Resolution number: AC/II(21-22).2.RUS1

S. P. Mandali's

Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus For:

Program: Integrated M.Sc. in Bioanalytical Sciences

(Undergraduate Syllabus)

Program Code: RUSBAS

(Credit Based Semester and Grading System for academic year 2021– 2022)

PROGRAM OUTCOMES

РО	PO Description
	A student completing Bachelor's Degree in Science program will
	be able to:
PO 1	Recall and explain acquired scientific knowledge in a comprehensive
	manner and apply the skills acquired in their chosen discipline.
	Interpret scientific ideas and relate its interconnectedness to various
	fields in science.
PO 2	Evaluate scientific ideas critically, analyse problems, explore
	options for practical demonstrations, illustrate work plans and
	execute them, organise data and draw inferences.
PO 3	Explore and evaluate digital information and use it for knowledge
	upgradation. Apply relevant information so gathered for analysis
	and communication using appropriate digital tools.
PO 4	Ask relevant questions, understand scientific relevance,
	hypothesize a scientific problem, construct and execute a project
	plan and analyse results.
PO 5	Take complex challenges, work responsibly and independently, as
	well as in cohesion with a team for completion of a task.
	Communicate effectively, convincingly and in an articulate manner.
PO 6	Apply scientific information with sensitivity to values of different
9	cultural groups. Disseminate scientific knowledge effectively for
and the	upliftment of the society.
PO 7	Follow ethical practices at work place and be unbiased and critical in
Y	interpretation of scientific data. Understand the environmental
	issues and explore sustainable solutions for it.
PO 8	Keep abreast with current scientific developments in the specific
	discipline and adapt to technological advancements for better
	application of scientific knowledge as a lifelong learner.

PROGRAM SPECIFIC OUTCOMES

PSO	Description
	A student completing Bachelor's Degree in Science program in the
	subject of Bioanalytical Sciences will be able to:
PSO 1	This course will impart high quality science education in a vibrant
	academic ambience with the faculty of distinguished teachers and
	scientists.
PSO 2	It will also equip students for the future who will take up the
	challenge of doing quality research and teaching and also
	contribute to industrial production and R & D in the fields of
	Bioanalysis, Bioinformatics and Nutraceutical Sciences.
PSO 3	It will amalgamate classical analytical chemical techniques with
	modern genomic and proteomic technologies of manufacturing
	and analysis to better characterize the products useful as
	medicines as well as nutraceuticals.
Ramina	Ruin
e alt	

2

PROGRAM OUTLINE

YEAR	SEM	COURSE CODE	COURSE TITLE	CREDITS
		RUSBAS101	Biological Sciences I	3
		RUSBAS102	Biological Sciences II	3
		RUSBASP101	Biological Sciences Practical	2
		RUSBAS103	Chemical Sciences I	3
		RUSBAS104	Chemical Sciences II	3
F.Y.B.Sc	I	RUSBASP102	Chemical Sciences Practical	2
		RUSBAS105	Computational Sciences I	2
		RUSBAS106	Computational Sciences II	2
		RUSBASP103	Computational Sciences Practical	2
		RUSBAS107	Foundation Course-I	2
		RUSBAS201	Biological Sciences I	3
	~	RUSBAS202	Biological Sciences II	3
	0	RUSBASP201	Biological Sciences Practical	2
F.Y.B.Sc		RUSBAS203	Chemical Sciences I	3
F.1.D.3C	II	RUSBAS204	Chemical Sciences II	3
		RUSBASP202	Chemical Sciences Practical	2
		RUSBAS205	Computational Sciences I	2
		RUSBAS206	Computational Sciences II	2

		RUSBASP203	Computational Sciences Practical	2
		RUSBAS207	Foundation Course-II	2
		RUSBAS301	Biological Sciences III	3
		RUSBAS302	Biological Sciences IV	3
		RUSBASP301	Biological Sciences Practical	2
		RUSBAS303	Chemical Sciences III	3
		RUSBAS304	Chemical Sciences IV	3
S.Y.B.Sc	III	RUSBASP302	Chemical Sciences Practical	2
		RUSBAS305	Computational Sciences III	2
		RUSBAS306	Computational Sciences IV	2
		RUSBASP303	Computational Sciences Practical	2
		RUSBAS307	Environmental Sciences	2
		RUSBAS401	Biological Sciences III	3
	S.	RUSBAS402	Biological Sciences IV	3
		RUSBASP401	Biological Sciences Practical	2
S.Y.B.Sc	IV	RUSBAS403	Chemical Sciences III	3
Y		RUSBAS404	Chemical Sciences IV	3
		RUSBASP402	Chemical Sciences Practical	2
		RUSBAS405	Computational Sciences III	2

		RUSBAS406	Computational Sciences IV	2
		RUSBASP403	Computational Sciences	2
		KUSDASP403	Practical	2
		RUSBAS407	Technical Communication skills	2
		RUSBAS501	Entrepreneurship Skills	3
		RUSBASP501	Entrepreneurship Skills Project/CaseStudy/Assignment Practical	2
		RUSBAS502	Biological Sciences V	3
		RUSBASP502	Biological Sciences Practical	2
T.Y.B.Sc	V	RUSBAS503	Chemical Sciences V	3
		RUSBAS504	Chemical Sciences VI	3
		RUSBASP503	Chemical Sciences Practical	2
		RUSBAS505	Computational Sciences V	2
	5	RUSBASP504	Computational Sciences Practical	2
		RUSBAS601	Entrepreneurship Skills	3
T.Y.B.Sc	VI	RUSBASP601	Entrepreneurship Skills Project/CaseStudy/Assignment Practical	2
		RUSBAS602	Biological Sciences V	3
		RUSBASP602	Biological Sciences Practical	2

RUSBAS603	Chemical Sciences V	3
RUSBAS604	Chemical Sciences VI	3
RUSBASP603	Chemical Sciences Practical	2
RUSBAS605	Computational Sciences V	2
RUSBASP604	Computational Sciences Practical	200
•	Autonomo	

Course Title: Biological Sciences I

F.Y.B.Sc.

COURSE OUTCOME	DESCRIPTION
CO 1	Students should realize the importance of type specimens and in-vivo models in Biological research.
CO 2	Students will understand basic concepts of microbiology. They should be able to successfully understand the significance and perform aseptic transfer techniques.
CO 3	Students should learn the operation of simple light microscope.
CO 4	Student will know the significance of studying plant and animal anatomy and the functions of specialized cells present in them.
	Ruiahu
Rauna	hand

Paper Code	Semester I	lectures
RUSBAS101	Biological Sciences I	45
101.1 Introdu	ction to Plant Anatomy and Physiology	15
Permanent tissu tissue, Cell differ	: (8L) ne systems in Plants, Meristems, Classification of Meristems, nes and classification of permanent centiation, Specialized cells of plants, Importance of plant anatomy, unflower, Maize & <i>Arabidopsis thaliana</i> as type specimens	60
0	Pgy n, Photosynthesis: Light reactions, Carbon fixation reactions C3, C4 s, Photorespiration, Storage of plants, Oil seeds.	
Animal Anatom Tissue and Tis differentiation, Significance of sapiens as type s Animal system	sue systems in Animals, Classification of Animal tissues, Cell Specialized cells of Animals, Importance of Animal anatomy, Mice, Zebra Fish, Guinea Pig, Non-human primates, <i>Homo sapiens</i> <i>pecimen</i> s: stem, Digestive System, Excretory System, Nervous System,	15
101.3 Introdu Microbes & their Significance and Simple and Com crassa as type sp	ction to Microbiology r Environment, Biodiversity and types of Microorganisms, Scope of Microbiology, Visualization of Microorganisms: Staining, pound Microscopy, Significance of <i>E. coli</i> , Yeast & <i>Neurospora</i>	15

Biological	• B. P. Pandey, Plant Anatomy, S Chand
Sciences I	Gerald Karp, Cell Biology
	• Micheal J. Pelczar, Jr., E. C. S. Chan, Noel R. Krieg – Microbiology
	• B.R. Vashishta, A K Sinha, Adarsh, Botany for Degree Students Part
	III:Bryophyta
	Gerald Karp, Cell Biology

Course Code: RUSBAS102 Course Title: Biological Sciences II

F.Y.B.Sc.

COURSE	DESCRIPTION
OUTCOME	
CO 1	Students will appreciate versatility and dynamic nature of carbon.
CO 2	Students should be able to draw the correct structures of
	biomolecules and understand structure-function and correlation.
CO 3	They should be able to schematically represent and explain various
	physiological processes in plants and animals.

Paper Code	Semester I	lectures
RUSBAS102	Biological Sciences II	45
102.1 Introduction	to Biomolecules and Carbohydrates	15
Introduction to Bio	molecules	
	l and physical attributes of Biomolecules, Classification of cance of Biomolecules in nature and science.	
Carbohydrates		
Classification of carb	ohydrates	
Structure, structure p	properties, Isomerism, derivatives, functions & reactions of	
Monosaccharides, Oli	gosaccharides, Homopolysaccharides (Starch, Inulin,	
Glycogen, Cellulose),	Heteropolysaccharides	
102.2 Proteins & N	ucleic Acids	15
Amino acids & Prot	eins	
Structure, classificati	on, physical and chemical properties, levels of structural	
organization of Prote	ins, Introduction to Ramachandran plot.	
Nucleic Acids		
Chemistry of nucleic	acids, nucleosides, nucleotides, Structure and properties of	
DNA, stability of nucl	eic acid structures, Chargaff's rules, Watson and Crick model,	
Confirmations of DNA	A-A, B, Z forms of DNA, Structure, function and types of RNA	

.02.3 Lipids & Vitamins	15
ipids	
Classification of fatty acids and lipids, Physical and Chemical properties, Functions	
f fatty acids, glycolipids, phospholipids, Structure and function of Cholesterol,	
Titamins : Storage and Occurrence, Structure, properties, Recommended dietary	
llowance, Deficiency and treatment.	
RUSBASP101 PRACTICALS	
. Cleaning, Sterilization of glassware	
2. Various types of Media preparation for Microbial growth	
8. Aseptic Transfer	
 Isolation of bacteria 	
5. Staining techniques: Monochrome Staining, Gram staining	
 Estimation of oil from oil seeds 	
 Qualitative analysis of Biomolecules - Carbohydrates, Proteins, Nucleic Acids, Lipic E. Fungal Staining 	ls

Biological Sciences II	 David Hopkin Lewis, Storage Carbohydrates in Vascular Plants: Distribution, Physiology, and Metabolism
	 David Nelson, Michael Cox: Lehninger's Principle of Biochemistry: Springer Hiram.F.Gilbert : Basic concept in Biochemistry : Mac Grow Hill J Koolman, K.H. Roehm : Color Atlas of Biochemistry : 2nd edition : Theime Publication U.Satyanarayana,U.Chakrapani-Biochemistry S. Mukherji and A. K. Ghosh, Plant Physiology, New Central Book Agency (P) Ltd
	 Russell; Hunter, W.D. and McMillan: Life of Invertebrates
	Kotpal, R.L.: Zoology Phylum – Arthropoda, Rastogi Publication
22111	arar

Course Code: RUSBAS103

Course Title: Chemical Sciences I

F.Y.B.Sc.

COURSE	DESCRIPTION
OUTCOME	
CO 1	Students should be able to prepare buffers and operate pH meter.
CO 2	Students should accurately name and identify aromatic compounds.
CO 3	Students should understand the concepts of molecular bonding.

Paper Code	Semester I	lectures
RUSBAS103	Chemical Sciences I	45
103.1 Ionic Eq	uilibrium, pH and Buffers	15
Activity coefficies and reduction eco Concept of pH, p Derivations: Ion between pI, pKa Titration and Ion of these amino a Physiological Bu Phosphate, and	offers: Preparation, properties and uses of Carbonate-Bicarbonate,	
-	Iomenclature and Aromaticity	15
groups, aliphatic the basis of IUPA	IUPAC nomenclature, IUPAC nomenclature of basic functional c poly functional compounds, including monocyclic compounds on AC priority order. (Line formulae expected) IUPAC nomenclature of , Bicyclic compounds, SMILES Notation	
Aromaticity and Aromatic hydr	haracteristic properties of aromatic compounds, Huckel's rule, anti-aromaticity, Resonance energy, ocarbons: Benzenoid & Nonbenzenoid compounds (benzene, anthracene, phenanthrene, cyclopropenium, cyclopentadienyl, umcation)	

103.3 Introduction to Molecular Bonding15Concept of atoms and molecules and atomic structure orbitalsConcept of electronic configuration-Pauli's exclusion principle, Hund's rule, Aufbau
principle16Types of bonds and bonding, Chemical bonding theory, Valence-Bond theory and
Molecular orbital theory, Concept of hybridization and its types(change)16Molecular orbital theory for polyatomic species:
I)BeH2 II) H2O III) NH3 IV) CH4(New)17Polar covalent bonds and Electronegativity, Drawing chemical structures (Based on
Lewies dot structure), Molecular models15

Chemical Sciences I	 John McMurry: Organic Chemistry: 5th Edition: Brooks AND Cole Publication
	James House: Inorganic Chemistry: Elsevier
	Paula Yurkanis Bruice: Organic Chemistry: Pearson
	• P.S Kalsi: Organic Reactions and Their Mechanisms: Third Edition,
	New Age
	 Ira N. Levine: Physical Chemistry: McGraw-Hill
	• S.C.Pal: Nomenclature of organic chemistry :Alpha publication
	Peter Atkins & Julio de Paulo: Physical Chemistry: Oxford University
	Press

20

Course Code: RUSBAS104

Course Title: Chemical Sciences II

F.Y.B.Sc.

COURSE OUTCOME	DESCRIPTION
CO 1	Students should analyze conductometric, pH metric and acid-base
	titration curves to predict the chemical nature of titrant and titrate.
	They should realize the importance of calibration in science.
CO 2	Students should be able to demonstrate mechanisms of organic
	reactions and identify the similarities between organic and
	biochemical reactions

Paper Code	Semester I	lectures
RUSBAS104	Chemical Sciences II	45
104.1 Stoichio	metry and Preparation of Standard Solutions, Titrimetric analysis	15
fraction, % cal milliequivalents, interconversion to mg/mL, PPM t Primary and seco	ondary standards, Preparation of standard solutions, Calculation of f commercial samples of acids and bases, Use of computers in	
titrimetric analy	or a reaction to be used in titrimetric analysis, classification of sis, Terms: titration, titrand, titrant, titre value, indicator, endpoint, at, titration error.	
Principles of a	cid-base, oxidation–reduction, complexometric titrations, and ation with suitable examples.	

104.2 Basic Lab	poratory Instruments and Automation	15
1.Basic Set up of a	a biological, chemical and bioanalytical laboratory	
-	, Instrumentation and applications of:	
Lab equipments:	centrifuge, ultrasonicator (probe and bath), vortex machine rotary	7
	and flasks),rotary evaporator, hot air oven, autoclave, incubator,	
cyclomixer, pulve	erizer	
-	nents: pH meter, colorimeter, weighing balance	
3. Introduction to		0
	tion in a laboratory, Advantages of automation, different	
	itomation involved in various lab equipment/instruments:	
	nicropipettes, autopipettes, pH meter, ultrasonicator, rotary	
shaker 104.3 Introduc	tion to Good Laboratory Practices and Safety in Laboratory	15
		_
	fety rules, laboratory hygiene	
	Good Lab Practices	
_	calibration of instruments with any two examples	
4. Importance of	documentation in laboratory	
RUSBASP102	PRACTICALS	
KU3DA31 102	I NACTICALS	
	tric calculations and preparation of primary and secondary standar	rd solutions
	meter (calibration and analysis)	
	analysis (Calculation of % error expected)	
	Acid – Base titration	
-	Estimation of Iron using Internal Indicator	
	Estimation of Vitamin C from various samples	
,	Estimation of Total Hardness	
	Estimation of iodine in iodised common salt using iodometry.	d all acas
	of various buffers and measurement of pH using pH meter ar a_{1}^{0} of V_{1} or an approximately locating again. So diam against a Ruffer	и рн раре
	of % error expected: Acetic acid—Sodium acetate Buffer sware: Burette, Pipette, Standard Flask	
Calibration of glass	ware. Burette, Fipette, Stanuaru Flask	
) of or one of Doolson		
Reference Books:		
Chemical	 Morrison AND Boyyd: Organic chemistry :Allyn&Baconp publ 	ication
Sciences II	• Richard O.C. Norman, James M. Coxon: Principles of Organic	
	Synthesis, 3rd Edition:CRC Press	
A'D'	• Peter Sykes: A Guidebook to Mechanism in Organic Chemistry	7:6

- Peter Sykes: A Guidebook to Mechanism in Organic Chemistry:6
 Edition: Pearson
 - P.S Kalsi :Organic Reactions and Their Mechanisms :Third Edition, New Age
 - Ira N. Levine: Physical Chemistry : McGraw-Hill

Course Title: Computational Sciences I

F.Y.B.Sc.

COURSE	DESCRIPTION
OUTCOME	~ 0 0
CO 1	Students should adapt for basic arithmetic calculations.
CO 2	Students should apply the mathematical equations to find solutions to given problems.
	JI2

Paper Code	Semester I	Lectures
RUSBAS105	Computational Sciences I	30
	105.1 System of linear equations and Matrices	10
	Matrices over R (order 2 & 3): Matrix operations (addition, subtraction, scalar multiplication, matrix multiplication, transpose of a matrix (it's properties), inverse by elementary row transformation, adjoint method, solution of system of equation both homogenous and non-homogenous using matrix (concept of Rank to be introduced) Determinants: Determinant of a matrix of order 2 and 3, elementary properties of determinants, solving a system of linear equations (up to 3 variables) using Crammer's rule and application to medicines, pharmaceuticals, food and vitamins.	
	 105.2 Calculus Derivatives and its application (one variable) Definition by first principle method, rules addition, subtraction, multiplication, division (only statements) Application of derivatives: Rate measure (Physics, Chemistry, Industrial aspects), Approximation and errors, Mean value theorems (without proof) Rolle's theorem, Lagrange's mean value theorem, Cauchy's mean value theorem Extreme values using first and second derivatives (application type problem) 	10

	105.3 Ordinary Differential Equation and Applications	10
	First order differential equations: Review of separable differential equations, homogenous and non- homogenous differential equation. Linear differential equations and Bernoulli differential equations. Modeling with first order equations: examples from financial mathematics, chemistry, environmental sciences, population growth and decay. Second order linear differential equations: The general second order differential equations, existence and uniqueness, theorem for the solutions of a second order initial value problem (statement only) Emphasis should be on solving problems with different rules	1000
Reference Books	s:	

Computational	S.LangLinear Algebra
Sciences I	Schaum's outlines on matrices
	• Simmons, G.F., Differential Equations With Applications and
	Historical Notes,
	 Chapter1, Sections 1,2,3 of Elements of Partial Differential, McGraw Hill
	 Serge Lang, Introduction to Linear Algebra, , Springer Verlag,
	Balaguruswamy, E., Discrete Mathematics and Its Applications,
	Numerical Methods, Tata McGraw Hill

Rannarain

Course Title: Computational Sciences II

F.Y.B.Sc.

COURSE OUTCOME	DESCRIPTION
CO 1	Students should appreciate the extensive applications of optics in analytical instrument like colorimeter and spectrophotometer.
CO 2	Students should grasp the fundamental concepts of crystal geometry and X-ray diffraction.

Paper Code	Semester I	Lectures				
RUSBAS106	RUSBAS106 Computational Sciences II					
106.1 Alternat	ing current theory & transient response of circuit.	10				
AC circuit contai	ning pure R, pure L and pure C					
•	of sinusoids by complex numbers, Series L-R, C-R and LCR circuits.					
	R circuit (both series and parallel)					
	cuit. Q-factor. Series LR, CR, LCR circuits. Growth and decay of					
currents/charge						
106.2 Optics		10				
-	on : coaxial system of two thin lenses in contact and separated by a					
	al points and qualitative description of image formation by a thin					
lens, aberration of optical images (spherical aberration, distortion, chromatic						
aberration), met	hods reducing aberrations, Ramsden eyepiece.					
Interference by	division of amplitude: interference in thin films (reflected system					
	haped film in monochromatic light, Newton's rings, determination of the refractive index of a liquid using Newton's rings.					
Fraunhofer di	f fraction: expression for the resultant of N simple harmonic					
vibrations of e	qual amplitude, the same period and phases increasing in an					
	ession, use of this expression to study a single slit, a double slit, and					
a plane diffract spectra.	ion grating(transmission type), comparison of prism and grating					
	to polarization : pictorial representation of polarized light,					
-	scattering and by reflection, Brester's law, Malus's law, double cite and quartz, experimental determination of μ 0 and μ E of a quartz					
or a calcite prism						

106	.3 Material Science, Crystal Geometry & X-Ray Techniques	10
Mate	erial science: classification of materials, organic, inorganic and biological	
mat	erials, semiconductor materials, current trends and advances in materials,	
mat	erials structure and examination, selection of materials	
Crys	tal geometry and structure: crystals, single crystal, whiskers, lattice point and	
spa	ce lattice, unit cell, primitive cell, atomic radius, density of crystal, direction lattice	
plar	nes, miller indices, interplanar spacing, crystal planes in cubic unit cells, common	
- plar	nes in simple cubic structure, Co-ordination number, crystal growth	
-	ys: production, continuous and characteristic X- ray spectra, Bragg's law and	
	nsity of X- rays, Mosley's law.	0
Com	pton Effect and its experimental verification, energy dependence of photoelectric	
effe	ct and Compton Effect.	
RUS	SBASP103 PRACTICALS	
1.	Focal length of a lens system	
	High pass Filter, Low pass filter	
	Surface Tension	
	Vernier Caliper, Micrometer screw gauge and their use in pharma	
	Study of light Microscope	
0. 1	Case studies on diagnostic tools such as X-Ray, CT scan, MRI scan	
	Suse studies on diagnostic tools such as A hay, of scall, whit scall	
≷efei	rence Books:	

Computational	 Verma, H.C., Concepts of Physics, Volume 1, Bharati Bhavan 						
Sciences II	Publishers & Distributors.						
	• Mathur D. S., Elements of Properties of Matter, , S. Chand and Co. Ltd., Reprint 2001.						
	 Mathur B.K. and T.P. Pandya, Principles of Optics, Gopal Printing Press, Kanpur. 						
	 Jenkins F.A., Fundamentals of Optics, Whitte, 4e, 1981, McGraw Hill International. 						
	Ghtak, A., Optics, 2nd Ed., TMH,1992						
Ranna							

20

Course Code: RUSBAS107

Course Title: Foundation course I

F.Y.B.Sc.

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
CO 1	Students should be aware about their constitutional rights and
	current socio-political scenario of India.

Paper Code	Semester I	Lectures	
RUSBAS107	Foundation Course-I	30	
107.1 The Inc	dian Constitution	10	
1. Methods of e	expressing concentration of solutions-Philosophy of the		
	as set out in the Preamble		
2. The structur	e of the Constitution-The Preamble, Main Body and Schedules		
3. Fundamenta	l duties of the Indian Citizen, tolerance, peace, and communal		
harmony as	crucial values in strengthening the social fabric of the Indian		
society			
	es of the Constitution		
107.2 Growin	ng Social Problems in India	10	
1. Substance Al	ouse-Impact on Youth and Challenges for the future		
2. HIV/AIDS- A	wareness, prevention, treatment and services		
3. Problems of	the Elderly-Causes, implications and response		
	d Labour-Magnitude, causes, effects and response		
	Effects and ways to prevent		
	f Women- Causes, effects and response		
107.3 Signific	cant aspects of political processes	10	
1. The party sy	stem in Indian Politics		
	vernment in urban and rural areas; the 73 rd and 74 th Amendments		
	plications for inclusive politics		
3. Role and sign	nificance of women in politics		

Foundation	• K. T. Basantani; Social Awareness - Foundation Course, Semester - I;
course	Sheth Publisher Pvt. Ltd.

Modality of Assessment for: F.Y.B.Sc. Semester I

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1.	Internal Examination	20
2.	Assignment/Group Discussion/Presentation/Class Activity	20
	TOTAL	40
-	mal Examination- 60%- 60 Marks	,011

B) External Examination- 60%- 60 Marks **Semester End Theory Examination:**

- 1. Duration These examinations shall be of **2.0 Hours** duration.
- 2. Theory question paper pattern:

Paper Pattern for Biological, Chemical, Computational Sciences:

Question	Options	Marks	Questions Based on
Q.1. Short answer question (5 Marks each)	3 out of 4	15	Unit I
Q.2. Short Answer questions (5 Marks each)	3 out of 4	15	Unit II
Q.3. Short Answer questions (5 Marks each)	3 out of 4	15	Unit III
Q.4. Objective/short answer question (5 Marks each)	3 out of 4	15	Combination of all units
	TOTAL	60	

Paper Pattern for Foundation Course:

Question	Options	Marks	Questions Based on
Q.1. Short answer	1 out of 2	8	Unit I
question	Compulsory	7	Unit I
Q.2. Short Answer	1 out of 2	8	Unit II
questions	Compulsory	7	
Q.3. Short Answer	1 out of 2	7	Unit III
questions	Compulsory	8	Unit III
Q.4. Objective/short answer question (5 Marks each)	3 out of 4	15	Combination of all units
	TOTAL	60	

Practical Examination Pattern:

A) Internal Examination: 40%- 40 Marks

Particulars	
Journal	10
Experimental tasks/Attendance	10
Small project/Class	20
assignment/Presentation/Activity /Viva	
Total	40
	6
nal Examination: 60%- 60 Marks	S
ster End Practical Examination:	O'

B) External Examination: 60%- 60 Marks

Semester End Practical Examination:

Particulars	Paper
Required Experiments Performed with appropriate principle, approach, Observations, Result, Demonstration of skills, Conclusion and Viva.	60
Total	60

Overall Examination & Marks Distribution Pattern

Semester I

Course	101				102			103			104	
	Internal	External	Total									
Theory	40	60	100	40	60	100	40	60	100	40	60	100
Practicals		-	_	40	60	100		-	-	40	60	100

Course 105			106			107			Grand Total	
	Internal	External	Total	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	40	60	100	700
Practicals	—	_	—	40	60	100	—	-	—	300

Course Code: RUSBAS201 Course Title: Biological Sciences I

F.Y.B.Sc.

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION		
CO 1	Students should comprehend fundamental concepts of genetics.		
CO 2	Students should realize the significance of enzymes with respect to		
	drug design.		
CO 3	Students should learn the properties and dynamics of plasma		
	membrane as a prerequisite to study transport of drug molecules.		

Paper Code	Semester II	Lectures
RUSBAS201	Biological Sciences I	45
 Cell cycle- G Concept of ge Non-Mendeli Sex determin Variations in 	ction to Genetics and S Phases, Control of cell cycle enes, chromosomes, Mitosis and Meiosis, Apoptosis ian inheritance, Linkage and crossing over, Gene expression nation in animals, sex linked, sex limited and sex influenced genes chromosome number and structure (e.g., Rice, and Drosophila)	15
enzyme a 2. Mechanis binding e Vs induce 3. Enzyme f Lineweav 4. Enzyme i 5. Allosteric 6. Types of 7. Isoenzym	Chemical nature, properties, nomenclature, classification, units of activity: katal specific activity. Som of enzyme action: concept of active site, activation energy, energy, energy diagram for enzyme catalysed reactions, lock & key ed fit mechanism kinetics: Michaelis-Menton equation, ver-Burk plot nhibitors: Equations & Graphs	15
201.3.1 Coenzyn Coenzymes: Coen	nes and Biological Membranes & Transport mes: nzymes in hydrogen transfer reactions- nicotinamide nucleotide, e, lipoic acid. Co enzymes involved in group transfer-biotin,	15

pyridoxal phosphate, thiamine pyrophosphate, coenzyme A, cobalamine, tetrahydrofolic acid (7L) 201.3.2 Membranes & Transport Composition of biological Membranes, Different models of Biological Membranes, Membrane dynamics, Solute transport across Biological Membrane (Types & specific examples) (8L)

Biological	Robert Copeland : Enzyme: 2nd edition: Wiley publication
Sciences I	 William .P. Jencks: Catalysis in Chemistry and Enzymology : Courier Dover Publications
	• Tim Bugg: Introduction to Enzyme and Coenzyme Chemistry : 2nd Edition :Blackwill publication
	 David Nelson, Michael Cox :Lehninger's Principle of Biochemistry : Springer
	 Buns, G. W.: Science of Genetics - An introduction to heredity, Macmillan, New York.
	 William S. Kluge and Cummings, M.R.:Concepts of Genetics, Pearson Edu.
	 Alberts, Bruce: Essentials of Cell Biology: 5th edition.
Ramin	arain Rui
Raft	

Course Title: Biological Sciences II

F.Y.B.Sc.

COURSE OUTCOMES:

COURSE	DESCRIPTION		
OUTCOME	2		
CO 1	Students should appreciate the efficient manner in which cells		
	perform their biological functions while strictly obeying the laws of		
	thermodynamics. They should be able to calculate entropy, enthalpy		
	and free energy change for biochemical reactions.		
CO 2	Students should accurately demonstrate metabolic pathways in a		
	sequential manner. They should study metabolic pathways with the		
	perspective of their applications in drug design.		

Paper Code	Semester II	Lectures
RUSBAS202	Biological Sciences II	45
202.1 Principl	es of Bioenergetics	15
Concept of catab	olism, anabolism & metabolism.	
Types of Metabo cyclic.	olic pathways converging (catabolism), diverging (anabolism) and	
formation or b	mical reactions- a) Oxidation- reduction. b) Carbon-carbon bond preakdown. c) Internal rearrangement, isomerisation and croup transfer reaction. e)Free radical reaction	
-	is free energy, enthalpy, entropy, free energy change (ΔG) and ergy change ($\Delta G'^{0}$) with suitable examples.	
Laws of thermoo	lynamics with suitable examples.	
202.2 Carbohy	rdrate Metabolism	15
	Metabolism, Glycolysis, Krebs Cycle, Pentose Phosphate Pathway, Glycogenesis, Glycogenolysis, Metabolic disorders	

202	2.3 Lipid Metabolism, Nucleic Acid Metabolism & Amino Acid Metabolism	15
Lip	id Metabolism & Metabolic Disorders	
	c leic Acid metabolism: Synthesis of Purines & Pyrimidines (<i>De novo & Salvage hway</i>), Catabolism of Purines & Pyrimidines	
Am	ino Acid: Synthesis of Amino acids, Urea Cycle	
RU	SBASP201 PRACTICALS	
1.	Estimation of reducing sugars by DNSA method	
2.	Enzymology:	
	a) Extraction of amylase from starch using buffers.	
	b) Determination of optimum pH, temperature	
	c) Optimization of substrate and enzyme concentration	
	d) Determination of Km value	
	e) Effect of inhibitor(s)	
3.	Extraction and immobilization of Invertase from yeast.	
4.	Application of enzyme in diagnostics (Example of glucose oxidase kit, Glucomet demonstration)	ter
5.	Microscopic visualization of Storage carbohydrates from plant sample	
6.	Study of Seed germination and effect of various factors on seed germination	
7.	Study of Karyotype(s)	
	~ O ^Y	

Biological	David Hopkin Lewis, Storage Carbohydrates in Vascular Plants:	
Sciences II	Distribution, Physiology, and Metabolism	
belefices if	 U. Satyanarayana, U. Chakrapani – Biochemistry Micheal M. Cox and David L. Nelson, Lehninger Principles of 	
	Biochemistry	
Rann	arar	

Course Code: RUSBAS203

Course Title: Chemical Sciences I

F.Y.B.Sc.

COURSE	DESCRIPTION
OUTCOME	
CO 1	Students should precisely draw and identify stereoisomers. They
	should realize the applications of stereochemistry for assessment of
	safety and potency of pharmaceuticals.
	S
CO 2	They should be able to solve problems based on chemical kinetics and
	thermodynamics

Paper Code	Semester II	Lectures
RUSBAS203	Chemical Sciences I	45
203.1 Stereoc	nemistry-I	15
Optical and G	eometrical isomers: Study of enantiomers, diastereoisomers,	
Geometrical iso	merism due to restricted rotation around C-C double bond and	
Substituted cycl		
Idea of configur	ration. Stereochemistry of carbon compounds with one and two	
similar and diss	imilar asymmetric carbon atoms: enantiomers, diastereomers, and	
racemic mixture	es and their properties, threo, erythro and mesoisomers.	
Representation	of configuration by 'flying wedge formula' and projection	
formulate- Fisch	ner, Newman and Sawhorse. The interconversion of formula	
Conformational	analysis of ethane, propane, 2-methylpropane, 2,2-	
dimethulpropar	ne, n-butane.	
Molecular chira	lity and element of symmetry: Plane of Symmetry, Centre of	
Symmetry, Alter	mating axis of symmetry. Chirality without asymmetric carbon	
Stability of cycle	oalkanes: Strains in cycloalkanes-angle, eclipising, transannular (3	
to 6 membered)		
Conformations of	of cyclohexane, mono and di- alkylcyclohexanes and their relative	
stabilities.		

203.2 Stereochemistry-II	15
Assigning stereo descriptors to chiral centres:Cahn-Ingold-Prelog(CIP),Rules for	
assigning absolute configuration(R&S) to a stereogenic center. Assigning absolute	
configuration to molecules having maximum two chiral carbon atom E & Z	
stereodescriptors to geometrical isomers.	
Stereo selectivity and Stereo specificity: Idea of enantioselectivity (ee) and diastereoselectivity(de). Topicity-enantiotopic and diastereotopic atoms, groups	
and faces.	.0.
Stereochemistry of –	6
Substitution reactions- SN1, SN2, SNi (reaction of alcohol with thionyl chloride).	2,0
E2-anti-elimination-Base induced dehydrohalogenation of 1-bromo-1,2-	
diphenylpropane.	
Addition reactions to olefins-i)Catalytic hydrogenation ii)Bromination	
(electrophilic anti addition) iii)Synhydroxylation (molecular addition) with 0s04	
and KMnO4.	
203.3 Chemical Kinetics and Chemical Thermodynamics	15
	15
203.3 Chemical Kinetics and Chemical ThermodynamicsChemical Kinetics:	15
203.3 Chemical Kinetics and Chemical ThermodynamicsChemical Kinetics: Rate of reaction, definition of rate constant, measurement of reaction rates, order	15
 203.3 Chemical Kinetics and Chemical Thermodynamics Chemical Kinetics: Rate of reaction, definition of rate constant, measurement of reaction rates, order and molecularity, integrated rate equations for zero, first and second order 	15
 203.3 Chemical Kinetics and Chemical Thermodynamics Chemical Kinetics: Rate of reaction, definition of rate constant, measurement of reaction rates, order and molecularity, integrated rate equations for zero, first and second order reactions (for second order reactions only a=b to be considered), kinetic 	15
 203.3 Chemical Kinetics and Chemical Thermodynamics Chemical Kinetics: Rate of reaction, definition of rate constant, measurement of reaction rates, order and molecularity, integrated rate equations for zero, first and second order reactions (for second order reactions only a=b to be considered), kinetic characteristics of first and second order reactions, pseudo first order reactions 	15
 203.3 Chemical Kinetics and Chemical Thermodynamics Chemical Kinetics: Rate of reaction, definition of rate constant, measurement of reaction rates, order and molecularity, integrated rate equations for zero, first and second order reactions (for second order reactions only a=b to be considered), kinetic characteristics of first and second order reactions, pseudo first order reactions Chemical Thermodynamics 	15
 203.3 Chemical Kinetics and Chemical Thermodynamics Chemical Kinetics: Rate of reaction, definition of rate constant, measurement of reaction rates, order and molecularity, integrated rate equations for zero, first and second order reactions (for second order reactions only a=b to be considered), kinetic characteristics of first and second order reactions, pseudo first order reactions Chemical Thermodynamics Transition state theory, Transition State-Activation energy, Measurement of 	15
 203.3 Chemical Kinetics and Chemical Thermodynamics Chemical Kinetics: Rate of reaction, definition of rate constant, measurement of reaction rates, order and molecularity, integrated rate equations for zero, first and second order reactions (for second order reactions only a=b to be considered), kinetic characteristics of first and second order reactions, pseudo first order reactions Chemical Thermodynamics Transition state theory, Transition State-Activation energy, Measurement of Activation energy, Reaction profile diagram, the rate determining Step, Hammond's 	15
 203.3 Chemical Kinetics and Chemical Thermodynamics Chemical Kinetics: Rate of reaction, definition of rate constant, measurement of reaction rates, order and molecularity, integrated rate equations for zero, first and second order reactions (for second order reactions only a=b to be considered), kinetic characteristics of first and second order reactions, pseudo first order reactions Chemical Thermodynamics Transition state theory, Transition State-Activation energy, Measurement of 	15
 203.3 Chemical Kinetics and Chemical Thermodynamics Chemical Kinetics: Rate of reaction, definition of rate constant, measurement of reaction rates, order and molecularity, integrated rate equations for zero, first and second order reactions (for second order reactions only a=b to be considered), kinetic characteristics of first and second order reactions, pseudo first order reactions Chemical Thermodynamics Transition state theory, Transition State-Activation energy, Measurement of Activation energy, Reaction profile diagram, the rate determining Step, Hammond's postulate, Principle of microscopic reversibility, Kinetics Vs. thermodynamic control. 	15
 203.3 Chemical Kinetics and Chemical Thermodynamics Chemical Kinetics: Rate of reaction, definition of rate constant, measurement of reaction rates, order and molecularity, integrated rate equations for zero, first and second order reactions (for second order reactions only a=b to be considered), kinetic characteristics of first and second order reactions, pseudo first order reactions Chemical Thermodynamics Transition state theory, Transition State-Activation energy, Measurement of Activation energy, Reaction profile diagram, the rate determining Step, Hammond's postulate, Principle of microscopic reversibility, Kinetics Vs. thermodynamic control. Product analysis, Kinetic studies, Stereochemical outcome, Detection and trapping 	15
 203.3 Chemical Kinetics and Chemical Thermodynamics Chemical Kinetics: Rate of reaction, definition of rate constant, measurement of reaction rates, order and molecularity, integrated rate equations for zero, first and second order reactions (for second order reactions only a=b to be considered), kinetic characteristics of first and second order reactions, pseudo first order reactions Chemical Thermodynamics Transition state theory, Transition State-Activation energy, Measurement of Activation energy, Reaction profile diagram, the rate determining Step, Hammond's postulate, Principle of microscopic reversibility, Kinetics Vs. thermodynamic control. 	15

5					
Reference Books:	t all				
Chemical	P. S. Kalsi: Stereochemistry:New Age International Ltd				
Sciences I	• Peter Atkins & Julio de Paulo: Physical Chemistry : Oxford University				
	Press				
0'0'	Ira N. Levine: Physical Chemistry : McGraw-Hill				
	• Peter Vollhardt& Neil Schore: Organic Chemistry structure and				
<i>Y</i>	Function:5th Edition:W. H. Freeman				
	Richard O.C. Norman, James M. Coxon: Principles of Organic				
	Synthesis, 3rd Edition: CRC Press				

Course Code: RUSBAS204

Course Title: Chemical Sciences II

F.Y.B.Sc.

COURSE	DESCRIPTION
OUTCOME	
CO 1	Students should grasp the functioning and handling of basic
	instruments in bioanalytical laboratory. They should realize the need
	and importance of automation in bioanalysis.
CO 2	Students should realize that correct choice of sampling and
	minimization of error is essential for the success of scientific
	experiments.

Paper Code	Semester II	Lectures
RUSBAS204	Chemical Sciences II	45
204.1 Fundam	entals of Organic Reactions & Mechanism I	15
polarity of a cova such as melt Hyperconjugatio Bonds weaker th point/boiling po General Idea of ty of reaction ex Rearrangement, Three kinds of Electrocyclic rea	s in organic molecules: Polarization or Inductive effect Nature and alent bond, dipole moment and its effect on properties of molecules ting point/boiling point, solubility; Polarizability effect, on and Tautomerism, han a covalent bond: Hydrogen bond – nature, effect on melting int, solubility in water; Van der waals forces. ypes of reaction: Introduction and few examples of following types expected: Addition, Elimination, Substitution, Condensation, f Pericyclic reactions: Molecular orbital, Orbital symmetry, ctions (FMO-Approach) ctrophilicity, Nucleophilicity, acidity and basicity of organic	
molecules 204.2 Fundam	entals of Organic Reactions & Mechanism II	15
-	erolysis, Concepts of intermediate, carbocation, carbanion and free cry, stability and reactivity.	
	l applications of Pinacol-Pinacolone rearrangement, Schmidt c acid rearrangement.	

RUSBASP202 PRACTI	CALS
1. Chemical Kinetics & Ch	emical Thermodynamics:
A. To determine the rat graphical method.	e of acid hydrolysis of methyl acetate and determination of order by
fractional time. Sec	der of the acid hydrolysis of methyl acetate by the method of equi ond order reaction between-a)K2S2O8 and KI (With equi-molar
concentrations) 2. b K2S2O8and KI (With	
following – Preliminar	of an organic compound: Identification by micro-scale techniques y tests, Solubility, Type, Elemental detection, Group tests, Physical (Minimum 08 compounds to be given for the identification)
4. Synthesis of Fluorescein	
5. Gravimetric Analysis:	$\sim O^{*}$
A. Estimation of mixtur	
	Estimation of mixture of Na2CO3 and NaHCO3

Chemical	Dand Harvey: Modern Analytical Chemistry: Mc Grow Hill
Sciences II	Publishers
	• Hobart.H.Williard, Lyne.L.Merrit, John.A.Dean, Frank.A.Settle.Jr. :
	Instrumental Methods of Analysis: CBS Publisher.
	David Harvey: Modern Analytical Chemistry : Mc Grow Hill
	Publishers
	Peter Atkins & Julio de Paulo: Physical Chemistry: Oxford University
	Press
	Ira N. Levine: Physical Chemistry: McGraw-Hill
ann	arain's
8-0-	

Course Code: RUSBAS205

Course Title: Computational Sciences I

F.Y.B.Sc.

COURSE	DESCRIPTION
OUTCOME	20
CO 1	Students should be able to choose the correct statistical test to analyze
	biological data.

Paper Code	Semester II	Lectures
RUSBAS205	Computational Sciences I	30
Concept of Pos SRSWOR and Different typ Methods of D Schedule, ii) S Types of dat Section Data, D Dichotomous consistency Association of Colligation Y, 2 Univariate for Data Visualize	s of Data and Data Condensation opulation and Sample. Finite, Infinite Population, Notion of SRS, SRSWR es of scales: Nominal, Ordinal, Interval and Ratio. ata Collection: i) Primary data: concept of a Questionnaire and a econdary Data a: Qualitative and Quantitative Data; Time Series Data and Cross Discrete and Continuous Data Tabulation classification - for two and three attributes, Verification for of attributes: Yule's coefficient of association Q. Yule's coefficient of Relation between Q and Y (with proof). requency distribution of discrete and continuous variables. equency distribution zation: Graphs and Diagrams, Histogram, Polygon/curve, Ogives. quency Distribution of discrete and continuous variables	10
Concept of contendency. Location para Mathematica mean), Geom Empirical rel	entral tendency entral tendency of data, Requirements of good measures of central ameters: Median, Quartiles, Deciles, and Percentiles I averages Arithmetic mean (Simple, weighted mean, combined etric mean, Harmonic mean, Mode, Trimmed mean. ation between mean, median and mode: emerits of using different measures & their applicability.	10

205.3 Measures of Dispersion, Skewness & Kurtosis	10
Concept of dispersion, Requirements of good measure	
Absolute and Relative measures of dispersion: Range, Quartile Deviation, Inter	
Quartile Range, Mean absolute deviation, Standard deviation.	
Variance and Combined variance, raw moments and central moments and	
relations between them. Their properties	
Concept of Skewness and Kurtosis: Measures of Skewness: Karl Pearson's,	
Bowley's and Coefficient of skewness based on moments. Measure of Kurtosis.	
Absolute and relative measures of skewness.	, (2)
Box Plot: Outliers	0
	0.0

Reference Books:	100
1	
Computational	
	B.K.Mahajan: Methods in Biostatistics
Sciences I	 David Asquith: Statistics- from Concept to Practice. Arora & Malhan: Biostatistics- Himalayan Publishing House.
Rannar	annahitan

Course Title: Computational Sciences II

F.Y.B.Sc.

COURSE OUTCOME	DESCRIPTION	
CO 1	Students should be able to use basic functions of Microsoft office. They should effectively use web browsers and search engines. They should be able to design a webpage.	
CO 2	Students should effectively use web browsers and search engines. They should be able to design a webpage.	

	OY.	
Paper Code	Semester II	Lectures
RUSBAS206	Computational Sciences II	30
206.1 Introdu	ction To Computers	10
Basic Organizati Computer, parts Input-output de Computer archi Computer memo	uters and their generations on of Computers: Introduction to Computer, Block diagram of a of Computer & functional Units, their integration and function, vices cecture & functionalities ory & memory unit m & Interface: OS, tasks performed by OS, DOS, Windows and	
DBMS : Data mo Basics of relatio sets, Relations a tables, schema r	odels & languages dels Basics nal model (overview, entity relation model, Entity and entity nd relationship sets, E – R Diagram, Reducing E- R diagram to efinement and normal forms) s (relational algebra, creating and altering tables, handling data	10

206.3 HTML & XML	10
Introduction to HTML and XML, basic HTML tags	
Tables , hyperlinks, Image Insertion, marquee image mapping, Frame set	
HTML forms, Get and Post methods	
Basics of XML	
XML syntax and semantics	
RUSBASP203 PRACTICALS	
1. Introduction of MS-Office:	
a. Different elements of word processing (MS-WORD),	
b. Spreadsheets (MS EXCEL) and	
c. PowerPoint presentation (MS POWERPOINT)	C C
2. Browsers, various search engines and metadata, E-Mail/Web mail etc.	
3. Introduction to HTML	
4. HTML Tags, HTML Tables	
5. HTML Forms, HTML Framesets	
Webpage designing.	

J.Co.		

Course Title: Foundation course II

F.Y.B.Sc.

COURSE	DESCRIPTION
OUTCOME	2
CO 1	Students should be aware of the current trends in globalization.
CO 2	Students should realize the importance of stress management to live a
	healthy life.
CO 3	Students should be aware about basic human rights.
	6

Paper Code	Semester II	Lectures
RUSBAS207	Foundation Course-II	30
207.1 Globalization and Indian Society		
Understandin Growth of I manifested in Impact of glo migration Changes in ag increase in far Increasing Ur Changing lifes	g the concepts of liberalization, privatization and globalization nformation Technology and Communication and its impact	10
Agents of soc Significance of Stereotyping Aggression an Types of conf Maslow's the Different met Conflict-resol	ess and conflict in individuals and society talization and the role played by them in developing the individual of values, ethics and prejudices in developing the individual and prejudice as significant factors in causing conflicts in society nd violence as the public expression of conflict licts and use of coping mechanisms for managing individual stress bory of self-actualization hods of responding to conflicts in society ution and efforts towards building peace and harmony in society an Rights	10
Concept of hum The Universal Human rights in the constitut Development	nan rights: Origin and evolution of the concept Declaration of Human Rights constituents with special reference to Fundamental Rights stated	10

Foundation	Micheal Vaz, Madhu Nair, Meeta Seta; Foundation Course, Semester
course	- II; Manan Prakashan
	• K.T. Basanti:Social Problems (foundation Course),Seth Publication

Modality of Assessment for: F.Y.B.Sc. Semester II

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1.	Internal Examination	20
2.	Assignment/Group Discussion/Presentation/Class Activity	20
	TOTAL	40

B) External Examination- 60%- 60 Marks Semester End Theory Examination:

- 3. Duration These examinations shall be of **2.0 Hours** duration.
- 4. Theory question paper pattern:

Paper Pattern for Biological, Chemical, Computational Sciences:

Question	Options	Marks	Questions Based on
Q.1. Short answer question (5 Marks each)	3 out of 4	15	Unit I
Q.2. Short Answer questions (5 Marks each)	3 out of 4	15	Unit II
Q.3. Short Answer questions (5 Marks each)	3 out of 4	15	Unit III
Q.4. Objective/short answer question (5 Marks each)	3 out of 4	15	Combination of all units
0.0	TOTAL	60	

Paper Pattern for Foundation Course:

Question	Options	Marks	Questions Based on
Q.1. Short answer	1 out of 2	8	Unit I
question	Compulsory	7	Onit I
Q.2. Short Answer	1 out of 2	8	Unit II
questions	Compulsory	7	Onith
Q.3. Short Answer	1 out of 2	7	Unit III
questions	Compulsory	8	Unit III

Q.4. Objective/short answer question (5 Marks each)	3 out of 4	15	Combination of all units
	TOTAL	60	

Practical Examination Pattern:

A) Internal Examination: 40%- 40 Marks

Particulars	
Journal	10
Experimental tasks/Attendance	10
Small project/Class	20
assignment/Presentation/Activity	
/Viva	
Total	40
	0,
l Examination: 60%- 60 Marks	

B) External Examination: 60%- 60 Marks

Semester End Practical Examination:

Particulars	Paper
Required Experiments Performed with appropriate principle, approach, Observations, Result, Demonstration of skills, Conclusion and Viva.	60
Total	60

Overall Examination & Marks Distribution Pattern

Semester II

Course		201			202			203			204	
	Internal	External	Total									
Theory	40	60	100	40	60	100	40	60	100	40	60	100
Practicals	1			40	60	100		١		40	60	100

Course	205		205 206			207			Grand Total	
	Internal	External	Total	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	40	60	100	700
Practicals	-	-		40	60	100	-	_		300

.0.

Course Code: RUSBAS301

Course Title: Biological Sciences III

S.Y.B.Sc.

COURSE OUTCOME	DESCRIPTION
CO 1	Students should comprehend central dogma of molecular biology as a
	prerequisite to study techniques like cloning, PCR, RFLP, etc.
CO 2	Students should understand the significance and applications of
	developmental biology in the modern world.
CO 3	Students should understand the applications of ethanobotany and
	pharmacognosy in drug development

Paper Code	Semester III	Lectures
RUSBAS301	Biological Sciences III	45
301.1: Cent	ral Dogma of Molecular Biology	15
Replication in	ntral dogma of molecular biology, Genetic code prokaryotes, Transcription & Translation in prokaryotes anal modification, Regulation of gene expression in prokaryotes, (lac poperon)	
	lopmental Biology	15
•	of organ system, Developmental signals – polarity, differentiation, ing, regeneration (Example of Limb Bud Development)	
	tilization in humans, <i>in vitro</i> Fertilization- Gamete Collection and nique, Introduction to Stem Cell therapy and its applications	
	macognosy & Ethnobotany	15
Processing and	practice of Pharmacognosy, sources of crude drugs, Collection, d evaluation of crude drugs Deterioration and adulteration of Crude at Trends in Pharmacognosy, Good Cultivation & harvesting oduction)	
•	nportance of Ethnobotany	

Biological Sciences III	 Buns, G. W.: Science of Genetics - An introduction to heredity, Macmillan, New York. Fairbanks, Daniel J. and Anderson,W. R.:Genetics, Wadsworth Publication. William S. Kluge and Cummings, M.R.:Concepts of Genetics, Pearson Edu. Kalthoff, Klaus: Analysis of Biological Development, The University of Texas at Austin. Mc GRAW-HiLL, INC. Peter Russell - Genetics Buns, G. W.: Science of Genetics - An introduction to heredity, Macmillan, New York Berril, N. J., Mc. Graw Hill: Developmental Biology, New York. Brookbank, J.W. and Harpar: Developmental Biology, Raw Publishers, New York. Subramoniam: Molecular Developmental Biology, Narosa Publishing House, New Delhi, 2008
Rahh	atainabia Automorne

Course Title: Biological Sciences IV

S.Y.B.Sc.

COURSE	DESCRIPTION
OUTCOME	32
CO 1	Students should study various sources of plants and animals used as
	antimicrobial agents. They should understand the significance of drug
	discovery, also the industrial significance of microorganisms.
CO 2	Students should be able to classify viruses with respect to their
	properties and nature also to study their associations with humans.
CO 3	Students should study the basics of immunology. They should be able
	to describe autoimmune disorders. They should be able to correctly
	interpret the results of diagnostic tests like VIDAL, VDRL and ELISA.

Paper Code	Semester III	Lectures
RUSBAS302	Biological Sciences IV	45
302.1 Industr	rial Microbiology	15
Used <i>In vivo</i> and Antimicrobial D Important micr Pharma Industr	nicrobial agents: plants and microorganisms, Antimicrobial Agents d their commercial production. Orug Resistance and Drug Discovery robes in Food & Drug industry, Pathogenic Organisms in Food & Ty nificance of Microbes: Biopolymers, Biosurfactants.	
	y & Interaction of microbes with humans	15
Structures and Interactions Plasmodium, Ca	duction, Scope and Current trends in virology life cycles of bacteriophages, plant and animal viruses of microbes with Humans – <i>Influenza, Staphylococcus,</i> <i>andida, SARS-CoV-2</i> ses and Eukaryotic Pathogens.	
Concept of ant (MHC, APC intr healing	igen, antibody, Types of immunity, Antigen-Antibody Reactions oduction), Hypersensitivity and its types, Mechanism of wound sorders (<i>minimum two</i>) and their management	15

RUSBASP301 PRACTICALS

- a) Blood grouping
- b) Isoagglutinin titer- Widal, VDRL tests, Use of diagnostic tests- ELISA demonstration
- c) Handling of Micropipettes
- d) Working in Laminar air flow
- e) Total viable count of the provided sample.
- f) Direct microscopic counts of provided sample using Breeds count method
- g) Physical and chemical methods of disinfection
- h) Study of Normal flora of human body, common microbial contaminants in foods: *S. aureus, S. typhi, B. subtilis*
- i) Analysis of Crude drugs by Microscopy with an emphasis on identification of adulteration
- j) Preparation of antigen and vaccines

Biological	Flint - Virology
Sciences IV	Kindt, Goldsby, Osborne - Kuby Immunology
	 S. Pathak and U. Palan – Immunology and Fundamental
	Micheal J. Pelczar, Jr., E.C.S. Chan, Noel R. Krieg – Microbiology
	 Lasing.M.Prescott, Harley,Klein ,Microbiology
Ramin	arainauiante

Course Title: Chemical Sciences III

S.Y.B.Sc.

COURSE	DESCRIPTION
OUTCOME	2
CO 1	Students should apply theoretical principles of electrochemistry in
	analysis of solutions using pH meter and Conductometer.
CO 2	Students should be adept in operation of these two instruments. They
	should perform organic synthesis with minimal use of resources and
	apply greener methods of synthesis.

Paper Code	Semester III	Lectures
RUSBAS303	Chemical Sciences III	45
303.1 Elect	rochemistry	15
concentration expected). Kohlrausch's l dilution of a Solubility of sp Nernst theor applications Conversion of irreversible ce Types of elect Glass electrod Classification of transference, o use of salt bric	rodes:Metal – metal ion electrode, Redox electrodes, Gas electrode, e of cells – Chemical and concentration cells, concentration cells with concentration cells without transference, liquid junction potential,	

303.2 Newer methods of organic synthesis & Name Reactions (Mechanism and Applications)	15	
Newer methods of organic synthesis: Introduction to the use of following organic synthesis Ultrasound, Microwaves, Phase Transfer Catalyst Name Reactions (Mechanism and Applications): Baeyer-Villiger Oxidation, Beckmann rearrangement, Corey-Kim Oxidation, Cornforth rearrangement, Robinson Annulation, Houben-Hoesch Reaction, Favorskii rearrangement, Swern Oxidation, Luche Reduction, Dienone-Phenol rearrangement.		
303.3 Instrumental methods of analysis	15	
Principle, instrumentation, working and applications of: Conductometry, Potentiometry, pH metry, Turbidometry, Nephelometry, and Colorimetry Sample preparations for above methods, advantages, disadvantages		
Possible errors and Precautions in each instrumentation technique		
Reference Books:		

Chemical Sciences III	• Hobart.H.Williard, Lyne.L.Merrit, John.A.Dean, Frank.A.Settle.Jr. : Instrumental Methods of Analysis: CBS Publisher.
	• Douglas.A.Skoog, F.James Holler, Stanley R Crouch : Principles of
	analytical : 6th editionn : Thomson/Brooks/Cole
	 David Harvey : Modern Analytical Chemistry : Mc Grow Hill Publishers
	 Douglas.A.Skoog, F.James Holler, Stanley R Crouch : Principles of analytical : 6th editionn : Thomson/Brooks/Cole
	 SomenathMitra : Sample preparation Technique in Analytical Chemistry : Wiley interscience
	Allen J. bard:Electrochemical Methods
	• P.S Kalsi: Organic chemistry and their mechanism : New Age International
	International
Ranni	

Course Title: Chemical Sciences IV

S.Y.B.Sc.

COURSE	DESCRIPTION	.0
OUTCOME		60
CO 1	Students should comprehend the fundamentals of spectros separation methods which will be useful to study advanced instrumentation in these fields.	
CO 2	Students should correctly demonstrate the structures and or reactions of heterocyclic compounds.	organic
Demon Code	Somester III	Lasturas

Paper Code	Semester III	Lectures
RUSBAS304	Chemical Sciences IV	45
304.1 Basic S	Spectroscopy	15
Electromagnetic inter conversior	e spectrum (EMR), Units of wavelength and frequency and their as.	
	EMR with matter: Nature of radiation, energy of molecules- tional and rotational	
	law, Concept of absorbance, transmittance and molar viation of Beer-Lambert's equation and its limitations,	
Quantization of	energy, Bohr frequency condition	
Single beam colo	orimeter – Principle, components and working.	
Regions of elect	romagnetic spectrum and process associated with each region.	
Chromophore, Hypochromic	theory, Solvents, Nature of UV-Visible spectrum, Concept of Auxochrome, Bathochromic Shift, Hyper chromic and effect, Chromophore-Chromophore interactions and uxochrome interactions	
Sample Prepara UV-Visible spect	tion, Evaluation of errors and applications of Colorimetry and croscopy	

304.2 Heterocyclic Compounds	15
Introduction:	
Electronic structure and aromaticity of furan, pyrrole, thiophene and pyridine.	
Synthesis: Synthesis of furans, pyrroles, and thiophenes by Paal-	
Knor synthesis. Pyridines by Hantzsch synthesis and from 1,5-diketones.	
Reactivity:	
Reactivity towards electrophilic substitution reactions-of furan, pyrrole and	
thiophene on basis of stability of intermediate; and of pyridine on the basis of	0
electron distribution. Nucleophilic substitution reaction of pyridine on the basis of electron distribution.	60
Reactions of heterocycles: The following reactions of furan, pyrrole and	0.0
thiophene: Halogenation , Nitration, Sulphonation, Vilsmeir	
formylation reaction, Friedel-Crafts reaction.	
Furan: Diels-Alder reaction. Ring opening of furan.	
Pyrrole : Acidity and basicity of pyrrole -Comparison of basicity of pyrrole and	
pyrrolidine, Acid catalyzed polymerization of pyrrole. Pyridine: Basicity.	
Comparison of basicity of pyridine, pyrrole and piperidine.	
Sulphonation of pyridine, with and without catalyst. Reduction, Oxidation of	
alkyl pyridines and action of sodamide (Chichibabin reaction). N methylation of	
pyridine. Quaternization of piperdine, pyrrolidine and Hofmann elimination	
of the quaternary salts.	
304.3 Methods of Extraction and Purification in analysis	15
Partition coefficient and distribution ratio, extraction efficiency, separation	
factor, role of complexing agents in solvent extraction, chelation, ion pair	
formation, solvation, types of solvent extraction: batch, continuous.	
Purification of solid organic compounds, recrystallisation, use of miscible	
solvents, use of drying agents and their properties, sublimation.	
Purification of liquids. Experimental techniques of distillation, fractional	
distillation, distillation under reduced pressure.	
Solvent extraction, use of immiscible solvents	
Difference between extraction, separation and their applications.	

RUSBASP302 PRACTICALS

Conductometry:

- 1. Determination of Cell constant of conductivity cell
- 2. Verification of Ostwald's dilution law
- 3. Investigate the titration of mixture of HCl and Oxalic acid by NaOH.
- 4. Determination of relative strength of Chloro-acetic acid and Acetic acid by Conductivity measurement.

pH-Metry:

- 5. Identification of an acid by acid-base titration pH-metrically
- 6. pH titration of sodium carbonate against HCl to demonstrate the selection of indicators for two inflections.

Colorimetry:

- 7. Verification of Beer-Lambert's law
- 8. To determine: a) $\lambda \max b$) Molar absorptivity constant

Organic Derivative:

9. Acetylation of Salicylic acid

Chemical Sciences IV	 Dand Harvey : Modern Analytical Chemistry : Mc Grow Hill Publishers
Sciences iv	 Hobart.H.Williard, Lyne.L.Merrit, John.A.Dean, Frank.A.Settle.Jr. : Instrumental Methods of Analysis: CBS Publisher. David Harvey : Modern Analytical Chemistry : Mc Grow Hill Publishers Douglas.A.Skoog, F.James Holler, Stanley R Crouch : Principles of analytical : 6th edition : Thomson/Brooks/Cole Donald Pavia, Gary Lampman, George Kriz, James Vyvyan: Introduction to Spectroscopy: 4th Edition:Brooks/Cole John Joule and Keith Mills:Heterocyclic Chemistry
Rann	arailt

Course Title: Computational Sciences III

S.Y.B.Sc.

COURSE OUTCOME	DESCRIPTION
CO 1	Students should effectively use algorithms and graphs for analysis and representation of biological data. They should be able to solve problems based on numerical methods.

Paper Code	Paper Code Semester III		
RUSBAS305	RUSBAS305 Computational Sciences III		
305.1 Algorithm	ns	10	
constructs in	d characteristics of an algorithm, selection and interactive pseudocode. Data structures like array. cion sort, bubble sort		
3. Searching alg	orithms, linear search and binary search		
4. Algorithms or	integers, algorithm on matrices.		
305.2 Graphs		10	
1. Introduction to graphs: types of graph (simple graph, multigraph, pseudograph, directed graph, with an example of each), some special simple graphs (complete graph, cycle, wheel in graph, loop, bipartite graph, regular graph)			
	graphs and graph isomorphism, their application		
	4. Permutations and combinations with respect to applications.		
1. Finding roots a. Bisecti b. Iteratio	on method on method n Raphson method	10	
approximatio a. LU dec	tions of system of linear equations and numerical ns- omposition (Doolittle's method, Crout's method) trix by Cholesky method		

Computational Sciences III	 Introduction to Algorithms" by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein "Algorithms Unlocked" by Thomas H. Cormen "The Algorithm Design Manual" by Steven S. Skiena. A Textbook of Graph Theory 2nd Edition, Kindle Edition by R. Balakrishnan (Author), K. Ranganathan (Author, Contributor)
	college as
	atianticonomous
	Ruiahu
Rama	
8-0°	

Course Title: Computational Sciences IV

S.Y.B.Sc.

COURSE	DESCRIPTION		
OUTCOME			
CO 1	Students should analyze significance and validity of experimental		
	results with statistical tests such as correlation, regression and		
	hypothesis testing. They should comprehend the concepts of		
	probability theory as a prerequisite to study advanced biostatistics.		

Paper Code	Semester III	Lectures		
		Lectures		
RUSBAS306 Computational Sciences IV		30		
306.1 Correla	tion, Simple linear Regression Analysis	10		
	elationship using Scatter Diagram,			
	's Product moment correlation coefficient and its properties.			
	Rank correlation. (With and without ties)			
	mple linear regression. Principle of least squares. Fitting a straight			
	od of least squares (Linear in Parameters)			
-	between regression coefficients and correlation coefficient, cause ationship, Spurious correlation.			
6. Concept and	use of coefficient of determination (R^2) .			
	association with the help of Tau A, Tau B, Tau C, Gamma and			
	Lambda, Somer's d			
,				
	0			
306.2 Probabi	lity Theory	10		
1. Trial, randon	n experiment, sample point and sample space.			
	an event, mutually exclusive and exhaustive events.			
	athematical) and Empirical definitions of Probability -Discrete			
random varia				
4. Random vari	able- Discrete and Continuous			
5. Standard Di	screte Probability Distribution Functions Binomial, Poisson			
(Concept Onl	y)			
	tinuous Probability Distribution Functions: Normal, t, Chi-square			
and F distrib	ution (Concept only)			

30	6.3 Basics of Theory of Estimation and Testing of hypothesis	10
1.	Point and Interval estimate of single mean, single proportion from sample of large size.	
2.	Statistical tests: Concept of hypothesis, Null and Alternative Hypothesis, Types of Errors, Critical region, Level of significance, Power	
3.	Small sample tests-Independent sample t-test, paired t-test. Concept of p-value. (Use of Excel and SPSS)	
RU	JSBASP303 PRACTICALS	
	Introduction of MS-Office: Different elements of word processing (M Spreadsheets (MS EXCEL) and PowerPoint presentation (MS POWERPOINT) Working with various forms of graphs Google docs: Word, Sheets, Slides and Forms Google Jam board, Concept Board and Mind Map	IS-WORD),
	5	
Ref	erence Books:	

Computational	Probability and measurement by P. Billingsley
Sciences IV	 Introduction to probability theory by Das
	Testing Statistical Hypotheses: Lehmann, Erich L., Romano, Joseph
	Р.
	• Introduction to Linear Regression Analysis (Wiley Series): Douglas
	C. Montgomery, Elizabeth A. Peck, G. Geoffrey Vining

e. montgomery, Eliza

Course Title: Environmental Sciences

S.Y.B.Sc.

COURSE	DESCRIPTION		
OUTCOME	2		
CO 1	Students should inculcate greener approach in their daily life. They should prepare themselves for prompt and efficient management of		
	disasters.		

Paper Code		Semester III	Lectures
R	RUSBAS307 Environmental Sciences		30
30	7.1 Enviror	nment: An overview and Natural Resources	10
	Ecosystem a	t – Structure and components – Topology – Natural and Human. s part of Environment – Functioning and levels of organization –	
	Emerging is of resources	n society and economy. sues of development – Environment as a source and depository , products and waste.	
4.	Sustainable Environmen	use of resources – a multidisciplinary approach – importance of tal Studies.	
		nportance and classification of natural resources.	
		h and resource poor regions – emerging gaps	
7.		patterns, utilization and conservation of water, forest and	
20	energy reso		10
30	Movem	r – Natural and Man-made & Environmental issues and ents	10
1.		lisaster – Natural and man-made	
	Natural haz	ard/Disasters: Causes and Consequences – Earthquake and	
~		clone, Flood and Drought (a case study)	
3.		lisasters – Causes and Consequences – nuclear accident, oil spill industrial accident	
4.	.	nagement cycle – Pre-disaster, disaster occurrence and post-	
		le of technology	
5.		tal problems – Causes and Effects	
6.		s – Global climate changes, Threats to Biodiversity, tremendous	
		opulation and ozone depletion (a case study)	
	-	ues – Acid rain, Desertification (a case study)	
8.		onmental movements in India	10
		mental Management	10
1.		tal management – concept and need – relevance of tal education	
L	LINITOTITIEL		

- 2. Constitutional and legal provisions in India International efforts towards environmental protection - role of WTO
- 3. Environmental Statement, ISO 14000, ISO 16000, Environmental Impact Assessment
- 4. Role of technology in environmental management (GIS, GPS, Remote sensing as tools)
- 5. Carbon bank and Carbon credit

Environment Studies	 Dr. Y. K. Singh: Environmental Science Abhijit Mitra, Tanmay Ray Chaudhari: Basics of Environmental
	Science
	5
	tonon
	×O
	· 0-
- C	
K	

Modality of Assessment for: S.Y.B.Sc. Semester III

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1.	Internal Examination	20
2.	Assignment/Group Discussion/Presentation/Class Activity	20
	TOTAL	40

B) External Examination- 60%- 60 Marks Semester End Theory Examination:

- 5. Duration These examinations shall be of **2.0 Hours** duration.
- 6. Theory question paper pattern:

Paper Pattern for Biological, Chemical, Computational Sciences III, Environmental Sciences:

Question	Options	Marks	Questions Based on
Q.1. Short answer question (5 Marks each)	3 out of 4	15	Unit I
Q.2. Short Answer questions (5 Marks each)	3 out of 4	15	Unit II
Q.3. Short Answer questions (5 Marks each)	3 out of 4	15	Unit III
Q.4. Objective/short answer question (5 Marks each)	3 out of 4	15	Combination of all units
C.O.	TOTAL	60	

Paper Pattern for Computational Sciences IV:

Question	Options	Marks	Questions Based on
Q.1. Short answer	1 out of 2	8	Unit I
question	Compulsory	7	Unit I
Q.2. Short Answer	1 out of 2	8	Unit II
questions	Compulsory	7	Onth
Q.3. Short Answer	1 out of 2	7	Unit III
questions	Compulsory	8	Onit m
Q.4. Objective/short answer question (5 Marks each)	3 out of 4	15	Combination of all units
	TOTAL	60	

Practical Examination Pattern:

A) Internal Examination: 40%- 40 Marks

Particulars		
Journal	10	
Experimental tasks/Attendance	10	6
Small project/Class assignment/Presentation/Activity /Viva	20	0.0
Total	40	
	ous	
rnal Examination: 60%- 60 Marks		
ester End Practical Examination:	0,	

B) External Examination: 60%- 60 Marks

Semester End Practical Examination:

Particulars	Paper
Required Experiments Performed with appropriate principle, approach, Observations, Result, Demonstration of skills, Conclusion and Viva.	60
Total	60

Overall Examination & Marks Distribution Pattern

Semester III

Course		301		302			303			304		
	Internal	External	Total									
Theory	40	60	100	40	60	100	40	60	100	40	60	100
Practicals				40	60	100		_	_	40	60	100

Course	305			Course 305 306			307			Grand Total
	Internal	External	Total	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	40	60	100	700
Practicals		-		40	60	100			_	300

Course Code: RUSBAS401 Course Title: Biological Sciences III S.Y.B.Sc.

COURSE	DESCRIPTION
OUTCOME	
CO 1	Students should be able to describe the functioning of nerve and muscles
	and understand the importance of neurotransmitters as potential target
	for drugs.
CO 2	Students should be able to understand genetics and describe inborn
	errors of metabolism and genetic disorders with respect to mutation,
	physiology, symptoms, diagnosis and cure. They should be aware of
	gene therapy as an emerging field to treat these disorders.

Paper Code	Semester IV	Lectures
RUSBAS401	Biological Sciences III	45
401.1 Biology	of Muscles and Nerve Conduction	15
Gibbs-Donnan	re, Physiological and biochemical basis of muscle contraction Membrane Equilibrium and Physiology of nerve conduction ptic conduction, Neurotransmitters. Neuropathies	
Types of muta Mutagens and e of metabolism v of transposons	Mutation & Repair tion – Point and gross, Spontaneous and Induced, Types of effects, Cell survival strategies: repair mechanisms, Inborn errors with examples, Concept of transposons, types of transposons, role in genetic disorders with suitable examples ogenetic engineering – Basics of cloning, Transgenic bacteria and al applications	15
Syndrome, Tay- Sickle-Cell Aner Duchenne muse	genetic disorders, Phenylketonuria, Albinism, Lesch-Nyhan	15

Biological Sciences III	 Fundamentals of Cytogenetics andGenetics:Mahabal Ram Human Cytogenetics:Constitutional Analysis :Denis Rooney Mutation Kindle Edition :Robin Cook The Concise Book of Muscles, Second Edition :Chris Jarmey Nerve and Muscle (Studies in Biology) 3rd Edition:R. D. Keynes (Author), D. J. Aidley (Author)
	college
	suita Autonomous
	Autor
	arain Ruita
Rann	
F	

Course Title: Biological Sciences IV

S.Y.B.Sc.

DESCRIPTION
S A
Students should understand the theory, advantages and
disadvantages of RIA, ELISA and Immunohistochemistry. They should
be able to choose the most suitable technique as per the nature of
sample and objective of analysis. They should understand wide range
of the applications of these techniques in research and diagnostics.
Students should have a knowledge of hormones and grasp the
complex nature, co-ordination and integration of biochemical
pathways.
Students should have an idea about the tissue culturing techniques
and be able to design animal and plant tissue culture laboratories.
×O´
-

Paper Code	Semester IV Biological Sciences IV	
RUSBAS402		
402.1 Bio	chemical methods for Diagnostics	15
of: Immunohist	Analysis of Biomolecules, Principle and diagnostics applications ochemistry, ELISA and RIA, IRMA, Flow Cytometry and its cancer diagnostics	
402.2 Cel	l communication and Cell signalling	15
organization of (insulin, glucag	d classification of hormones, Hormone secreting glands, endocrine system, Physiological role of – pancreatic hormones- on), thyroxine, glucocorticoids, epinephrine tion pathways, 2 nd messengers, and bacterial chemotaxis	

402.3	Tissue Culture- Plants & Animals	15
Plant Ti	ssue culture: Concept of Plant Tissue Culture, Nutrient Requirement,	
	duction, Micropropagation, Callus Culture, Suspension Culture, Batch	
	Application of Plant Tissue Culture	
	Fissue culture: Concept of Animal Tissue culture	
	al requirements of animal tissues (including significance of serum in Role of media components in production of tissue culture products,	
-	of cell line & its classification with specific examples, Application of	
•	issue Culture	20
RUSBAS	P401 PRACTICALS	
1. Pi	otein estimation by Lowry's Method	
2. To	otal Sugar estimation by Anthrone's method	
	V survival curve of <i>E.coli</i> : photo reactivation and dark repair.	
	sit to Animal tissue culture & Plant tissue culture laboratory.	
	adio immunosorbent assay (demo).	
	nmunodiffusion assay	
	rypsinization of Liver homogenate	
8. St	udy of Glucose uptake by Yeast	
Reference	Books:	

Biological	• Plant Tissue Culture: Basic and Applied : Timir Baran Jha / Biswajit
Sciences IV	Ghosh
	 Advances in Plant Tissue Culture: Kirti K. Prasad
	Animal Cell Culture: Essential Methods :John M. Davis
	• Molecular Cell Biology :Harvey Lodish , Arnold Berk , Chris A. Kaiser,
	Monty Krieger
	 Biochemical Methods of Analysis:Saroj Dua
	Ian Freshney: Animal Tissue culture
	arain
Bar	

Course Title: Chemical Sciences III

S.Y.B.Sc.

COURSE OUTCOME	DESCRIPTION
CO 1	Students should study pharmaceutical chemistry and bio-organic chemistry with the perspective of their applications in Bioanalytical sciences.
CO 2	Students should be aware of the advances in biopolymers biomaterials and their applications .

Paper Code	Semester IV	Lectures
RUSBAS403	Chemical Sciences III	45
403.1 Introduc	ction to Pharmaceutical Chemistry and Pharmacology	15
influencing Dosa	cology, Source, Nature and Nomenclature of Drugs, Factors ge and Drug Action, Introduction to drug action: Absorption, tabolism, Excretion of Drug (Drug Disposition and cs)	
Overview of α-A their abbreviation isoelectric point, amidomalonate a Polypeptides and representation of of di- and tri- per Structures and p rotaxanes and cy	 ction to Bio-Organic Chemistry mino acids: Structure, configuration, Essential amino acids and ons, classification, Properties: pH dependency of ionic structure and Methods of preparations of α-Amino acids: Strecker synthesis, synthesis, Erlenmeyer azalactone synthesis. d Proteins: Polypeptides: Peptide bond. Nomenclature and f polypeptides. Merrifields solid phase peptide synthesis (example ptides for nomenclature and synthesis). roperties of crown ethers, cryptands, cyclophanes, calixarenes, vclodextrins. Synthesis of crown ethers, cryptands and calixarenes. 	15

Material Chemistry: Polymers And Biomaterials 403.3 15 Polymers: Introduction: General idea of structure. Namings, types of polymers, tacticity, polymerization processes with examples, radical and ionic mechanisms of polymerizations. Characteristic properties of polymers. General ideas of resins, plastics, rubber, idea of plasticizers, stabilizers, stabilizers, fillers. Structure, preparation and applications of PE (types and Ziegler – Natta process), PP, Teflon, PVC, polyacrylates, PAN, Neoprene, Terylene, Nylons, Phenol/Melamine/Ureaformaldehyde Resins, polyurethane, polycarbonate, epoxy resins (structures of the monomers and those of the polymers are expected). Biomaterial: Introduction: Definition of biomaterials, requirements & classification of biomaterials, Comparison of properties of some common biomaterials. Effects of physiological fluid on the properties of biomaterials. Biological responses (extra and intra-vascular system). Surface properties of materials, physical properties of materials, mechanical properties. Metallic implant materials - Stainless steel, Co-based alloys, Ti and Ti-based alloys. Importance of stress-corrosion cracking. Host tissue reaction with biometal, corrosion behaviour and the importance of passive films for tissue adhesion. Hard tissue replacement implant: Orthopedic implants, Dental implants. Soft tissue replacement implants: Percutaneous and skin implants, Vascular implants, Heart valve implants-Tailor made composite in medium.

Chemical	• F.A.Carey : R.J Sunderberg : Advanced organic chemistry : Plenum	
• J. W. Steed, J. L. Atwood Supramolecular Chemistry: 2 nd ed		
	Wiley & Sons 2009	
	Carsten Schmuck, HelmaWennemers: Highlights in Bioorganic	
	Chemistry:	
	 Wiley-VCHBy Buddy D. Ratner, et. al.Biomaterials Science: An 	
	CIntroduction to Materials in Medicine, Academic Press	
	• Sujata V. Bhat: Biomaterials: Narosa Publishing House, 2002.	
	• J B Park: Biomaterials – Science and Engineering: Plenum Press,	
	1984	
	Pharmaceutical Chemistry :Watson (Author)	
8-0		

Ramnarain Ruia Autonomous College, Syllabus For Bioanalytical Sciences (UG) 2021-2022

Course Code: RUSBAS404

Course Title: Chemical Sciences IV

S.Y.B.Sc.

COURSE OUTCOME	DESCRIPTION
CO 1	Students should grasp the concept of radioactivity and understand its
	applications in diagnostics and therapeutics.
CO 2	Students should understand importance of inorganic metals in
	maintenance of health.
CO 3	Students should comprehend basics of separation techniques as a
	prerequisite to study advanced and hyphenated separation
	techniques.

AUCON		
Paper Code	Semester IV	Lectures
RUSBAS404	Chemical Sciences IV	45
404 .1 Nuclear	chemistry	15
Use of radioisotop determination- da Activation analysis method in activation Isotopic dilution m radiography. Applications of rad Introduction to Nu for therapy, Tissue Beta particles: Cop 131,Iodine-125,Lu 153,Strontium-89, Alpha particle emi	- basic principles, fast neutron activation analysis, radio-chemical	

404.2 Aspects of Bio-Inorganic Chemistry	15
Overview of Metals in biological systems,	l
overview of Metals in Diological systems,	l
Significance of metals in various physiological processes: Cytochrome and Iron Sulpher proteins in Electron Transport Chain, Role of metal ions (Mg2+, Cu2+ Zn 2+, Mn 2+, etc) as co-factors of Metalloenzyme or Metal dependent enzymes, Role of calcium in biology, Metals in medicine with an emphasis of platinum-based DNA binding drugs.	
404.3 Introduction to Planar Chromatography	15
Principles of Planar Chromatography Basics of Chromatography: Stationary Phase, Mobile Phase, Rf Value, Chromatogram, Chromatograph, Solvent front, etc.	20
Sample preparation for paper chromatography and thin layer chromatography (TLC) Paper chromatography and its applications	l
TLC and its applications	l
Introduction to High Performance Thin Layer Chromatography (HPTLC)	l
Advances of HPTLC over TLC	
RUSBASP402 PRACTICALS	
Separation of Organic mixtures:	
1.Water soluble + Water insoluble (Solid + Solid)	
2.Water insoluble + Water insoluble (Solid + Solid)	
Solvent Extraction:	
Determination of Fe and Cu from their mixture	
Viscosity measurements:	
To determine the molecular weight of polyvinyl alcohol using viscometer.	
Colorimetry	
To determine indicator constant of a given indicator by Colorimetric measurements	
Turbidimetry	
Turbidimetric analysis of cough syrup	

Chemical	• P S Kalsi:Bioorganic, Bioinorganic and Supramolecular Chemistry: New
Sciences IV	Age International
221	• Peter Atkins & Julio de Paulo: Physical Chemistry : Oxford University Press
	Ira N. Levine: Physical Chemistry : McGraw-Hill
	• Marie Claire Cantone, ChristophHoeschen : Radiation Physics for
	Nuclear Medicine: Springer
	• Douglas.A.Skoog, F.James Holler, Stanley R Crouch : Principles of analytical : 6th edition : Thomson/Brooks/Cole

Course Title: Computational Sciences III

S.Y.B.Sc.

COURSE	DESCRIPTION	
OUTCOME	2	
CO 1	Students should apply statistical tests like ANOVA to analyze biological data. They should understand the basic concepts of	
	experimental design with relevant examples in Bioanalytical sciences	

Paper Code		Semester IV	Lectures
RUSBAS405		Computational Sciences III	30
405.1	Analysis	of Variance	10
2.	class Two way	ion, One way classification with equal & unequal observations per classification with one observation per cell. y classification	
		Of Experiments	10
		of Experiments, Experimental unit, Treatment, Yield, Block, , Experimental Error, Precision.	
3. 4.	Mathema F-test, An Estimatio for signifi CRD.	Randomized Design (CRD) & Randomized Block Design (RBD): tical Model, Assumptions, Expectation of various sums of squares, alysis of variance table. (Concept only-No derivations) on of linear contrasts, Standard Error and Confidence limits Testing cance of elementary linear contrasts. Efficiency of RBD relative to lot technique for one missing observation in case of CRD, RBD.	
		uare Design (LSD)	10
2.	F-test, An Least squ Estimatio	tical Model, Assumptions, Expectation of various sums of squares, alysis of variance table. are estimators of the parameters, Variance of the estimators, on of treatment contrasts, Standard error and Confidence limits for ry treatment contrasts.	
	•	of the design relative to RBD, CRD. lot technique for one missing observation in case of LSD.	

Computational Sciences III	 Designing experiments and analyzing data: Maxwell & Delaney Statistical principle in experiment design: Winer and Kirk Latin Square Design: David J. SavilleGraham R. Wood Fundamentals of Applied Statistics: S.C. Gupta & V.K. Kapoor
	. C.
	5
	rain Ruia Autonomous college
	R.M.
4	CO1.
2	
Rath	
Fau	
Rau	
Ranna	

Course Title: Computational Sciences IV

S.Y.B.Sc.

COURSE	DESCRIPTION
OUTCOME	
CO 1	Students should effectively use bioinformatics databases and tools to study DNA and protein sequences, protein structure and metabolic pathways

Paper Code	Semester IV	Lectures
RUSBAS406	Computational Sciences IV	30
406.1 Introdu	ction to Bioinformatics	10
1. Introduc	tion to Bioinformatics & Databases	
	on of Bioinformatics	
3. INSDC		
	Dinformatics resources: NCBI, EBI, ExPASy	
	cid: GENBANK, EMBL, DDBJ	
	tructure: domains, motifs (Pfam/Prosite)	
	equence databases: Uniports, PIR, SWISSPROT, TrEMBL e database: PUBMED	
	database: GSS, Genome	
	ed database: OMIM	
	tructure databases: PDB	
	c Pathway database: KEGG	
406.2 Basics t	o Sequencing	10
1. Molecula	r biology basics	
2. Genomic		
3. Proteom	cs	
4. DNA sequ	iencing technology: Whole-genome shotgun sequencing strategies	
	equencing methods	
	e File formats	
	e Sequence Alignment	10
	ncepts of sequences similarity, Identity and homology	
	n of homologs, orthologs, paralogs	
•	of sequence alignments	
4. Pairwise	sequence alignment methods	
5. DOT Mat	rix analysis	
-	natrices: Basic concepts of scoring matrix, PAM and BLOSUM series ciples based on which these matrices are derived	

RUSBASP403 PRACTICALS

- 1. INSDC- NCBI, EMBL, DDBJ
- 2. Sequence databases- EMBL-EBI, GenBank, UniProt
- 3. Structure databases- PDB
- 4. Domain database: Prosite, PRINT, Pfam.
- 5. Specialized database: KEGG, PUBMED, OMIM, Use of Rasmol

Computational Sciences IV	 Computational Biology and Bioinformatics :Ka-Chun Wong Chapter 1, Advanced Data Mining Technologies in Bioinformatics W3 Schools: HTML and XML Complete Reference to HTML and XML
	nous
	Autononno
	jia Au
	alth
Ramin	
4	

Course Title: Technical Communication Skills

S.Y.B.Sc.

COURSE	DESCRIPTION
OUTCOME	2
CO 1	Students should know the expected format and standards of professional writing.
CO 2	Students should be adept and confident in writing skills like letters, resume, abstract, book review etc.

Paper Code	Semester IV	Lectures
RUSBAS407	Technical Communication Skills	30
407.1 Bas	ics of effective communication	10
a) C b) P c) M 2. Com a) V b) N c) B 3. Case		
	ning skills chanics of writing	10
a) S b) P c) A d) P 2. Lette a) A b) B c) B d) L e) E	oplication Letter ank Letters usiness Letters etters to the Editor Communication	
	me writing view skills	
5. Repo		

	b) Field Work Report	
	c) Industrial Visit Report	
6.	Group discussion	
407.3	Technical writing	10
1	Assignment Writing	
	Written Scientific Communication	
	Book review	
4.	Minutes of the meeting	
5.	PowerPoint presentation skills	
	•	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Technical Communication	The Essentials of Technical Communication : Elizabeth Tebeaux, Sam Dragga
Skills	 Tebeaux , Sam Dragga A Field Guide for Science Writers: Deborah Blum
5KIII5	
	Nitonome
	Rui
2	raineur
	RUL
	Ruin
pann	rainput
Ramin	rainal
Ramin	Ruh
Ranna	hain

Modality of Assessment for: S.Y.B.Sc. Semester IV

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1.	Internal Examination	20
2.	Assignment/Group Discussion/Presentation/Class Activity	20
	TOTAL	40

B) External Examination- 60%- 60 Marks Semester End Theory Examination:

- 7. Duration These examinations shall be of **2.0 Hours** duration.
- 8. Theory question paper pattern:

Paper Pattern for Biological, Chemical, Computational Sciences IV:

Question	Options	Marks	Questions Based on
Q.1. Short answer question (5 Marks each)	3 out of 4	15	Unit I
Q.2. Short Answer questions (5 Marks each)	3 out of 4	15	Unit II
Q.3. Short Answer questions (5 Marks each)	3 out of 4	15	Unit III
Q.4. Objective/short answer question (5 Marks each)	3 out of 4	15	Combination of all units
~ 3×	TOTAL	60	

Paper Pattern for Computational Sciences III, Technical Communication Skills:

Question	Options	Marks	Questions Based on
Q.1. Short answer	1 out of 2	8	Unit I
question	Compulsory	7	Unit I
Q.2. Short Answer	1 out of 2	8	Unit II
questions	Compulsory	7	Unit II
Q.3. Short Answer	1 out of 2	7	Unit III
questions	Compulsory	8	Offic III
Q.4. Objective/short answer question (5 Marks each)	3 out of 4	15	Combination of all units
	TOTAL	60	

Practical Examination Pattern:

A) Internal Examination: 40%- 40 Marks

Particulars		
Journal	10	
Experimental tasks/Attendance	10	6
Small project/Class assignment/Presentation/Activity /Viva	20	0.0
Total	40	
	OUS	_
rnal Examination: 60%- 60 Marks		
ester End Practical Examination:	0*	

B) External Examination: 60%- 60 Marks

Semester End Practical Examination:

Particulars	Paper
Required Experiments Performed with appropriate principle, approach, Observations, Result, Demonstration of skills, Conclusion and Viva.	60
Total	60

Overall Examination & Marks Distribution Pattern

Semester IV

Course		401		402			403			404		
	Internal	External	Total									
Theory	40	60	100	40	60	100	40	60	100	40	60	100
Practicals				40	60	100			-	40	60	100

Course	urse 405 406				Grand Total					
	Internal	External	Total	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	40	60	100	700
Practicals	—	_	-	40	60	100	—	_	—	300

Course Title: Entrepreneurship Skills

T.Y.B.Sc.

COURSE	DESCRIPTION
OUTCOME	
CO 1	Students will be motivated to start their own enterprise.
CO 2	Students should be aware of the required skill set for an entrepreneur and also realize the challenges in this area.

г <u> </u>			
Paper Code		Semester V	Lectures
RUSBAS501		ENTREPRENEURSHIP SKILLS	40
501.1	The Ent	repreneur	10
2. En 3. De the sk ro	trepreneu eveloping E e process c ills, creativ le.	rial motivation – dynamics of motivation. rial competency – Concepts. Intrepreneurial competencies - requirements and understanding of entrepreneurship development, self awareness, interpersonal ity, assertiveness, achievement, factors affecting entrepreneur's	
1. Co 2. Ro 3. Ty 4. Go	oncept, nee ole of enter opes of enter overnment	ual Frame Work d and process in entrepreneurship development. prise in national and global economy erprise – Merits and Demerits policies and schemes for enterprise development upport in enterprise development and management	10
 2. Ut 3. In 4. ST 5. So 	emand anal ility analys troduction 'P (segmen urces of Gr	s Economics ysis, concept & types of demand ,law of demand is, concept & types of utility ,law of utility to Cost & Revenue , its types tation / targeting / positioning) rowth–Concept and Importance of Knowledge Economy ns and Agreements with Reference to TRIPS,TRIMS and GATS.	10
501.4 1. 2. 3. 4. 5. 6.	Knowled Introduct History a Pillars of Scope & S	lge Management ion nd Evolution Knowledge Management Significance Technology & Knowledge Management. access Factors of KM lies	10

RUSBASP501 PRACTICALS

Case Study/Assignment/Project Report/Industrial Visit

Entrepreneurship Skills	 Eric Ries: The Lean Startup Kimiz Dalkir: Knowledge Management in theory and Practice Jugaad Innovation: Radjou, Prabhu, Ahuja
	S
	Altonomous
	nor.
	A DEC
	Enr
alat	
Ranno	
Y	

Course Title: Biological Sciences V

T.Y.B.Sc.

COURSE	DESCRIPTION
OUTCOME	
CO 1	Students will be able to design basic cloning experiments to obtain genetically modified organisms. They should be sensitized regarding ethical guidelines of cloning.
CO 2	Students should realize the importance of phytochemicals as possible drug candidates and learn the techniques to extract phytochemicals from plants.

Paper Code	Semester V	Lectures
RUSBAS502	Biological Sciences V	45
502.1 : Recomb	inant DNA Technology	15
Restriction Enzy Plants and Anima	ession vectors (Plasmids, Phages, Cosmids, YACs, BACs, etc.), mes, process of generating recombinant DNA, Transgenic Bacteria, als: Commercial applications with suitable examples (Any Two), ansposons as genetic tools, Cloning- current Status, Regulations,	
metabolites, Fun Terpenoids, Alka	emistry ondary metabolites from plants, Classification of Plant Secondary ctions of Plant Secondary Metabolites, Chemistry of Phenolics, loids, Phytochemicals as Drugs, Key factors affecting synthesis of polites, Commercial applications	15
502.3: Extracti Extraction of ph modern methods Steam Distillation	on Technologies for Phytochemicals hytoconstituents, Choice of solvent for extraction, classical and s of extraction, Percolation & Maceration, Soxhlet extraction, n & Rotary vacuum evaporator, Liquid- Liquid & Solid Phase sonication, Microwave Assisted Extraction, Supercritical Fluid	15

RUSBASP502 PRACTICALS
1. Extraction of phytoconstituents by maceration, percolation, steam distillation and using soxhlet extractor
2. Qualitative tests for Phytoconstituents
3. Standardization of a solvent for extraction of phytoconstituents
4. Estimation of alkaloids by gravimetry
5. Quantitation of tannins by colorimetry
6. Study of antimicrobial activity of phytoconstituents
7. Extraction of Genomic DNA from suitable plant or microbial material
8. Microscopic evaluation of plants
9. Replica plate technique
10.Problems on Restriction enzyme digestion
\mathbf{C}

Reference Books:

Reference Books:	5
Biological Sciences V	 Molecular Biotechnology:Glick Biotechnology and Genetic Engineering:Kathy Wilson Gene Cloning :T.A.Brown Text book of Pharmacognosy:G.E. Trease,W.C. Evans Herbal Drug Technology:Agrawal,Paridhavi
	• Herbar Drug Technology.Agrawal,Fariunavi
	outar
	arainpuirat
Pall	

Course Title: Chemical Sciences V

T.Y.B.Sc.

OURSE OUTCOM	ES:
COURSE	DESCRIPTION
OUTCOME	
CO 1	Students will get familiar with the basic concepts of atomic and
	molecular spectroscopy and their applications in bioanalysis. They
	should be able to choose the correct method for analysis based on
	chemical property of analyte and objective of analysis.
CO 2	Students will also be introduced to concepts of Raman Spectroscopy and
	applications of the same.

Paper Code	Semester V	Lectures
RUSBAS503	Chemical Sciences V	45
503.1 Atom	nic Spectroscopy	15
a. Prir b. App 2. Atomic Emi a. Prir Pho Opt 3. Quantitativ calibration	orption Spectroscopy neiples & Instrumentation blications ssion Spectroscopy neiples & Instrumentation (Atomic Emission Spectrophotometer, Flame tometer & Inductively Coupled Plasma- Atomic Emission Spectroscopy, ical Emission Spectroscopy), Applications we applications of atomic absorption and flame photometry, a curve method, standard addition and internal standard method. sular Spectroscopy	15
Theory, instru polarization o Rotational Spe moment of ine determination Vibrational s Vibrational m	An encrease and Phosphorescence Spectroscopy: Immentation and applications, Dipole moment: Dipole moment, If a bond, bond moment, dipole moment and molecular structure. Exertim: Rotational spectrum of a diatomic molecule, rigid rotor, ertia, energy levels, selection rule, nature of spectrum, a of inter nuclear distance and isotopic shift. pectrum: (IR): otion, degrees of freedom, modes of vibration, Vibrational diatomic molecule, simple harmonic oscillator, energy levels,	

zero point energy, conditions for obtaining Vibrational spectrum, selection rule, nature of spectrum.	
Vibrational-Rotational spectrum of diatomic molecule	
Vibrating rotor, energy levels, selection rule, nature of spectrum, R and P branches, harmonic oscillator: energy levels, selection rule, fundamental band, overtones. Application of vibration rotation spectrum in determining Force constant.	0
Introduction to infrared spectra of simple molecules like H_2O and CO_2	6
503.3 Raman Spectroscopy	15
Scattering of electromagnetic radiation, Rayleigh scattering, Raman scattering, nature of Raman spectrum, Stoke's lines, Anti- Stoke's lines, Raman shift, quantum theory of Raman spectrum, comparative study of IR and Raman spectra, rule of mutual exclusion. (Example of CO ₂ molecule)	7 4
Reference Books:	

Principles of instrumental analysis:Douglas a. Skoog
 Introduction to Spectroscopy:Donald L. Pavia
Organic Spectrocsopy:William Kemp
 Introduction to Molecular Spectroscopy:Gordon M. Barrow
Molecular Luminescence Spectroscopy Methods and Applications
John Wiley and sons
Concept Instrumentation and techniques in Atomic Absorption
Spectroscopy: Perkin Elmer
 Principles of instrumental analysis:Douglas a. Skoog
arain

Course Title: Chemical Sciences VI

T.Y.B.Sc.

COURSE	DESCRIPTION
OUTCOME	
CO 1	Students will be able to interpret simple IR and NMR spectra. They
	should be introduced to basic concepts of hyphenated techniques
	which will be useful in studying advanced instrumentation.
CO 2	Students should realize the importance of safe handling of biomatrices.
	They should be familiar with routine diagnostic tests and advanced
	instrumentation in pathological testing.

Paper Code	Semester V	Lectures
RUSBAS504	Chemical Sciences VI	45
504.1 Infra	red Spectroscopy	15
Diatomic Mole	ecules, Polyatomic Molecules, Characteristic Vibration Frequencies,	
Factors Affec	ting Group Frequencies. Qualitative Analysis –Identification of	
	atures, Quantitative Analysis, Sampling Procedures, Near Infrared	
<u>,</u>	Applications of Infrared Spectrometry.	
504.2 Nucle	ar Magnetic Spectroscopy	15
spectrum of m PMR Spectros (∂ unit), Stanc Inductive effe benzene ring) application of determination		
504.3 Bioan	alysis	15
Introduction t	o Bioanalysis, Different sample matrices and special precautions to	
be taken while handling clinical samples		
Biochemical analysis of clinical samples: Glucose, calcium,		
-	ver test, electrolytes, proteins, complete blood count.	
Advanced instrumentation in Bioanalysis: Flowcytometer, blood gas analyzer,		
automatic hae	matology analyzer, blood glucose analyzer, alcohol breath analyzer	

RUSBASP503	PRACTICALS
1. Gravimetric	Analysis of Estimation of Nickel as Ni-DMG
	activity of any one sample
-	tometric determination
Flame photom methods	etric determination of Li/Na/K by Calibration Curve and Standard addition
4. Spectroscop	oic Techniques: -
1. Atomic a	absorption spectroscopy (AAS)- Sample preparation only
	(IR) analysis (Glucose and Glycine)
3. Nuclear	Magnetic Resonance (Demo)
5. Handling of	plasma (Ask SP)
	S
Reference Books	
Chemical	Principles of instrumental analysis:Douglas a. Skoog

Chemical	Principles of instrumental analysis:Douglas a. Skoog
Sciences V	Introduction to Spectroscopy:Donald L. Pavia
	Organic Spectrocsopy:William Kemp
	 Introduction to hyphenated techniques and applications in
	pharmacy:Patel
	Principle and practice of Bioanalysis: Richard F. Venn
Rann	arainau

78

Course Code: RUSBAS505

Course Title: Computational Sciences V

Academic year 2020-21

T.Y.B.Sc.

COURSE OUTCOME	DESCRIPTION
CO 1	Students will comprehend the logic behind dynamic programming algorithms.
CO 2	Students should effectively use bioinformatics algorithms like BLAST and FASTA for sequence alignment and phylogenetic studies.

Paper Code	Semester V	Lectures	
RUSBAS505	COMPUTATIONALSCIENCES V	30	
505.1 Dyna	mic Programming Algorithm	10	
1. Global and	local alignment		
2. Needleman	& Wunch, Smith & Waterman algorithms for Pairwise alignment		
3. Use of pairv	vise alignments for analysis of Nucleic acid and Protein Sequences		
	etation of results.		
	f BLAST, its variants & working, BLAST algorithm		
	and PHI BLAST: Working and interpretation of result		
505.2 Mult	iple sequence alignment	10	
·	multiple sequence alignment (MSA)		
U	n MSA and its application		
-	quence alignment methods		
4. PSSM			
	Clustal Omega- Working		
505.3 Mole	cular Phylogenetics	10	
1. Phylogenet	ic analysis		
	pts in taxonomy and phylogeny.		
	nd description of Phylogenetic trees and various methods		
0	nethod –UPGMA & NJ		
	ethod – Maximum Parsimony		
6. Phylogenet	ic Analysis software Phylip/PAUP		

RUSBASP504 PRACTICALS	
1. Working with BLAST	
2. Basic BLAST	
a. Proteins	
b. Nucleotides	
3. Advanced BLAST	
a. PHI BLAST	
b. PSI BLAST	
4. Working with FASTA	
a. Proteins	
b. Nucleotides	
5. Working of Clustal Omega	
6. Phylogenetic Tree construction & Visualization	$\land O^{\vee}$
7. Basics of PHYLIP	
8. PAUP	
Reference Books:	12

Computational	 Algorithms and Data structure:Niklaus Wirth
Sciences V	 The Art of Computer Programming:Donald E.Knuth
	Multiple Squence Aligment Methods:Russelland Springer
	 Molecular Evolution and Phylogenetics:MasatoshiNeiand
	Sudhir Kumar
Raman	inahit

Modality of Assessment for: T.Y.B.Sc. Semester V

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1.	Internal Examination	20
2.	Assignment/Group Discussion/Presentation/Class Activity	20
	TOTAL	40
-	nal Examination- 60%- 60 Marks ester End Theory Examination:	0,,
	uration - These examinations shall be of 2.0 Hours duration.	>

B) External Examination- 60%- 60 Marks **Semester End Theory Examination:**

9. Duration - These examinations shall be of **2.0 Hours** duration.

10. Theory question paper pattern:

Paper Pattern for Biological, Chemical and Computational Sciences:

Question	Options	Marks	Questions Based on
Q.1. Short answer question (5 Marks each)	3 out of 4	15	Unit I
Q.2. Short Answer questions (5 Marks each)	3 out of 4	15	Unit II
Q.3. Short Answer questions (5 Marks each)	3 out of 4	15	Unit III
Q.4. Objective/short answer question (5 Marks each)	3 out of 4	15	Combination of all units
	TOTAL	60	

Paper Pattern for Entrepreneurship skills:

Question	Options	Marks	Questions Based on
Q.1. Short answer question (5 Marks each)	3 out of 4	15	Unit I
Q.2. Short Answer questions (5 Marks each)	3 out of 4	15	Unit II
Q.3. Short Answer questions (5 Marks each)	3 out of 4	15	Unit III
Q.4. Short Answer questions (5 Marks each)	3 out of 4	15	Unit IV
	TOTAL	60	

Practical Examination Pattern:

A) Internal Examination: 40%- 40 Marks

Denti malena		
Particulars		
Journal	10	
Experimental tasks/Attendance	10	6
Small project/Class	20	2,7
assignment/Presentation/Activity		
/Viva		
Total	40	
ernal Examination: 60%- 60 Marks	OUS	
nester End Practical Examination:	on	

B) External Examination: 60%- 60 Marks

Semester End Practical Examination:

Particulars	Paper
Required Experiments Performed with appropriate principle, approach, Observations, Result, Demonstration of skills, Conclusion and Viva.	60
Total	60

Overall Examination & Marks Distribution Pattern

Semester V

Course		501		501 502		503			504			
	Internal	External	Total									
Theory	40	60	100	40	60	100	40	60	100	40	60	100
Practicals	40	60	100	40	60	100	-	-	-	40	60	100

Course		Grand Total		
	Internal			
Theory	40	60	100	500
Practicals	40	60	100	400

Course Title: Entrepreneurship Skills

T.Y.B.Sc.

COURSE	DESCRIPTION
OUTCOME	
CO 1	Students will be keenly interested in developing innovative ideas which
	may be commercially viable.
CO 2	Students should start building knowledgebase and skill set which will
	be useful to start a new enterprise in future.

P	aper Code	Semester VI	Lectures
R	USBAS601	ENTREPRENEURSHIP SKILLS	40
60	1.1 Launcl	ning and Organizing An Enterprise	10
	problems.	nt scanning – Information, sources, schemes of assistance, selection, market assessment, enterprise feasibility study, SWOT	
2.	Analysis.	selection, market assessment, enterprise reasibility study, Swor	
	manpower.	obilisation - finance, technology, raw material, site and	
		marketing management and quality control. nonitoring and evaluation.	
		h Strategies, Networking & Innovation	10
2. 3. 4. 5. 6.	Profitability Need for div Future Grow strategies Concept and Methods, Jo	vth – Techniques of expansion and diversification, vision l dynamics int venture, co-ordination and feasibility study	10
60	1.3 Princip	oles of Corporate Management	10
	Principles		
2. 3.	Quality Circ	f management les	
	MB0		
	U	t by Wandering	
	1.4 Innova		10
	Introduction Principle 1	n Seek Opportunity in adversity	

- 3. Principle 2 Do more with less
- 4. Principle 3 Think & act flexibly
- 5. Principle 4 Keep it simple
- 6. Principle 5 Include the margin
- 7. Principle 6 Follow your Heart

RUSBASP601 PRACTICALS

Case Study/Assignment/Project Report/Industrial Visit

Entrepreneurship Skills	• Jugaad Innovation: Radjou,Prabhu,Ahuja
	• Jugaad Innovation: Radjou, Prabhu, Ahuja
	5
	· O.
C.O.	
n'a.	
- Chr.	
0.31	
Y	

Course Code: RUSBAS602

Course Title: Biological Sciences V

T.Y.B.Sc.

COURSE	DESCRIPTION		
OUTCOME	100		
CO 1	Students will learn Phytochemistry with an emphasis on its		
	applications in pharmaceuticals and bioanalysis. They should be able to		
	perform and interpret qualitative tests for phytochemicals.		
CO 2	Students should be able to interpret results of molecular biology		
	experiments like PCR and RFLP.		
CO 3	Students should appreciate and study biopharmaceuticals as an		
	upcoming branch in pharmaceuticals.		
	ano,		
Danar Cada	Somostor VI Locturo		

Paper Code	Semester VI	Lectures
RUSBAS602	Biological Sciences V	45
602.1: Phyto	chemical Analysis	15
Classical metho	ods of analysis (Gravimetric & Titrimetric),	
Chromatograph	nic & Spectroscopic analysis of phytoconstituents	
Chromatograph	nic fingerprints, Phytochemical variations in plants	
Analysis of her	bal formulation, Effect of drying on phytoconstituents	
602.2: Techn	iques in Recombinant DNA Technology	15
RFLP, AFLP, PC	R, RAPD, Nucleic acid probes, Southern Blotting, Northern	
<u> </u>	Vaccines, Biosensors and Biochips	
602.3: Introd	uction to Biopharmaceuticals &Biosimilars	15
	Biopharmaceuticals, Sources of Biopharmaceuticals (E. Coli,	
	lditional systems), Upstream & Downstream processing, Product	
	peutic Hormones, Recombinant Blood Products & Therapeutic	
Enzymes, Prod	uction of antibodies, Vaccines & adjuvants	

RUSBASP602	PRACTICALS
	1. Demonstration of SDS-PAGE
	2. Demonstration of PCR, RFLP
	3. Preparation of antigens for vaccine production (TAB vaccine)
	4. Sterility testing of biopharmaceuticals
	5. Preservation of microbial cultures
	6. Analysis of Biosimilars by Bradford's method & UV-Visible Spectrophotometer.
	7. Study of secondary metabolites produced by plants and their qualitative detection
	8. Study of Chromatographic fingerprint for raw material by: i) HPLTC ii) HPLC iii) GC

Biological Sciences V	The Medicinal Plant Industry: Wojesekera
Biological Sciences (
	Pharmaceutical Chemistry: H.J.Roth,A.Kleemann
	 Pharmacognosy: Tyler, Brody, Robbers
	Molecular Biotechnology: Mukesh Pasupuleti
	Biosimilars: Regulatory,Clinical and Biopharmaceutical
	development:Springer
Ramara	Ruianu
031	
Y	

20

Course Code: RUSBAS603

Course Title: Chemical Sciences V

T.Y.B.Sc.

COURSE	DESCRIPTION			
OUTCOME				
CO 1	Students will be introduced to theory and instrumentation of HPLC			
	and GC. They should be able to analyze and interpret simple			
	chromatograms. LC-MS and GC-MS as hyphenated techniques will be			
	introduced.			
CO 2	Students should understand advantages and limitations of biochemica			
	techniques like SDS-PAGE, native PAGE, 2D-gel electrophoresis etc. and			
	choose suitable technique as per the biochemical properties of analyte			
	and objective of analysis. They should familiarize with the concept of			
	microarrays and biochips as advanced methods of diagnostics.			

Paper Code	Semester VI	Lectures
Faper Coue	Semester VI	Lectures
RUSBAS603	Chemical Sciences V	45
603.1 Bioch	nemical Methods of Analysis	15
Electrophores ELISA, Microa	sis: PAGE, SDS-PAGE, Western Blotting, 2D gel electrophoresis, AGE, rray	
603.2 Intro	duction to Liquid chromatography	15
HPLC Instrum programming	atography and its development to HPLC and its applications nentation, Pumps, solvent delivery system, isocratic and gradient modes, Sample introduction system, Columns, Detectors. Reversed rmal phase chromatography	
Introduction to	o LC-MS and its applications	
603.3 Intro	duction to Gas chromatography	15
Gas Chromat applications	ography, Gas Solid and Gas liquid Chromatography and its	
	ography Instrumentation, Carrier gas supply, Injectors, Columns, capillary columns, Column oven and temperature programming, ctors.	

Introduction to GC-MS and its applications

Sciences V	 Principles and Practice of Chromatography:B.Ravindranath High performance liquid chromatography in biotechnology;Willia Hancook
	 Principle and practice of Bioanalysis:Richard F. Venn
	Principles and Techniques of Biochemistry and Molecular Biology
	Wilson and WalkerBiochemical methods ;S.Sadasivam,A. Manickam
	Cor
	Autonomous
	offi
	int
	araint
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	araint
ani	arainte
Rann	araint
Rann	araint
Rann	arath



# **Course Title: Chemical Sciences VI**

# T.Y.B.Sc.

COURSE	DESCRIPTION		
OUTCOME	2		
CO 1	Students will be introduced to basic concepts of drug development and		
	action and understand the importance of a bioanalyst in pharmaceutical		
	industry.		
CO 2	Students should realize the problems involved in analyzing trace		
	elements and complex matrices and learn to choose the suitable		
	bioanalytical method for their analysis.		
CO 3	Students should apply techniques learned in bioanalysis for		
	characterization of nutritional value of a food sample.		

Paper Code	Semester VI	Lectures
RUSBAS604	Chemical Sciences VI	45
<b>604.1</b> Drug	development and Drug Action	15
Half-life efficie Brief idea of Potency, Bioar Drugs, Adulte Routes of drug Formulations) Introduction to Discovery of a observation Drug develops agents, CNS modification of Different type Structure and Paracetamol,	he following medicinal terms: Pharmacon, Pharmacophore, Prodrug, ency, LD50, ED50, Therapeutic Index. the following terms: Receptors, Drug-receptor interaction, Drug vailability, Drug toxicity, Drug addiction, Spurious Drugs, Misbranded rated Drugs, Pharmacopoeia. g administration with advantages and disadvantages Different dosage forms (emphasis on sustained release o Drug Discovery, Design and Development, a Lead compound: Screening, drug metabolism studies and clinical ment from Natural Sources: Anti-infective agents, Anti-cancer agents, Development of drug: Pharmacophore identification, of structure or functional group. s of chemical transformation of drugs with specific examples. therapeutic use of Diclofenac sodium (DFS), Aceclofenac, Phenytoin, Aspirin, Atenolol, Laevodopa, Ciprofloxacin, e, Dapsone, Ethambutol	

Ramarain



<b>604.2</b> Micro analysis and Surface analysis	15
Microanalysis :	
Problems associated with trace analysis, Special extraction procedures for separating analyte/s from the complex matrix, Extraction of organic/inorganic analyte from organic/inorganic matrix. Special techniques and care to be taken during micro analysis <b>Surface analysis:</b>	
Surface chemistry, Phenomenon of adsorption, Adsorption isotherms Surface area by BET method, Pore size distribution, Particle size analysis Catalysis, Heterogeneous and homogenous catalysis	200
<b>604.3</b> General Metabolism and Nutrition	15
Overview of mineral metabolism and abnormalities of mineral metabolism with respect to calcium, iron, iodine, fluoride, manganese, selenium	
Energy metabolism and nutrition: Concepts of calorific value, Respiratory quotient, BMR, RDA, Nutritional indices, proximate principles of diet, protein energy malnutrition, obesity, BMI, diseases related to obesity, glycemic index.	
Free radicals and anti-oxidants: reactive oxygen species- generation and damage, free radical scavenger systems, inflammation, respiratory, skin and age related diseases, atherosclerosis, lipid per oxidation, preventive and chain breaking anti-	
oxidants	

90



RUSB	ASP603 PRACTICALS
Separ	ration of Organic mixtures:-
	Volatile liquid + Non-volatile liquid ( Liquid + Liquid ) by fractional distillation method. Volatile liquid + Water insoluble solid (Liquid + Solid) by distillation method.
Separ	ration Techniques: -
1.	Paper chromatography for Separation of Plant Pigments (Spinach)/ Separation o Amino acids
2.	Thin Layer Chromatography of Alkaloids
	Column Chromatography of Separation of mixture of dyes/Separation of Plant Pigment (Spinach)
4.	Ion Exchange Chromatography of Estimation of sodium using cation exchanger/Estimation of Mg using anion exchange resin column
5.	High Performance Thin Layer Chromatography – Menthol and Paracetamol
6.	<b>High Performance Liquid Chromatography</b> – Separation of modern drug (Diclofena sodium) from their combination formulation.
7.	Gas Chromatography - Separation of solvent mixtures (Toluene and n-Hexane)

Chemical	Pharmaceutical Analysis: David Lee			
Sciences VI	• Excipients and Delivery Systems of Pharmaceutical formulations:			
	Karsa, Stephenson			
	<ul> <li>Microanalysis of solids: Yacobi, Holt, Kazmerski</li> </ul>			
	• Surface Analysis Methods in Material Science: Brett Sexton, R. C.			
	Smart			
	Introduction to nutrition and Metabolism: David A. Bender			
Ram	acar			
Y				



# **Course Code: RUSBAS605**

# **Course Title: Computational Sciences V**

# T.Y.B.Sc.

COURSE OUTCOME	DESCRIPTION
CO 1	Students will comprehend the programming logic for protein structure prediction, Cheminformatics and drug design.
CO 2	Students should effectively use bioinformatics tools like Modeller, Marvin Sketch and iGem Dock for basic structural characterization.

Paper Code	Semester VI	Lectures
RUSBAS605	Computational Sciences V	30
605.1 Protein	a structure prediction	10
<ol> <li>Computation</li> <li>Homology r</li> <li>Protein three</li> <li>Fold recogning</li> <li>Tools used r</li> <li>605.2 Chemina</li> <li>Chemical structure</li> <li>Cheminform</li> <li>Cheminform</li> <li>Application</li> </ol>	eading ition for prediction nformatics natics Introduction ructure storage formats natics tools s	10
<ol> <li>Introductio</li> <li>Steps in dru</li> <li>Computation</li> </ol>	g discovery & development nal Drug designing ased drug designing ening	10



RUSBASP604 PRACTICALS	
<ol> <li>Homology modelling study using Modeller         <ul> <li>Download and Installation</li> </ul> </li> </ol>	
b. Basic Modelling	
c. Advanced Modelling	
<ol> <li>Automated modelling using Swiss Model</li> <li>Validation of predicted structures         <ul> <li>a. ProSA</li> </ul> </li> </ol>	2
b. Verify 3D	
c. SAVES	
4. Chemical structure designing- Marvin Sketch/ Marvin View 5.Virtual Screening- iGemDock	Cor
	G

Computational Sciences V	<ul> <li>Cheminformatics: Johann Gastieger</li> <li>Bioinformatics and drug Discovery: Richard S. Larson</li> </ul>
-----------------------------	---------------------------------------------------------------------------------------------------------------------

 Image: Antipage: Antipage



# Modality of Assessment for: T.Y.B.Sc. Semester VI

### **Theory Examination Pattern:**

### A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1.	Internal Examination	20
2.	Assignment/Group Discussion/Presentation/Class Activity	20
	TOTAL	40
-	nal Examination- 60%- 60 Marks	

### B) External Examination- 60%- 60 Marks **Semester End Theory Examination:**

11. Duration - These examinations shall be of 2.0 Hours duration.

12. Theory question paper pattern:

### Paper Pattern for Biological, Chemical and Computational Sciences:

Question	Options	Marks	Questions Based on
Q.1. Short answer question (5 Marks each)	3 out of 4	15	Unit I
Q.2. Short Answer questions (5 Marks each)	3 out of 4	15	Unit II
Q.3. Short Answer questions (5 Marks each)	3 out of 4	15	Unit III
Q.4. Objective/short answer question (5 Marks each)	3 out of 4	15	Combination of all units
	TOTAL	60	

### Paper Pattern for Entrepreneurship skills:

Question	Options	Marks	Questions Based on
Q.1. Short answer question (5 Marks each)	3 out of 4	15	Unit I
Q.2. Short Answer questions (5 Marks each)	3 out of 4	15	Unit II
Q.3. Short Answer questions (5 Marks each)	3 out of 4	15	Unit III
Q.4. Short Answer questions (5 Marks each)	3 out of 4	15	Unit IV
	TOTAL	60	



### **Practical Examination Pattern:**

### C) Internal Examination: 40%- 40 Marks

Particulars	
Journal	10
Experimental tasks/Attendance	10 6
Small project/Class assignment/Presentation/Activity	20
/Viva	
Total	40
	5
rnal Examination: 60%- 60 Marks	
ester End Practical Examination:	- Ch

### D) External Examination: 60%- 60 Marks

### **Semester End Practical Examination:**

Particulars	Paper
Required Experiments Performed with appropriate principle, approach, Observations, Result, Demonstration of skills, Conclusion and Viva.	60
Total	60

### **Overall Examination & Marks Distribution Pattern**

**Semester VI** 

Course	601			602			603			604		
	Internal	External	Total									
Theory	40	60	100	40	60	100	40	60	100	40	60	100
Practicals	40	60	100	40	60	100	-	-	_	40	60	100

Course		Grand Total		
	Internal	External	Total	
Theory	40	60	100	500
Practicals	40	60	100	400