyta according to G.M. Smith upto orders and their general characters. 	
59,	 Types of sporophytes in Bryophyta. Plant succession and Pollution monitoring, importance of bryophytes with special reference to Sphagnum 	
	 Outline of classification of Pteridophyta according to G. M. Smith upto orders and their general characters. 	
	Stelar evolution.	
	 Applications in food, medicine, horticulture and agriculture, Scope of ferns inhorticulture and economic development. 	
	 General characters, Outline of classification of Gymnosperms 	

	 according to C.J.Chamberlin upto orders and their general characters. Economic importance: Wood, Resins, Essential oils, food and Drugs Geological time scale. 	
UNIT II	Plant systematics	Hours -15
	 Definition and aims of taxonomy, systematic botany, concepts of taxonomy, Plant nomenclature. Outline of Bentham and Hooker's system of classification. Study of following families: Malvaceae, Leguminosae: Caesalpinaceae, Papilionaceae, Mimosae, Amaryllidaceae Secret life of plants: Curious plants and extremophiles 	1160
Unit III	Anatomy	Hours -15
	 Simple tissues, complex tissues, meristematic tissues, permanent tissues, wall ingrowths and transfer cells, adcrustation and incrustation, ergastic substances. Primary structure of dicot and monocot root, stem and leaf (Kranz anatomy). Epidermal tissue system: types of hair, monocot and dicot stomata. 	

	PRACTICAL					
RUSBOTP. E111	PLANT SCIENCE – II	Credits – 1				
1	Study of stages in the life cycle of <i>Riccia</i> from fresh/ preserved material.					
2	Study of stages in the life cycle of Selaginella, Selaginella stem a	and rachis, strobilus				
3	Cycas: T.S of leaflet (Cycas pinna) microsporophyll, megasporophyll, L.S. of ovule of Cycas— all specimens to be shown.					
4	Stelar evolution with the help of permanent slides, Protostele, haplostele, actinostele, plectostele, mixed protostele, siphonostele, ectophloic, amphiphloic,					
5	Morphological identification of Bryophytes, Pteridophytes and Gymnosperms representing different orders.					
6	Study of following families: Malvaceae, Leguminosae: Caesalpinaceae					
	and Papilionaceae, Mimosae, Amaryllidaceae.					
7	Primary structure of dicot and monocot root.					
8	Primary structure of dicot and monocot stem.					
9	Study of dicot and monocot stomata.					
10	Epidermal outgrowths: with the help of mountings: Unicellular: Gossypium,					
	Argyreia. Multicellular: Lantana, Glandular: Drosera and Stinging: Urtica - only					
	identification with permanent slides.Peltate: Thespesia, Stellate: Erythrina, T-					
	shaped: Avicennia					
	Field visit and report submission					

References:

- Pelczar M. J, Chan E.C., Krieg, N. R.1993. Microbiology by Pelczar Chan and Krieg5th ed.
- Brodie J. and Lewis J.2007. Unravelling the algae: the past, present and future of algal systematics. CRC press, New York, pp. 335.
- Bellinger E.G. and Sigee D.C. 2010. Freshwater algae: Identification and use asbioindicators, Willey-Blackwell, UK, pp. 271.
- Desikachary T.V. 1959. Cyanophyta. ICAR, New Delhi.
- Gangulee, Das and Dutta. 2006.College Botany Volume I and II. Central Educationenterprises
- Krishnamurthy V. 2000. Algae of India and neighboring countries IndianChlorophycota, Oxford & IBH, New Delhi.
- Kumar, H.D. (1999). Introductory Phycology. Affiliated East-West. Press Pvt. Ltd. Delhi.2nd edition.
- Lee R.E. 2008. Phycology. Cambridge University Press, pp.547.
- Prescott G.W.1969. The algae.
- Smith G.M.1950. The fresh water algae of the United States, Mc-Graw Hill NewYork.
- Srinivasan K.S. 1969. Phycologia India. Vol. I & II, BSI, Calcutta.
- Vashista B.R, Sinha A.K and Singh V.P. 2005. Botany for degree students Algae, S.Chand's Publication.
- Ainsworth, Sussman and Sparrow. 1973. The fungi. Vol IV A & IV B. AcademicPress.
- Alexopolous C.J., Mims C.W. and Blackwell M.1999.4th
 Edition.IntroductoryMycology. Willey, New York, Alford R.A.
- Deacon J.W.2006. Fungal Biology. 4th Edition. Blackwell Publishing,ISBN.1405130660.
- Mehrotra R.S. and Aneja K.R. 1990. An introduction to mycology. NewAgePublishers, ISBN 8122400892.
- Webster J. and Roland W. 2007. Introduction to fungi (3rd Edition)CambridgeUniversity Press, 978-0-521-80739-5.
- Dube H.C. 2004. An Introduction to fungi. Vikas Publishers.
- Sharma O.P. 2010. A text book of fungi. S.Chand's Publication.
- Vashista B.R and Sinha A.K. 2008. Botany for degree students Fungi. S.Chand's Publication.

- Griffith Freeman and Company. 2000. An introduction to Genetic analysis.
- Brown TA. 2006. Gene Cloning and DNA Analysis. 5th Edition.
- Reece RJ, Wiley. 2004. Analysis of Genes and Genomes.
- Gupta, P.K. 1999. A Text Book of Cell and Molecular Biology. Rastogi Publication, Meerut. India.
- Verma, P. S., V. K. Agrawal. 2008. Cell Biology, Genetics, Molecular biology, Evolution and Ecology.3rd edition S. Chand & co. New Delhi, India.
- De Robertis and De Robertis. 8th Edition. 2017. Cell and Molecular Biology
- Harvey et al. New York: W. H. Freeman. 2000. Molecular Cell Biology, 4th edition.ISBN-10: 0-7167-3136-3
- Watson, J. D. 2004. Molecular Biology of Gene. 5th Edition. Pearson BenjaminCummings.
- Kothari, A. 1997. Understanding Biodiversity: Life Sustainability and Equity OrientLongman.
- Mukherjee B. Environmental Biology, Tata McGraw Hill Publishing Co. Ltd. NewDelhi, India.
- Odum E. P 1983. Basic Ecology, Saunders, Philadelphia.
- Sharma, P.D. Ecology and Environment, Rastogi publication, Meerut, India.
- Purohit, S.S. and R. Ranjan. Ecology and Environmental Pollution, Agro-BiosPublishers, Jodhpur, India.

MODALITY OF ASSESSMENT

Discipline Specific Core Course (3 credits)

A) Internal Assessment (Theory)- 40%- 30 Marks

Sr No	Evaluation type	Marks
1	Class Test	20
2	Project / Assignment / Presentation/ Case study	10
0	TOTAL	30

B) External Examination (Semester End)- 60%- 45 Marks Semester End Theory Examination:

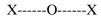
- 1. Duration The duration for these examinations shall be of 1 hr 30min
- 2. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions Based on
Q.1	Attempt ANY 3 out of 4	15	Unit I

Q.2	Attempt ANY 3 out of 4	15	Unit II
Q.3	Attempt ANY 3 out of 4	15	Unit III
	TOTAL	45	

Practical Examination Pattern: Total Marks 50


- A) Internal Examination 40%- 20 Marks
- B) External Examination (Semester End)- 60%- 30 Marks

INTERNAL EXAMINATION	. 5			
Particulars	Practical Marks			
Field study/ Assignment	10			
Journal	05			
Practical participation	05			
Total	20			
SEMESTER END EXAMINATION				
Laboratory work	30			
Total	50			

PRACTICAL JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.

In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Co-ordinator / Incharge of the department; failing which the student will not be allowed to appear for the practical examination.

