Resolution number: AC/II(20-21).2.RUS1

S. P. Mandali's Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus For:

Program: Integrated M.Sc. in Bioanalytical Sciences

(Undergraduate Syllabus)

Program Code: RUSBAS

(Credit Based Semester and Grading System for academic year 2020–2021)

PROGRAM OUTCOMES

PO	PO Description		
	A student completing Bachelor's Degree in Science program		
	will be able to:		
PO 1	Recall and explain acquired scientific knowledge in a		
	comprehensive manner and apply the skills acquired in their		
	chosen discipline. Interpret scientific ideas and relate its		
	interconnectedness to various fields in science.		
PO 2	Evaluate scientific ideas critically, analyse problems, explore		
	options for practical demonstrations, illustrate work plans and		
	execute them, organise data and draw inferences.		
PO 3	Explore and evaluate digital information and use it for knowledge		
	upgradation. Apply relevant information so gathered for analysis		
	and communication using appropriate digital tools.		
PO 4	Ask relevant questions, understand scientific relevance,		
	hypothesize a scientific problem, construct and execute a project		
	plan and analyse results.		
PO 5	Take complex challenges, work responsibly and independently, as		
	well as in cohesion with a team for completion of a task.		
	Communicate effectively, convincingly and in an articulate manner.		
PO 6	Apply scientific information with sensitivity to values of different		
	cultural groups. Disseminate scientific knowledge effectively for		
	upliftment of the society.		
PO 7	Follow ethical practices at work place and be unbiased and critical		
	in interpretation of scientific data. Understand the environmental		
	issues and explore sustainable solutions for it.		
PO 8	Keep abreast with current scientific developments in the specific		
	discipline and adapt to technological advancements for better		
	application of scientific knowledge as a lifelong learner.		

PROGRAM SPECIFIC OUTCOMES

PSO	Description		
	A student completing Bachelor's Degree in Science program in the subject of Bioanalytical Sciences will be able to:		
PSO 1	This course will impart high quality science education in a vibrant academic ambience with the faculty of distinguished teachers and scientists.		
PSO 2	It will also equip students for the future who will take up the challenge of doing quality research and teaching and also contribute to industrial production and R & D in the fields of Bioanalysis, Bioinformatics and Nutraceutical Sciences.		
PSO 3	It will amalgamate classical analytical chemical techniques with modern genomic and proteomic technologies of manufacturing and analysis to better characterize the products useful as medicines as well as nutraceuticals.		

PROGRAM OUTLINE

YEAR	SEM	COURSE CODE	COURSE TITLE	CREDITS
		RUSBAS101	Biological Sciences I	3
		RUSBAS102	Biological Sciences II	3
		RUSBASP101	Biological Sciences Practical	2
		RUSBAS103	Chemical Sciences I	3
		RUSBAS104	Chemical Sciences II	3
F.Y.B.Sc	I	RUSBASP102	Chemical Sciences Practical	2
		RUSBAS105	Computational Sciences I	2
		RUSBAS106	Computational Sciences II	2
		RUSBASP103	Computational Sciences Practical	2
		RUSBAS107	Foundation Course-I	2
	•	RUSBAS201	Biological Sciences I	3
	~	RUSBAS202	Biological Sciences II	3
		RUSBASP201	Biological Sciences Practical	2
F.Y.B.Sc	II	RUSBAS203	Chemical Sciences I	3
F.Y.B.SC		RUSBAS204	Chemical Sciences II	3
		RUSBASP202	Chemical Sciences Practical	2
		RUSBAS205	Computational Sciences I	2
		RUSBAS206	Computational Sciences II	2

		RUSBASP203	Computational Sciences Practical	2
		RUSBAS207	Foundation Course-II	2
		RUSBAS301	Biological Sciences III	3
		RUSBAS302	Biological Sciences IV	3
		RUSBASP301	Biological Sciences Practical	2
		RUSBAS303	Chemical Sciences III	3
		RUSBAS304	Chemical Sciences IV	3
S.Y.B.Sc	III	RUSBASP302	Chemical Sciences Practical	2
		RUSBAS305	Computational Sciences III	2
		RUSBAS306	Computational Sciences IV	2
		RUSBASP303	Computational Sciences Practical	2
		RUSBAS307	Environmental Sciences	2
	.0	RUSBAS401	Biological Sciences III	3
	25	RUSBAS402	Biological Sciences IV	3
		RUSBASP401	Biological Sciences Practical	2
S.Y.B.Sc	IV	RUSBAS403	Chemical Sciences III	3
		RUSBAS404	Chemical Sciences IV	3
		RUSBASP402	Chemical Sciences Practical	2
		RUSBAS405	Computational Sciences III	2

		RUSBAS406	Computational Sciences IV	2
		RUSBASP403	Computational Sciences	2
			Practical	
		Duon to to a	m 1 · 10	
		RUSBAS407	Technical Communication	2
			skills	20
		RUSBAS501	Entrepreneurship Skills	3
		RUSBASP501	Entrepreneurship Skills	2
			Project/CaseStudy/Assignment	
			Practical	
		RUSBAS502	Biological Sciences V	3
T V D C	v	RUSBASP502	Biological Sciences Practical	2
T.Y.B.Sc		RUSBAS503	Chemical Sciences V	3
		RUSBAS504	Chemical Sciences VI	3
		RUSBASP503	Chemical Sciences Practical	2
		RUSBAS505	Computational Sciences V	2
		RUSBASP504	Computational Sciences	2
			Practical	
	7	RUSBAS601	Entrepreneurship Skills	3
		RUSBASP601	Entrepreneurship Skills	2
T.Y.B.Sc			Project/CaseStudy/Assignment	
	VI		Practical	
		RUSBAS602	Biological Sciences V	3
		RUSBASP602	Biological Sciences Practical	2

	RUSBAS603	Chemical Sciences V	3
	RUSBAS604	Chemical Sciences VI	3
	RUSBASP603	Chemical Sciences Practical	2
	RUSBAS605	Computational Sciences V	2
	RUSBASP604	Computational Sciences Practical	2
		Alliconomons	

Course Title: Biological Sciences I

Academic year 2020-21

F.Y.B.Sc.

COURSE OUTCOME	DESCRIPTION
OUTCOME	
CO 1	Students should realize the importance of type specimens and in-vivo models in Biological research.
CO 2	Students will understand basic concepts of microbiology. They should be able to successfully understand the significance and perform aseptic transfer techniques.
CO 3	Students should learn the operation of simple light microscope.
CO 4	Student will know the significance of studying plant and animal anatomy and the functions of specialized cells present in them.

Paper Code	Semester I	lectures
RUSBAS101	Biological Sciences I	
	101.1 Type Specimens	15
	Significance of Studying type specimen, <i>E. coli</i> , Yeast & <i>Neurospora crassa</i> , Sunflower, Maize & <i>Arabidopsis thaliana</i> , Mice, Zebra Fish, Guinea Pig, Non-human primates, <i>Homo sapiens sapiens</i>	
	101.2 Introduction to Microbiology	15
	Microbes & their Environment, Biodiversity and types of Microorganisms, Significance and Scope of Microbiology, Visualization of Microorganisms: Staining, Simple and Compound Microscopy, Introduction to concepts of asepsis, sterilization and disinfection	
	101.3 Anatomy of plants and Animals	15
	Plant Anatomy: (8L) Tissue and Tissue systems in Plants, Meristems, Classification of Meristems, Permanent tissues and classification of permanent tissue, Cell differentiation, Specialized cells of plants, Importance of plant anatomy	

Animal Anatomy: (7L)
Tissue and Tissue systems in Animals, Classification of Animal
tissues, Cell differentiation, Specialized cells of Animals,
Importance of Animal anatomy

Biological Sciences I	 B. P. Pandey, Plant Anatomy, S Chand Gerald Karp, Cell Biology Micheal J. Pelczar, Jr., E.C.S.Chan, Noel R. Krieg – Microbiology B.R. Vashishta, A K Sinha, Adarsh, Botany for Degree Students Part III:Bryophyta Gerald Karp, Cell Biology
	RUKON
591	

.0,

Course Code: RUSBAS102

Course Title: Biological Sciences II

Academic year 2020-21

F.Y.B.Sc.

COURSE OUTCOME	DESCRIPTION			
CO 1	Students will appreciate versatility and dynamic nature of carbon.			
CO 2	Students should be able to draw the correct structures of biomolecules and understand structure-function and correlation.			
CO 3	They should be able to schematically represent and explain various physiological processes in plants and animals.			

Paper Code	Semester I		lectures	
RUSBAS102	Biological Sciences	45		
	102.1 Introduction to Biomolecules, Car Acids			
	Introduction to Biomolecules	(8L)		
	Overview of chemical and physical attribution of Biomolecules, Significance nature and science.			
	Carbohydrates	(8L)		
	Classification of carbohydrates Structure, structure properties, Isomerism & reactions of Monosaccharides, Oligosacc Homopolysaccharides(Starch, Inulin, Glyc Heteropolysaccharides	charides,		
	Nucleic Acids	(4L)		
	Chemistry of nucleic acids, nucleosides, nu properties of DNA, stability of nucleic acid rules, Watson and Crick model, Confirmation of DNA, Structure, function and types of R	structures, Chargaff's ions of DNA-A, B, Z forms		

	102.2 Proteins, Lipids & Vitamins	15
	Amino acids& Proteins	
	Structure, classification, physical and chemical properties, levels of	
	structural organization of Proteins, Introduction to Ramachandran	
	plot.	
	Lipids	
	Classification of fatty acids and lipids, Physical and Chemical	
	properties, Functions of fatty acids, glycolipids, phospholipids,	.0,
	Structure and function of Cholesterol,	00
	Vitamins: Storage and Occurrence, Structure, properties,	,0
	Recommended dietary allowance, Deficiency and treatment.	
	102.3 Physiological Processes in Plants & Animals	15
	Plants:	
	Seed germination, Photosynthesis: Light reactions, Carbon fixation	
	reactions C3, C4 & CAM pathways, Photorespiration, Storage of	
	plants, Oil seeds.	
	Animal systems:	
	Respiratory, Digestive, Excretory System, Nervous, Reproductive	
RUSBASP101	PRACTICALS	
	1. Cleaning, Sterilization of glassware	
	2. Various types of Media preparation for Microbial growth	
	3. Aseptic Transfer	
	4. Isolation of bacteria	
	5. Staining techniques: Gram staining, Endospore staining,	
	Metachromatic staining	
	6. Estimation of oil from oil seeds	
	7. Qualitative analysis of Biomolecules - Carbohydrates, Proteins,	
	Nucleic Acids, Lipids 8. Photosynthesis	
	o. Thomosynthesis	

Biological	David Hopkin Lewis, Storage Carbohydrates in Vascular
Sciences II	Plants:Distribution, Physiology, and Metabolism
•	David Nelson, Michael Cox :Lehninger's Principle of Biochemistry :
	Springer
	Hiram.F.Gilbert : Basic concept in Biochemistry : Mac Grow Hill
•	J Koolman, K.H. Roehm : Color Atlas of Biochemistry : 2nd edition :
	Theime Publication
	U.Satyanarayana,U.Chakrapani-Biochemistry
•	S. Mukherji and A. K. Ghosh, Plant Physiology, New Central Book Agency
	(P) Ltd
•	Russell; Hunter, W.D. and McMillan: Life of Invertebrates
•	Kotpal, R.L.: Zoology Phylum – Arthropoda, Rastogi Publication

Course Title: Chemical Sciences I

Academic year 2020-21

F.Y.B.Sc.

COURSE	DESCRIPTION
OUTCOME	
CO 1	Students should be able to prepare buffers and operate pH meter.
CO 2	Students should accurately name and identify aromatic compounds.
CO 3	Students should understand the concepts of molecular bonding.

Paper Code	Semester I	lectures
RUSBAS103	Chemical Sciences I	45
	103.1 Ionic Equilibrium, pH and Buffers	15
	Acid-Base concept, Hard and soft acid and base (<i>HSAB</i>), Ostwald's Dilution Law, Activity coefficient, Solubility, Complex formation and organic complexes, Oxidation and reduction equilibria, Hydrolysis of salts and Solubility product Concept of pH, pKa, pKw, Isoelectric pH, Buffer, Buffering Capacity Derivations: Ionic product of water, Hendersen–Hasselbalch equation, Relation between pI, pKa1 and pKa2 for a neutral, acidic and basic amino acid. Titration and Ionization of Glycine, Lysine and Aspartic acid; pKa, pH, and pI values of these amino acids Physiological Buffers: Preparation, properties and uses of Carbonate-Bicarbonate, Phosphate, and Citrate buffers Preparation and Numericals based on pH and Buffer	
	103.2 IUPAC Nomenclature and Aromaticity	15
	IUPAC: Rules of IUPAC nomenclature, IUPAC nomenclature of basic functional groups, aliphatic poly functional compounds, including monocyclic compounds on the basis of IUPAC priority order. (Line formulae expected) IUPAC nomenclature of Spiro, Biphenyls, Bicyclic compounds, SMILES Notation	
	Aromaticity : Characteristic properties of aromatic compounds, Huckel's rule, Aromaticity and anti-aromaticity, Resonance energy,	

Aromatic hydrocarbons: Benzenoid & Nonbenzenoid compounds	
(benzene, naphthalene, anthracene, phenanthrene,	
cyclopropenium, cyclopentadienyl, cycloheptatrieniumcation)	
103.3 Introduction to Molecular Bonding	15
Concept of atoms and molecules and atomic structure orbitals	
Concept of electronic configuration-Pauli's exclusion principle, Hund's rule, Aufbau principle	0.
Types of bonds and bonding, Chemical bonding theory, Valence-Bond theory and Molecular orbital theory, Concept of hybridization and its types	,0
Polar covalent bonds and Electronegativity, Drawing chemical structures, Molecular models	
structures, Molecular models	

Chemical Sciences I	 John McMurry: Organic Chemistry: 5th Edition: Brooks AND Cole Publication James House: Inorganic Chemistry: Elsevier
	 Paula Yurkanis Bruice: Organic Chemistry: Pearson P.S Kalsi: Organic Reactions and Their Mechanisms: Third Edition, New Age Ira N. Levine: Physical Chemistry: McGraw-Hill S.C.Pal: Nomenclature of organic chemistry: Alpha publication
	Peter Atkins & Julio de Paulo: Physical Chemistry : Oxford University Press

Course Title: Chemical Sciences II Academic year 2020-21

F.Y.B.Sc.

COURSE	DESCRIPTION
OUTCOME	
CO 1	Students should analyze conductometric, pH metric and acid-base
	titration curves to predict the chemical nature of titrant and titrate.
	They should realize the importance of calibration in science.
CO 2	Students should be able to demonstrate mechanisms of organic
	reactions and identify the similarities between organic and
	biochemical reactions

Paper Code	Semester I	lectures
RUSBAS104	Chemical Sciences II	45
	104.1 Stoichiometry and Preparation of Standard Solutions, Titrimetric analysis	15
	Methods of expressing concentration of solutions-molarity, normality, molality, mole fraction, dilution of solutions, interconversion between different concentration units, concept of milliequivalents, millimols, ppm and ppb Primary and secondary standards, Preparation of standard solutions, Calculation of concentration of commercial samples of acids and bases, Use of computers in chemical calculations. Requirements for a reaction to be used in titrimetric analysis, classification of titrimetric analysis, Terms: titration, titrand, titrant, titre value, indicator, endpoint, equivalence point, titration error.	
	Principles of acid-base, oxidation–reduction, and complexometric titrations. Theory of acid base indicators, choice of an indicator for the titration, dependence on the pH at the equivalence point. Acid-base, redox and metal-ion indicators Acid-base Titrations: Construction of titration curves and choice of indicators in the titration of Strong acid and strong base, Strong acid and weak base, Weak acid and	

	weak base	
	Precipitation titrations: Argentimetric titrations, construction of	
	the titration curve, Volhard's method, Mohr's method	
		15
	104.2 Fundamentals of Organic Reactions & Mechanism I	15
	Electronic effects in organic molecules: Polarization or Inductive	
	effect Nature and polarity of a covalent bond, dipole moment and	
	its effect on properties of molecules such as melting point/boiling	
	point, solubility; Polarizability effect, Hyperconjugation and	
	Tautomerism,	70
	Bonds weaker than a covalent bond: Hydrogen bond – nature,	20
	effect on melting point/boiling point, solubility in water; Van der	
	waals forces.	
	General Idea of types of reaction: Introduction and few examples	
	of following types of reaction expected: Addition, Elimination,	
	Substitution, Condensation, Rearrangement, Pericyclic reactions, Oxidation-reduction	
	Concept of Electrophilicity, Nucleophilicity, acidity and basicity of	
	organic molecules	4 =
	104.3 Fundamentals of Organic Reactions & Mechanism II	15
	Homolysis & Heterolysis, Concepts of intermediate, carbocation,	
	carbanion and free radicals: Geometry, stability and reactivity.	
	Mechanism and applications of Pinacol-Pinacolone rearrangement,	
	Schmidt reaction, Benzilic acid rearrangement.	
	Lossen rearrangement, Knoevenagel condensation, Reimer-	
	Teimann reaction, Hunsdiecker reaction, Sand-Meyer reaction	
	Aldol condensation, Diels Alder reaction, Birch reduction	
RUSBASP102	PRACTICALS	
	1. Stoichiometric calculations and preparation of primary and	
	secondary standard solutions.	
	2. Study of pH meter(calibration and analysis)	
	3. Volumetric analysis (Calculation of % error expected)	
	a) Acid – Base titration	
	b) Estimation of Iron using Internal Indicator	
	c) Estimation of Vitamin C from various samples	
	d) Estimation of Calcium (Complexometric	
7	Titration)	
	e) Estimation of Total Hardness	
	f) Estimation of iodine in iodised common salt	
	using iodometry. 4. Preparation of various buffers (5-6 buffers at least) and	
	4. Preparation of various buffers (5-6 buffers at least) and measurement of pH using pH meter and pH paper.	
	Calculation of % error expected	
	a) Carbonate-Bicarbonate Buffer	
	b) Ammonia –Ammonium Chloride Buffer	

c) Acetic acid—Sodium acetate Buffer	
5. Calibration of glassware: Burette, Pipette, Standard Flask	

Sciences II	Richard O.C. Norman, James M. Coxon: Principles of Organic Synth 3rd Edition: CRC Press Detay Sylves: A Cyclebrack to Machanism in Organic Chamistry:
	 Peter Sykes: A Guidebook to Mechanism in Organic Chemistry:6 Edition: Pearson
	P.S Kalsi :Organic Reactions and Their Mechanisms :Third Edition
	New Age
	Ira N. Levine: Physical Chemistry : McGraw-Hill
	iia. Hillonoin
	Rija
	Polito.
	Pulia.
	arain
	arain
	arain
Rain	arain
Ran	arain
Ran	arain
Rain	arain

Course Title: Computational Sciences I

Academic year 2020-21

F.Y.B.Sc.

COURSE	DESCRIPTION
OUTCOME	
CO 1	Students should adapt for basic arithmetic calculations.
CO 2	Students should apply the mathematical equations to find solutions to
	given problems.

Paper Code	Semester I	Lectures		
RUSBAS105	Computational Sciences I			
	105.1 System of linear equations and Matrices	10		
	Matrices over R (order 2 & 3): Matrix operations (addition, subtraction, scalar multiplication, matrix multiplication, transpose of a matrix (it's properties), inverse by elementary row transformation, adjoint method, solution of system of equation both homogenous and non-homogenous using matrix (concept of Rank to be introduced) Determinants: Determinant of a matrix of order 2 and 3, elementary properties of determinants, solving a system of linear equations (up to 3 variables) using Crammer's rule and application to medicines, pharmaceuticals, food and vitamins.			
	Definition by first principle method, rules addition, subtraction, multiplication, division (only statements) Application of derivatives: Rate measure (Physics, Chemistry, Industrial aspects), Approximation and errors, Mean value theorems (without proof) Rolle's theorem, Lagrange's mean value theorem, Cauchy's mean value theorem Extreme values using first and second derivatives (application type problem)	10		

105.3 Ordinary Differential Equation and Applications

10

First order differential equations: Review of separable differential equations, homogenous and non-homogenous differential equation. Linear differential equations and Bernoulli differential equations.

Modeling with first order equations: examples from financial mathematics, chemistry, environmental sciences, population growth and decay.

Second order linear differential equations: The general second order differential equations, existence and uniqueness, theorem for the solutions of a second order initial value problem (statement only) Emphasis should be on solving problems with different rules

Reference Books:

Computational Sciences I

- S.LangLinear Algebra
- Schaum's outlines on matrices
- Simmons, G.F., Differential Equations With Applications and Historical Notes.
- Chapter1, Sections 1,2,3 of Elements of Partial Differential, McGraw Hill
- Serge Lang, Introduction to Linear Algebra, , Springer Verlag, Balaguruswamy, E., Discrete Mathematics and Its Applications, Numerical Methods, Tata McGraw Hill

Course Title: Computational Sciences II Academic year 2020-21

F.Y.B.Sc.

COURSE OUTCOME	DESCRIPTION
CO 1	Students should appreciate the extensive applications of optics in
	analytical instrument like colorimeter and spectrophotometer.
CO 2	Students should grasp the fundamental concepts of crystal geometry
	and X-ray diffraction.

Paper Code	Semester I			
RUSBAS106	CUSBAS106 Computational Sciences II			
	106.1 Alternating current theory & transient response of circuit.	10		
	AC circuit containing pure R, pure L and pure C			
	Representation of sinusoids by complex numbers, Series L-R, C-R			
	and LCR circuits. Resonance in LCR circuit (both series and			
	parallel)Power in ac circuit. Q-factor. Series LR, CR, LCR circuits.			
	Growth and decay of currents/charge.	4.0		
	106.2 Optics	10		
	Image formation : coaxial system of two thin lenses in contact and			
	separated by a distance, cardinal points and qualitative			
	description of image formation by a thin lens, aberration of optical			
	images (spherical aberration, distortion, chromatic aberration),			
	methods reducing aberrations, Ramsden eyepiece.			
	Interference by division of amplitude : interference in thin films			
	(reflected system only) a wedge shaped film in monochromatic			
	light, Newton's rings, determination of wavelength and the			
	refractive index of a liquid using Newton's rings.			
	Fraunhofer diffraction: expression for the resultant of N simple			
	harmonic vibrations of equal amplitude, the same period and			
	phases increasing in an arithmetic progression, use of this			
	expression to study a single slit, a double slit, and a plane			
	diffraction grating(transmission type), comparison of prism and			
	grating spectra.			
	Introduction to polarization : pictorial representation of			
	polarized light, polarization by scattering and by reflection,			

	Brester's law, Malus's law, double refraction in calcite and quartz, experimental determination of $\mu 0$ and μE of a quartz or a calcite prism.					
	106.3 Material Science, Crystal Geometry & X-Ray Techniques					
	Material science: classification of materials, organic, inorganic and biological materials, semiconductor materials, current trends and advances in materials, materials structure and examination,					
	selection of materials Crystal geometry and structure: crystals, single crystal, whiskers, lattice point and space lattice, unit cell, primitive cell, atomic	60				
	radius, density of crystal, direction lattice planes, miller indices, interplanar spacing, crystal planes in cubic unit cells, common planes in simple cubic structure, Co-ordination number, crystal					
	growth					
	X-rays: production, continuous and characteristic X- ray spectra, Bragg's law and intensity of X- rays, Mosley's law.					
	Compton Effect and its experimental verification, energy dependence of photoelectric effect and Compton Effect.					
RUSBASP103	PRACTICALS					
	 Focal length of a lens system High pass Filter, Low pass filter Surface Tension 					
	4. Vernier Caliper, Micrometer screw gauge and their use in pharma5. Study of light Microscope					

Computational	Verma, H.C., Concepts of Physics, Volume 1, Bharati Bhavan
Sciences II	Publishers & Distributors.
	 Mathur D. S., Elements of Properties of Matter, , S. Chand and Co. Ltd.,
(Reprint 2001.
	Mathur B.K. and T.P. Pandya, Principles of Optics, Gopal Printing
	Press, Kanpur.
	 Jenkins F.A., Fundamentals of Optics, Whitte, 4e, 1981, McGraw Hill
	International.
	Ghtak, A., Optics, 2nd Ed., TMH,1992
	-

Course Title: Foundation course I Academic year 2020-21

F.Y.B.Sc.

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
CO 1	Students should be aware about their constitutional rights and current socio-political scenario of India.

Paper Code	Semester I		
RUSBAS107	Foundation Course-I	30	
	107.1 The Indian Constitution	10	
	 Methods of expressing concentration of solutions-Philosophy of the Constitution as set out in the Preamble The structure of the Constitution-The Preamble, Main Body and Schedules 		
	 3. Fundamental duties of the Indian Citizen, tolerance, peace, and communal harmony as crucial values in strengthening the social fabric of the Indian society 4. Basic features of the Constitution 		
	107.2 Growing Social Problems in India	10	
	 Substance Abuse-Impact on Youth and Challenges for the future HIV/AIDS- Awareness, prevention, treatment and services Problems of the Elderly-Causes, implications and response Issue of Child Labour-Magnitude, causes, effects and response Child Abuse-Effects and ways to prevent 		
	6. Trafficking of Women- Causes, effects and response107.3 Significant aspects of political processes	10	
1	 Significant aspects of political processes The party system in Indian Politics Local self-government in urban and rural areas; the 73rd and 74th Amendments and their implications for inclusive politics Role and significance of women in politics 	10	

Foundation	K. T. Basantani; Social Awareness - Foundation Course, Semester - I;
course	Sheth Publisher Pvt. Ltd.

Modality of Assessment for: F.Y.B.Sc. Semester I

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1.	Internal Examination	20
2.	Assignment/Group Discussion/Presentation/Class Activity	20
	TOTAL	40

B) External Examination- 60%- 60 Marks Semester End Theory Examination:

- 1. Duration These examinations shall be of **2.0 Hours** duration.
- 2. Theory question paper pattern:

Paper Pattern for Biological, Chemical, Computational Sciences:

Question	Options	Marks	Questions Based on
Q.1. Short answer question (5 Marks each)	3 out of	15	Unit I
Q.2. Short Answer questions (5 Marks each)	3 out of	15	Unit II
Q.3. Short Answer questions (5 Marks each)	3 out of 4	15	Unit III
Q.4. Objective/short answer question (5 Marks each)	3 out of 4	15	Combination of all units
	TOTAL	60	

Paper Pattern for Foundation Course:

Question	Options	Marks	Questions Based on
Q.1. Short answer	1 out of 2	8	Unit I
question	Compulsory	7	Offit I
Q.2. Short Answer	1 out of 2	8	Unit II
questions	Compulsory	7	OIIIt II
Q.3. Short Answer	1 out of 2	7	Unit III
questions	Compulsory	8	Offic III
Q.4. Objective/short answer question (5 Marks each)	3 out of 4	15	Combination of all units
	TOTAL	60	

Practical Examination Pattern:

A) Internal Examination: 40%-40 Marks

Particulars	
Journal	10
Experimental tasks/Attendance	10
Small project/Class	20
assignment/Presentation/Activity	
/Viva	
Total	40

B) External Examination: 60%-60 Marks

Semester End Practical Examination:

Particulars	Paper
Required Experiments Performed with appropriate principle, approach, Observations, Result, Demonstration of skills, Conclusion and Viva.	60
Total	60

Overall Examination & Marks Distribution Pattern

Semester I

Course	101				102			103			104	
	Internal	External	Total									
Theory	40	60	100	40	60	100	40	60	100	40	60	100
Practicals	<u> </u>	_	_	40	60	100	_	_	_	40	60	100

Course 105			106			107			Grand Total	
	Internal	External	Total	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	40	60	100	700
Practicals	_		_	40	60	100	-			300

To be revised for academic year 2020-2021

Course Title: Biological Sciences I Academic year 2020-21 F.Y.B.Sc.

COURSE	DESCRIPTION
OUTCOME	
CO 1	Students should comprehend fundamental concepts of genetics.
CO 2	Students should realize the significance of enzymes with respect to drug design.
CO 3	Students should learn the properties and dynamics of plasma membrane as a prerequisite to study transport of drug molecules.

Paper Code	Semester II	Lectures
RUSBAS201	Biological Sciences I	45
	201.1 Introduction to Genetics	15
	 Cell cycle- G and S Phases, Control of cell cycle Non-Mendelian inheritance, Linkage and crossing over, Gene expression Sex determination in animals, sex linked, sex limited and sex influenced genes Variations in chromosome number and structure (e.g. Rice, wheat, Brassica, etc. and Syndromes in Human) Concept of genes, chromosomes, Mitosis and Meiosis, Apoptosis 	
	201.2 Enzymology	15
	1. Enzymes: Chemical nature, properties, nomenclature, classification, units of enzyme activity: katal specific activity.	
	 Mechanism of enzyme action: concept of active site, activation energy, binding energy, energy diagram for enzyme catalysed reactions, lock & key Vs induced fit mechanism 	
	3. Enzyme kinetics: Michaelis-Menton equation, Lineweaver-Burk plot	
	4. Enzyme inhibitors: Equations & Graphs	

5. A	llosteric enzymes	
6. T	ypes of catalysis : Acid base, covalent, metal ion	
7. Is	soenzymes, abzymes, synzymes, ribozymes,	
8. A	pplications of enzymes, immobilized enzymes	
C	oenzymes: Coenzymes in hydrogen transfer reactions-	
n	icotinamide nucleotide, flavin nucleotide, lipoic acid. Co	
e	nzymes involved in group transfer-biotin, pyridoxal	
р	hosphate, thiamine pyrophosphate, coenzyme A,	
c	obalamine, tetrahydrofolic acid	
	•	70
201.3	Biological Membranes & Transport	15

20210 Brotogram Frombranes a Transport

Composition of biological Membranes, Different models of Biological Membranes, Membrane dynamics, Solute transport across Biological Membrane (Types & specific examples)

Biological	Robert Copeland : Enzyme: 2nd edition: Wiley publication
Sciences I	William .P. Jencks: Catalysis in Chemistry and Enzymology : Courier
	Dover Publications
	Tim Bugg: Introduction to Enzyme and Coenzyme Chemistry : 2nd
	Edition :Blackwill publication
	 David Nelson, Michael Cox: Lehninger's Principle of Biochemistry:
	Springer
	 Buns, G. W.: Science of Genetics - An introduction to heredity,
	Macmillan, New York.
	 William S. Kluge and Cummings, M.R.:Concepts of Genetics, Pearson
	Edu.
	• Alberts, Bruce: Essentials of Cell Biology: 5th edition.

To be revised for academic year 2020-2021

Course Title: Biological Sciences II Academic year 2020-21

F.Y.B.Sc.

COURSE OUTCOME	DESCRIPTION
CO 1	Students should appreciate the efficient manner in which cells perform their biological functions while strictly obeying the laws of thermodynamics. They should be able to calculate entropy, enthalpy
CO 2	and free energy change for biochemical reactions. Students should accurately demonstrate metabolic pathways in a sequential manner. They should study metabolic pathways with the perspective of their applications in drug design.

Paper Code	Semester II	Lectures
RUSBAS202	Biological Sciences II	45
	202.1 Principles of Bioenergetics	15
	Concept of catabolism, anabolism & metabolism.	
	Types of Metabolic pathways converging (catabolism), diverging (anabolism) and cyclic.	
	Types of biochemical reactions- a) Oxidation- reduction. b) Carbon-carbon bond formation or breakdown. c) Internal rearrangement, isomerisation and elimination. d) Group transfer reaction. e)Free radical reaction	
	Concept of Gibbs free energy, enthalpy, entropy, free energy change (ΔG) and standard free energy change ($\Delta G'^0$) with suitable examples.	
	Laws of thermodynamics with suitable examples.	
	202.2 Carbohydrate Metabolism	15
	Introduction to Metabolism, Glycolysis, Krebs Cycle, Pentose Phosphate Pathway, Gluconeogenesis, Glycogenesis, Glycogenolysis, Metabolic disorders	

	202.3 Lipid Metabolism, Nucleic Acid Metabolism & Amino Acid Metabolism 15
	Lipid Metabolism& Metabolic Disorders
	NucleicAcid metabolism : Synthesis of Purines & Pyrimidines (<i>De novo & Salvage pathway</i>), Catabolism of Purines & Pyrimidines
	Amino Acid: Synthesis of Amino acids, Urea Cycle
RUSBASP201	PRACTICALS
	 Estimation of reducing sugars by DNSA method Enzymology: a) Extraction of amylase from starch using buffers. b) Determination of optimum pH ,temperature c) Optimization of substrate and enzyme concentration d) Determination of Km value e) Effect of inhibitor(s) Microscopic visualization of Storage carbohydrates from plant sample Study of Seed germination and effect of various factors on seed germination Study of Mitosis and Meiosis Study of Karyotype(s) Extraction and purification of Invertase from yeast.

Biological	David Hopkin Lewis, Storage Carbohydrates in Vascular
Sciences II	Plants:Distribution, Physiology, and Metabolism
	 U. Satyanarayana, U. Chakrapani – Biochemistry
	 Micheal M. Cox and David L. Nelson, Lehninger Principles of
	Biochemistry

To be revised for academic year 2020-2021

Course Title: Chemical Sciences I Academic year 2020-21 F.Y.B.Sc.

COURSE	DESCRIPTION
OUTCOME	
CO 1	Students should precisely draw and identify stereoisomers. They
	should realize the applications of stereochemistry for assessment of
	safety and potency of pharmaceuticals.
CO 2	They should be able to solve problems based on chemical kinetics and
	thermodynamics

Paper Code	Semester II	Lectures
RUSBAS203	Chemical Sciences I	45
	203.1 Stereochemistry-I	15
	Optical and Geometrical isomers: Study of enantiomers, diastereoisomers, Geometrical isomerism due to restricted rotation around C-C double bond and Substituted cycloalkanes Idea of configuration. Stereochemistry of carbon compounds with one and two similar and dissimilar asymmetric carbon atoms: enantiomers, diastereomers, and racemic mixtures and their properties, threo, erythro and mesoisomers. Representation of configuration by 'flying wedge formula' and projection formulate- Fischer, Newman and Sawhorse. The interconversion of formula Conformational analysis of ethane, propane, 2-methylpropane, 2,2-dimethulpropane, n-butane. Molecular chirality and element of symmetry: Plane of Symmetry, Centre of Symmetry, Alternating axis of symmetry. Chirality without asymmetric carbon Stability of cycloalkanes: Strains in cycloalkanes-angle, eclipising, transannular (3 to 6 membered). Conformations of cyclohexane, mono and di- alkylcyclohexanes and their relative stabilities.	

203.2 Stereochemistry-II 15 Assigning stereo descriptors to chiral centres:Cahn-Ingold-Prelog(CIP), Rules for assigning absolute configuration (R&S) to a stereogenic center. Assigning absolute configuration to molecules having maximum two chiral carbon atom E & Z stereodescriptors to geometrical isomers. Stereo selectivity and Stereo specificity: Idea of enantioselectivity (ee) and diastereoselectivity(de). Topicity-enantiotopic and diastereotopic atoms, groups and faces. Stereochemistry of -Substitution reactions- SN1, SN2, SNi (reaction of alcohol with thionyl chloride). E2-anti-elimination-Base induced dehydrohalogenation of 1bromo-1,2- diphenylpropane. hydrogenation Addition reactions olefins-i)Catalytic to ii)Bromination (electrophilic anti addition) iii)Synhydroxylation (molecular addition) with 0s04 and KMn04. **203.3** Chemical Kinetics and Chemical Thermodynamics **15 Chemical Kinetics:** Rate of reaction, definition of rate constant, measurement of reaction rates, order and molecularity, integrated rate equations for zero, first and second order reactions (for second order reactions only a=b to be considered), kinetic characteristics of first and second order reactions, pseudo first order reactions. Methods of determining order of reaction by Integration method, Graphical method, Equi-fraction method, Ostwald's isolation method. **Chemical Thermodynamics:** Transition state theory, Hammond's postulate, Principle of

Transition state theory, Hammond's postulate, Principle of microscopic reversibility, Kinetics Vs. thermodynamic control.

Product analysis, Kinetic studies, Stereochemical outcome, Detection and trapping of intermediates, Crossover experiments, Kinetic isotope effect –primary kinetic & secondary kinetic isotope effect.

Chemical	P. S. Kalsi: Stereochemistry:New Age International Ltd
Sciences I	 Peter Atkins & Julio de Paulo: Physical Chemistry: Oxford University
	Press
	 Ira N. Levine: Physical Chemistry: McGraw-Hill
	 Peter Vollhardt& Neil Schore: Organic Chemistry structure and
	Function:5th Edition:W. H. Freeman
	 Richard O.C. Norman, James M. Coxon: Principles of Organic Synthesis,
	3rd Edition: CRC Press

To be revised for academic year 2020-2021

Course Title: Chemical Sciences II Academic year 2020-21 F.Y.B.Sc.

COURSE OUTCOME	DESCRIPTION
CO 1	Students should grasp the functioning and handling of basic
	instruments in bioanalytical laboratory. They should realize the need
	and importance of automation in bioanalysis.
CO 2	Students should realize that correct choice of sampling and
	minimization of error is essential for the success of scientific
	experiments.
	$^{\prime\prime}O_{J}$

Paper Code	Semester II	Lectures
RUSBAS204	Chemical Sciences II	45
	204.1 Basic Instruments in Bioanalytical laboratory	15
	Basic Principle and Instrumentation of: Autoclave, Centrifuge, Conductometer, pH meter, Rotary shaker, Rotary Evaporator, Gas analyzer, TDS meter, Colorimeter, Hot air oven Vortex, Incubator, Weighing balance, Sonicator, Cyclomixer	
	204.2 Automation in analysis	15
	Introduction to Automation, Need for automation, Automation involved in general laboratory equipments and instruments eg: autopipette, pH meter, rotary shaker, ultrasonicator. Significance and advantages of automation.	
	204.3 Gravimetric Analysis and Treatment of Analytical Data & Sampling	15
	A) Gravimetric analysis: Conditions of precipitation, Nucleation, Particle size, Crystal growth,	

Co-precipitation, Precipitation from homogeneous solutions, Drying and ignition of precipitate

B) Treatment of Analytical Data & Sampling

Types of errors, determinate and indeterminate errors, minimization of errors, constant and proportionate errors, accuracy and precision, measures of dispersion and central tendency: mean, median, average deviation, relative average deviation, standard deviation, variance, coefficient of variation.[Numerical problems expected]

Sensitivity, limit of Detection, Detection Power

Different types of analysis: (Introduction only) Elemental and elementary analysis, Microanalysis, Stereochemical and topochemical analysis, Trace analysis, surface analysis, Radioanalytical methods and activation analysis, Species analysis (Speciation), DNA analysis

Terms involved, importance of sampling, sampling techniques, sampling of gases, ambient and stack sampling, equipment used, sampling of homogeneous and heterogeneous liquids, sampling of static and flowing liquids, methods and equipments used, sampling of solids, importance of particle size and sample size, samples used, need for the reduction in the sample size, methods of reduction in sample size, collection, preservation and dissolution of the sample

Types of errors, determinate and indeterminate errors, minimization of errors, constant and proportionate errors, accuracy and precision, measures of dispersion and central tendency: mean, median, average deviation, relative average deviation, standard deviation, variance, coefficient of variation.[Numerical problems expected]

Summary of experimental methods currently available for analysis : History and development

RUSBASP202

PRACTICALS

- 1. Chemical Kinetics & Chemical Thermodynamics:
 - A. To determine the rate of acid hydrolysis of methyl acetate and determination of order by graphical method.
 - B. To determine the order of the acid hydrolysis of methyl acetate by the method of equi fractional time. Second order reaction between-a)K2S2O8 and KI (With equi-molar concentrations)
- 2. b K2S2O8and KI (With unequal concentrations
- 3. Complete identification of an organic compound: Identification by micro-scale techniques following Preliminary tests, Solubility, Type, Elemental detection, Group tests, Physical

Constant determination (Minimum 08 compounds to be given	\neg
for the identification)	
4. Synthesis of Fluorescein, a classic fluorescein dye	
5. Synthesis of Aspirin (Microwave assisted)	
6. Bromination of Acetanilide using CAN	
7. Gravimetric Analysis:	
A. Estimation of mixture of BaSO4 and NH4Cl	
B. Estimation of mixture of Na2CO3 and NaHCO3	

Chemical	Dand Harvey: Modern Analytical Chemistry: Mc Grow Hill Publishers
Sciences II	Hobart.H.Williard, Lyne.L.Merrit, John.A.Dean, Frank.A.Settle.Jr.:
	Instrumental Methods of Analysis: CBS Publisher.
	 David Harvey: Modern Analytical Chemistry: Mc Grow Hill
	Publishers
	• Peter Atkins & Julio de Paulo: Physical Chemistry : Oxford University
	Press
	Ira N. Levine: Physical Chemistry: McGraw-Hill

To be revised for academic year 2020-2021

Course Title: Computational Sciences I Academic year 2020-21 F.Y.B.Sc.

COURSE OUTCOME	DESCRIPTION
CO 1	Students should be able to choose the correct statistical test to analyze biological data.

Paper Code	Semester II	Lectures
RUSBAS205	Computational Sciences I	30
Rain	Concept of Population and Sample. Finite, Infinite Population, Notion of SRS, SRSWOR and SRSWR Different types of scales: Nominal, Ordinal, Interval and Ratio. Methods of Data Collection: i) Primary data: concept of a Questionnaire and a Schedule, ii) Secondary Data Types of data: Qualitative and Quantitative Data; Time Series Data and Cross Section Data, Discrete and Continuous Data Tabulation Dichotomous classification - for two and three attributes, Verification for consistency Association of attributes: Yule's coefficient of association Q. Yule's coefficient of Colligation Y, Relation between Q and Y (with proof). Univariate frequency distribution of discrete and continuous variables. Cumulative frequency distribution Data Visualization: Graphs and Diagrams, Histogram, Polygon/curve, Ogives. Bivariate Frequency Distribution of discrete and continuous variables 205.2 Measures of central tendency Concept of central tendency of data, Requirements of good	10
	measures of central tendency of data, Requirements of good measures of central tendency. Location parameters: Median, Quartiles, Deciles, and Percentiles Mathematical averages Arithmetic mean (Simple, weighted mean, combined mean), Geometric mean, Harmonic mean, Mode, Trimmed mean. Empirical relation between mean, median and mode: Merits and demerits of using different measures & their	

applicability.	
205.3 Measures of Dispersion, Skewness & Kurtosis	10
Concept of dispersion, Requirements of good measure Absolute and Relative measures of dispersion: Range, Quartile Deviation, Inter Quartile Range, Mean absolute deviation, Standard deviation. Variance and Combined variance, raw moments and central moments and relations between them. Their properties Concept of Skewness and Kurtosis: Measures of Skewness: Karl Pearson's, Bowley's and Coefficient of skewness based on moments. Measure of Kurtosis. Absolute and relative measures of skewness. Box Plot: Outliers	

Computational	B.K.Mahajan: Methods in Biostatistics
Sciences I	 David Asquith: Statistics- from Concept to Practice.
	 Arora & Malhan: Biostatistics- Himalayan Publishing House.

To be revised for academic year 2020-2021

Course Title: Computational Sciences II Academic year 2020-21 F.Y.B.Sc.

COURSE	DESCRIPTION		
OUTCOME			
CO 1	Students should be able to use basic functions of Microsoft office. They		
	should effectively use web browsers and search engines. They should		
	be able to design a webpage.		
CO 2	Students should effectively use web browsers and search engines.		
	They should be able to design a webpage.		

Paper Code	Semester II	Lectures
RUSBAS206	Computational Sciences II	30
	206.1 Introduction To Computers	10
Raini	History of computers and their generations Basic Organization of Computers: Introduction to Computer, Block diagram of a Computer, parts of Computer & functional Units, their integration and function, Input-output devices Computer architecture & functionalities Computer memory & memory unit Operating System & Interface: OS, tasks performed by OS, DOS, Windows and Linux/UNIX	
	DBMS : Data models & languages DBMS: Data models Basics Basics of relational model (overview, entity relation model, Entity and entity sets, Relations and relationship sets, E – R Diagram, Reducing E- R diagram to tables, schema refinement and normal forms) Query languages (relational algebra, creating and altering tables, handling data using SQL etc)	10
	206.3 HTML & XML Introduction to HTML and XML, basic HTML tags	10

	Tables , hyperlinks, Image Insertion, marquee image mapping,
	Frame set
	HTML forms, Get and Post methods
	Basics of XML
	XML syntax and semantics
RUSBASP203	PRACTICALS
	Introduction and overview of general computer operation
	(Windows and Linux platforms), Use of various search
	engines, email etc.
	2. Introduction of MS-Office:
	a. Different elements of word processing (MS-WORD),
	b. Spreadsheets (MS EXCEL) and
	c. PowerPoint presentation (MS POWERPOINT)
	3. Browsers, various search engines and metadata, E-
	Mail/Web mail etc.
	4. Introduction to HTML
	5. HTML Tags, HTML Tables
	6. HTML Forms, HTML Framesets
	7. Webpage designing.

Computational	Andrew Leach: Chemoinformatics
Sciences II	

To be revised for academic year 2020-2021

Course Title: Foundation course II Academic year 2020-21 F.Y.B.Sc.

COURSE	DESCRIPTION
OUTCOME	
CO 1	Students should be aware of the current trends in globalization.
CO 2	Students should realize the importance of stress management to live a
	healthy life.
CO 3	Students should be aware about basic human rights.

Paper Code	Semester II	Lectures						
RUSBAS207	Foundation Course-II							
	207.1 Globalization and Indian Society	10						
	Understanding the concepts of liberalization, privatization and globalization Growth of Information Technology and Communication and its impact manifested in everyday life Impact of globalization on Industry: Changes in employment and increasing migration Changes in agrarian sector due to globalization, rise in corporate farming and increase in farmer's suicide. Debate regarding Genetically Modified Crops. Increasing Urbanization, problems of housing, health and sanitation							
	Changing lifestyles and impact on culture in a globalized world	10						
0.0	207.2 Understanding Stress and Conflict	10						
	Causes of stress and conflict in individuals and society Agents of socialization and the role played by them in developing the individual Significance of values, ethics and prejudices in developing the individual Stereotyping and prejudice as significant factors in causing conflicts in society							
	Aggression and violence as the public expression of conflict							
	Types of conflicts and use of coping mechanisms for managing							

individual stress Maslow's theory of self-actualization Different methods of responding to conflicts in society Conflict-resolution and efforts towards building peace and harmony in society	
207.3 Human Rights	10
Concept of human rights: Origin and evolution of the concept The Universal Declaration of Human Rights Human rights constituents with special reference to Fundamental Rights stated in the constitution Development projects and Human Rights Violations	50

Foundation	Micheal Vaz, Madhu Nair, Meeta Seta; Foundation Course, Semeste
course	II; Manan PrakashanK.T. Basanti:Social Problems (foundation Course), Seth Publication
	in Ruita
p.ainin	
2 31011	

Modality of Assessment for: F.Y.B.Sc. Semester II

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1.	Internal Examination	20
2.	Assignment/Group Discussion/Presentation/Class Activity	20
	TOTAL	40

B) External Examination- 60%- 60 Marks Semester End Theory Examination:

- 3. Duration These examinations shall be of **2.0 Hours** duration.
- 4. Theory question paper pattern:

Paper Pattern for Biological, Chemical, Computational Sciences:

Question	Options	Marks	Questions Based on		
Q.1. Short answer question (5 Marks each)	3 out of 4	15	Unit I		
Q.2. Short Answer questions (5 Marks each)	3 out of	15	Unit II		
Q.3. Short Answer questions (5 Marks each)	3 out of 4	15	Unit III		
Q.4. Objective/short answer question (5 Marks each)	3 out of 4	15	Combination of all units		
	TOTAL	60			

Paper Pattern for Foundation Course:

Question	Options	Marks	Questions Based on
Q.1. Short answer	1 out of 2	8	Unit I
question	Compulsory	7	Offic 1
Q.2. Short Answer	1 out of 2	8	Unit II
questions	Compulsory	7	Offic II
Q.3. Short Answer	1 out of 2	7	Unit III
questions	Compulsory	8	Offic III
Q.4. Objective/short answer question (5 Marks each)	3 out of 4	15	Combination of all units
	TOTAL	60	

Practical Examination Pattern:

A) Internal Examination: 40%-40 Marks

Particulars	
Journal	10
Experimental tasks/Attendance	10
Small project/Class	20
assignment/Presentation/Activity	
/Viva	~ O >
Total	40

B) External Examination: 60%-60 Marks

Semester End Practical Examination:

Particulars	Paper
Required Experiments Performed with appropriate principle, approach, Observations, Result, Demonstration of skills, Conclusion and Viva.	60
Total	60

Overall Examination & Marks Distribution Pattern

Semester II

Course	201				202			203			204	
	Internal	External	Total									
Theory	40	60	100	40	60	100	40	60	100	40	60	100
Practicals	7	_	_	40	60	100	_	_	_	40	60	100

Course	rse 205 206				Grand Total					
	Internal	External	Total	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	40	60	100	700
Practicals	-	-		40	60	100	-	-		300

Course Title: Biological Sciences III

Academic year 2020-21

S.Y.B.Sc.

COURSE OUTCOME	DESCRIPTION
CO 1	Students should comprehend central dogma of molecular biology as a
	prerequisite to study techniques like cloning, PCR, RFLP, etc.
CO 2	Students should understand the significance and applications of
	developmental biology in the modern world.
CO 3	Students should understand the applications of ethanobotany and
	pharmacognosy in drug development

Paper Code	Semester III	Lectures
RUSBAS301	Biological Sciences III	45
	301.1: Central Dogma of Molecular Biology	15
	Concept of Central dogma of molecular biology, Genetic code Replication in prokaryotes, Transcription & Translation in prokaryotes Post translational modification, Regulation of gene expression in prokaryotes, (lac operon and trp operon)	
	301.2: Developmental Biology	15
	Development of organ system, Developmental signals – polarity, differentiation, apoptosis, Ageing, regeneration and wound healing Process of Fertilization in humans, Gamete Collection and Storage, in vivo ∈ vitro Fertilization Technique	
0.0	301.3: Pharmacognosy & Ethnobotany	15
	Pharmacognosy: (12) The scope & practice of Pharmacognosy, sources of crude drugs, Collection, Processing and evaluation of crude drugs Deterioration and adulteration of Crude drugs, Current Trends in Pharmacognosy, Good Cultivation & harvesting practices (introduction) Ethnobotany: (3)	
	Principles & Importance of Ethnobotany	

House, New Delhi, 20	Hill: Developmental Biology, New York. Harpar: Developmental Biology, Raw Publishe ular Developmental Biology, Narosa Publishir 08
anar ain Ruina k	
Rall	

Course Title: Biological Sciences IV

Academic year 2020-21

S.Y.B.Sc.

COURSE	DESCRIPTION
OUTCOME	
CO 1	Students should study various sources of plants and animals used as
	antimicrobial agents. They should understand the significance of drug
	discovery, also the industrial significance of microorganisms.
CO 2	Students should be able to classify viruses with respect to their
	properties and nature also to study their associations with humans.
CO 3	Students should study the basics of immunology. They should be able
	to describe autoimmune disorders. They should be able to correctly
	interpret the results of diagnostic tests like VIDAL, VDRL and ELISA.

Paper Code	Semester III	Lectures
RUSBAS302	Biological Sciences IV	45
	302.1 Industrial Microbiology	15
	Sources of antimicrobial agents: plants and microorganisms, Antimicrobial Agents Used <i>In vivo</i> and their commercial production.	
	Antimicrobial Drug Resistance and Drug Discovery Important microbes in Food & Drug industry, Pathogenic Organisms in Food & Pharma Industry Commercial significance of Microbeau Biopolymera Biogurfactoria	
(Commercial significance of Microbes: Biopolymers, Biosurfactants. 302.2 Virology & Interaction of microbes with humans	15
Rain	Virology : Introduction, Scope and Current trends in virology Structures and life cycles of bacteriophages, plant and animal viruses	
	Interactions of microbes with Humans – Influenza, Staphylococcus, Plasmodium, Candida Control of Viruses and Eukaryotic Pathogens.	
	302.3 Introduction to Immunology	15
	Concept of antigen, antibody, Types of immunity, Antigen-Antibody Reactions (MHC, APC introduction), Hypersensitivity and its types, Autoimmune disorders (<i>minimum two</i>) and their management	

RUSBASP301	PRACTICALS
	a) Blood grouping
	b) Isoagglutinin titre- Widal, VDRL tests, Use of diagnostic tests-
	ELISA demonstration
	c) Total viable count of the provided sample.
	d) Direct microscopic counts of provided sample using Breeds
	count method and Haemocytometer
	e) Study of growth curve of <i>E.coli</i>
	f) Physical and chemical methods of disinfection
	g) Study of Normal flora of human body, common microbial
	contaminants in foods: S. aureus, S. typhi, B. subtilis
	h) Study of microbial Biosurfactants (demo)
	i) Analysis of Crude drugs by Microscopy

Biological	Flint - Virology
Sciences IV	Kindt, Goldsby, Osborne - Kuby Immunology
	S. Pathak and U. Palan – Immunology and Fundamental
	Micheal J. Pelczar, Jr., E.C.S. Chan, Noel R. Krieg – Microbiology
	Lasing.M.Prescott, Harley, Klein , Microbiology
40	

Course Title: Chemical Sciences III

Academic year 2020-21

S.Y.B.Sc.

COURSE	DESCRIPTION
OUTCOME	10,0
CO 1	Students should apply theoretical principles of electrochemistry in
	analysis of solutions using pH meter and Conductometer.
CO 2	Students should be adept in operation of these two instruments. They
	should perform organic synthesis with minimal use of resources and
	apply greener methods of synthesis.

D C 1	C , IVI	T .
Paper Code	Semester III	Lectures
RUSBAS303	Chemical Sciences III	45
	303.1 Electrochemistry	15
Rain	Nature of electrolytes in solution: Variation of molar conductance with concentration for weak and strong electrolytes (derivation of equation is not expected). Kohlrausch's law and its application to determine Molar conductance at infinite dilution of a weak electrolyte, Dissociation constant of a weak electrolyte, Solubility of sparingly soluble salts, Migration of ions, ionic mobilities. Nernst theory, EMF, cells, activity, ionic strength, Membrane potential-applications Conversion of chemical energy to electrical energy. Galvanic cells, reversible and irreversible cells. Types of electrodes:Metal – metal ion electrode, Redox electrodes, Gas electrode, Glass electrode Classification of cells – Chemical and concentration cells, concentration cells with transference, concentration cells without transference, liquid junction potential, use of salt bridge. Applications, strengths and limitations of electrochemical analysis	
	303.2 Newer methods of organic synthesis & Name Reactions (Mechanism and Applications)	15
	Newer methods of organic synthesis: Introduction to the use of following organic synthesis Ultrasound, Microwaves, Phase Transfer Catalyst	

Name Reactions (Mechanism and Applications): Baeyer-Villiger Oxidation, Beckmann rearrangement, Corey-Kim Oxidation, Cornforth rearrangement, Robinson Annulation, Houben-Hoesch Reaction, Favorskii rearrangement, Swern Oxidation, Luche Reduction, Dienone-Phenol rearrangement.	
303.3 Instrumental methods of analysis	15
Principle, instrumentation, working and applications of: Conductometry, Potentiometry, pH metry, Turbidometry and nephelometry, Sample preparations for above methods, advantages, disadvantages Possible errors and Precautions in each instrumentation technique	00

Chemical	• Hobart.H.Williard, Lyne.L.Merrit, John.A.Dean, Frank.A.Settle.Jr. :
Sciences III	Instrumental Methods of Analysis: CBS Publisher.
	• Douglas.A.Skoog, F.James Holler, Stanley R Crouch : Principles of
	analytical : 6th editionn : Thomson/Brooks/Cole
	David Harvey: Modern Analytical Chemistry: Mc Grow Hill Publishers
	Douglas.A.Skoog, F.James Holler, Stanley R Crouch : Principles of analytical : 6th editionn : Thomson/Brooks/Cole
	SomenathMitra : Sample preparation Technique in Analytical Chemistry : Wiley interscience
	Allen J. bard:Electrochemical Methods
	P.S Kalsi: Organic chemistry and their mechanism : New Age
	International

Course Title: Chemical Sciences IV Academic year 2020-21 S.Y.B.Sc.

COURSE	DESCRIPTION
OUTCOME	c_{0}
CO 1	Students should comprehend the fundamentals of spectroscopy and
	separation methods which will be useful to study advanced
	instrumentation in these fields.
CO 2	Students should correctly demonstrate the structures and organic
	reactions of heterocyclic compounds.

Paper Code	Semester III	Lectures
RUSBAS304	Chemical Sciences IV	45
	304.1 Basic Spectroscopy	15
	Electromagnetic spectrum (EMR), Units of wavelength and frequency and their inter conversions.	
	Interaction of EMR with matter: Nature of radiation, energy of molecules- electronic, vibrational and rotational	
	Beer-Lambert's law, Concept of absorbance, transmittance and molar absorptivity, deviation of Beer-Lambert's equation and its limitations,	
2	Quantization of energy, Bohr frequency condition	
	Single beam colorimeter – Principle, components and working.	
	Regions of electromagnetic spectrum and process associated with each region.	
	UV- VIS : Basic theory, Solvents, Nature of UV-Visible spectrum, Concept of Chromophore, Auxochrome, Bathochromic Shift, Hyper chromic and Hypochromic effect, Chromophore-Chromophore	

Introduction: Electronic structure and aromaticity of furan, pyrrole, thiophene and pyridine. Synthesis: Synthesis of furans, pyrroles, and thiophenes by Paal-Knor synthesis. Pyridines by Hantzsch synthesis and from 1,5-diketones. Reactivity: Reactivity towards electrophilic substitution reactions-of furan, pyrrole and thiophene on basis of stability of intermediate; and of pyridine on the basis of electron distribution. Nucleophilic substitution reaction of pyridine on the basis of electron distribution. Reactions of heterocycles: The following reactions of furan, pyrrole and thiophene: Halogenation , Nitration, Sulphonation, Vilsmeir formylation reaction, Friedel-Crafts reaction. Furan: Diels-Alder reaction. Ring opening of furan. Pyrrole: Acidity and basicity of pyrrole -Comparison of basicity of pyrrole and pyrrolidine, Acid catalyzed polymerization of pyrrole. Pyridine: Basicity. Comparison of basicity of pyridine, pyrrole and piperidine. Sulphonation of pyridine, with and without catalyst. Reduction, Oxidation of alkyl pyridines and action of sodamide (Chichibabin reaction). N methylation of pyridine. Quaternization of piperdine, pyrrolidine and Hofmann elimination of the quaternary salts. 304.3 Methods of Separations-I Partition coefficient and distribution ratio, extraction efficiency, separation factor, role of complexing agents in solvent extraction; batch, continuous.	Ramnarain Ruia A	Autonomous College, Syllabus For Bioanalytical Sciences (UG) 2020-2021	Salce of are in a fine
Colorimetry and UV-Visible spectroscopy 304.2 Heterocyclic Compounds Introduction: Electronic structure and aromaticity of furan, pyrrole, thiophene and pyridine. Synthesis: Synthesis of furans, pyrroles, and thiophenes by Paal-Knor synthesis. Pyridines by Hantzsch synthesis and from 1,5-diketones. Reactivity: Reactivity towards electrophilic substitution reactions-of furan, pyrrole and thiophene on basis of stability of intermediate; and of pyridine on the basis of electron distribution. Nucleophilic substitution reaction of pyridine on the basis of electron distribution. Reactions of heterocycles: The following reactions of furan, pyrrole and thiophene: Halogenation , Nitration, Sulphonation, Vilsmeir formylation reaction, Friedel-Crafts reaction. Furan: Diels-Alder reaction. Ring opening of furan. Pyrrole: Acidity and basicity of pyrrole -Comparison of basicity of pyrrole and pyrrolidine, Acid catalyzed polymerization of pyrrole. Pyridine: Basicity. Comparison of basicity of pyridine, pyrrole and piperidine. Sulphonation of pyridine, with and without catalyst. Reduction, Oxidation of alkyl pyridines and action of sodamide (Chichibabin reaction). N methylation of pyridine. Quaternization of piperdine, pyrrolidine and Hofmann elimination of the quaternary salts. 304.3 Methods of Separations-I Partition coefficient and distribution ratio, extraction efficiency, separation factor, role of complexing agents in solvent extraction, chelation, ion pair formation, solvation, types of solvent extraction: batch, continuous.		interactions and Chromophore-Auxochrome interactions	
Introduction: Electronic structure and aromaticity of furan, pyrrole, thiophene and pyridine. Synthesis: Synthesis of furans, pyrroles, and thiophenes by Paal-Knor synthesis. Pyridines by Hantzsch synthesis and from 1,5-diketones. Reactivity: Reactivity towards electrophilic substitution reactions-of furan, pyrrole and thiophene on basis of stability of intermediate; and of pyridine on the basis of electron distribution. Nucleophilic substitution reaction of pyridine on the basis of electron distribution. Reactions of heterocycles: The following reactions of furan, pyrrole and thiophene: Halogenation , Nitration, Sulphonation, Vilsmeir formylation reaction, Friedel-Crafts reaction. Furan: Diels-Alder reaction. Ring opening of furan. Pyrrole: Acidity and basicity of pyrrole -Comparison of basicity of pyrrole and pyrrolidine, Acid catalyzed polymerization of pyrrole. Pyridine: Basicity. Comparison of basicity of pyridine, pyrrole and piperidine. Sulphonation of pyridine, with and without catalyst. Reduction, Oxidation of alkyl pyridines and action of sodamide (Chichibabin reaction). N methylation of pyridine. Quaternization of piperdine, pyrrolidine and Hofmann elimination of the quaternary salts. 304.3 Methods of Separations-I Partition coefficient and distribution ratio, extraction efficiency, separation factor, role of complexing agents in solvent extraction; batch, continuous.			
Electronic structure and aromaticity of furan, pyrrole, thiophene and pyridine. Synthesis: Synthesis of furans, pyrroles, and thiophenes by Paal-Knor synthesis. Pyridines by Hantzsch synthesis and from 1,5-diketones. Reactivity: Reactivity: Reactivity towards electrophilic substitution reactions-of furan, pyrrole and thiophene on basis of stability of intermediate; and of pyridine on the basis of electron distribution. Nucleophilic substitution reaction of pyridine on the basis of electron distribution. Reactions of heterocycles: The following reactions of furan, pyrrole and thiophene: Halogenation, Nitration, Sulphonation, Vilsmeir formylation reaction, Friedel-Crafts reaction. Furan: Diels-Alder reaction. Ring opening of furan. Pyrrole: Acidity and basicity of pyrrole -Comparison of basicity of pyrrole and pyrrolidine, Acid catalyzed polymerization of pyrrole. Pyridine: Basicity. Comparison of basicity of pyridine, pyrrole and piperidine. Sulphonation of pyridine, with and without catalyst. Reduction, Oxidation of alkyl pyridines and action of sodamide (Chichibabin reaction). N methylation of pyridine. Quaternization of piperdine, pyrrolidne and Hofmann elimination of the quaternary salts. 304.3 Methods of Separations-l Partition coefficient and distribution ratio, extraction efficiency, separation factor, role of complexing agents in solvent extraction, chelation, ion pair formation, solvation, types of solvent extraction: batch, continuous.			15
Partition coefficient and distribution ratio, extraction efficiency, separation factor, role of complexing agents in solvent extraction, chelation, ion pair formation, solvation, types of solvent extraction: batch, continuous.		Introduction: Electronic structure and aromaticity of furan, pyrrole, thiophene and pyridine. Synthesis: Synthesis of furans, pyrroles, and thiophenes by Paal-Knor synthesis. Pyridines by Hantzsch synthesis and from 1,5-diketones. Reactivity: Reactivity towards electrophilic substitution reactions-of furan, pyrrole and thiophene on basis of stability of intermediate; and of pyridine on the basis of electron distribution. Nucleophilic substitution reaction of pyridine on the basis of electron distribution. Reactions of heterocycles: The following reactions of furan, pyrrole and thiophene: Halogenation, Nitration, Sulphonation, Vilsmeir formylation reaction, Friedel-Crafts reaction. Furan: Diels-Alder reaction. Ring opening of furan. Pyrrole: Acidity and basicity of pyrrole -Comparison of basicity of pyrrole and pyrrolidine, Acid catalyzed polymerization of pyrrole. Pyridine: Basicity. Comparison of basicity of pyridine, pyrrole and piperidine. Sulphonation of pyridine, with and without catalyst. Reduction, Oxidation of alkyl pyridines and action of sodamide (Chichibabin reaction). N methylation of pyridine. Quaternization of piperdine, pyrrolidine and Hofmann elimination	200
separation factor, role of complexing agents in solvent extraction, chelation, ion pair formation, solvation, types of solvent extraction: batch, continuous.		304.3 Methods of Separations-I	15
miscible solvents, use of drying agents and their properties, sublimation. Purification of liquids. Experimental techniques of distillation, fractional distillation, distillation under reduced pressure. Solvent extraction, use of immiscible solvents Applications of separation techniques in Bioanalysis.	Pain	separation factor, role of complexing agents in solvent extraction, chelation, ion pair formation, solvation, types of solvent extraction: batch, continuous. Purification of solid organic compounds, recrystallisation, use of miscible solvents, use of drying agents and their properties, sublimation. Purification of liquids. Experimental techniques of distillation, fractional distillation, distillation under reduced pressure. Solvent extraction, use of immiscible solvents	

RUSBASP302	PRACTICALS	
	Conductometry:	
	1. Determination of Cell constant of conductivity cell	
	2. Verification of Ostwald's dilution law	
	3. Investigate the titration of mixture of HCl and Oxalic acid by NaOH.	
	4. Investigate the Conductometric titration of Oxalic acid with Standard NaOH solution	
	5. Determination of the mixture composition of Acetic acid and HCl by Conductometric titration	
	6. Determination of relative strength of Chloro-acetic acid and Acetic acid by Conductivity measurement.	
	pH-Metry:	
	7. Identification of an acid by acid-base titration pH-metrically	
	8. pH titration of sodium carbonate against HCl to	
	demonstrate the selection of indicators for two inflections.	
	Organic Derivative:	
	9. Acetylation of Salicylic acid	
	10. Nitration of Salicylic acid	
	11. Hydrolysis of Ethyl benzoate	

Chemical	Dand Harvey: Modern Analytical Chemistry: Mc Grow Hill Publishers
Sciences IV	 Hobart.H.Williard, Lyne.L.Merrit, John.A.Dean, Frank.A.Settle.Jr.: Instrumental Methods of Analysis: CBS Publisher.
	 David Harvey: Modern Analytical Chemistry: Mc Grow Hill Publishers
	 Douglas.A.Skoog, F.James Holler, Stanley R Crouch: Principles of analytical: 6th edition: Thomson/Brooks/Cole
	 Donald Pavia, Gary Lampman, George Kriz, James Vyvyan: Introduction to Spectroscopy: 4th Edition:Brooks/Cole
	John Joule and Keith Mills:Heterocyclic Chemistry

Course Title: Computational Sciences III

Academic year 2020-21

S.Y.B.Sc.

COURSE	DESCRIPTION
OUTCOME	
CO 1	Students should effectively use algorithms and graphs for analysis and representation of biological data. They should be able to solve problems based on numerical methods.

Paper Code	Semester III	Lectures
RUSBAS305	Computational Sciences III	30
	305.1 Algorithms	10
	 Definition and characteristics of an algorithm, selection and interactive constructs in pseudocode. Data structures like array. Sorting, insertion sort, bubble sort Searching algorithms, linear search and binary search Algorithms on integers, algorithm on matrices. 	
	305.2 Graphs	10
	 Introduction to graphs: types of graph(simple graph, multigraph, pseudograph, directed graph, with an example of each), some special simple graphs(complete graph, cycle, wheel in graph, loop, bipartite graph, regular graph) Representing graphs and graph isomorphism, their application Elementary combinatories: Sets; functions; relations 	
	(equivalence relations)4. Permutations and combinations with respect to applications.	
	305.3 Numerical Methods	10
	Finding roots of equations- a. Bisection method b. Iteration method c. Newton Raphson method d. Secant method	

2	2. Finding solutions of system of linear equations and
	numerical approximations-
	a. LU decomposition (Doolittle's method, Crout's
	method)
3	3. Inverse of matrix by Cholesky method

			JI,S	
			TO	
		ANIKOR		
	Ruil	9		
-7	Kain			
P. Sillin				

Course Title: Computational Sciences IV

Academic year 2020-21

S.Y.B.Sc.

COURSE OUTCOME	DESCRIPTION
CO 1	Students should analyze significance and validity of experimental results with statistical tests such as correlation, regression and hypothesis testing. They should comprehend the concepts of probability theory as a prerequisite to study advanced biostatistics.

	Y Y	
Paper Code	Semester III	Lectures
RUSBAS306	Computational Sciences IV	30
	 Correlation, Simple linear Regression Analysis Visualizing relationship using Scatter Diagram, Karl Pearson's Product moment correlation coefficient and its properties. Spearman's Rank correlation. (With and without ties) Concept of Simple linear regression. Principle of least squares. Fitting a straight line by method of least squares (Linear in Parameters) Relationship between regression coefficients and correlation coefficient, cause and effect relationship, Spurious correlation. Concept and use of coefficient of determination (R²). Measures of association with the help of Tau A, Tau B, Tau C, Gamma and Lambda, Somer's d 	10
	 Trial, random experiment, sample point and sample space. Definition of an event, mutually exclusive and exhaustive events. Classical (Mathematical) and Empirical definitions of Probability -Discrete random variable Random variable- Discrete and Continuous Standard Discrete Probability Distribution Functions Binomial, Poisson (Concept Only) Standard Continuous Probability Distribution Functions: Normal, t, Chi-square and F distribution (Concept only) 	10

	306.3 Basics of Theory of Estimation and Testing of hypothesis	
	1. Point and Interval estimate of single mean, single proportion from sample of large size.	
	2. Statistical tests: Concept of hypothesis, Null and Alternative Hypothesis, Types of Errors, Critical region, Level of significance, Power	
	3. Small sample tests-Independent sample t-test, paired t-test. Concept of p-value. (Use of Excel and SPSS)	
RUSBASP303	PRACTICALS	
	1. Working with various forms of graphs	
	2. Introduction of MS-Office: Different elements of word processing (MS-WORD) Spreadsheets (MS EXCEL) and	
	PowerPoint presentation (MS POWERPOINT)	
	3. Browsers, various search engines and metadata, E-Mail/Web mail etc.	

Computational	Probability and measurement by P. Billingsley
Sciences IV	 Introduction to probability theory by Das
	 Testing Statistical Hypotheses: Lehmann, Erich L., Romano, Joseph P.
	 Introduction to Linear Regression Analysis (Wiley Series): Douglas C.
	Montgomery, Elizabeth A. Peck, G. Geoffrey Vining

Course Title: Environmental Sciences

Academic year 2020-21

S.Y.B.Sc.

COURSE OUTCOME	DESCRIPTION
CO 1	Students should inculcate greener approach in their daily life. They
	should prepare themselves for prompt and efficient management of
	disasters.

Paper Code	Semester III	Lectures
RUSBAS307	Environmental Sciences	30
	307.1 Environment: An overview and Natural Resources	10
	1. Environment – Structure and components – Topology –	
	Natural and Human.	
	2. Ecosystem as part of Environment – Functioning and levels of	
	organization – Linkage with society and economy.	
	3. Emerging issues of development – Environment as a source	
	and depository of resources, products and waste.	
	4. Sustainable use of resources – a multidisciplinary approach –	
	importance of Environmental Studies.	
	5. Definition, importance and classification of natural resources.	
	6. Resource rich and resource poor regions – emerging gaps	
	7. Distribution patterns, utilization and conservation of water, forest and energy resources	
		10
	307.2 Disaster – Natural and Man-made & Environmental issues	10
	and Movements	
	 Concept of disaster – Natural and man-made Natural hazard/Disasters: Causes and Consequences – 	
	Earthquake and Tsunami, Cyclone, Flood and Drought (a case	
	study)	
	3. Man-made disasters – Causes and Consequences – nuclear	
	accident, oil spill and leakage, industrial accident	
	4. Disaster Management cycle – Pre-disaster, disaster occurrence	
	and post-disaster- Role of technology	
	5. Environmental problems – Causes and Effects	
	6. Global issues – Global climate changes, Threats to Biodiversity,	
	tremendous pollution, population and ozone depletion (a case	
	study)	
	7. Regional issues – Acid rain, Desertification (a case study)	
	8. Major environmental movements in India	

30	7.3 Environmental Management	10
1.	Environmental management – concept and need – relevance of	
	Environmental education	
2.	Constitutional and legal provisions in India - International	
	efforts towards environmental protection – role of WTO	
3.	Environmental Statement, ISO 14000, ISO 16000,	
	Environmental Impact Assessment	
4.	Role of technology in environmental management (GIS, GPS,	
	Remote sensing as tools)	
5.	Carbon bank and Carbon credit	70

 Dr. Y. K. Singh: Environmental Science Abhijit Mitra, Tanmay Ray Chaudhari: Basics of Environmental Science 	ental ———
. Ruitonoin	
Ruitonoil	
Rija	
Pulla F	
6-0,	

Modality of Assessment for: S.Y.B.Sc. Semester III

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1.	Internal Examination	20
2.	Assignment/Group Discussion/Presentation/Class Activity	20
	TOTAL	40

B) External Examination- 60%- 60 Marks Semester End Theory Examination:

- 5. Duration These examinations shall be of **2.0 Hours** duration.
- 6. Theory question paper pattern:

Paper Pattern for Biological, Chemical, Computational Sciences III, Environmental Sciences:

Question	Options	Marks	Questions Based on
Q.1. Short answer question (5 Marks each)	3 out of 4	15	Unit I
Q.2. Short Answer questions (5 Marks each)	3 out of 4	15	Unit II
Q.3. Short Answer questions (5 Marks each)	3 out of 4	15	Unit III
Q.4. Objective/short answer question (5 Marks each)	3 out of 4	15	Combination of all units
4.0	TOTAL	60	

Paper Pattern for Computational Sciences IV:

Question	Options	Marks	Questions Based on
Q.1. Short answer	1 out of 2	8	Unit I
question	Compulsory	7	Offici
Q.2. Short Answer	1 out of 2	8	Unit II
questions	Compulsory	7	Offic II
Q.3. Short Answer	1 out of 2	7	Unit III
questions	Compulsory	8	Offic III
Q.4. Objective/short answer question (5 Marks each)	3 out of 4	15	Combination of all units
	TOTAL	60	

Practical Examination Pattern:

A) Internal Examination: 40%-40 Marks

Particulars	
Journal	10
Experimental tasks/Attendance	10
Small project/Class	20
assignment/Presentation/Activity	
/Viva	~ O >
Total	40

B) External Examination: 60%-60 Marks

Semester End Practical Examination:

Particulars	Paper
Required Experiments Performed with appropriate principle, approach, Observations, Result, Demonstration of skills, Conclusion and Viva.	60
Total	60

Overall Examination & Marks Distribution Pattern

Semester III

Course		301			302			303 304				
	Internal	External	Total									
Theory	40	60	100	40	60	100	40	60	100	40	60	100
Practicals	7-			40	60	100		_		40	60	100

Course	305			306			307			Grand Total
	Internal	External	Total	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	40	60	100	700
Practicals	_	_		40	60	100		_		300

To be revised for academic year 2020-2021

Course Title: Biological Sciences III Academic year 2020-21 S.Y.B.Sc.

COURSE OUTCOME	DESCRIPTION
CO 1	Students should be able to describe the functioning of nerve and muscles and understand the importance of neurotransmitters as potential target for drugs.
CO 2	Students should be able to understand genetics and describe inborn errors of metabolism and genetic disorders with respect to mutation, physiology, symptoms, diagnosis and cure. They should be aware of gene therapy as an emerging field to treat these disorders.

Paper Code	Semester IV			
RUSBAS401	Biological Sciences III	45		
	401.1 Biology of Muscles and Nerve Conduction	15		
	Muscle structure, Physiological and biochemical basis of muscle contraction Gibbs-Donnan Membrane Equilibrium and Physiology of nerve conduction Synapse & Synaptic conduction, Neurotransmitters. Drug addiction, Neuropathies			
	401.2 Genetic Mutation & Repair Types of mutation – Point and gross, Spontaneous and Induced, Types of Mutagens and effects, Cell survival strategies: repair mechanisms, Inborn errors of metabolism with examples	15		
	401.3 Genetic disorders Phenylketonuria, Albinism, Lesch-Nyhan Syndrome, Tay-Sachs Disease, Sickle-Cell Anemia, Cystic Fibrosis, Carrier detection, Huntington's Disease, Duchenne muscular Disorder, Hemophilia, Thalassemia, Down Syndrome.	15		

Biological Sciences III	 Fundamentals of Cytogenetics and Genetics: Mahabal Ram Human Cytogenetics: Constitutional Analysis: Denis Rooney Mutation Kindle Edition: Robin Cook The Concise Book of Muscles, Second Edition: Chris Jarmey
	 Nerve and Muscle (Studies in Biology) 3rd Edition:R. D. Keynes (Author), D. J. Aidley (Author)
	XO Y
	Daira Autonomous
	O TILL
	v
min	
P.amin	
Rainin	
Rainin	
Rainin	

To be revised for academic year 2020-2021

Course Title: Biological Sciences IV Academic year 2020-21

S.Y.B.Sc.

COURSE	DESCRIPTION
OUTCOME	
CO 1	Students should understand the theory, advantages and
	disadvantages of RIA, ELISA and Immunohistochemistry. They should
	be able to choose the most suitable technique as per the nature of
	sample and objective of analysis. They should understand wide range
	of the applications of these techniques in research and diagnostics.
CO 2	Students should have a knowledge of hormones and grasp the
	complex nature, co-ordination and integration of biochemical
	pathways.
CO 3	Students should have an idea about the tissue culturing techniques
	and be able to design animal and plant tissue culture laboratories.

Paper Code	Semester IV	Lectures
RUSBAS402	Biological Sciences IV	45
	402.1 Biochemical methods of Analysis	15
	Extraction & Analysis of Biomolecules. Use of Analytical instruments for Qualitative & Quantitative analysis, Immunohistochemistry, ELISA and RIA.	
	402.2 Cell communication and Cell signalling	15
	Hormones and classification of hormones, Hormone secreting glands, organization of endocrine system, Physiological role of – pancreatic hormones-(insulin, glucagon), thyroxine, glucocorticoids, epinephrine Signal transduction pathways, 2nd messengers, and bacterial chemotaxis	
	402.3 Tissue Culture- Plants & Animals	15
	Plant Tissue culture: Concept of Plant Tissue Culture, Nutrient Requirement, Callus Induction, Micropropagation, Callus Culture, Suspension Culture, Batch Culture, Application of Plant Tissue	

	Culture Animal Tissue culture: Concept of Animal Tissue culture Nutritional requirements of animal tissues (including significance of serum in media), Role of media components in production of
	tissue culture products, Concept of cell line & its classification with specific examples, Application of Animal Tissue Culture
RUSBASP401	PRACTICALS
110021101 101	
	Isolation of antibiotic producers
	2. Antibiotic spectrum studies by Kirby Bauer Method
	3. Protein estimation by Lowry's Method
	4. Total Sugar estimation by Anthrone's method
	5. UV survival curve of <i>E.coli</i> : photo reactivation and dark repair.
	6. Study of pollen biology
	7. Visit to Animal tissue culture & Plant tissue culture
	laboratory.
	8. Radio immunosorbent assay (demo)

Biological	Plant Tissue Culture : Basic and Applied : Timir Baran Jha / Biswajit
Sciences IV	Ghosh
	Advances in Plant Tissue Culture: Kirti K. Prasad
	 Animal Cell Culture: Essential Methods: John M. Davis
	 Molecular Cell Biology :Harvey Lodish , Arnold Berk , Chris A. Kaiser,
	Monty Krieger
	Biochemical Methods of Analysis:Saroj Dua
	Ian Freshney: Animal Tissue culture

To be revised for academic year 2020-2021

Course Title: Chemical Sciences III Academic year 2020-21 S.Y.B.Sc.

COURSE	DESCRIPTION	
OUTCOME		
CO 1	Students should study pharmaceutical chemistry and bio-organic	
	chemistry with the perspective of their applications in Bioanalytical	
	sciences.	
CO 2	Students should be aware of the advances in biopolymers	
	biomaterials and their applications.	

Paper Code	Semester IV	Lectures
RUSBAS403	Chemical Sciences III	45
	403.1 Introduction to Pharmaceutical Chemistry	15
	Scope of pharmacology, Source, Nature and Nomenclature of Drugs, Factors influencing Dosage and Drug Action, Introduction to drug action: Absorption, Distribution, Metabolism, Excretion of Drug (Drug Disposition and Pharmacokinetics)	
	403.2 Introduction to Bio-Organic Chemistry	15
Raini	Overview of α -Amino acids: Structure, configuration, Essential amino acids and their abbreviations, classification, Properties: pH dependency of ionic structure and isoelectric point, Methods of preparations of α -Amino acids: Strecker synthesis, amidomalonate synthesis, Erlenmeyer azalactone synthesis. Polypeptides and Proteins: Polypeptides: Peptide bond. Nomenclature and representation of polypeptides. Merrifields solid phase peptide synthesis (example of di- and tri- peptides for nomenclature and synthesis). Structures and properties of crown ethers, cryptands, cyclophanes, calixarenes, rotaxanes and cyclodextrins. Synthesis of crown ethers, cryptands and calixarenes. Molecular recognition and catalysis, molecular self-assembly.	

403.3 Material Chemistry: Polymers And Biomaterials

15

Polymers: Introduction: General idea of structure. namings, types of polymers, tacticity, polymerization processes with examples, radical and ionic mechanisms of polymerizations. Characteristic properties of polymers. General ideas of resins, plastics, rubber, idea of plasticizers, stabilizers, stabilizers, fillers. Structure, preparation and applications of PE (types and Ziegler – Natta process), PP, Teflon, PVC, polyacrylates, PAN, Neoprene, Terylene, Nylons, Phenol/Melamine/Urea-formaldehyde Resins, polyurethane, polycarbonate, epoxy resins (structures of the monomers and those of the polymers are expected.

Biomaterial: Introduction: Definition of biomaterials, requirements & classification of biomaterials, Comparison of properties of some common biomaterials. Effects of physiological fluid on the properties of biomaterials. Biological responses (extra and intra-vascular system). Surface properties of materials, physical properties of materials, mechanical properties. Metallic implant materials - Stainless steel, Co-based alloys, Ti and Ti-based alloys. Importance of stress-corrosion cracking. Host tissue reaction with biometal, corrosion behaviour and the importance of passive films for tissue adhesion. Hard tissue replacement implant: Orthopedic implants, Dental implants. Soft tissue replacement implants: Percutaneous and skin implants, Vascular implants, Heart valve implants-Tailor made composite in medium.

Reference Books:

Chemical Sciences III

- F.A.Carey: R.J Sunderberg: Advanced organic chemistry: Plenum
- J. W. Steed, J. L. Atwood Supramolecular Chemistry: 2nd edition: John Wiley & Sons 2009
- Carsten Schmuck, HelmaWennemers: Highlights in Bioorganic Chemistry:
- Wiley-VCHBy Buddy D. Ratner, et. al.Biomaterials Science: An Introduction to Materials in Medicine, Academic Press
- Sujata V. Bhat: Biomaterials: Narosa Publishing House, 2002.
- J B Park: Biomaterials Science and Engineering: Plenum Press, 1984
- Pharmaceutical Chemistry : Watson (Author)

Course Title: Chemical Sciences IV Academic year 2020-21

S.Y.B.Sc.

COURSE OUTCOME	DESCRIPTION
CO 1	Students should grasp the concept of radioactivity and understand its
	applications in diagnostics and therapeutics.
CO 2	Students should understand importance of inorganic metals in
	maintenance of health.
CO 3	Students should comprehend basics of separation techniques as a
	prerequisite to study advanced and hyphenated separation
	techniques.
	~O _Y

Paper Code	Semester IV	Lectures
RUSBAS404	Chemical Sciences IV	45
	404 .1 Nuclear chemistry	15
Raini	Basic nuclear chemistry: Overview, Definitions/Terms involved. Use of radioisotopes as tracers in: Chemical investigations- reaction mechanism, Age determination- dating by Carbon-14 Activation analysis- basic principles, fast neutron activation analysis, radio-chemical method in activation analysis Isotopic dilution method- principle and applications. Auto, x-ray and gamma radiography, Radiometric Titrations Applications of radio-analytical techniques. Introduction to Nuclear medicine: Therapeutic Radioisotopes, Radiopharmaceuticals for therapy, Tissue targeting, Radiopharmaceutical quality control Beta particles: Copper Radioisotopes, Dysprosium-165, Erbium- 169, Iodine-131, Iodine-125, Lutitium-177, Phosphorous- 32, Radioisotopes of Rhenium, Samarium-153, Strontium- 89, Yttrium-90, Indium-111, Tin-Sn-117 Alpha particle emitters: Actinium, Bismuth, and Other Alpha Emitters. Cancer Radio Therapy	

	404.2 Aspects of Bio-Inorganic Chemistry	15
	Introduction-Metals in biological systems, Electron transfer in biological systems: Cytochrome and Iron sulphur protein Metalloenzyme/protein, Role of calcium in biology, Metals in medicine. Platinum binding to DNA 404.3 Methods of Separations-II	15
	Principle of adsorption and partition chromatography. Thin Layer Chromatography: choice of adsorbent, choice of solvent, preparation of chromatogram, sample, Rf value and its applications. Paper chromatography, solvent used, Rf value, factors which affect Rf value.	200
RUSBASP402	PRACTICALS	
	Separation of Organic mixtures: 1. Water soluble + Water insoluble (Solid + Solid) 2. Water insoluble + Water insoluble (Solid + Solid) Solvent Extraction: 1. Determination of Fe and Cu from their mixture 2. To determine the partition co-efficient of I₂ between water and CCl4 and water at given temperature Viscosity measurements: 1. To determine the molecular weight of polyvinyl alcohol using viscometer. Colorimetry: 1. To test the validity of the Beer-Lambert's Law and to determine: a) λmax b) Molar absorptivity constant 2. To determine indicator constant of a given indicator by Colorimetric measurements 3. Spectrophotometry: Turbidometric analysis of cough syrup	

Chemical Sciences IV	P S Kalsi:Bioorganic, Bioinorganic and Supramolecular Chemistry: New Age International
20	 Peter Atkins & Julio de Paulo: Physical Chemistry : Oxford University Press
	Ira N. Levine: Physical Chemistry : McGraw-Hill
	 Marie Claire Cantone, ChristophHoeschen: Radiation Physics for Nuclear Medicine: Springer
	 Douglas.A.Skoog, F.James Holler, Stanley R Crouch: Principles of analytical: 6th edition: Thomson/Brooks/Cole

To be revised for academic year 2020-2021

Course Title: Computational Sciences III Academic year 2020-21

S.Y.B.Sc.

COURSE OUTCOME	DESCRIPTION
CO 1	Students should apply statistical tests like ANOVA to analyze
	biological data. They should understand the basic concepts of
	experimental design with relevant examples in Bioanalytical sciences

Paper Code	Semester IV	Lectures
RUSBAS405	Computational Sciences III	30
	405.1 Analysis of Variance	10
	 Introduction, One way classification with equal & unequal observations per class Two way classification with one observation per cell. 	
	3. Three way classification	
	405.2 Design Of Experiments	10
	 Concepts of Experiments, Experimental unit, Treatment, Yield, Block, 	
	2. Replicate, Experimental Error, Precision.	
	Completely Randomized Design (CRD) & Randomized Block Design (RBD):	
~	3. Mathematical Model, Assumptions, Expectation of various sums of squares, F-test, Analysis of variance table. (Concept only-No derivations)	
Bally	4. Least square estimators of the parameters, Variance of the estimators, Estimation of linear contrasts, Standard Error and Confidence limits Testing for significance of elementary linear contrasts. Efficiency of RBD relative to	
	CRD. 5. Missing plot technique for one missing observation in case of CRD, RBD.	
	405.3 Latin Square Design (LSD)	10
	1. Mathematical Model, Assumptions, Expectation of various sums of squares, F-test, Analysis of variance table.	
	2. Least square estimators of the parameters, Variance of the	

estimators, Estimation of treatment contrasts, Standard error and Confidence limits for elementary treatment
contrasts. 3. Efficiency of the design relative to RBD, CRD.
4. Missing plot technique for one missing observation in case of LSD.

Computational Sciences III	 Designing experiments and analyzing data: Maxwell & Delaney Statistical principle in experiment design: Winer and Kirk Latin Square Design: David J. SavilleGraham R. Wood
	Fundamentals of Applied Statistics: S.C. Gupta & V.K. Kapoor
	XO.
	a ii a Aliko no in a line in a
	Pulia
	and Pulita
	rain Puita
	arain Ruita
	arain Ruita
	arain Ruita
	arain Ruin
Ramin	
Ramin	
Ramin	

To be revised for academic year 2020-2021

Course Title: Computational Sciences IV Academic year 2020-21 S.Y.B.Sc.

COURSE OUTCOME	DESCRIPTION
CO 1	Students should effectively use bioinformatics databases and tools to
	study DNA and protein sequences, protein structure and metabolic
	pathways

Paper Code	Semester IV	Lectures
RUSBAS406	Computational Sciences IV	30
	406.1 Introduction to Bioinformatics	10
	1. Introduction to Bioinformatics & Databases	
	2. Application of Bioinformatics	
	3. INSDC	
	4. Major Bioinformatics resources: NCBI, EBI, ExPASy	
	5. Nucleic acid: GENBANK, EMBL, DDBJ	
	6. Protein structure: domains, motifs (Pfam/Prosite)	
	7. Protein sequence databases: UniProt, PIR, SWISSPROT, TrEMBL	
	8. Literature database : PUBMED	
	9. Genome database: GSS, Genome	
	10. Specialized database: OMIM	
	11. Protein structure databases: PDB	
AC	12. Metabolic Pathway database: KEGG	4.0
	406.2 Basics to Sequencing	10
	1. Molecular biology basics	
	2. Genomics	
	3. Proteomics	
	4. DNA sequencing technology: Whole-genome shotgun	
	sequencing strategies	
	5. Protein sequencing methods	
	6. Sequence File formats	
	406.3 Pairwise Sequence Alignment	10
	1. Basic Concepts of sequences similarity, Identity and homology	
	2. Definition of homologs, orthologs, paralogs	
	3. Concepts of sequence alignments	

	4. Pairwise sequence alignment methods
	5. DOT Matrix analysis
	6. Scoring matrices: Basic concepts of scoring matrix, PAM and
	BLOSUM series and principles based on which these matrices
	are derived
RUSBASP403	PRACTICALS
	 INSDC- NCBI, EMBL, DDBJ Sequence databases- EMBL-EBI, GenBank, UniProt Structure databases- PDB Domain database: Prosite, PRINT, Pfam. Specialized database: KEGG, PUBMED, OMIM Use of Rasmol

Reference Books:	
Computational Sciences IV	 Computational Biology and Bioinformatics :Ka-Chun Wong Chapter 1, Advanced Data Mining Technologies in Bioinformatics W3 Schools: HTML and XML Complete Reference to HTML and XML
	RUL
R.ainin	
ann	
5.0.	

To be revised for academic year 2020-2021

Course Title: Technical Communication Skills Academic year 2020-21

S.Y.B.Sc.

COURSE	DESCRIPTION
OUTCOME	
CO 1	Students should know the expected format and standards of
	professional writing.
CO 2	Students should be adept and confident in writing skills like letters,
	resume, abstract, book review etc.

_		1
Paper Code	Semester IV	Lectures
RUSBAS407	Technical Communication Skills	30
	407.1 Basics of effective communication	10
	1. Basics of effective communication	
	a) Concepts	
	b) Process	
	c) Myths about communication	
	2. Communication: It's interpretation	
	a) Verbal Communication	
	b) Non-verbal Communication	
	c) Barriers to Communication	
	3. Case study	
	4. Listening skills	
4	407.2 Mechanics of writing	10
	4 147 1.1 1 1	
	1. Writing basics	
	a) Spelling rules	
	b) Punctuation	
	c) Abbreviations	
	d) Proof Reading	
	2. Letters	
	a) Application Letter	
	b) Bank Letters	
	c) Business Letters	
	d) Letters to the Editor	
	e) E-Communication	
	3. Resume writing	

4.	Interview skills	
5.	Reports	
	a) Experimental Report	
	b) Field Work Report	
	c) Industrial Visit Report	
6.	Group discussion	
407.3	Technical writing	10
1.	Assignment Writing	
	Written Scientific Communication	76
3.	Book review	90
4.	Minutes of the meeting	20
5.	PowerPoint presentation skills	

Reference books.	
Technical Communication Skills	 The Essentials of Technical Communication : Elizabeth Tebeaux , Sam Dragga A Field Guide for Science Writers: Deborah Blum
	111 TOTAL GUILLE TOT BETEINE WITHOUT BUILDING
	R-C
5.0.	
Y	

Modality of Assessment for: S.Y.B.Sc. Semester IV

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1.	Internal Examination	20
2.	Assignment/Group Discussion/Presentation/Class Activity	20
	TOTAL	40

B) External Examination- 60%- 60 Marks Semester End Theory Examination:

- 7. Duration These examinations shall be of **2.0 Hours** duration.
- 8. Theory question paper pattern:

Paper Pattern for Biological, Chemical, Computational Sciences IV:

Question	Options	Marks	Questions Based on
Q.1. Short answer question (5 Marks each)	3 out of 4	15	Unit I
Q.2. Short Answer questions (5 Marks each)	3 out of	15	Unit II
Q.3. Short Answer questions (5 Marks each)	3 out of 4	15	Unit III
Q.4. Objective/short answer question (5 Marks each)	3 out of 4	15	Combination of all units
* 3	TOTAL	60	

Paper Pattern for Computational Sciences III, Technical Communication Skills:

Question	Options	Marks	Questions Based on
Q.1. Short answer	1 out of 2	8	Unit I
question	Compulsory	7	Offici
Q.2. Short Answer	1 out of 2	8	Unit II
questions	Compulsory	7	Unit ii
Q.3. Short Answer	1 out of 2	7	Unit III
questions	Compulsory	8	Offic III
Q.4. Objective/short answer question (5 Marks each)	3 out of 4	15	Combination of all units
	TOTAL	60	

Practical Examination Pattern:

A) Internal Examination: 40%-40 Marks

Particulars	
Journal	10
Experimental tasks/Attendance	10
Small project/Class	20
assignment/Presentation/Activity	
/Viva	^ ()
Total	40

B) External Examination: 60%-60 Marks

Semester End Practical Examination:

Particulars	Paper
Required Experiments Performed with appropriate principle, approach, Observations, Result, Demonstration of skills, Conclusion and Viva.	60
Total	60

Overall Examination & Marks Distribution Pattern

Semester IV

Course		401			402			403			404	
	Internal	External	Total									
Theory	40	60	100	40	60	100	40	60	100	40	60	100
Practicals	7-2	_		40	60	100		_		40	60	100

Course		405			406			407		Grand Total
	Internal	External	Total	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	40	60	100	700
Practicals	_	_		40	60	100		_		300

.0,

Course Code: RUSBAS501

Course Title: Entrepreneurship Skills

Academic year 2020-21

T.Y.B.Sc.

COURSE	DESCRIPTION
OUTCOME	
CO 1	Students will be motivated to start their own enterprise.
CO 2	Students should be aware of the required skill set for an entrepreneur and also realize the challenges in this area.

Paper Code	Semester V	Lectures
RUSBAS501	ENTREPRENEURSHIP SKILLS	40
	501.1 The Entrepreneur	10
	 Entrepreneurial motivation – dynamics of motivation. Entrepreneurial competency – Concepts. Developing Entrepreneurial competencies - requirements and understanding the process of entrepreneurship development, self awareness, interpersonal skills, creativity, assertiveness, achievement, factors affecting entrepreneur's role. 	
	 Conceptual Frame Work Concept, need and process in entrepreneurship development. Role of enterprise in national and global economy Types of enterprise – Merits and Demerits Government policies and schemes for enterprise development Institutional support in enterprise development and management 	10
Paini	 Business Economics Demand analysis, concept & types of demand ,law of demand Utility analysis, concept & types of utility ,law of utility Introduction to Cost & Revenue , its types STP (segmentation / targeting / positioning) Sources of Growth-Concept and Importance of Knowledge Economy WTO: Functions and Agreements with Reference to TRIPS,TRIMS and GATS. 	10
	501.4 Knowledge Management 1. Introduction 2. History and Evolution 3. Pillars of Knowledge Management	10

	4. Scope & Significance Technology & Knowledge
	Management.
	5. Critical Success Factors of KM
	6. Case Studies
	7. P's of Marketing
RUSBASP501	PRACTICALS
	Case Study/Assignment/Project Report/Industrial Visit

Entrepreneurship	Eric Ries: The Lean Startup
Skills	 Kimiz Dalkir: Knowledge Management in theory and Practice
	Jugaad Innovation: Radjou,Prabhu,Ahuja
	AUTOUR
	RUL
•	RUL
. 7	RUL
	RUL
	RUL
	RUL
	RUL
annar	RUL
p.amnar	RUL
Rainai	RUL
Ramara	RUL
Rainair	RUL
Rainair	RUL

Course Title: Biological Sciences V

Academic year 2020-21

T.Y.B.Sc.

COURSE	DESCRIPTION
OUTCOME	
CO 1	Students will be able to design basic cloning experiments to obtain genetically modified organisms. They should be sensitized regarding ethical guidelines of cloning.
CO 2	Students should realize the importance of phytochemicals as possible drug candidates and learn the techniques to extract phytochemicals
	from plants.

Paper Code	Semester V	Lectures
RUSBAS502	Biological Sciences V	45
	502.1: Recombinant DNA Technology	15
	Concept of Transposons, Plasmids, Vectors, Cosmids, Restriction Enzymes Transgenic Bacteria, Plants and Animals: Commercial applications with suitable examples (Any Two), Cloning-current Status, Regulations, Ethics etc	
aini	Primary and secondary metabolites from plants, Classification of Plant Secondary metabolites, Functions of Plant Secondary Metabolites, Chemistry of Phenolics, Terpenoids, Alkaloids, Phytochemicals as Drugs, Key factors affecting synthesis of secondary metabolites, Commercial applications	15
	502.3: Extraction Technologies for Phytochemicals Extraction of phytoconstituents, Choice of solvent for extraction, classical and modern methods of extraction, Percolation &	15
	Maceration, Soxhlet extraction, Steam Distillation & Rotary vacuum evaporator, Liquid-Liquid & Solid Phase Extraction, Ultrasonication, Microwave Assisted Extraction, Supercritical Fluid extraction	

RUSBASP502	PRACTICALS
	 Extraction of phytoconstituents by maceration, percolation, steam distillation and using soxhlet extractor Qualitative tests for Phytoconstituents Standardization of a solvent for extraction of phytoconstituents Estimation of alkaloids by gravimetry Quantitation of tannins by colorimetry Study of antimicrobial activity of phytoconstituents Extraction of Genomic DNA from suitable plant or microbial
	material
	8. Microscopic evaluation of plants
	9. Replica plate technique
	10. Problems on Restriction enzyme digestion

Biological Sciences V Molecular Biotechnology:Glick Biotechnology and Genetic Engineering:Kathy Wilson Gene Cloning:T.A.Brown Text book of Pharmacognosy:G.E. Trease,W.C. Evans Herbal Drug Technology:Agrawal,Paridhavi	 Biotechnology and Genetic Engineering:Kathy Wilson Gene Cloning:T.A.Brown Text book of Pharmacognosy:G.E. Trease,W.C. Evans Herbal Drug Technology:Agrawal,Paridhavi
Sciences V Biotechnology and Genetic Engineering:Kathy Wilson Gene Cloning:T.A.Brown Text book of Pharmacognosy:G.E. Trease,W.C. Evans Herbal Drug Technology:Agrawal,Paridhavi	 Biotechnology and Genetic Engineering:Kathy Wilson Gene Cloning:T.A.Brown Text book of Pharmacognosy:G.E. Trease,W.C. Evans Herbal Drug Technology:Agrawal,Paridhavi
 Gene Cloning :T.A.Brown Text book of Pharmacognosy:G.E. Trease,W.C. Evans Herbal Drug Technology:Agrawal,Paridhavi 	 Gene Cloning :T.A.Brown Text book of Pharmacognosy:G.E. Trease,W.C. Evans Herbal Drug Technology:Agrawal,Paridhavi
 Text book of Pharmacognosy:G.E. Trease,W.C. Evans Herbal Drug Technology:Agrawal,Paridhavi 	 Text book of Pharmacognosy:G.E. Trease,W.C. Evans Herbal Drug Technology:Agrawal,Paridhavi
Herbal Drug Technology:Agrawal,Paridhavi	Herbal Drug Technology:Agrawal,Paridhavi
D. Alfrination	
	7

Course Title: Chemical Sciences V

Academic year 2020-21

T.Y.B.Sc.

COURSE	DESCRIPTION	
OUTCOME		
CO 1	Students will be introduced to theory and instrumentation of HPLC	
	and GC. They should be able to analyze and interpret simple	
	chromatograms.	
CO 2	Students should realize the importance of safe handling of biomatrices.	
	They should be familiar with routine diagnostic tests and advanced	
	instrumentation in pathological testing.	

Paper Code	Semester V	
RUSBAS503	Chemical Sciences V	
	503.1 Methods of Separations-III	15
	Liquid Chromatography and its development to HPLC and its applications HPLC Instrumentation, Pumps, solvent delivery system, isocratic and gradient programming modes, Sample introduction system, Columns, Detectors. Reversed phase and normal phase chromatography Gas Chromatography, Gas Solid and Gas liquid Chromatography and its applications Gas Chromatography Instrumentation, Carrier gas supply, Injectors, Columns, Packed and capillary columns, Column oven and temperature programming, different detectors.	
5.0	503.2 Bioanalysis	15
	Introduction to Bioanalysis, Different sample matrices and special precautions to be taken while handling clinical samples Biochemical analysis of clinical samples: Glucose, calcium, kidney test, liver test, electrolytes, proteins, complete blood count. Advanced instrumentation in Bioanalysis: Flowcytometer, blood gas analyzer, automatic haematology analyzer, blood glucose analyzer, alcohol breath analyzer	

503.3 Thermodynamics

15

First law of thermodynamics, internal energy, enthalpy, isothermal and adiabatic processes, P-V-T relation for adiabatic process, Second law of thermodynamics, need for the law, Carnot's cycle, mechanical efficiency, Concept of entropy, physical significance of entropy, entropy changes accompanying change of state and transition.

Gibbs free energy and Helmholtz's free energy, variation of Gibbs's free energy with temperature and pressure, Gibb's-Helmholtz equation.

Physical equilibria involving pure substances, Clayperon's equation and variation of vapour pressure with temperature, Clausius-Clayperon equation and its applications. Partial molal properties, partial molal volume and chemical potential, Gibbs-Duhem equation.

Variation of chemical potential with pressure and temperature, fugacity, activity and their relationship with chemical potential, activity and activity coefficient.

Thermodynamic derivation of Law of mass action, Kp, Kc and their inter-relation, Van't Hoff's reaction isotherm and reaction isochore.

Chemical	r i i i i i i i i i i i i i i i i i i i		
Sciences V • High performance liquid chromatography in biotechnology; V			
Hancook			
 Principle and practice of Bioanalysis:Richard F. Venn 			
Understanding thermodynamics:Van Ness			
	The Laws of Thermodynamics:Peter Atkins		
P.aini			

Course Title: Chemical Sciences VI

Academic year 2020-21

T.Y.B.Sc.

COURSE	DESCRIPTION	
OUTCOME		
CO 1	Students will be introduced to basic concepts of pharmaceutical chemistry and understand the importance of a bioanalyst in	
	pharmaceutical industry.	
CO 2	Students should realize the problems involved in analyzing trace elements and complex matrices and learn to choose the suitable bioanalytical method for their analysis.	
CO 3	Students should apply techniques learned in bioanalysis for characterization of nutritional value of a food sample.	

Paper Code	Semester V	Lectures
RUSBAS504	Chemical Sciences VI	45
Raini	Definition of a drug, Requirements of an ideal drug, Classification of drugs (based on therapeutic action) Nomenclature of drugs: Generic name, Brand name, Systematic name Definition of the following medicinal terms: Pharmacon, Pharmacophore, Prodrug, Half-life efficiency, LD50, ED50, Therapeutic Index. Brief idea of the following terms: Receptors, Drug-receptor interaction, Drug Potency, Bioavailability, Drug toxicity, Drug addiction, Spurious Drugs, Misbranded Drugs, Adulterated Drugs, Pharmacopoeia. Routes of drug administration with advantages and disadvantages Formulations, Different dosage forms(emphasis on sustained release formulations) Introduction to Drug Discovery, Design and Development, Discovery of a Lead compound: Screening, drug metabolism studies and clinical observation	15
	Drug development from Natural Sources: Anti-infective agents, Anti- cancer agents, CNS agents, Development of drug: Pharmacophore	

	identification, modification of structure or functional group.	
	Different types of chemical transformation of drugs with specific	
	examples.	
	Synthesis and therapeutic use of Diclofenac sodium (DFS),	
	Aceclofenac, Paracetamol, Phenytoin, Aspirin, Atenolol, Laevodopa,	
	Ciprofloxacin, Metronidazole, Dapsone, Ethambutol	
	504.2 Micro analysis and Surface analysis	15
		13
	Microanalysis:	
	Problems associated with trace analysis, Special extraction procedures	
	for separating analyte/s from the complex matrix, Extraction of	2
	organic/inorganic analyte from organic/inorganic matrix.	
	Special techniques and care to be taken during micro analysis	
	Surface analysis:	
	Surface chemistry, Phenomenon of adsorption, Adsorption isotherms	
	Surface area by BET method, Pore size distribution, Particle size	
	analysis	
	Catalysis, Heterogeneous and homogenous catalysis	
	504.3 General Metabolism and Nutrition	15
	Overview of mineral metabolism and abnormalities of mineral	
	metabolism with respect to calcium, iron, iodine, fluoride, manganese,	
	selenium	
	Energy metabolism and nutrition: Concepts of calorific value,	
	Respiratory quotient, BMR, RDA, Nutritional indices, proximate	
	principles of diet, protein energy malnutrition, obesity, BMI, diseases	
	related to obesity, glycemic index.	
	Free radicals and anti-oxidants: reactive oxygen species- generation	
	and damage, free radical scavenger systems, inflammation, respiratory,	
	skin and age related diseases, atherosclerosis, lipid per oxidation,	
	preventive and chain breaking anti-oxidants	
RUSBASP503	PRACTICALS	
	1. Column Chromatography of Separation of mixture of	
	dyes/Separation of Plant Pigments (Spinach)	
	2. Paper chromatography for Separation of Plant Pigments (Spinach)/	
	Separation of Amino acids	
	3. Thin Layer Chromatography of Alkaloids	
	4. Ion Exchange Chromatography of Estimation of sodium using	
	cation exchanger/Estimation of Mg using anion exchange resin	
	column	
	5. Gravimetric Analysis of Estimation of Nickel as Ni-DMG	
	6. Antioxidant activity of any one sample	
t		

	 Excipients and Delivery Systems of Pharmaceutical formulations: Karsa, Stephenson Microanalysis of solids: Yacobi, Holt, Kazmerski Surface Analysis Methods in Material Science: Brett Sexton, R.C. Smart
	Introduction to nutrition and Metabolism:David A. Bender
	aiia kutononis
	NULLOIL
o aininai	
Raininai	
P.aturat	
P.amnat	

.0,

Course Code: RUSBAS505

Course Title: Computational Sciences V

Academic year 2020-21

T.Y.B.Sc.

COURSE OUTCOME	DESCRIPTION	
CO 1	Students will comprehend the logic behind dynamic programming algorithms.	
CO 2	Students should effectively use bioinformatics algorithms like BLAST and FASTA for sequence alignment and phylogenetic studies.	

Paper Code	Semester V	Lectures
RUSBAS505	RUSBAS505 COMPUTATIONALSCIENCES V	
	505.1 Dynamic Programming Algorithm	10
	1. Global and local alignment	
	2. Needleman & Wunch, Smith & Waterman algorithms for	
	Pairwise alignment	
	3. Use of pairwise alignments for analysis of Nucleic acid and	
	Protein Sequences and interpretation of results.	
	4. Overview of BLAST, its variants & working, BLAST algorithm	
	5. PSI BLAST and PHI BLAST: Working and interpretation of	
	result	40
	505.2 Multiple sequence alignment	10
4	1. Concept of multiple sequence alignment (MSA)	
	2. Algorithm in MSA and its application	
	3. Multiple sequence alignment methods	
	4. PSSM	
	5. MSA Tool: Clustal Omega- Working	40
7	505.3 Molecular Phylogenetics	10
	1. Phylogenetic analysis	
	2. Basic concepts in taxonomy and phylogeny.	
	3. Definition and description of Phylogenetic trees and various methods	
	4. Clustering method –UPGMA & NJ	
	5. Cladistic method – Maximum Parsimony	
	6. Phylogenetic Analysis software Phylip/PAUP	

RUSBASP504	PRACTICALS	
	1. Working with BLAST	
	2. Basic BLAST	
	a. Proteins	
	b. Nucleotides	
	3. Advanced BLAST	
	a. PHI BLAST	
	b. PSI BLAST	
	4. Working with FASTA	48
	a. Proteins	
	b. Nucleotides	
	5. Working of Clustal Omega	
	6. Phylogenetic Tree construction & Visualization	~ O T
	7. Basics of PHYLIP	
	8. PAUP	

Computational	Algorithms and Data structure:Niklaus Wirth	
Sciences V	 The Art of Computer Programming:Donald E.Knuth 	
	Multiple Squence Aligment Methods:Russelland Springer	
	 Molecular Evolution and Phylogenetics: MasatoshiNeiand Sudhir 	
	Kumar	

Modality of Assessment for: T.Y.B.Sc. Semester V

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1.	Internal Examination	20
2.	Assignment/Group Discussion/Presentation/Class Activity	20
	TOTAL	40

B) External Examination- 60%- 60 Marks Semester End Theory Examination:

- 9. Duration These examinations shall be of **2.0 Hours** duration.
- 10. Theory question paper pattern:

Paper Pattern for Biological, Chemical and Computational Sciences:

Question	Options	Marks	Questions Based on
Q.1. Short answer question (5 Marks each)	3 out of	15	Unit I
Q.2. Short Answer questions (5 Marks each)	3 out of	15	Unit II
Q.3. Short Answer questions (5 Marks each)	3 out of	15	Unit III
Q.4. Objective/short answer question (5 Marks each)	3 out of 4	15	Combination of all units
	TOTAL	60	

Paper Pattern for Entrepreneurship skills:

Question	Options	Marks	Questions Based on
Q.1. Short answer question (5 Marks each)	3 out of 4	15	Unit I
Q.2. Short Answer questions (5 Marks each)	3 out of 4	15	Unit II
Q.3. Short Answer questions (5 Marks each)	3 out of 4	15	Unit III
Q.4. Short Answer questions (5 Marks each)	3 out of 4	15	Unit IV
	TOTAL	60	

Practical Examination Pattern:

A) Internal Examination: 40%-40 Marks

Particulars	
Journal	10
Experimental tasks/Attendance	10
Small project/Class	20
assignment/Presentation/Activity	
/Viva	A () Y
Total	40

B) External Examination: 60%-60 Marks

Semester End Practical Examination:

Particulars	Paper
Required Experiments Performed with appropriate principle, approach, Observations, Result, Demonstration of skills, Conclusion and Viva.	60
Total	60

Overall Examination & Marks Distribution Pattern

Semester V

Course		501			502			503			504	
	Internal	External	Total									
Theory	40	60	100	40	60	100	40	60	100	40	60	100
Practicals	40	60	100	40	60	100		_	_	40	60	100

Course		505		Grand Total
	Internal	External	Total	
Theory	40	60	100	500
Practicals	40	60	100	400

To be revised for academic year 2020-2021

Course Title: Entrepreneurship Skills Academic year 2020-21

T.Y.B.Sc.

COURSE	DESCRIPTION
OUTCOME	
CO 1	Students will be keenly interested in developing innovative ideas
	which may be commercially viable.
CO 2	Students should start building knowledgebase and skill set which will
	be useful to start a new enterprise in future.

Paper Code	Semester VI	Lectures
RUSBAS601	ENTREPRENEURSHIP SKILLS	40
	601.1 Launching and Organizing An Enterprise	10
	1. Environment scanning – Information, sources, schemes of assistance, problems.	
	2. Enterprise selection, market assessment, enterprise feasibility study, SWOT Analysis.	
	3. Resource mobilisation - finance, technology, raw material, site and manpower.	
	4. Costing and marketing management and quality control.5. Feedback, monitoring and evaluation.	
	601.2 Growth Strategies, Networking & Innovation	10
	Performance appraisal and assessment	
	2. Profitability and control measures, demands and challenges3. Need for diversification	
0 211	4. Future Growth – Techniques of expansion and diversification, vision strategies	
	5. Concept and dynamics	
	6. Methods, Joint venture, co-ordination and feasibility study	
	601.3 Principles of Corporate Management	10
	1. Principles	
	2. Functions of management	
	3. Quality Circles 4. MBO	
	5. Management by Wandering	

5. 6. 7.	Introduction Principle 1 Principle 2 Principle 3 Principle 4 Principle 5	n Seek Opportunity in adversity Do more with less Think & act flexibly Keep it simple Include the margin Follow your Heart	
Ca	se Study/As	signment/Project Report/Industrial V	7isit Pisit
Reference Books: Entrepreneurship	Cl :ll -	 Jugaad Innovation: Radjou,Prabhu 	
		Ruitonoine	
Palnin	T. O.		

Entrepreneurship Skills	Jugaad Innovation: Radjou,Prabhu,Ahuja
-------------------------	--

To be revised for academic year 2020-2021

Course Title: Biological Sciences V Academic year 2020-21 T.Y.B.Sc.

COURSE	DESCRIPTION
OUTCOME	
CO 1	Students will learn Phytochemistry with an emphasis on its
	applications in pharmaceuticals and bioanalysis. They should be able
	to perform and interpret qualitative tests for phytochemicals.
CO 2	Students should be able to interpret results of molecular biology
	experiments like PCR and RFLP.
CO 3	Students should appreciate and study biopharmaceuticals as an
	upcoming branch in pharmaceuticals.

Paper Code	Semester VI	Lectures
RUSBAS602	ENTREPRENEURSHIP SKILLS	45
	602.1: Phytochemical Analysis	15
	Classical methods of analysis (Gravimetric & Titrimetric), Chromatographic & Spectroscopic analysis of phytoconstituents Chromatographic fingerprints, Phytochemical variations in plants Analysis of herbal formulation, Effect of drying on phytoconstituents	
o ain	602.2: Techniques in Recombinant DNA Technology RFLP, AFLP, PCR, RAPD, Nucleic acid probes, Southern Blotting, Northern Blotting, Edible Vaccines, Biosensors and Biochips	15
	602.3: Introduction to Biopharmaceuticals &Biosimilars	15
	Introduction to Biopharmaceuticals, Sources of Biopharmaceuticals (<i>E. Coli</i> , Animal cells, Additional systems), Upstream & Downstream processing, Product Analysis, Therapeutic Hormones, Recombinant Blood Products & Therapeutic Enzymes, Production of antibodies, Vaccines & adjuvants	

RUSBASP602	PRACTICALS	
	1. Demonstration of PCR, RFLP	
	2. Preparation of antigens for vaccine production (TAB vaccine)	
	3. Sterility testing of biopharmaceuticals	
	4. Preservation of microbial cultures	
	5. Study of Biosimilars & analysis of Biosimilar drugs	
	6. Study of secondary metabolites produced by plants and their	
	qualitative detection	
	7. Bacterial endotoxin test	40
	8. Analysis of Plant Secondary Metabolite by suitable techniques	90

To be revised for academic year 2020-2021

Course Title: Chemical Sciences V Academic year 2020-21 T.Y.B.Sc.

T.T.D.SC.	
OURSE OUTCOM	ES:
COURSE	DESCRIPTION
OUTCOME	
CO 1	Students will get familiar with the basic concepts of atomic and
	molecular spectroscopy and their applications in bioanalysis. They should be able to choose the correct method for analysis based on
	chemical property of analyte and objective of analysis.
CO 2	Students should study applications of thermal analysis for
	characterization of pharmaceutical products.

Paper Code	Semester VI	Lectures
RUSBAS603	Chemical Sciences V	45
	603.1 Spectroscopy –II	15
Rain	Atomic Spectroscopy:	
	Absorption and emission spectra, energy level diagrams, process	
	involved in atomization, flame photometry, flame atomizer, types of burners, monochromators and detectors, atomic absorption	
	spectroscopy, flame and electro thermal atomizer, sources,	
	instrumentation, quantitative applications of atomic absorption and flame photometry, calibration curve method, standard	
	addition and internal standard method.	
	Molecular Fluorescence and Phosphorescence Spectroscopy:	
	Theory, instrumentation and applications, Dipole moment: Dipole	
	moment, polarization of a bond, bond moment, dipole moment and	
	molecular structure. Rotational Spectrum:Rotational spectrum of a	

diatomic molecule, rigid rotor, moment of inertia, energy levels, selection rule, nature of spectrum, determination of inter nuclear distance and isotopic shift.

Vibrational spectrum: (IR):

Vibrational motion, degrees of freedom, modes of vibration, Vibrational spectrum of a diatomic molecule, simple harmonic oscillator, energy levels, zero point energy, conditions for obtaining Vibrational spectrum, selection rule, nature of spectrum.

Vibrational-Rotational spectrum of diatomic molecule

Vibrating rotor, energy levels, selection rule, nature of spectrum, R and P branches, harmonic oscillator: energy levels, selection rule, fundamental band, overtones. Application of vibration rotation spectrum in determining Force constant.

Introduction to infrared spectra of simple molecules like H_2O and CO_2

Raman Spectroscopy:

Scattering of electromagnetic radiation, Rayleigh scattering, Raman scattering, nature of Raman spectrum, Stoke's lines, Anti- Stoke's lines, Raman shift, quantum theory of Raman spectrum, comparative study of IR and Raman spectra, rule of mutual exclusion. (Example of CO₂ molecule)

603.2 Pericyclic Reactions

15

Three kinds of Pericyclic reactions, Molecular orbital and Orbital symmetry, Electrocyclic reactions (FMO-Approach), 1,3-Dipolar cycloadditions, Chelotropic Reactions, Cycloaddition reactions (FMO-Approach)Sigmatropic rearrangements, The ENE reaction, Pericyclic reactions in Biological systems, Summary of the selection rules for Pericyclic reactions.

603.3 Electro-Analytical and Thermal methods

15

Electro-Analytical methods:

Overview of electrode process, Electro-capillary curve and electro-capillary maximum potential.

Microelectrodes: mercury electrodes: Stationary mercury drop electrode (SMDE), Hanging mercury drop electrode (HMDE), Mercury film electrode (MFE), Carbon paste electrode and chemically modified electrodes.

Introduction to three electrode system, modern polarography and voltammetry: necessity and development of new voltammetric

techniques and their comparison with classical DC polarography

Voltammetric methods: Sampled DC polarography (TAST), Linear sweepvoltammetry (LSV), Cyclic voltammetry (CV), diagnostic criteria of cyclic voltammetry

Thermal methods:

Thermogravimetry (TG): Principle and Instrumentation, factors affecting thermogravimetric curves, Interpretation of thermogravimetric curves. applications of thermogravimetry

Differential thermal analysis (DTA) and Differential scanning calorimetry (DSC): Principle and instrumentation, heat flux and power compensated DSC, Interpretation of DTA and DSC curves applications of DTA and DSC

Chemical Sciences V	 Introduction to Molecular Spectroscopy:Gordon M. Barrow
	Molecular Luminescence Spectroscopy Methods and
	Applications John Wiley and sons
	Concept Instrumentation and techniques in Atomic
	Absorption Spectroscopy: Perkin Elmer
	Principles of instrumental analysis:Douglas a. Skoog
	Photochemistry and pericyclic reactions: Jagdamba Singh
	Thermal methods of analysis; Haines
Raininara	

To be revised for academic year 2020-2021

Course Title: Chemical Sciences VI Academic year 2020-21 T.Y.B.Sc.

COURSE	DESCRIPTION
OUTCOME	
CO 1	Students will be able to interpret simple IR and NMR spectra. They
	should be introduced to basic concepts of hyphenated techniques
	which will be useful in studying advanced instrumentation.
CO 2	Students should understand advantages and limitations of
	biochemical techniques like SDS-PAGE, native PAGE, 2D-gel
	electrophoresis etc. and choose suitable technique as per the
	biochemical properties of analyte and objective of analysis. They
	should familiarize with the concept of microarrays and biochips as
	advanced methods of diagnostics.

Paper Code	Semester VI	Lectures
RUSBAS604	Chemical Sciences VI	45
Raini	Infrared Spectroscopy: Diatomic Molecules, Polyatomic Molecules, Characteristic Vibration Frequencies, Factors Affecting Group Frequencies. Qualitative Analysis –Identification of Structural Features, Quantitative Analysis, Sampling Procedures, Near Infrared Spectrometry, Applications of Infrared Spectrometry. NMR Spectroscopy: Chemical shift, Shielding and deshielding of protons, low resolution N.M.R. spectrum of methanol and ethanol. PMR Spectroscopy: Basic theory of NMR, Nature of PMR spectrum, Chemical shift (∂ unit), Standard for PMR, Solvents used, Factors	15
	affecting Chemical Shift: Inductive effect, Anisotropic effect (with reference to C=C, $C\equiv C$, C=O and benzene ring), Spin-spin coupling and coupling constant. Proton exchange application of deuterium	
	and coupling constant. Proton exchange application of deuterium exchange, Application of PMR in structure determination.	

	604.2 Introduction to Mass Spectroscopy and its hyphenated techniques	15
	Introduction to mass spectroscopy: Concept of mass to charge ratio, study of ionization techniques(electron ionization, chemical ionization, electrospray ionization, atmospheric pressure ionization techniques, thermospray ionization), Components of mass spectrograph, study of a mass spectra and fragmentation patterns/ fragmentation pathways	
	Hyphenation : Need of hyphenation, Interfacing devices	202
	Applications of Liquid Chromatography-Mass Spectroscopy and Gas chromatography-Mass spectroscopy	
	604.3 Biochemical Methods of Analysis	15
	Electrophoresis: PAGE, SDS-PAGE, Western Blotting, 2D gel electrophoresis, AGE, ELISA, Centrifugation, Microarray	
RUSBASP603	PRACTICALS	
	 Separation of Organic mixtures:- Volatile liquid + Non-volatile liquid (Liquid + Liquid) by fractional distillation method Volatile liquid + Water insoluble solid (Liquid + Solid) by distillation method. Separation Techniques:- 	
	1. High Performance Thin Layer Chromatography - To	
	 develop the fingerprinting pattern of natural products High Performance Liquid Chromatography - Separation of modern drug (Diclofenac sodium) from their combination formulation. 	
	Gas Chromatography - Separation of solvent mixtures (Methanol and Ethanol, Toluene and Methanol)	
	Spectroscopic Techniques:-	
	 Atomic absorption spectroscopy (AAS) Infrared (IR) analysis of simple organic molecules Nuclear Magnetic Resonance (Demo) 	
	Flame photometric determination Flame photometric determination of Li/Na/K by Calibration Curve	
0.0	and Standard addition methods	

Chemical Sciences VI	 Principles of instrumental analysis:Douglas a. Skoog Introduction to Spectroscopy:Donald L. Pavia Organic Spectrocsopy:William Kemp Introduction to hyphenated techniques and applications in pharmacy:Patel Biochemical methods ;S.Sadasivam,A. manickam
	* Diochemical metrious J.S. adds vain, A. manickain
Raininara	
P.ain.	

To be revised for academic year 2020-2021

Course Title: Computational Sciences V Academic year 2020-21

T.Y.B.Sc.

COURSE	DESCRIPTION
OUTCOME	
CO 1	Students will comprehend the programming logic for protein structure prediction, Cheminformatics and drug design.
CO 2	Students should effectively use bioinformatics tools like Modeller, Marvin Sketch and iGem Dock for basic structural characterization.

Paper Code	Semester VI	Lectures
RUSBAS605	Computational Sciences V	30
	605.1 Protein structure prediction	10
Rain	 Protein structure basics Computational prediction methods Homology modeling Protein threading Fold recognition Tools used for prediction Cheminformatics Cheminformatics Introduction Chemical structure storage formats Cheminformatics tools Applications 	10
	 Computational Drug designing Introduction to drugs Steps in drug discovery & development Computational Drug designing Structure based drug designing Virtual Screening Novel drug Targets 	10

RUSBASP604	PRACTICALS
	Homology modelling study using Modeller a. Download and Installation
	b. Basic Modelling
	c. Advanced Modelling
	2. Automated modelling using Swiss Model3. Validation of predicted structuresa. ProSA
	b. Verify 3D
	c. SAVES
	4. Chemical structure designing- Marvin Sketch/ Marvin View5. Virtual Screening- iGemDock

Computational Sciences	Cheminformatics: Johann Gastieger
V	Bioinformatics and drug Discovery: Richard S. Larson

Modality of Assessment for: T.Y.B.Sc. Semester VI

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1.	Internal Examination	20
2.	Assignment/Group Discussion/Presentation/Class Activity	20
	TOTAL	40

B) External Examination- 60%- 60 Marks Semester End Theory Examination:

- 11. Duration These examinations shall be of **2.0 Hours** duration.
- 12. Theory question paper pattern:

Paper Pattern for Biological, Chemical and Computational Sciences:

Question	Options	Marks	Questions Based on
Q.1. Short answer question (5 Marks each)	3 out of 4	15	Unit I
Q.2. Short Answer questions (5 Marks each)	3 out of 4	15	Unit II
Q.3. Short Answer questions (5 Marks each)	3 out of 4	15	Unit III
Q.4. Objective/short answer question (5 Marks each)	3 out of	15	Combination of all units
	TOTAL	60	

Paper Pattern for Entrepreneurship skills:

Question	Options	Marks	Questions Based on
Q.1. Short answer question (5 Marks each)	3 out of 4	15	Unit I
Q.2. Short Answer questions (5 Marks each)	3 out of 4	15	Unit II
Q.3. Short Answer questions (5 Marks each)	3 out of 4	15	Unit III
Q.4. Short Answer questions (5 Marks each)	3 out of 4	15	Unit IV
	TOTAL	60	

Practical Examination Pattern:

C) Internal Examination: 40%-40 Marks

Particulars	
Journal	10
Experimental tasks/Attendance	10
Small project/Class	20
assignment/Presentation/Activity	
/Viva	~ O ?
Total	40

D) External Examination: 60%-60 Marks

Semester End Practical Examination:

Particulars	Paper
Required Experiments Performed with appropriate principle, approach, Observations, Result, Demonstration of skills, Conclusion and Viva.	60
Total	60

Overall Examination & Marks Distribution Pattern

Semester VI

Course		601		602		603			604			
	Internal	External	Total									
Theory	40	60	100	40	60	100	40	60	100	40	60	100
Practicals	40	60	100	40	60	100		_	_	40	60	100

Course		Grand Total		
	Internal	External	Total	
Theory	40	60	100	500
Practicals	40	60	100	400